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A.P. 20-726

01000 Mexico, D.F.

Mexico

bladt@sigma.iimas.unam.mx

Samuel Finch
University of Copenhagen

Dept. of Mathematical Sciences

Universitetsparken 5

DK-2100 Copenhagen Ø

Denmark

pjb926@math.ku.dk

Michael Sørensen
University of Copenhagen and CREATES

Dept. of Mathematical Sciences

Universitetsparken 5

DK-2100 Copenhagen Ø

Denmark

michael@math.ku.dk

May 13, 2014

Abstract

We propose simple methods for multivariate diffusion bridge simulation, which plays
a fundamental role in simulation-based likelihood and Bayesian inference for stochastic
differential equations. By a novel application of classical coupling methods, the new
approach generalizes a previously proposed simulation method for one-dimensional
bridges to the multi-variate setting. First a method of simulating approximate, but
often very accurate, diffusion bridges is proposed. These approximate bridges are used
as proposal for easily implementable MCMC algorithms that produce exact diffusion
bridges. The new method is much more generally applicable than previous methods.
Another advantage is that the new method works well for diffusion bridges in long
intervals because the computational complexity of the method is linear in the length
of the interval. In a simulation study the new method performs well, and its usefulness
is illustrated by an application to Bayesian estimation for the multivariate hyperbolic
diffusion model.

Key words: Bayesian inference; coupling; discretely sampled diffusions; likelihood
inference; stochastic differential equation; time-reversal.
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1 Introduction

In this paper we propose a simple and generally applicable method for simulation of a multi-
variate diffusion bridge. The main motivation is that simulation of diffusion bridges plays
a fundamental role in simulation-based likelihood inference (including Bayesian inference)
for discretely sampled diffusion processes and other diffusion-type processes like stochastic
volatility models.

Our approach is based on the following simple construction of a process that starts from
a at time zero and at time T ends in b, where a and b are given points in the state space.
One diffusion process, X

(1)
t , is started from the point a, while another diffusion, X

(2)
t is

started from the point b. The time of the second diffusion is reversed, so that the time
starts at T and goes downwards to zero, and the dynamics of X

(2)
t is chosen such that the

time reversed diffusion X
(2)
T−t has the same dynamics as X

(1)
t . Suppose there is a time point

τ ∈ [0, T ] at which X(1)
τ = X

(2)
T−τ . Then the process that is equal to X

(1)
t for t ∈ [0, τ ] and

for t ∈ [τ, T ] equals X
(2)
T−t is obviously a process that starts at a and ends at b. If the two

diffusion processes X(1) and X(2) are independent, then the probability that X
(1)
t and X

(2)
T−t

meet at the same time point in [0, T ] is zero for dimensions larger than one. However, if they
are suitably dependent, then the probability can be made positive and will often go to one
as T tends to infinity. This can be obtained by applying classical coupling methods.

The new method is a generalization of the one-dimensional diffusion bridge simulation
method proposed by Bladt and Sørensen (2014), where the two diffusions X(1) and X(2) were
independent. The generalization is far from straightforward. For ergodic one-dimensional
diffusions, the probability that two independent diffusions intersect goes to one as T →∞.
The application of coupling methods is a breakthrough that allows the generalization to
multivariate diffusions. Moreover, the coupling methods also improve the simulation of one-
dimensional diffusions because they increase the probability of intersection in [0, T ] and thus
improve the computational efficiency of the method.

Conditional on the event that the two processes meet at a time point in [0, T ], we show
that the process constructed as described above is an approximation to a diffusion bridge
between the two points. A simple rejection sampler is obtained by repeatedly simulating the
two dependent diffusions until they hit each other. The diffusions can be simulated by means
of simple procedures like the Euler or the Milstein scheme, see Kloeden and Platen (1999), so
the new method is easy to implement for likelihood inference for discretely sampled diffusion
processes. The approximate diffusion bridge produced by the rejection sampler can be used
as proposal for MCMC-algorithms that have an exact diffusion bridge as target distribution.
We present a pseudo-marginal Metropolis-Hastings algorithm (in the sense of Andrieu and
Roberts (2009)) and a new MCMC algorithm that is easier to implement, but typically has a
larger rejection probability. An example of a diffusion bridge simulated by our new method
is shown in Figure 1.1.

Diffusion bridge simulation is a highly non-trivial problem that has been investigated
actively over the last 10 - 15 years. A lucid exposition of the problems and the state-of-
the-art can be found in Papaspiliopoulos and Roberts (2012). Before the paper by Bladt
and Sørensen (2014), it was thought impossible to simulate diffusion bridges by means of
simple procedures, because a rejection sampler that tries to hit the prescribed end-point
for the bridge will have a prohibitively large rejection probability. The rejection sampler
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Figure 1.1: Simulated sample path of an Ornstein-Uhlenbeck bridge from (0.785,0.785) to
(1.091,1.091). Time is in the vertical direction.

presented in this paper has an acceptable rejection probability because what must be hit is a
sample path rather than a point and because the coupling methods make the two diffusions
tend to meet. The first diffusion bridge simulation methods in the literature were based on
the Metropolis-Hastings algorithm with a proposal distribution given by a diffusion process
that was forced by its drift to go from a to b, see e.g. Roberts and Stramer (2001) or
Durham and Gallant (2002). Later Beskos, Papaspiliopoulos, and Roberts (2006); Beskos,
Papaspiliopoulos, and Robert (2008) developed algorithms for exact simulation of diffusion
bridges. These are cleverly designed rejection sampling algorithms that use simulations of
Brownian bridges, which can easily be simulated. Under strong boundedness conditions the
algorithm is relatively simple, whereas it is more complex under weaker condition. Lin, Chen,
and Mykland (2010) proposed a sequential Monte Carlo method for simulating diffusion
bridges with a resampling scheme guided by the empirical distribution of backward paths.
The spirit of this approach has similarities to the methods in Bladt and Sørensen (2014) and
in this paper.

An advantage of our new method is that the same simple algorithm can be used for all
ergodic diffusions, and that it is easy to understand and to implement. More importantly,
the method does not require that the diffusion can be transformed into one with diffusion
matrix equal to the identity matrix. Such a transformation, often referred to as the Lamperti
transformation, exists for only a small subclass of the multi-variate diffusions, and even when
it exists, the transformation is rarely in closed form. A Lamperti transformation is required
for the exact algorithms of Beskos, Papaspiliopoulos, and Roberts (2006; 2008). Another
important advantage is that our method works particularly well for long time intervals. The
computational complexity is linear in the length of the time interval where the diffusion
bridge is defined. This was illustrated in a simulation study in Bladt and Sørensen (2014),
where the computer time increased linearly with the interval length for our method, while it
grew at least exponentially with the interval length for the exact EA algorithms of Beskos,
Papaspiliopoulos, and Roberts (2006). The latter finding is not surprising, because in the
fundamental EA1 algorithm the acceptance probability is of the order e−cT , where T is
the length of the interval. Thus the EA algorithm is in practice likely not to work for
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long time intervals. It follows from results in this paper that under conditions given in
the literature on coupling of diffusion processes (see Chen and Li (1989)), the approximate
method proposed here simulates an essentially exact diffusion bridge in long time intervals
(apart from the discretization error). This literature also gives conditions ensuring that
the distribution of the simulated process goes to that of a diffusion bridge exponentially
fast as a function of the interval length. Thus the proposed method usefully supplements
previously published methods both because it works particularly well for long time intervals,
where the other methods tend not to work, and because it works for diffusions without a
Lamperti transformation. It is worth noting that simulation-based likelihood inference for
discretely sampled diffusions is mainly important for long time intervals, because for short
time intervals several simpler methods provide highly efficient estimators, see the following
discussion.

The main challenge in likelihood based inference for diffusion models is that the transi-
tion density, and hence the likelihood function, is not explicitly available and must therefore
be approximated. When the sampling frequency is relatively high, rather crude approxi-
mations to the likelihood functions, like those in Ozaki (1985), Bollerslev and Wooldridge
(1992), Bibby and Sørensen (1995) and Kessler (1997), give estimators with a high effi-
ciency, see Sørensen (2010). When the interval between the observation times is relatively
long, more accurate approximations to the transition density are needed. One approach is
numerical approximations, either by solving the Kolmogorov PDE numerically, e.g. Poulsen
(1999) and Hurn, Jeisman, and Lindsay (2007), or by expansions, e.g. Aı̈t-Sahalia (2002,
2008) and Forman and Sørensen (2008). Alternatively, likelihood inference can be based
on simulations, an approach that goes back to the seminal paper by Pedersen (1995). The
inference problem can be viewed as an incomplete data problem. If the diffusion process
had been observed continuously, the likelihood functions would be explicitly given by the
Girsanov formula. However, the process has been observed at discrete time points only,
and the continuous-time paths between the observation points can be considered as missing
data. This way of viewing the problem, which goes back to Dacunha-Castelle and Florens-
Zmirou (1986), makes it natural to apply either the EM-algorithm or the Gibbs sampler.
To do so the missing continuous paths between the observations must be simulated condi-
tional on the observations, which by the Markov property is exactly simulation of diffusion
bridges. It was a significant break-through when this was simultaneously realized by sev-
eral authors, see Roberts and Stramer (2001), Elerian, Chib, and Shephard (2001), Eraker
(2001), and Durham and Gallant (2002), and approaches based on bridge simulation has
since been used by several authors including Golightly and Wilkinson (2005, 2006, 2011),
Beskos, Papaspiliopoulos, Roberts, and Fearnhead (2006), Delyon and Hu (2006), Beskos,
Papaspiliopoulos, and Roberts (2009), and Lin et al. (2010).

