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Abstract

We prove functional central and non-central limit theorems for generalized varia-

tions of the anisotropic d-parameter fractional Brownian sheet (fBs) for any natural

number d. Whether the central or the non-central limit theorem applies depends

on the Hermite rank of the variation functional and on the smallest component of

the Hurst parameter vector of the fBs. The limiting process in the former result is

another fBs, independent of the original fBs, whereas the limit given by the latter

result is an Hermite sheet, which is driven by the same white noise as the original

fBs. As an application, we derive functional limit theorems for power variations of

the fBs and discuss what is a proper way to interpolate them to ensure functional

convergence.
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1 Introduction

Since the seminal works by Breuer and Major [7], Dobrushin and Major [12], Giraitis and

Surgailis [13], Rosenblatt [31], and Taqqu [32, 33, 34, 35], much attention has been given

to the study of the asymptotic behaviour of normalized functionals of Gaussian fields,

as these quantities arise naturally in applications, e.g., where models exhibiting long-

range dependence are needed. The aforementioned papers focus on nonlinear functionals

of a stationary Gaussian field, for which one can derive a central limit theorem (in

a finite-dimensional sense or in a functional sense) if the correlation function of the
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field decays sufficiently fast to zero; see [7] for a precise formulation. However, if the

correlation function decays too slowly to zero, then only a non-central limit theorem

can be established, meaning that the limiting distribution fails to be Gaussian; see, e.g.,

[31].

In particular, these results apply to functionals of the fractional Brownian motion

(fBm). Let BH := {BH(t) : t ∈ R} be a fBm with Hurst parameter H ∈ (0, 1), which

is the unique (in law) H-self similar Gaussian process with stationary increments; see

(3.2) and (3.3) below for the definitions of these key properties. The behaviour of the

so-called Hermite variations of BH , depending on the value of H, can be described as

follows. Let k ∈ {1, 2 . . .} and let Pk denote the k-th Hermite polynomial, the definition

of which we recall in (2.6) below. Applying results from [7, 12, 13, 35] one obtains that:

(a) If H ∈
(
0, 1− 1

2k

)
, then

n−1/2
n∑
j=1

Pk

(
nH
(
BH
( j
n

)
−BH

( j−1
n

))) L−−−→
n→∞

N
(
0, σ2

1(H, k)
)
.

(b) If H = 1− 1
2k , then

(
n log(n)

)−1/2
n∑
j=1

Pk

(
nH
(
BH
( j
n

)
−BH

( j−1
n

))) L−−−→
n→∞

N(0, σ2
1(1− 1

2k , k)).

(c) If H ∈
(
1− 1

2k , 1
)
, then

n1−2H
n∑
j=1

Pk

(
nH
(
BH
( j
n

)
−BH

( j−1
n

))) L2(Ω)−−−−→
n→∞

Hermite1,k

(
1− k(1−H)

)
.

Above,
L−→ denotes convergence in law, N

(
0, σ2

1(H, k)
)

denotes the centered Gaussian

law with variance σ2
1(H, k) > 0, whereas Hermite1,k

(
1−k(1−H)

)
stands for a so-called

Hermite random variable given by the value of an Hermite process, of order k with Hurst

parameter 1−k(1−H) ∈ (1
2 , 1), at time 1. Such an Hermite process can be represented

as a k-fold multiple Wiener integral with respect to Brownian motion, as proven by

Taqqu [34, 35]. Moreover, the process is non-Gaussian if k ≥ 2. (More details on the

Hermite process are provided in §2.4.) The key observation here is that there are two

regimes: Gaussian, subsuming cases (a) and (b), and Hermite, case (c), depending on

the Hurst parameter H and on the order k.

The convergences in all cases (a), (b), and (c) can be extended to more general

functionals, which we call generalized variations in this paper, obtained by replacing

the Hermite polynomial Pk with a function

f(u) :=
∞∑
k=k

akPk(u), u ∈ R, (1.1)
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where k is the so-called Hermite rank of f . (Naturally, conditions on the summability

of the coefficients ak, ak+1, . . . have to be added.) In this setting, the prevailing regime

(Gaussian or Hermite) will depend on the Hurst parameter H and on the Hermite rank

k analogously to the simpler setting discussed above. In addition, functional versions of

these asymptotic results (under additional assumptions on the coefficients ak, ak+1, . . .)

can be proven in the Skorohod space D([0, 1]); see [32, 35].