Diffusion bridge simulation is also crucial to simulation-based inference for other types of
diffusion process data than discrete time observations. Chib, Pitt, and Shephard (2006) pre-
sented a general approach to simulation-based Bayesian inference for diffusion models when
the data are discrete time observations of rather general, and possibly random, functionals
of the continuous sample path, see also Golightly and Wilkinson (2008). This approach
covers for instance diffusions observed discretely with measurement error and discretely
sampled stochastic volatility models. Also in this case diffusion bridge simulation is crucial.
Baltazar-Larios and Sørensen (2010) presented an EM-algorithm for integrated diffusions
observed discretely with measurement error based on the ideas in Chib et al. (2006) and the
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bridge simulation method proposed in Bladt and Sørensen (2014).
The paper is organized as follows. In Section 2 we first review some necessary results

on coupling methods and time-reversal for diffusion processes and prove some preliminary
results. Then we present the new approximate bridge simulation method and show in what
sense it approximates a diffusion bridge. The approximate bridges are then used as proposal
in two MCMC-algorithms that have an exact diffusion bridge as target distribution. Finally,
we discuss how the new method improves simulation of one-dimensional diffusions and solve
some implementation problems. In particular, we give criteria to determine whether two
diffusions simulated at discrete time points have met between two time points. In Section 3
the approximate and exact bridge simulation methods are compared to the (known) exact
distribution of the multivariate Ornstein–Uhlenbeck bridge. The study indicates that our
approximate method provides a very accurate approximation to the distribution of a diffu-
sion bridge, except for bridges that are unlikely to occur in discretely sampled data. Even
for extremely unlikely bridges, the approximate method works surprisingly well for some
coupling methods. In Section 4 we illustrate the usefulness of our method to inference for
discretely observed diffusions by considering briefly Bayesian estimation for the multivariate
hyperbolic diffusion. The proofs are collected in Section 5.

2 Diffusion bridge simulation

Let X = {Xt}t≥0 be a d-dimensional diffusion with state space D given by the stochastic
differential equation

dXt = α(Xt)dt+ σ(Xt)dWt, (2.1)

where W is a d-dimensional Wiener process, and where the coefficients α (a function D 7→
IRd) and σ (a d× d-matrix of continuous functions defined on D) are sufficiently regular to
ensure that the equation has a unique strong solution that is a strong Markov process. We
will assume that the diffusion defined by (2.1) is ergodic with invariant probability density
function ν (w.r.t. Lebesgue measure on D). It is assumed that σ(x) is invertible for all x ∈ D.
Define V (x) = σ(x)σ(x)T . We denote the transition density of X by pt(x, y). Specifically,
the conditional density of Xs+t given Xs = x is y 7→ pt(x, y).

Let a and b be given points in D. We present a method for simulating a sample path
of X in [0, T ] such that X0 = a and XT = b. A solution of (2.1) in the interval [0, T ]
such that X0 = a and XT = b will in the following be called an (a, b, T )-bridge. The
approximate bridge construction goes as follows. First the time-reversed version, X∗t , of
(2.1) is simulated in [0, T ] starting at b. Then a solution, Xt, to (2.1) is simulated starting at
a and dependent on X∗ in such a way that Xt and X∗T−t tend to intersect at some (random)
time point τ ∈ [0, T ]. If the two processes meet at time τ , then the approximate bridge is
the equal to Xt for t ∈ [0, τ ], and equal to X∗T−t for t ∈ [τ, T ]. This approximate bridge
is used as a proposal for a MCMC algorithm that has the exact (a, b, T )-bridge as target
distribution. The required dependence between X∗ and X is obtained by applying classical
coupling methods for diffusions.
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2.1 Coupling and time-reversal for multivariate diffusions

We present our algorithm for a class of coupling methods that includes the coupling by
reflection method of Lindvall and Rogers (1986) and the coupling by projection by Chen
and Li (1989). Other coupling methods (see e.g. Chen and Li (1989)) can be used similarly,
provided that they couple before time T with a probability that is not too small. We begin
by briefly presenting the class of coupling methods. Then we derive a few results that we
need in order to construct diffusion bridges.

Suppose X solves (2.1) with initial value X0 = x0. Define another diffusion process X ′

as the solution to
dX ′t = α(X ′t)dt+ σ(X ′t)dW

′
t , X ′0 = x′0 (2.2)

with the Wiener process

dW ′
t = {I − (1− γ)Π(Xt, X

′
t)}O(Xt, X

′
t)dWt +

√
1− γ2u(Xt, X

′
t)dUt.

Here γ ∈ [−1, 1), U is a univariate standard Wiener process independent of W , I is the
d-dimensional identity matrix and

Π(x, x′) = u(x, x′)u(x, x′)T , (2.3)

where T denotes transposition, and u(x, x′) is the unit vector such that σ(x′)u(x, x′) points
in the direction x− x′, i.e.

u(x, x′) =
σ(x′)−1(x− x′)
|σ(x′)−1(x− x′)|

.

Finally, O(Xt, X
′
t) is an orthogonal matrix that in some cases is needed to ensures that the

law of (X,X ′) does not depend on the particular choice of σ, but only on the law of the
solution X (the law of X depends only on σσT , so the same law can be obtained for many
different choices of σ). For many stochastic differential equations, indeed for all those we
consider in this paper, we haveO = I, but there may be cases where the choice of σ introduces
a rotation which should be counterbalanced. In fact, as long as σ satisfies the smoothness
requirements of Lindvall and Rogers (1986) and Chen and Li (1989) our method can still
work if we choose O = I for reasons of computational efficiency. However, it may take many
more attempts to achieve the successful coupling from which we construct our bridge. The
matrix O(Xt, X

′
t) should be chosen to be the closest orthogonal matrix to σ(Xt)

Tσ(X ′t) in
the Frobenious norm. That is O(Xt, X

′
t) = ABT where σ(Xt)

Tσ(X ′t) = AΣBT is the singular
value decomposition.

The matrix Π(x, x′) is the orthogonal projection onto the one-dimensional subspace gen-
erated by the vector u(x, x′), while I − Π(x, x′) is projection onto the plane orthogonal to
the vector u(x, x′). Using this geometric interpretation, it is not difficult to see that the
quadratic variation of W ′ equals tI implying that W ′ is a Wiener process.

Consider the case where O = I. In the plane orthogonal to the vector u(Xt, X
′
t), the

increment of the Wiener process W ′ is equal to the increment of W . In the direction
u(Xt, X

′
t), the increment of W ′ is equal to minus the increment of W in the same direc-

tion (i.e. Π(Xt, X
′
t)dWt) if γ = −1 (method of reflection). Otherwise, the increment of W ′

in the direction u(Xt, X
′
t) is the sum of γΠ(Xt, X

′
t)dWt and

√
1− γ2u(Xt, X

′
t)dUt. In par-

ticular if γ = 0, the increment of W ′ in the direction u(Xt, X
′
t) it is equal to the increment
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of the independent Wiener process U on the subspace generated by u(Xt, X
′
t) (method of

projection). For γ = −1, dW ′
t = H(Xt, X

′
t))dWt, where the matrix

H(x, x′) = I − 2Π(x, x′)

is reflection in the plane orthogonal to the vector u(x, x′). It is therefore symmetric and
orthonormal. We do not consider the case γ = 1 where (for O = I) the two diffusions are
driven by the same Wiener process and will not meet.

The squared diffusion coefficient of the 2d-dimensional diffusion (Xt, X
′
t) is σ(x)σ(x)T σ(x)O(x, x′)T {I − (1− γ)Π(x, x′))}σ(x′)T

σ(x′) {I − (1− γ)Π(x, x′))}O(x, x′)σ(x)T σ(x′)σ(x′)T

 ,
which is of the general form treated in Chen and Li (1989).

Define the stopping time
τ = inf{t > 0 |Xt = X ′t}. (2.4)

Lindvall and Rogers (1986), Chen and Li (1989) and others have given conditions on the
coefficients α and σ ensuring that P (τ <∞) = 1. This is not really necessary for our bridge
simulation method to work. The method is a rejection sampler with rejection probability
P (τ > T ), so we just need that this probability is not too large. If P (τ < ∞) = 1 that is
certainly the case if T is sufficiently large. Chen and Li (1989)) gave results on the rate of
convergence of P (τ > T ) to zero as T →∞, in particular conditions ensuring geometrically
fast convergence. As these conditions are somewhat technical and unnecessarily restrictive
for our application, they are not stated here.

Lemma 2.1 The sample path of X ′ in [0, t] is a function of the sample path of X in [0, t],
the initial value x′0, and the sample path of the one-dimensional Wiener process U in [0, t]

{X ′s}0≤s≤t = Kt (x′0, {Xs}0≤s≤t, {Us}0≤s≤t) .

Specifically,

X ′s = x′0 +
∫ s

0
α(X ′u)du+

∫ s

0
σ(X ′u){I − (1− γ)Π(Xt, X

′
t)}O(Xt, X

′
t)σ(Xu)

−1dXu

−
∫ s

0
σ(X ′u){I − (1− γ)Π(Xt, X

′
t)}O(Xt, X

′
t)σ(Xu)

−1α(Xu)du

+
√

1− γ2

∫ s

0
σ(X ′u)u(Xt, X

′
t)dUu. (2.5)

Similarly, the sample path of X in [0, t] is a function of the initial value x0, the sample paths
of X ′ in [0, t], and the sample path in [0, t] of a standard univariate Wiener process, U ′,
independent of X ′

{Xs}0≤s≤t = K̃t (x0, {X ′s}0≤s≤t, {U ′s}0≤s≤t) .

Specifically,

Xs = x0 +
∫ s

0
α(Xu)du+

∫ s

0
σ(Xu)O(Xu, X

′
u)
T{I − (1− γ)Π(Xu, X

′
u)}σ(X ′u)

−1dX ′u

−
∫ s

0
σ(Xu)O(Xu, X

′
u)
T{I − (1− γ)Π(Xu, X

′
u)}σ(X ′u)

−1α(X ′u)du

+
√

1− γ2

∫ s

0
σ(Xu)O(Xu, X

′
u)
Tu(Xu, X

′
u)dU

′
u. (2.6)
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Proofs of this and other results are given in Section 5. Note that for γ = −1, K̃t does
not depend on U ′.

Before we can formulate the main theorem on our method, we need to review some
well-known results on time-reversal of multivariate diffusions. We have assumed that the
diffusion X defined by (2.1) is ergodic with invariant probability density function ν. Hence
a stationary version of X exists. If the time is reversed for this stationary process, we obtain
another stationary diffusion process X∗. By Theorem 2.3 in Millet, Nualart, and Sanz (1989),
the time-reversed diffusion X∗ solves the stochastic differential equation

dX∗t = α∗(X∗t )dt+ σ(X∗t )dWt (2.7)

where

α∗i (x) = −αi(x) + ν(x)−1
d∑
j=1

∂xj (ν(x)V (x)ij) , i = 1, . . . , d, (2.8)

provided that ∫
D

∣∣∣∣∣∣
d∑
j=1

∂xj (ν(x)Vij(x))

∣∣∣∣∣∣ dx <∞, i = 1, . . . , d. (2.9)

We assume that the local integrability condition (2.9) is satisfied. Conditions ensuring this
are discussed in Millet et al. (1989), where also a similar result under the local Lipschitz
condition is given. The condition (2.9) is satisfied if the two coefficients are twice continuously
differentiable on D, and if there exists ε > 0 such that V ≥ εI. Alternative conditions can
be found in Haussmann and Pardoux (1986). In cases where the transition density is not
differentiable with respect to x, the partial derivative in the formula for the drift are in the
distributional sense.

Let p∗t (x, y) denote the transition density of the solution to (2.7). If X is the stationary
version of the solution to (2.1) and X∗ is the time-reversed stationary diffusion, then the
distribution of (Xs, Xs+t) equals the distribution of (X∗s+t, X

∗
s ). Hence

pt(x, y)ν(x) = p∗t (y, x)ν(y), (2.10)

2.2 Approximate bridge simulation

In this subsection we present the mathematical results on which our algorithm to approx-
imately simulate a diffusion bridge is based and describe how the results can be used to
construct the algorithm. Detailed implementation questions are discussed in a later section.

Theorem 2.2 Suppose X solves (2.1) for t ∈ [0, T ] with the initial condition X0 ∼ ν,
where ν is the invariant probability measure. Let X ′ be the corresponding solution to (2.2)
with initial condition X ′0 = a, i.e. {X ′t}0≤t≤T = KT (a, {Xs}0≤t≤T , {Ut}0≤t≤T ), where U is a
standard Wiener process independent of X. Define a process by

Zt =


X ′t if 0 ≤ t ≤ τ

Xt if τ < t ≤ T,

8



where τ is given by (2.4).
Then the distribution of {Zt}0≤t≤T conditional on the events τ ≤ T and XT = b equals

the distribution of a (a, b, T )-bridge, B, conditional on the event that the bridge is hit by
the process K̃T (A, {Bt}0≤t≤T , {U ′t}0≤t≤T ). Here A is a d-dimensional random variable with
density function p∗T (b, ·) given by (2.10), U ′ is a standard univariate Wiener process, and A,
U ′ and B are independent.

We refer to the process K̃T (A, {Bt}0≤t≤T , {U ′t}0≤t≤T ) as the p∗T (b)-diffusion associated with
B. This process plays an important role not only in the characterization of the distribution
of the approximate diffusion bridge Z, but also in the method for simulating exact diffusion
bridges presented in the next subsection. When γ = −1, KT does not depend on U and K̃T
does not depend on U ′.

A sample path of X with X0 ∼ ν conditional on XT = b can easily be obtained by using
the result of the following lemma on the distribution of a time-reversed diffusion started at
the point b.

Lemma 2.3 Suppose X is ergodic with invariant probability density function ν, and let
X∗ be a solution to (2.7) with initial condition X∗0 = b. Define the time-reversed process
X̄t = X∗T−t, 0 ≤ t ≤ T . The process {X̄t} and the conditional process {Xt} given that
XT = b have the same transition densities

q(x, s, y, t) =
pt−s(x, y)pT−t(y, b)

pT−s(x, b)
=
p∗t−s(y, x)p∗T−t(b, y)

p∗T−s(b, x)
, s < t < T. (2.11)

The distribution of {X̄t} is equal to the distribution of the process {Xt} with X0 ∼ ν condi-
tional on XT = b.

Based on Theorem 2.2 and Lemma 2.3 we can now propose an algorithm to simulate an
approximate diffusion bridge in the interval [0, T ]. Use any of the several methods available
(see e.g. Kloeden and Platen (1999)) to simulate the diffusion X∗ given by (2.7) with X∗0 = b.
If the diffusion given by (2.1) is time-reversible, then the stochastic differential equation for
X∗ is simply (2.1). To simplify the exposition, we assume that X∗ has been simulated
by means of the Euler-scheme with step size δ = T/N . Let Y ∗δi, i = 0, 1, . . . , N , denote
the simulated values of the process, while ∆Wi = Wδi −Wδ(i−1), i = 1, . . . , N , denote the
simulated increments of the driving d-dimensional Wiener process, i.e. Y ∗0 = b and

Y ∗δi = Y ∗δ(i−1) + α∗(Y ∗δ(i−1))δ + σ(Y ∗δ(i−1))∆Wi,

i = 1, . . . , N . The increments of the Wiener process that drives the time-reversed version of
Y ∗ (i.e. Y ∗rev

δi = Y ∗δ(N−i)) are

∆W rev
i = σ(Y ∗δ(N−i+1))

−1
(
Y ∗δ(N−i) − Y ∗δ(N−i+1) − α(Y ∗δ(N−i+1))δ

)
. (2.12)

For fine discretizations ∆W rev
i ≈ −∆WN−i+1.

The discretized sample path of X ′ is a function of the simulated process Y ∗ and (except
in the case of the method of reflection, γ = −1) an independent one-dimensional standard
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Wiener process B, the increments of which we denote by ∆Bi = Bδi−Bδ(i−1), i = 1, . . . , N .
If we denote the simulated values of X ′ by Y ′δi, i = 0, 1, . . . , N , we have that Y ′0 = a and

Y ′δi = Y ′δ(i−1) + α(Y ′δ(i−1))δ + σ(Y ′δ(i−1))∆W
′
i , (2.13)

i = 1, . . . , N , where

∆W ′
i =

{
I − (1− γ)Π(Y ∗δ(N−i+1), Y

′
δ(i−1))

}
O(Y ∗δ(N−i+1), Y

′
δ(i−1))∆W

rev
i (2.14)

+
√

1− γ2u(Y ∗δ(N−i+1), Y
′
δ(i−1))∆Bi.

A simulation of an approximation in the sense of Theorem 2.2 to a (a, b, T )-bridge is
obtained by rejection sampling. Keep simulating independent copies of Y ∗ and B until there
is an i such that Y ∗δ(T−i) and Y ′δi are sufficiently close that we can safely assume that coupling
happens in the time interval [δi, δ(i + 1)]. We discuss the problem of deciding whether
coupling has happened or not in more detail in Subsection 2.5. Once coupling has been
obtained (in the interval [δi, δ(i+ 1)]), put ρ = i+ 1 and define

Zδi =


Y ′δi for i = 0, 1, . . . , ρ− 1

Y ∗δ(N−i) for i = ρ, . . . N,
(2.15)

On top of the usual influence of the step size δ on the quality of the individual simulated
trajectories, the step size also controls the probability that a trajectory crossing is not
detected. Therefore, it is advisable to choose δ smaller than in usual simulation of diffusion
sample paths. Another problem is that the method will only work, if P (τ ≤ T ) is not too
small. This problem was considered in Lindvall and Rogers (1986) and Chen and Li (1989).

The results of Lemma 2.3 and Theorem 2.2, and hence the algorithm, simplify if the
diffusion process is time reversible in the sense that p∗t (x, y) = pt(x, y), or equivalently
pt(x, y)ν(x) = pt(y, x)ν(y). Diffusions with the latter property are called ν-symmetric, see
Kent (1978). By equating α to the reverse drift α∗ given by (2.8), it follows that the diffusion
given by (2.1) is time-reversible if

αi(x)ν(x) = 1
2

p∑
j=1

∂xj (ν(x)V (x)ij) , i = 1, . . . , d. (2.16)

When V (x) is a diagonal matrix, these equations simplify to

αi(x)ν(x) = 1
2∂xi (ν(x)V (x)ii) , i = 1, . . . , d. (2.17)

2.3 Exact bridge simulation

The algorithm presented in the previous section produces only approximate diffusion bridges.
The simulations in Section 3 indicate that the approximation is usually good, and for certain
coupling methods can be even very good. In order to produce exact diffusion bridges, this
section presents two MCMC methods that use the approximate bridges as proposals and
have an exact diffusion bridge as target distribution.
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First we investigate how the distribution of the approximate diffusion bridge is related to
the distribution of the exact diffusion bridge. Diffusions, diffusion bridges and the approx-
imate diffusion bridge Z are elements of the canonical space, CT , of IRd-valued continuous
functions defined on the time interval [0, T ]. Each of these processes induce a probability
measure on the usual σ-algebra generated by the cylinder sets. Let fbr denote the Radon-
Nikodym derivative of the distribution of the (a, b, T )-diffusion bridge with respect to a
dominating measure. The diffusion bridge solves a stochastic differential equation with the
same diffusion coefficient as in (2.1), see e.g. (4.4) in Papaspiliopoulos and Roberts (2012),
so the density fbr is given by Girsanov’s theorem. Since the drift for the bridge is unbounded
at the end point, one has to choose the dominating measure carefully: it must correspond to
another bridge, see Papaspiliopoulos and Roberts (2012), p. 322, and Delyon and Hu (2006).
Similarly let fa denote the density of the distribution of the approximate bridge Z.