In connection to applications that involve spatial or spatio-temporal modeling, pro-

cesses of multiple parameters are also of interest. Recently, there has been interest

in understanding the asymptotic behaviour of realized quadratic variations and power

variations of ambit fields [5, 25]. An ambit field is an anisotropic multiparameter process

driven by white noise, or more generally, by an infinitely-divisible random measure. The

problem of finding distributional limits (central or non-central limit theorems) for such

power variations is, however, intricate because the dependence structure of an ambit field

can be very general; only a “partial” central limit theorem is obtained in [25]. As a first

approximation, it is thus useful to study this problem with simpler processes that incor-

porate some of the salient features of ambit fields, such as the non-semimartingality of

one-parameter “marginal processes” (see [25, §2.2]) and strong dependence. A tractable

process that incorporates some key features of ambit fields is the fractional Brownian

sheet (fBs), defined by Ayache et al. [1], which is a multi-parameter extension of the

fBm. In particular, it is a Gaussian process with stationary rectangular increments.

For concreteness, let Z := {Z(t) : t ∈ [0, 1]2} be a two-parameter anisotropic fBs

with Hurst parameter (H1, H2) ∈ (0, 1)2; see §2.2 for a precise definition. In view of the

asymptotic behaviour in cases (a), (b), and (c) involving the fBm, it is natural to ask

what is the asymptotic behaviour of Hermite variations of Z with different values of H1

and H2. Consider, for example, the “mixed” case where H1 < 1− 1
2k and H2 > 1− 1

2k ,

which has no counterpart in the one-parameter setting. Because of the structure of the

fBs, it is tempting to conjecture that in this case the limiting law is a mixture of a

Gaussian law and a marginal law of an Hermite process. However, as shown in [29],

this is not the case and once again only two limiting laws can be obtained:

(a’) If (H1, H2) ∈ (0, 1)2 \
(
1− 1

2k , 1
)2

, then

ϕ(n,H1, H2)

n∑
j1=1

n∑
j2=1

Pk

(
nH1+H2Z

([
j1 − 1

n
,
j1
n

)
×
[
j2 − 1

n
,
j2
n

)))
L−−−→

n→∞
N
(
0, σ2

2(H1, H2, k)
)
.

(b’) If (H1, H2) ∈
(
1− 1

2k , 1
)2

, then

ϕ(n,H1, H2)

n∑
j1=1

n∑
j2=1

Pk

(
nH1+H2Z

([
j1 − 1

n
,
j1
n

)
×
[
j2 − 1

n
,
j2
n

)))
L2(Ω)−−−−→
n→∞

Hermite2,k

(
1− k(1−H1), 1− k(1−H2)

)
.
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Above, Z
([ j1−1

n , j1n
)
×
[ j2−1

n , j2n
))

stands for the increment of Z over the rectangle[ j1−1
n , j1n

)
×
[ j2−1

n , j2n
)
, defined in §2.3 below, and ϕ(n,H1, H2) is a suitable scaling

factor; see [29, pp. 9–10] for its definition. The limit in the case (b’) is the value of a

two-parameter Hermite sheet (see §2.4), of order k with Hurst parameter
(
1 − k(1 −

H1), 1 − k(1 − H2)
)
∈ (1

2 , 1)2, at point (1, 1). Contrary to the one-parameter case,

the results obtained in [29] are proved only for one-dimensional laws; neither finite-

dimensional (except in the particular setting of [28]) nor functional convergence (i.e.,

tightness in a function space) of Hermite variations has been established so far. (In

particular in the d-parameter realm with d ≥ 2, tightness is a non-trivial issue, which

has not been adressed in [29] or in the related paper [28].)