We know from Theorem 2.2 that the relation between the distribution of a diffusion bridge
B and the approximation Z involves the p∗T (b)-diffusion associated with B, i.e. the process
K̃T (A,B, U). Here A is a d-dimensional random variable with density function p∗T (b, ·), and
U is a one-dimensional standard Wiener process, where A, B and U are independent.

For any x ∈ CT , let Mx be the set of functions y ∈ CT that intersect x. Specifically,

Mx = {y ∈ CT | gr(y) ∩ gr(x) 6= ∅},

where gr(x) = {(t, xt) | t ∈ [0, T ]}. With these definitions, the relation between the distri-
bution of the approximate bridge Z and the exact (a, b, T )-diffusion bridge is given by the
following corollary.

Corollary 2.4 The density of the approximate bridge Z is given by

fa(z) = fbr(z)πT (z)/πT , (2.18)

where fbr is the density of an exact diffusion bridge, and

πT (x) = P (K̃T (A, x, U) ∈Mx), πT = P ((B, K̃T (A,B, U)) ∈M), (2.19)

where M = {(x, y) ∈ CT × CT | y ∈ Mx}, B, A and U are independent, B is a (a, b, T )-
diffusion bridge, and A is a d-dimensional random variable with density function p∗T (b, ·),
and U is a standard univariate Wiener process.

Clearly, πT (x) is the probability that a trajectory x is hit by the p∗T (b)-diffusion associated
with x, while πT is probability that an (a, b, T )-bridge is hit by its associated p∗T (b)-diffusion.
Equation (2.18) gives an explicit expression of the quality of our approximate simulation
method, and more importantly, it can be used to construct MCMC-algorithms that have the
exact distribution of an (a, b, T )-diffusion bridge as target distribution.

Simulation of p∗T (b)-diffusions associated to a given simulated sample path Z of an approx-
imate (a, b, T )-diffusion bridge is crucial to the following MCMC-algorithms, so we explain
in detail how a sample path of this process can be simulated. We denote the simulated
values by Ỹδi. First the initial value Ỹ0 = A with density function p∗T (b, ·) must be generated.
Usually the transition density p∗ of the time-reversed diffusion is not explicitly known, but
a value of Ỹ0 can easily be generated by simulating a sample path X∗ of the time-reversed
diffusion given as the solution to (2.7) in [0, T ] with X∗0 = b (independently of Z). Then
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Ỹ0 := X∗T has the density p∗T (b, ·). Using the Euler scheme, we obtain a discretized sample
path Ỹ from (2.6) as follows:

Ỹδi = Ỹδ(i−1) + α(Ỹδ(i−1))δ

+ σ(Ỹδ(i−1))O(Ỹδ(i−1), Zδ(i−1))
T
{
I − (1− γ)Π(Ỹδ(i−1), Zδ(i−1))

}
∆W̃i

+
√

1− γ2u(Ỹδ(i−1), Zδ(i−1))∆Ui, i = 1, . . . , T,

where
∆W̃i = σ(Zδ(i−1))

−1
{
Zδi − Zδ(i−1) − α(Zδ(i−1))δ

}
and ∆Ui, i = 1, . . . , T , are independent N(0, δ)-distributed random variables (independent
of Z and Ỹ0). The increments ∆W̃i were calculated during the simulation of the approximate
bridge Z. Specifically, for i ≤ ρ − 1, ∆W̃i equals the Wiener process increment in (2.13)
given by (2.14). Here ρ is the time where the two process defining Z meet; cf. (2.15). For
i ≥ ρ, ∆W̃i equals ∆W rev

i given by (2.12).
First we present a Metropolis-Hastings algorithm of the pseudo-marginal type stud-

ied in Andrieu and Roberts (2009) for which the proposal is the approximate simula-
tion method with density fa, and the target distribution is the distribution of an ex-
act diffusion bridge with density fbr. A simple MH-algorithm would use a sample path
Z(i) of an approximate diffusion bridge simulated by one of the methods in Subsection
2.2 as proposal in the ith step. The proposed sample path is accepted with probability
α(X(i−1), Z(i)) = min(1, r(X(i−1), Z(i))), where

r(X(i−1), Z(i)) =
fbr(Z

(i))fa(X
(i−1))

fbr(X(i−1))fa(Z(i))
=
πT (X(i−1))

πT (Z(i))
.

Here X(i−1) is the sample path from the previous step, and πT (x) is the probability given
by (2.19) that the sample path x is hit by the p∗T (b)-diffusion associated with x. This
MH-algorithm produces draws of exact diffusion bridges, but the probability πT (x) is not
explicitly known.

As in Bladt and Sørensen (2014), exact diffusion bridges can be simulated by means of a
MCMC algorithm of the pseudo-marginal type. The basic idea of the pseudo-marginal ap-
proach is to replace the factor in the acceptance ratio, which we cannot calculate, fbr(x)/fa(x)
= 1/πT (x) by an unbiased MCMC estimate. The beauty of the method is that by including
the MCMC draws needed to estimate 1/πT (x) in the MH-Markov chain, the marginal equi-
librium distribution of the bridge draws is exactly fbr, irrespective of the randomness of the
estimate of 1/πT (x).

For a given sample path x of an approximate diffusion bridge, define a random variable
T (x) in the following way. Simulate a sequence of independent p∗T (b)-diffusion associated
with x, X̃(1), X̃(2), . . . until x is intersected by X̃(i), and let T (x) be the index of the first
p∗T (b)-diffusion that hits x:

T (x) = min{i : X̃(i) ∈Mx}.
By results for the geometric distribution E(T (x)) = 1/πT (x), so if T(x) = (T1(x), . . . , TN(x))
is a vector of N independent draws of T (x), then an unbiased and consistent estimator of
1/πT (x) is

ρ̂(T(x)) =
1

N

N∑
j=1

Tj(x).

12



The pseudo-marginal MH-algorithm goes as follows.

1. Simulate an initial approximate diffusion bridge, X(0), by by one of the methods in
Subsection 2.2 and N independent (conditionally on X(0)) T (x)-values, T(0)(x) =

(T
(0)
1 (x), . . . , T

(0)
N (x)) with x = X(0), and set i = 1.

2. Propose a new sample paths by simulating an approximate diffusion bridge, Z(i), in-
dependently of previous draws (by the same method), and simulate N independent

(conditionally on Z(i)) T (x)-values, T(i) = (T
(i)
1 (x), . . . , T

(i)
N (x)) with x = Z(i)

3. With probability min(1, r̂(X(i−1),T(i−1), Z(i),T(i))), where

r̂(X(i−1),T(i−1), Z(i),T(i)) =
ρ̂(T(i))

ρ̂(T(i−1))
,

the proposed pair (Z(i),T(i)) is accepted and X(i) := Z(i). Otherwise X(i) := X(i−1)

and T(i) := T(i−1)

4. i := i+ 1 and GO TO 2.

By results in Andrieu and Roberts (2009), the target distribution of X is that of an exact
diffusion bridge. In fact, since

r̂(x(1), t(1), x(2), t(2)) =
fa(x

(2))fg(t
(2) |x(2))ρ̂(t(2))fa(x

(1))fg(t
(1) |x(1))

fa(x(1))fg(t(1) |x(1))ρ̂(t(1))fa(x(2))fg(t(2) |x(2))
,

where fg(t |x) is the conditional density of T given X = x, we see that the density of the
target distribution is

p(x, t) = fa(x)fg(t |x)ρ̂(t)πT = fbr(x)fg(t |x)ρ̂(t)πT (x),

where we have used (2.18). Since, conditionally on x, ρ̂(t) is an unbiased estimator of
1/πT (x), we find by marginalizing that the target distribution density of X is fbr, the density
function of an exact diffusion bridge.

We also present a simple alternative MCMC algorithm with target distribution equal to
the exact distribution of a (a, b, T )-diffusion bridge. The MCMC-algorithm works as follows.

1. Simulate an initial approximate diffusion bridge X(0) by by one of the methods in
Subsection 2.2, and i := 1.

2. Simulate a p∗T (b)-diffusion X̃(i) associated with X(i−1).

3. If X̃(i) does not intersect X(i−1), then X(i) := X(i−1). Otherwise, simulate a new
(independent) approximate diffusion bridge X(i) (by the same method as in step 1).

4. i := i+ 1 and GO TO 2.

It is straightforward to check that the Markov chain defined in this way satisfies the
detailed balance equation with fbr as the stationary density. If πT (X) > ε > 0 for all
potential approximate diffusion bridges X, then the Markov chain is exponentially mixing.
To see this, note that as soon as X(i) equals a new independent approximate diffusion bridge,
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thenX(i) is independent ofX(0). If πT (X(0)) > ε with probability one, then P (X(i) = X(0)) <
(1− ε)i.

The two MCMC algorithms are probably appropriate for different applications. For pro-
ducing a sequence of nearly independent bridges the pseudo-marginal approach is probably
the right choice, while the alternative MCMC algorithm might be better for calculating
expectations.

To produce diffusion bridges by the proposed MH-algorithm and the alternative MCMC-
algorithm, a number of sample paths of ordinary diffusions must be simulated. If these
sample paths are simulated by an approximate method, like the Euler scheme, a small dis-
cretization error is introduced. This problem can, however, in some cases be avoided by using
the methods for exactly simulating diffusions developed by Beskos, Papaspiliopoulos, and
Roberts (2006) and Beskos et al. (2008). This method can be used when a multi-dimensional
version of the Lamperti transform exists, so that by this transformation a diffusion can be
obtained for which the diffusion matrix equals the d-dimensional identity matrix. By com-
bining our exact bridge simulation algorithm with exact diffusion simulation methods, exact
diffusion bridges can be efficiently simulated even in long time intervals.