The first main result of this paper addresses the question about functional conver-

gence in the general, d-parameter case for any d ∈ N. We prove a functional central

limit theorem, Theorem 2.11, for generalized variations of a d-parameter anisotropic fBs

Z. (As mentioned above, generalized variations extend Hermite variations by replac-

ing Pk with a function f of the form (1.1).) This result applies if at least one of the

components of the Hurst parameter vector H = (H1, . . . ,Hd) ∈ (0, 1)d of Z is less than

or equal to 1 − 1
2k , where k is the Hermite rank of f . A novel feature of this result is

that the limiting process is a new fBs, independent of Z, with Hurst parameter vector

H̃ =
(
H̃1, . . . , H̃d

)
given by

H̃ν :=

{
1
2 , Hν ≤ 1− 1

2k ,

1− k(1−Hν), Hν > 1− 1
2k ,

for ν ∈ {1, . . . , d}. Note, in particular, that if H ∈
(
0, 1 − 1

2k

]d
, then the limit reduces

to an ordinary Brownian sheet. The proof of Theorem 2.11 is based on the limit theory

for multiple Wiener integrals, due to Nualart and Peccati [24], and its multivariate

extension by Peccati and Tudor [26]. To prove the functional convergence asserted in

Theorem 2.11, we use the tightness criterion of Bickel and Wichura [6] in the space

D([0, 1]d), which is d-parameter generalization of D([0, 1]), and a moment bound for

non-linear functionals of a stationary Gaussian process on Zd (Lemma 4.1).

The second main result of this paper is a functional non-central limit theorem,

Theorem 2.18, for generalized variations of Z in the remaining case where each of the

components of H is greater than 1− 1
2k . In this case, the limit is a d-parameter Hermite

sheet and the convergence holds in probability and also pointwise in L2(Ω). Assuming

that Z is defined by a moving-average representation with respect to a white noise W

on Rd, we can give a novel and explicit description of the limit; it is defined using the

representation introduced by Clarke De la Cerda and Tudor [9] with respect to the

same white noise W. This makes the relation between Z and the Hermite sheet precise

and constitutes a step further compared to the existing literature (see [18, 29]), where

the limiting Hermite process/sheet is simply obtained as an abstract limit of a Cauchy

sequence, from which the properties of the limiting object are deduced.

As an application of Theorems 2.11 and 2.18, we study the asymptotic behaviour
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of power variations of the fBs Z. As a straightforward consequence of our main results,

we obtain a law of large numbers for these power variations. We then study the more

delicate question regarding the asymptotic behaviour of rescaled fluctuations of power

variations around the limit given by the law of large numbers. In the case of odd

power variations, the rescaled fluctuations have a limit, either Gaussian or Hermite,

but with even power variations, the fluctuations might not converge in a functional way

if d ≥ 2. We show that this convergence issue does not arise at all if one considers

instead continuous, multilinear interpolations of power variations.

The paper is organized as follows. In §2 we introduce the setting of the paper, some

key definitions and the statements of Theorems 2.11 and 2.18. The proofs of these

two main results are presented in §3 and §4, the former section collecting the finite-

dimensional and the latter the functional arguments. Finally, the application to power

variations is given in §5.

2 Preliminaries and main results

2.1 Notations

We use the convention that N := {1, 2, . . .} and R+ := [0,∞). The notation |A| stands

for the cardinality of a finite set A. For any y ∈ R, we write byc := max{n ∈ Z : n ≤ v},
{y} := y − byc, and (y)+ := max(y, 0). The symbol γ denotes the standard Gaussian

measure on R, i.e., γ(dy) := (2π)−1/2 exp(−y2/2)dy. From now on we fix d in N.

For any vectors s = (s1, . . . , sd) ∈ Rd and t = (t1, . . . , td) ∈ Rd, the relation s ≤ t

(resp. s < t) signifies that sν ≤ tν (resp. sν < tν) for all ν ∈ {1, . . . , d}. We also use the

notation

st := (s1t1, . . . , sdtd) ∈ Rd,
s

t
:=
(s1

t1
, . . . ,

sd
td

)
∈ Rd,

bsc := (bs1c, . . . , bsdc) ∈ Zd, 〈s〉 := s1 · · · sd ∈ R,
|s| := (|s1|, . . . , |sd|) ∈ Rd+, {s} := ({s1}, . . . , {sd}) ∈ [0, 1)d.