The computational complexity of both the exact and the approximate algorithm is linear
in the interval length T . The reason is that the coupling probabilities are non-decreasing
functions of the interval length. Therefore as the interval length increases, the expected
number of rejections when simulating the proposal (the approximate bridge) is bounded,
and the mixing properties of the MCMC-procedure cannot deteriorate.

2.4 One-dimensional diffusions

The bridge simulation methods presented in the present paper work in the one-dimensional
case too and thus generalize the bridge simulation method proposed in Bladt and Sørensen
(2014).

For d = 1 the standard Wiener process driving the process X ′ given by (2.2) is simply
given by

W ′
t = γWt +

√
1− γ2Ut, γ ∈ [−1, 1),

where U is a standard Wiener process independent of W . The bridge simulation method in
Bladt and Sørensen (2014) is obtained for γ = 0, in which case the diffusion process X ′ is
independent of X.

When simulating the p∗T (b)-diffusion associated with X ′, we need to express X in terms
of the sample path of X ′. This is straightforward in the one-dimensional case. Define

U ′t =
√

1− γ2Wt − γUt.

Then it is easily seen that Ut is a standard Wiener process independent of W ′
t , and that

γW ′
t +

√
1− γ2U ′t = Wt.

Hence

dXt =
{
α(Xt)− γσ(Xt)σ(X ′t)

−1α(X ′t)
}
dt+ σ(Xt)

{
γσ(X ′t)

−1dX ′t +
√

1− γ2dU ′t

}
,

which is (2.6) for d = 1.
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2.5 Implementation

A main problem when implementing the proposed algorithm is to decide whether or not
coupling has happened, i.e. whether the two processes have hit each other. In the following
we discuss criteria for deciding whether the two processes have met.

A criterion for deciding whether the two processes have met can be found in the following
manner. Only the case where O = I will be considered. We must determine whether the
diffusions Xt = X∗T−t and X ′t have coupled in a time interval [δi, δ(i + 1)] (given that they
did not meet before time δi). We will make the simplifying assumption that the diffusion X
develops according to (2.1), i.e. we ignore the influence of the fact that we have conditioned
on XT = b. If δ is sufficiently small and if the two diffusions are sufficiently close, we can
assume that the drift and diffusion coefficients are constant in the time interval [δi, δ(i+ 1)]
and that the coefficients are equal for the two processes. With these approximations

X ′δi+s = X ′δi + αs+ σ{I − (1− γ)Π(Xδi, X
′
δi)}Bs +

√
1− γ2u(Xδi, X

′
δi)B

1
s ,

where B is a d-dimensional standard Wiener process, and B1 is a one-dimensional standard
Wiener process independent of B. Thus σ−1(Xδi+s−αs) and σ−1(X ′δi+s−αs) are Brownian
motions (started at σ−1Xδi and σ−1X ′δi, respectively). The projection of these Brownian
motions onto the plane L are identical, where

L =
{
u | (u− 1

2σ
−1(Xδi +X ′δi))

Tσ−1(Xδi −X ′δi) = 0
}
.

This is the plane orthogonal to σ−1(Xδi−X ′δi) through the point 1
2
(Xδi +X ′δi). Therefore, if

their projections onto the subspace orthogonal to L (i.e. the subspace generated by σ−1(Xδi−
X ′δi)) have passed each other at time δ(i + 1), the two d-dimensional processes must by
continuity have been equal at some time-point in [δi, δ(i + 1)]. Hence coupling must have
occurred in [δi, δ(i+ 1)] if

(Xδi −X ′δi)TV −1(Xδ(i+1) −X ′δ(i+1)) < 0. (2.20)

Here we have used that σ−1(Xδi−X ′δi) is orthogonal to L, and that (Xδi−X ′δi)TV −1(Xδ(i)−
X ′δ(i)) > 0.

For the reflection method (γ = −1) we can find an alternative criterion and say a bit
more. Using the same approximation, we find that

Xδi+s = Xδi + αs+ σBs

X ′δi+s = X ′δi + αs+ σH(Xδi, X
′
δi)Bs.

Thus σ−1(Xδi+s−αs) is a Brownian motion started at σ−1Xδi, while σ−1(X ′δi+s−αs) is the
reflection of this Brownian motion in the plane L. This follows from the fact that the matrix
H(Xδi, X

′
δi) is reflection in the plane orthogonal to the vector σ−1(Xδi − X ′δi). Note that

Xδi+s = X ′δi+s if and only if σ−1(Xδi+s − αs) = σ−1(X ′δi+s − αs), but as the latter two are
each others reflection in the plane L, they must meet in this plane if they intersect. Thus if
σ−1(Xδi+s − αs) has crossed the plane L in the time interval [δi, δ(i + 1)], then X and X ′

must have intersected in this time interval. This is certainly the case if

{Xδ(i+1) − αδ − 1
2(Xδi +X ′δi)}TV −1(Xδi −X ′δi) ≤ 0,
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where V = σσT or equivalently if

XT
δ(i+1)V

−1(Xδi −X ′δi) ≤ {δα + 1
2(Xδi +X ′δi)}TV −1(Xδi −X ′δi). (2.21)

In our simulation algorithm we can therefore assume that coupling happens in the time
interval [δi, δ(i+ 1)] if

(Y ∗δ(N−i−1))
TV −1(Y ∗δ(N−i) − Y ′δi) ≤ {δα(Y ∗δ(N−i)) + 1

2(Y ∗δ(N−i) + Y ′δi)}TV −1(Y ∗δ(N−i) − Y ′δi).

Similar considerations can be used to estimate the probability that coupling occurs in
the time interval [δi, δ(i + 1)]. Since (2.21) implies coupling in [δi, δ(i + 1)], the probability
of this event conditional on Xδi and X ′δi is larger than the conditional probability that

(Xδ(i+1) −Xδi − δα)TV −1(Xδi −X ′δi) ≤ −1
2(Xδi −X ′δi)TV −1(Xδi −X ′δi).

Since (conditional on Xδi and X ′δi)

(Xδ(i+1) −Xδi − δα)TV −1(Xδi −X ′δi) ∼ N(0, δ ω2),

where ω2 = (Xδi−X ′δi))TV −1(Xδi−X ′δi), the conditional probability of coupling in [δi, δ(i+1)]
is larger than Φ(−1

2
ω/
√
δ), where Φ is the distribution function of the standard normal

distribution.
In the MCMC algorithms to simulate exact diffusion bridges, it must be determined

whether the approximate bridge, Z, in a certain time step has been hit by the associated
p∗T (b)-diffusion, X̃. Also to determine whether this has happened the two criteria just derived
can be used. The reason is that the p∗T (b)-diffusion is related to Z exactly as X ′ is related
to X. Therefore the same approximations and calculations can be made.

3 Simulation study

In this section we test our simulation algorithm by applying it to the 2-dimensional Ornstein-
Uhlenbeck bridge in the time interval [0, 1], which can easily be simulated exactly by another
method, and for which the marginal distribution is known explicitly. We can therefore
compare our method to exact results for the Ornstein-Uhlenbeck bridge. We do this by
simulating a large number of (a, b, 1)−bridges for selected values of a and b. Then we
compare the distribution of the simulated bridge to the exact distribution at time 0.5 (where
the bridge-effect is strongest; see Bladt and Sørensen (2014)). The marginal distributions
are compared by Q-Q-plots, while the association between the coordinates is evaluated by
comparing the empirical copulas.

3.1 The Ornstein–Uhlenbeck bridge

In this subsection we give results on the d-dimensional Ornstein–Uhlenbeck process, which
is given by

dXt = −B(Xt − A)dt+ σdWt, (3.1)
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where A ∈ IRd, while B and σ are d × d-matrices. It is well-known that if all (complex)
eigenvalues of B have positive real parts, then X is ergodic with invariant density Nd(A,Γ),
the d-dimensional normal distribution with mean A and covariance matrix

Γ =
∫ ∞

0
e−sBV e−sB

T

ds,

where V = σσT . The covariance matrix Γ is the unique symmetric solution to the equation

BΓ + ΓBT = V. (3.2)

The time-reversed version (2.7) of (3.1) has drift

(B − V Γ−1)(Xt − A) = −ΓBTΓ−1(Xt − A),

where we have used (3.2). It is thus an Ornstein–Uhlenbeck process with a different drift
matrix. The process (3.1) is time-reversible if and only if ΓBTΓ−1 = B or ΓBT = BΓ, i.e.
if and only if the matrix BΓ is symmetric. By inserting this in (3.2) we obtain another
criterion for time-reversibility: Γ = 1

2
B−1V . Thus B−1V is necessarily symmetric.

Now assume we have a general Ornstein–Uhlenbeck for which B−1V is symmetric. Then
Γ = 1

2
B−1V is a symmetric solution to (3.2). Hence the process is time-reversible and the

covariance matrix of the invariant density function is Γ. We summarize in the following
lemma.

Lemma 3.1 An ergodic Ornstein–Uhlenbeck process (3.1) is time-reversible if and only if
B−1V is symmetric. If B−1V is symmetric, the invariant distribution is the Nd(A,

1
2
B−1V )-

distribution.

Because the Ornstein–Uhlenbeck process is Gaussian, the Ornstein–Uhlenbeck bridge can
be simulated by the method in the following lemma, which also gives an expression for the
marginal distribution. For simplicity, we assume that A = 0.

Lemma 3.2 Generate Xt0 , Xt1 , . . . Xtn , Xtn+1, where 0 = t0 < t1 < · · · < tn < tn+1, by
X0 = x0 and

Xti = e−B(ti−ti−1)Xti−1
+Wi, i = 1, . . . , n+ 1

where the Wis are independent and

Wi ∼ N
(
0,Γti−ti−1

)
with

Γt =
∫ t

0
e−sBV e−sB

T

ds.

Define
Zti = Xti + e−B(tn+1−ti)ΓtiΓ

−1
tn+1

(x−Xtn+1), i = 0, . . . , n+ 1.

Then (Zt0 , Zt1 , . . . , Ztn , Ztn+1) is distributed like an Ornstein–Uhlenbeck bridge with Zt0 = x0

and Ztn+1=x.
For an Ornstein–Uhlenbeck bridge (Zt) in [0, 1] with Z0 = x0 and Z1 = x, the distribution

of Zt is a d-dimensional normal distribution with expectation

e−Btx0 + e−B(1−t)ΓtΓ
−1
1 (x− e−Bx0)

and covariance matrix
Γt − e−B(1−t)ΓtΓ

−1
1 Γte

−B(1−t).
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Figure 3.1: Q-Q plots comparing the marginal distributions at time 0.5 for 50.000 two-
dimensional Ornstein–Uhlenbeck bridges from (0, 0) to (0, 0) simulated by the approximate
method with γ = −1 (method of reflection) to the exact marginal distributions of Ornstein–
Uhlenbeck bridges. Level curves of the empirical copula for the two 2-dimensional distribu-
tion at time 0.5 is compared to those of the exact copula (full drawn curves).

The lemma follows by standard arguments from the fact that for the Ornstein–Uhlenbeck
process the conditional distribution ofXt givenXs (s < t) is theNd(e

−B(t−s),Γt−s)-distribution.

3.2 Simulations

We simulated bridges for the Ornstein–Uhlenbeck process with A = 0, σ = I and

B =

{
1.5 1
1 1.5

}
.

This process is ergodic and time-reversible with stationary distribution N2(0,Γ), where

Γ = 1
2B
−1 =

{
0.6 −0.4
−0.4 0.6

}
.

The diffusion bridges were simulated over the time interval [0, 1] using the Euler scheme with
discretization level N = 50 (step size δ = 0.02). For the Ornstein–Uhlenbeck process the
Euler scheme is equal to the Milstein scheme. The two diffusions X and X ′ were assumed
to have intersected in the time interval [δi, δ(i + 1)] if both |Xδi − X ′δi| ≤ 0.05 and (2.20)
were satisfied.

First we simulated 50.000 diffusion bridges from (0, 0) to (0, 0) using the approximate
method presented in Section 2.2 with γ = −1 (method of reflection). The computing time
was 6 seconds. In Figure 3.1 the marginal distributions at time 0.5 for the simulations
are compared to the exact distributions given by Lemma 3.1 by means of Q-Q plots. The
dependence between the marginals (at time 0.5) in the simulations is compared to the exact
dependence for an Ornstein–Uhlenbeck bridge by plotting the level curves of the empirical
and the exact copulas. The two-dimensional distribution at time 0.5 for the approximate
bridge simulation method is essentially equal to the distribution for the exact diffusion bridge.
Since the distribution of the approximate diffusion bridge fits the distribution of the exact
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Figure 3.2: Q-Q plots comparing the empirical marginal distributions at time 0.5 for 50.000
simulated two-dimensional Ornstein–Uhlenbeck bridges from (0.785, 0.785) to (1.091, 1.091)
by the approximate method with γ = 0 (method of projection) to the exact marginal dis-
tributions of Ornstein–Uhlenbeck bridges. Level curves of the empirical copula for the two
2-dimensional distribution at time 0.5 are compared to those of the exact copula (full drawn
curves).
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Figure 3.3: Q-Q plots comparing the empirical marginal distributions at time 0.5 for 50.000
simulated two-dimensional Ornstein–Uhlenbeck bridges from (0.785, 0.785) to (1.091, 1.091)
by the approximate method with γ = 0.5 to the exact marginal distributions of Ornstein–
Uhlenbeck bridges. Level curves of the empirical copula for the two 2-dimensional distribu-
tion at time 0.5 are compared to those of the exact copula (full drawn curves).

bridge, the MCMC method presented in Section 2.3 does not improve the distribution of the
approximate bridge. Therefore the result is not plotted.

Similarly nice fits can be produced for diffusion bridges between points that, like (0, 0),
do not have a small probability of being reached by the diffusion. To test the method for a
more unlikely bridge, diffusion bridges from (0.785, 0.785) to (1.091, 1.091) were simulated.
These are bridges from the boundary of the 95.5%-ellipse of the stationary distribution to the
boundary of the 99.7%-ellipse. Such bridges are rarely observed in data and are thus rarely
needed for simulated likelihood or Bayesian estimation. We simulated diffusion bridges using
the approximate method in Section 2.2 with γ = 0, γ = 0.5 and γ = 0.9. For each of the γ-
values we simulated 50.000 bridges. Marginal distributions and the copulas (at time 0.5) are
compared to exact results (Lemma 3.1) in the Figures 3.2, 3.3 and 3.4. The distributions
of the approximate bridges do not exactly fit the distribution of the Ornstein-Uhlenbeck
bridge for this unlikely bridge, but the fit is rather good, and improves as γ increases. For
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Figure 3.4: Q-Q plots comparing the empirical marginal distributions at time 0.5 for 50.000
simulated two-dimensional Ornstein–Uhlenbeck bridges from (0.785, 0.785) to (1.091, 1.091)
by the approximate method with γ = 0.9 to the exact marginal distributions of Ornstein–
Uhlenbeck bridges. Level curves of the empirical copula for the two 2-dimensional distribu-
tion at time 0.5 are compared to those of the exact copula (full drawn curves).
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Figure 3.5: Q-Q plots comparing the empirical marginal distributions at time 0.5 for two-
dimensional Ornstein–Uhlenbeck bridges from (0.785, 0.785) to (1.091, 1.091) produced by
50.000 iterations of the pseudo-marginal Metropolis-Hastings algorithm with γ = 0.5 and
N = 1 to the exact marginal distributions of Ornstein–Uhlenbeck bridges. Level curves of
the empirical copula for the two 2-dimensional distribution at time 0.5 are compared to those
of the exact copula (full drawn curves).

γ very close to one (e.g. 0.95), the fit is essentially exact. By using the pseudo-marginal
Metropolis-Hastings algorithm in Section 2.3 an essentially exact fit is obtained when using
any of approximate bridges with γ = 0, γ = 0.5 and γ = 0.9. As an example Figure 3.5
compares the marginal distributions and the copula (at time 0.5) produced by the pseudo-
marginal Metropolis-Hastings algorithm where the proposal is the approximate bridge with
γ = 0.5. We ran 50.000 iterations of the algorithm with N = 1. The computing time was
44 seconds. Generally, the computing time for generating 50.000 bridges with the pseudo-
marginal Metropolis-Hastings algorithm varied from 40 to 120 seconds and increased with
the value of γ. Figure 3.6 compares the marginal distributions and the copula (at time 0.5)
produced by the alternative MCMC algorithm presented in Section 2.3. Again the proposal
is the approximate bridge with γ = 0.5. The alternative MCMC algorithm has a much larger
rejection probability than the MH-algorithm, so to obtain plots of about the same quality as
in Figure 3.5, it was necessary to run 500.000 iterations of the algorithm. This produced a
sample with a large number of identical bridges, so it seems advisable to use only a subset of
the output from this algorithm, e.g. every 10th bridge. The computing time was 32 seconds.
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Figure 3.6: Q-Q plots comparing the empirical marginal distributions at time 0.5 for two-
dimensional Ornstein–Uhlenbeck bridges from (0.785, 0.785) to (1.091, 1.091) produced by
500.000 iterations of the alternative MCMC method with γ = 0.5 to the exact marginal
distributions of Ornstein–Uhlenbeck bridges. Level curves of the empirical copula for the
two 2-dimensional distribution at time 0.5 are compared to to those of the exact copula (full
drawn curves).
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Figure 3.7: Q-Q plots comparing the empirical marginal distributions at time 0.5 for 50.000
two-dimensional Ornstein–Uhlenbeck bridges from (2,−2) to (3,−3) simulated by the ap-
proximate method with γ = 0.5 to the exact marginal distributions of Ornstein–Uhlenbeck
bridges. Level curves of the empirical copula for the two 2-dimensional distribution at time
0.5 are compared to to those of the exact copula (full drawn curves).

Finally, diffusion bridges from (2,−2) to (3,−3) were simulated. These are bridges from
the boundary of the 98.2%-ellipse of the stationary distribution to the boundary of the
99.99%-ellipse. Such a bridge is extremely rare in data. We simulated 50.000 diffusion
bridges using the approximate method in Section 2.2 with γ = 0.5, γ = 0.9 and γ = 0.99.
Computing times were in the interval 10 - 40 seconds (increasing with the value of γ).
Marginal distributions and the copula (at time 0.5) are compared to exact results (Lemma
3.1) in Figures 3.7 and 3.8. Even for this extreme bridge, the approximate diffusion bridge
produces a surprisingly good fit to the distribution of the exact Ornstein–Uhlenbeck bridge
for the coupling methods used here. The fit increases with γ. For γ = 0.9 the fit is almost
perfect. For γ = 0.99 the fit is similarly excellent. Both for this and the previous bridge
it seems that the approximate method tends to become exact as γ tends to one. It is an
intriguing question that requires further research, whether this can be proved mathematically
and in what generality it is true.

Here we restrict ourselves to a further simulation study in order to understand what
happens when the approximate bridge simulation method gives almost exact results for
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Figure 3.8: Q-Q plots comparing the empirical marginal distributions at time 0.5 for 50.000
two-dimensional Ornstein–Uhlenbeck bridges from (2,−2) to (3,−3) simulated by the ap-
proximate method with γ = 0.9 to the exact marginal distributions of Ornstein–Uhlenbeck
bridges. Level curves of the empirical copula for the two 2-dimensional distribution at time
0.5 are compared to those of the exact copula (full drawn curves).