Further, when s ∈ Rd+, we write st := (st11 , . . . , s
td
d ) ∈ Rd+, and when s ≤ t, we

write [s, t) := [s1, t1) × · · · × [sd, td) ⊂ Rd. Occasionally, we use the norm ‖s‖∞ :=

max(|s1|, . . . , |sd|) for s ∈ Rd.
For the sake of clarity, we will consistently use the following convention: i, i(1), i(2), . . .

are multi-indices (vectors) in Zd and j, j1, j2, . . . are indices (scalars) in Z.

2.2 Anisotropic fractional Brownian sheet

We consider an anisotropic, d-parameter fractional Brownian sheet (fBs) Z := {Z(t) :

t ∈ Rd} with Hurst parameter H ∈ (0, 1)d, which is a centered Gaussian process with

covariance

R
(d)
H (s, t) := E[Z(s)Z(t)] =

d∏
ν=1

R
(1)
Hν

(sν , tν), s, t ∈ Rd, (2.1)

5



where

R
(1)
Hν

(sν , tν) :=
1

2

(
|sν |2Hν + |tν |2Hν − |sν − tν |2Hν

)
, sν , tν ∈ R,

is the covariance of a fractional Brownian motion with Hurst parameter Hν .

In what follows, it will be convenient to assume that the fBs Z has a particular

representation. To this end, let us denote by B0(Rd) the family of Borel sets of Rd with

finite Lebesgue measure. Let (Ω,F,P) be a complete probability space that supports

a white noise W := {W(A) : A ∈ B0(Rd)}, which is a centered Gaussian process with

covariance

E[W(A)W(B)] = Lebd(A ∩B), A, B ∈ B0(Rd),

where Lebd(·) denotes the Lebesgue measure on Rd. The process Z can be defined as a

Wiener integral with respect to W (see, e.g., [22] for the definition), namely

Z(t) :=

∫
G

(d)
H (t, u)W(du), t ∈ Rd, (2.2)

where the kernel

G
(d)
H (t, u) :=

d∏
ν=1

G
(1)
Hν

(tν , uν), t, u ∈ Rd, (2.3)

is defined using the one-dimensional Mandelbrot–Van Ness [16] kernel

G
(1)
Hν

(tν , uν) :=
1

χ(Hν)

(
(tν − uν)

Hν− 1
2

+ − (−uν)
Hν− 1

2
+

)
, tν , uν ∈ R, (2.4)

with the normalizing constant

χ(Hν) :=

(
1

2Hν
+

∫ ∞
0

(
(1 + y)Hν−

1
2 − yHν−

1
2

)
dy

) 1
2

.

We refer to [1] for a proof that the process Z defined via (2.2) does indeed have the

covariance structure (2.1). The fBs admits a continuous modification (see [3, p. 1040]),

so we may assume from now on that Z is continuous.

2.3 Increments and generalized variations

Given a function (or a realization of a stochastic process) h : Rd → R, we define the

increment of h over the half-open hyperrectangle [s, t) ⊂ Rd for any s ≤ t by

h([s, t)) :=
∑

i∈{0,1}d
(−1)d−

∑d
ν=1 iνh

(
(1− i)s+ it

)
.

This definition can be recovered by differencing iteratively with respect to each of the

arguments of the function h. Thus, the increment can be seen as a discrete analogue of

the partial derivative ∂d

∂t1···∂td .
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Remark 2.5. It is useful to note that if there exists functions hν : R→ R, ν ∈ {1, . . . , d},
such that h(t) = h1(t1) · · ·hd(td) for any t ∈ Rd, then

h([s, t)) =
d∏

ν=1

(
hν(tν)− hν(sν)

)
,

which is easily verified by induction with respect to d using iterative differencing.