γ close to one. From (2.18) it follows that if the function πT (x) is constant, then the
approximate method gives exact diffusion bridges. To investigate whether πT (x) is in some
cases constant (or varies only a little), we ran (for each of a number of bridges and γ
values) the pseudo-marginal MH-algorithm with 9000 iterations for N = 50, 100, 150, 200
and 300 (after a burn-in of 1000 iterations). For each bridge, γ-value and N -value, the
empirical mean and variance were calculated of the values of ρ̂N(T(i)) from all iterations in
the run (i = 1001, . . . , 10000). From results on conditional expectations and the geometric
distribution (and because ρ̂N is an unbiased estimator of 1/πT (x) conditionally on X(i) = x)

V (ρ̂N) = V

(
1

πT (B)

)
+ E

(
1− πT (B)

πT (B)2

)
· 1

N
, (3.3)

where B in an (a, b, T )-bridge. Thus by linear regression of the empirical variances of ρ̂N
from the MH-runs on 1/N , we can estimate V (1/πT (B)). If the variance is zero, the function
πT (x) is constant, and in this case we can estimate the constant value πT by the reciprocal
empirical mean of the simulated ρ̂-values. The estimated slope can, in this case, be compared
to the value calculated by (3.3) using the estimated value of πT as a consistency check. This
check supported the conclusions below.

For the unlikely bridge from (0.785, 0.785) to (1.091, 1.091) the variance of 1/πT (B) was
not zero, but the ratio of the standard deviation to the mean of ρ̂ was 0.16 for γ = 0.9 and
0.04 for γ = 0.99, so for these γ-values πT (x) does not vary much. For γ = 0 and γ = 0.5
the standard deviation was found to be of the same order as the mean. For the very unlikely
bridge from (2,−2) to (3,−3) the estimated variance of 1/πT (B) was zero for γ = 0.9 and
γ = 0.99, implying an exact bridge. For γ = 0.5 the variance was not zero, but the ratio of
the standard deviation to the mean of ρ̂ was 0.06.

The simulation study indicates that the reason why exact or almost exact diffusion bridges
can be obtained by the approximate method when γ is close to one is that in this case πT (x) is
constant or almost constant. However, the simulation study also showed that the probability
πT (x) in such cases is very small, e.g. 0.03 for the bridge from (2,−2) to (3,−3) for γ = 0.99.
For the Ornstein-Uhlenbeck process (3.1) we have

d(Xt −X ′t) = −B(Xt −X ′t)dt+ (1− γ)σΠ(Xt, X
′
t)dWt −

√
1− γ2σu(Xt, X

′
t)dUt.
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With ε = 1− γ, we have
√

1− γ2 ≈
√

2ε , so

d(Xt −X ′t) ≈ −B(Xt −X ′t)dt+ εσΠ(Xt, X
′
t)dWt −

√
2εσu(Xt, X

′
t)dUt.

For γ close to one, ε is small and
√

2ε� ε, so the largest contribution is from the drift term,
which should bring Xt and X ′t close together, while the contribution from dWt is very small
compared to the contribution from dUt. Therefore if Xt is an approximate (a, b, T )-bridge
and X ′t is started from A, then the process Xt −X ′t is nearly deterministic, but has a very
small random contribution from Ut which is unlikely to bring the processes together, but is
independent of Xt. The contribution from Wt is the only part that depends on Xt, but is
small even compared to the Ut contribution, so it makes almost no difference to the path
Xt−X ′t. This seems a likely explanation why in this case πT (x) is small but almost constant.
The probability of hitting the bridge depends mainly on the start point A and a little on the
process Ut both of which are chosen independently of Xt. The contribution from the bridge
itself, through Wt, is negligible.

The optimal choice of γ is an interesting open question. The solution might well depend
on both the stochastic differential equation and on the end-points of the bridge. For the
approximate method a reasonable definition of an optimal γ value is the one that provides
the best fit to an exact bridge. For the exact MCMC methods, the optimal γ-value is the
one for which the computing time is minimized. A possible solution is to draw γ randomly
in the interval [−1, 1). In this case the question is what is the optimal distribution from
which to draw γ (also model and end-point dependent).

4 Bayesian estimation for discretely observed multi-

variate diffusions

In this section we demonstrate how our method can be used for Bayesian estimation for
discretely observed multivariate diffusions. Specifically, we consider estimation for the mul-
tivariate hyperbolic diffusion.

The d-dimensional hyperbolic diffusion is given by

dXt = − αXt√
1 + ‖Xt‖2

dt+ dWt, (4.1)

where α > 0. It is the characteristic diffusion in the sense of Kent (1978) for the multivariate
hyperbolic distribution with density function

ν(x) =
(α/π)

1
2

(d−1)

2K 1
2

(d+1)(2α)
exp

(
−2α

√
1 + ‖x‖2

)
. (4.2)

Here K is a modified Bessel function of the third kind. The hyperbolic distributions were
introduced by Barndorff-Nielsen (1977), who also introduced the hyperbolic diffusions. The
hyperbolic distribution has heavier tails than the normal distribution. The multivariate
hyperbolic diffusion (4.1) is ergodic and time-reversible with stationary density function
ν(x); see Section 10 in Kent (1978).

Suppose we have observations at the time points t0 = 0 < t1 < · · · < tn) from a hyperbolic
diffusion. Then our data is a set of partial observations of the full data set consisting of the
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continuous sample path in the time interval [0, tn]. We can therefore apply the Gibb’s
sampler to generate draws from the posterior distribution. To do so we need to be able
to simulate the full continuous sample path conditionally on the data D = (Xt0 , . . . , Xtn)
and on α. This is done by simulating independent hyperbolic diffusion bridges between the
observations Xti−1

and Xti in all intervals [ti−1, ti], i = 1, . . . , n.
We also need to simulate draws from the conditions distribution of α given a continuous

sample path. The likelihood function when the data is a continuous sample path is given by
Girsanov’s formula. The following expression without stochastic integrals for the likelihood

function can be obtained by applying Ito’s formula to the function
√

1 + ‖x‖2, for details
see Section 5.

Lctn(α) = exp
(
αHtn −

1

2
α2Btn

)
, (4.3)

where

Ht =
√

1 + ‖X0‖2 −
√

1 + ‖Xt‖2 +
∫ t

0

1 + 1
2
‖Xs‖2

(1 + ‖Xs‖2)3/2
ds

and

Bt =
∫ t

0

‖Xs‖2

1 + ‖Xs‖2
ds

The continuous time model is an exponential family of stochastic processes in the sense
of Küchler and Sørensen (1997). The conjugate prior is a normal distribution. If we choose
as our prior the normal distribution with expectation ᾱ and variance σ2, the posterior dis-
tribution is a normal distribution with expectation (Htn + ᾱ/σ2)/(Btn + σ−2) and variance
(Btn + σ−2)−1.

4.1 Simulations

In order to test how well our bridge simulation method works for estimation of parameters
in multivariate diffusions, we simulated a sample of observations at the time points ti = i,
i = 1, . . . , 1000 of the two-dimensional hyperbolic diffusion with α = 0.8. As prior we used
the N(1, 1)-distribution. Then we ran 5000 iterations of the Gibbs sampler that starts by
drawing α from the prior and then alternates between drawing a continuous sample path
in [0, 1000] given the data and α and drawing α from the conditional distribution given the
continuous sample path. To simulate the continuous sample path given the data, we used
the approximate simulation method in Section 2.2 with γ = 0.5. Figure 4.1 shows the prior
distribution, the posterior distribution, and the likelihood function. It also shows a plot
of the time series of draws of α for the 5000 iterations that indicates that the algorithm
stabilizes very quickly. The posterior distribution is nicely concentrated around the true
parameter value α = 0.8. The 95%-credibility interval is [0.6783, 0.9239] and the mean
posterior estimate is 0.8164.

5 Proofs

Proof of Lemma 2.1: The results (2.5) is straightforward. In order to prove the result on
the sample path of X, we begin by introducing a new Wiener process to make the structure
of the Wiener process W ′ clearer. First choose (for each pair (x, x′)) an orthonormal base
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Figure 4.1: The plot to the left is the posterior, the prior and the likelihood function for
a sample of 1000 observations of the two-dimensional hyperbolic diffusion with α = 0.8
obtained by 5000 iterations of the Gibbs sampler using the the approximate method in
Section 2.2 with γ = 0.5. To the right is shown the time series of the 5000 draws of α.

u2(x, x′), . . . ud(x, x
′) for the orthogonal complement of the space spanned by u(x, x′). This

can obviously be done such that ui(x, x
′) is a continuous function of (x, x′). Define

V i
t =

∫ t

0
ui(Xs, X

′
s)
TdW ′

s, i = 1, . . . , d,

where u1 = u. Clearly, Vt = (V 1
t , . . . , V

d
t ) is a d-dimensional standard Wiener process,

and dW ′
t =

∑d
i=1 ui(Xs, X

′
s)dV

i
t . Since Π(Xt, X

′
t) is the projection on the space spanned by

u(Xt, X
′
t), while I−Π(Xt, X

′
t) is the projection on the orthogonal complement to this space,

it follows that

V i
t =

∫ t

0
ui(Xs, X

′
s)
TO(Xs, X

′
s)dWs, i = 2, . . . , d,

while
V 1
t = γỸt +

√
1− γ2Ut,

where

Ỹt =
∫ t

0
u(Xs, X

′
s)
TO(Xs, X

′
s)dWs

is a standard Wiener process. The process

Yt = Ỹt − γV 1
t

is a Wiener process with infinitesimal variance 1 − γ2. It is independent of the Wiener
process Vt, because its quadratic co-characteristics with the components of V are all zero.
For instance, 〈Y, V 1〉t = γ(〈Ỹ 〉t − 〈V 1〉t) = 0. It follows that Y is also independent of the
Wiener process W ′ that drives X ′, again because the quadratic co-characteristics are zero.
When γ = −1, Yt = 0, and when γ = 0, Yt = ỸT and V 1

t = Ut.
Since [I − Π(Xt, X

′
t)]dW

′
t = [I − Π(Xt, X

′
t)]O(Xs, X

′
s)dWs and Ỹt = Yt + γV 1

t , we find
that

O(Xs, X
′
s)dWt = {I − Π(Xt, X

′
t)}O(Xs, X

′
s)dWs + Π(Xt, X

′
t)O(Xs, X

′
s)dWs

= {I − Π(Xt, X
′
t)}dW ′

t + u(Xt, X
′
t)dỸt

= {I − (1− γ)Π(Xt, X
′
t)}dW ′

t + u(Xt, X
′
t)dYt,
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from which (2.6) follows.