Let us fix a sequence
(
m(n)

)
n∈N ⊂ Nd of multi-indices with the property

m(n) := min
(
m1(n), . . . ,md(n)

)
−−−→
n→∞

∞

and a function f ∈ L2(R, γ) such that
∫
R f(u)γ(du) = 0. Our aim is to study the

asymptotic behaviour of a family
{
U

(n)
f : n ∈ N

}
of d-parameter processes, generalized

variations of Z, defined by

U
(n)
f (t) :=

∑
1≤i≤bm(n)tc

f

(〈
m(n)H

〉
Z

([
i− 1

m(n)
,

i

m(n)

)))
, t ∈ [0, 1]d, n ∈ N.

The realizations of U
(n)
f belong to the space D([0, 1]d), which for d ≥ 2 is a generalization

of the space D([0, 1]) of càdlàg functions on [0, 1]. We refer to [6, pp. 1662] for the

definition of the space D([0, 1]d). In particular, C([0, 1]d) ⊂ D([0, 1]d). We endow

D([0, 1]d) with the Skorohod topology described in [6, pp. 1662]. Convergence to a

continuous function in this topology is, however, equivalent to uniform convergence

(see, e.g., [25, Lemma B.2] for a proof in the case d = 2).

2.4 Functional limit theorems for generalized variations

We will now formulate two functional limit theorems for the family
{
U

(n)
f : n ∈ N

}
of

generalized variations, defined above. The class of admissible functions f needs to be

restricted somewhat, however, and the choice of f and the Hurst parameter H of Z will

determine which of the limit theorems applies. Also, we need to rescale U
(n)
f in suitable

way that, likewise, depends on both f and H.

To this end, recall that the Hermite polynomials,

P0(u) := 1, Pk(u) := (−1)ke
u2

2
dk

duk
e−

u2

2 , u ∈ R, k ∈ N, (2.6)

form a complete orthogonal system in L2(R, γ). Thus, we may expand f in L2(R, γ) as

f(u) =

∞∑
k=k

akPk(u), (2.7)

where the Hermite coefficients ak, ak+1, . . . ∈ R are such that ak 6= 0 and

∞∑
k=k

k!a2
k <∞. (2.8)

7



The index k is called the Hermite rank of f , and the proviso
∫
R f(u)γ(du) = 0 ensures

that k ≥ 1. We will assume that the Hermite coefficients decay somewhat faster than

what (2.8) entails.

Assumption 2.9. The Hermite coefficients ak, ak+1, . . . of the function f satisfy

∞∑
k=k

3
k
2

√
k!|ak| <∞.

Let us define a sequence
(
c(n)

)
n∈N ⊂ Rd+ of rescaling factors by setting for any

ν ∈ {1, . . . , d} and n ∈ N,

cν(n) :=


mν(n)2−2k(1−Hν), Hν ∈

(
1− 1

2k , 1
)
,

mν(n) log
(
mν(n)

)
, Hν = 1− 1

2k ,

mν(n), Hν ∈
(
0, 1− 1

2k

)
.

Remark 2.10. Note that lim supn→∞
mν(n)
cν(n) <∞ and that, in fact, limn→∞

mν(n)
cν(n) = 0 if

Hν ∈
[
1− 1

2k , 1
)
.

Now we can define a family
{
U

(n)
f : n ∈ N} of rescaled generalized variations as

U
(n)
f (t) :=

U
(n)
f (t)

〈c(n)〉
1
2

, t ∈ [0, 1]d, n ∈ N.

Our first result is the following functional central limit theorem (FCLT) for gener-

alized variations. Its proof is carried out in §3.2 and §4.2.