2

Proof of Theorem 2.2: By the strong Markov property Z has the same distribution
as X ′, so the conditional distribution of {Zt}0≤t≤T given ZT = b is the distribution of a
(a, b, T )-diffusion bridge. Now

P (Z ∈ · |XT = b, τ ≤ T ) = P (Z ∈ · |ZT = b, τ ≤ T ),

and the event {Z=b, τ ≤ T} is the event that Z is a (a, b, T )-diffusion bridge and that the
diffusion bridge is hit by X. The theorem follows because the sample path of X up to time τ
is K̃τ (X0, {Zs}0≤s≤τ , {U ′s}0≤s≤τ ). The distribution of X0 conditional on XT = b) has density
p∗T (b, ·). A proof of the last claim is given in the proof of Lemma 2.3.

2

Proof of Lemma 2.3: The second identity in (2.11) follows from (2.10). The first expression
for q is the well-known expression for the transition density of a diffusion bridge ending in b
at time T, see Fitzsimmons, Pitman, and Yor (1992), p. 111. It can be easily established by
direct calculation. The second expression for q can similarly be obtained as the transition
density of X̄ by direct calculation: the conditional density of X̄t given X̄s (s < t) is

pX̄s,X̄t
(x, y)/pX̄s

(x) = pX∗
T−t,X

∗
T−s

(y, x)/pX∗
T−s

(x) = p∗T−t(b, y)p∗t−s(y, x)/p∗T−s(b, x).

Now assume that X0 ∼ ν. Then XT ∼ ν, and the joint density of (X0, XT ) is ν(x)pT (x, y)
= ν(y)p∗T (y, x), again by (2.10). Hence the conditional density of X0 given XT = b is p∗T (b, x).
Obviously, the density of X̄0 = X∗T is p∗T (b, x), so the process {X̄t} and the conditional process
{Xt} given that XT = b (both of which are Markov processes) have the same transition
densities and the same initial distribution. Therefore they have the same distribution.

2

Proof of Corollary 2.4: The function K̃T (A, x, U) is not defined for all x ∈ CT , but it is
defined for all relevant trajectories x. For other x it can be given an arbitrary definition. To
prove equation (2.18) note that the joint density of a diffusion bridge X, the independent
random variable A, and an independent Wiener process U conditional on the event that X
intersects with K̃T (A,X,U) is

fbr(x)p∗T (b, a)fW (u)1M(x, K̃T (a, x, u))/πT .

Here fW is the density on CT of a standard Wiener process w.r.t. a suitable dominating
measure. From this expression (2.18) follows by marginalization.

2

Proof of Lemma 3.2: The result follows straightforwardly because (Zt1 , . . . , Ztn) is a
linear transformation of a multivariate normal distribution. For completeness, we give the
details. The distribution of (Xt1 , . . . , Xtn+1) equals the distribution of observations from an
Ornstein–Uhlenbeck process started at X0 = x0. Define

Yti = Xti − e−B(tn+1−ti)ΓtiΓ
−1
tn+1

Xtn+1 , i = 1, . . . , n.
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It is well-known (and easily checked) that (Yt1 , . . . , Ytn) is independent of Xtn+1 . Since
Zti = Yti +e−B(tn+1−ti)ΓtiΓ

−1
tn+1

x, i = 1, . . . , n, it follows that the distribution of (Zt1 , . . . , Ztn)
equals the conditional distribution of (Xt1 , . . . , Xtn) given Xtn+1 = x.

2

Proof of (4.3):
By Girsanov’s formula, the likelihood function is given by (4.3) with BT as in Section 4

and

HT = −
∫ T

0

XT
s√

1 + ‖Xs‖2
dXs,

see e.g. Küchler and Sørensen (1997), p. 297. By applying Ito’s formula to the function

F (x) =
√

1 + ‖x‖2, x ∈ IR2, we see that

F (XT ) = F (X0) +
∫ T

0

XT
s√

1 + ‖Xs‖2
dXs +

∫ T

0

1 + 1
2
‖Xs‖2

(1 + ‖Xs‖2)3/2
ds.

From this the expression for HT in Section 4 follows.

Acknowledgement

Mogens Bladt acknowledges the support from grant SNI15945 by the Mexican Research
Council CONACYT. Michael Sørensen acknowledges support from CREATES - Center for
Research in Econometric Analysis of Time Series (DNRF78), funded by the Danish National
Research Foundation, and from the University of Copenhagen Programme of Excellence.

References

Aı̈t-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: A
closed-form approximation approach. Econometrica, 70 , 223–262.

Aı̈t-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. Ann.
Statist., 36 , 906–937.

Andrieu, C., & Roberts, G. (2009). A pseudo-marginal approach for efficient monte carlo
computations. Ann. Statist., 37 , 697–725.

Baltazar-Larios, F., & Sørensen, M. (2010). Maximum likelihood estimation for integrated
diffusion processes. In C. Chiarella & A. Novikov (Eds.), Contemporary quantitative
finance: Essays in honour of eckhard platen (pp. 407–423). Springer.

Barndorff-Nielsen, O. E. (1977). Exponentially decreasing distributions for the logarithm of
particle size. Proc. R. Soc. Lond. A, 353 , 401–419.

Beskos, A., Papaspiliopoulos, O., & Robert, G. O. (2008). A factorization of diffusion
measure and finite sample path construction. Method. Comp. Appl. Probab., 10 , 85–
104.

Beskos, A., Papaspiliopoulos, O., & Roberts, G. O. (2006). Retrospective exact simulation
of diffusion sample paths with applications. Bernoulli , 12 , 1077–1098.

Beskos, A., Papaspiliopoulos, O., & Roberts, G. O. (2009). Monte carlo maximum likelihood
estimation for discretely observed diffusion processes. Ann. Statist., 37 , 223–245.

27



Beskos, A., Papaspiliopoulos, O., Roberts, G. O., & Fearnhead, P. (2006). Exact and
computationally efficient likelihood-based estimation for discretely observed diffusion
processes. J. R. Statist.Soc. B , 68 , 333–382.

Bibby, B. M., & Sørensen, M. (1995). Martingale estimation functions for discretely observed
diffusion processes. Bernoulli , 1 , 17–39.

Bladt, M., & Sørensen, M. (2014). Simple simulation of diffusion bridges with application
to likelihood inference for diffusions. Bernoulli , 20 , 645–675.

Bollerslev, T., & Wooldridge, J. (1992). Quasi-maximum likelihood estimators and inference
in dynamic models with time-varying covariances. Econometric Review , 11 , 143–172.

Chen, M. F., & Li, S. F. (1989). Coupling methods for multivariate diffusion processes.
Annals of Probability , 17 , 151–177.

Chib, S., Pitt, M. K., & Shephard, N. (2006). Likelihood based inference for diffusion driven
state space models (Working Paper).

Dacunha-Castelle, D., & Florens-Zmirou, D. (1986). Estimation of the coefficients of a
diffusion from discrete observations. Stochastics , 19 , 263–284.

Delyon, B., & Hu, Y. (2006). Simulation of conditioned diffusion and application to param-
eter estimation. Stoch. Proc. Appl., 116 , 1660–1675.

Durham, G. B., & Gallant, A. R. (2002). Numerical techniques for maximum likelihood
estimation of continuous-time diffusion processes. J. Business & Econom. Statist., 20 ,
297–338.

Elerian, O., Chib, S., & Shephard, N. (2001). Likelihood inference for discretely observed
non-linear diffusions. Econometrica, 69 , 959–993.

Eraker, B. (2001). Mcmc analysis of diffusion models with application to finance. Journal
of Business and Economic Statistics , 19 , 177–191.

Fitzsimmons, P., Pitman, J., & Yor, M. (1992). Markovian bridges: construction, palm
interpretation, and splicing. In E. C. et al. (Ed.), Seminar on stochastic processes (pp.
101–134). Birkhäuser. (Prog. Probab., Vol. 32)

Forman, J. L., & Sørensen, M. (2008). The pearson diffusions: A class of statistically
tractable diffusion processes. Scand. J. Statist., 35 , 438–465.

Golightly, A., & Wilkinson, D. J. (2005). Bayesian inference for stochastic kinetic models
using diffusion approximations. Biometrics , 61 , 781–788.

Golightly, A., & Wilkinson, D. J. (2006). Bayesian sequential inference for nonlinear multi-
variate diffusions. Statistics and Computing , 16 , 323–338.

Golightly, A., & Wilkinson, D. J. (2008). Bayesian inference for nonlinear multivariate
diffusion models observed with error. Computational Statistics and Data Ananysis ,
52 , 1674–1693.

Golightly, A., & Wilkinson, D. J. (2011). Bayesian parameter inference for stochastic
biochemical network models using particle mcmc. Interface Focus , 1 , 807–820.

Haussmann, U. G., & Pardoux, E. (1986). Time reversal of diffusions. Annals of Probability ,
14 , 1188–1205.

Hurn, A., Jeisman, J. I., & Lindsay, K. (2007). Seeing the wood for the trees: A critical
evaluation of methods to estimate the parameters of stochastic differential equations.
J. Financial Econometrics , 5 , 390–455.

Kent, J. (1978). Time-reversible diffusions. Adv. Appl. Prob., 10 , 819–835.
Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scand. J.

Statist., 24 , 211–229.

28



Kloeden, P. E., & Platen, E. (1999). Numerical solution of stochastic differential equations.
New York: 3rd revised printing. Springer-Verlag.
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