Theorem 2.11 (FCLT). Let f be as above such that Assumption 2.9 holds and suppose

that H ∈ (0, 1)d \
(
1− 1

2k , 1
)d

. Then

(
Z, U

(n)
f

) L−−−→
n→∞

(
Z, Λ

1
2
H,f Z̃

)
in D([0, 1]d)2, (2.12)

where Z̃ is a d-parameter fBs with Hurst parameter H̃ ∈
[

1
2 , 1
)d

, independent of Z

(defined, possibly, on an extension of (Ω,F,P)), and

ΛH,f :=
∞∑

k=max(k,2)

k!a2
k〈b(k)〉 ∈ R. (2.13)

The vectors H̃ ∈
[

1
2 , 1
)d

and b(k) ∈ Rd+, k ≥ max(k, 2), that appear above are defined by

setting for any ν ∈ {1, . . . , d},

H̃ν :=

{
1
2 , Hν ∈

(
0, 1− 1

2k

]
,

1− k(1−Hν), Hν ∈
(
1− 1

2k , 1
)
,

(2.14)
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and

b(k)
ν :=



∑
j∈Z

(
|j + 1|2Hν − 2|j|2Hν + |j − 1|2Hν

2

)k
, Hν ∈

(
0, 1− 1

2k

)
,

2

(
(2k − 1)(k − 1)

2k2

)k
=: ι(k), Hν = 1− 1

2k , k = k,

H
k
ν (2Hν − 1)k

(1− k(1−Hν))(1− 2k(1−Hν))
=: κ(Hν , k), Hν ∈

(
1− 1

2k , 1
)
, k = k,

0, Hν ∈
[
1− 1

2k , 1
)
, k > k.

Remark 2.15. (1) The counterpart of the convergence (2.12) for finite dimensional laws

holds without Assumption 2.9, see Proposition 3.15, below.

(2) We may use max(k, 2), instead of k, as the lower bound for the summation index

k in (2.13) since ι(1) = 0 and

∑
j∈Z

|j + 1|2Ȟ − 2|j|2Ȟ + |j − 1|2Ȟ

2

=
∑
j∈Z

|j|2Ȟ − |j − 1|2Ȟ

2
−
∑
j∈Z

|j|2Ȟ − |j − 1|2Ȟ

2
= 0

for any Ȟ ∈
(
0, 1

2

)
. (Then,

∑
j∈Z
∣∣ |j|2Ȟ−|j−1|2Ȟ

2

∣∣ <∞ by the mean value theorem.)

(3) The convergence (2.12) can be understood in the framework of stable convergence

in law, introduced by Rényi [27]. Equivalently to (2.12), U
(n)
f converges to Λ

1
2
H,f Z̃ as

n→∞ stably in law with respect to the σ-algebra generated by {Z(t) : t ∈ [0, 1]d}.

(4) See Appendix A for an extension of Theorem 2.11 beyond the present setting with

the fBs.

Theorem 2.11 excludes the case H ∈
(
1− 1

2k , 1
)d

. Then, the generalized variations

do have a limit, but the limit is non-Gaussian, unless k = 1. To describe the limit, we

need the following definition, due to Clarke De la Cerda and Tudor [9].

Definition 2.16. An anisotropic, d-parameter Hermite sheet Ẑ :=
{
Ẑ(t) : t ∈ Rd+

}
of

order k ≥ 2 with Hurst parameter H̃ ∈
(

1
2 , 1
)d

is defined as a k-fold multiple Wiener

integral (see §3.2) with respect to the white noise W,

Ẑ(t) :=

∫
· · ·
∫
Ĝ

(k)

H̃

(
t, u(1), . . . , u(k)

)
W
(
du(1)

)
· · ·W

(
du(k)

)
:= IWk

(
Ĝ

(k)

H̃

(
t, ·
))

(2.17)

for any t ∈ Rd+. In (2.17), the kernel Ĝ
(d,k)

H̃
(t, ·) ∈ L2(Rkd) is given by

Ĝ
(k)

H̃

(
t, u(1), . . . , u(k)

)
:=

1

χ̂
(
H̃, k

) ∫
[0,t)

k∏
κ=1

d∏
ν=1

(
yν − u(κ)

ν

)− 1
2
− 1−H̃ν

k
+

dy, u(1), . . . , u(k) ∈ Rd,

9



using the normalizing constant

χ̂
(
H̃, k

)
:=

d∏
ν=1

(
B
(

1
2 −

1−H̃ν
k , 2(H̃ν−1)

k

)
H̃ν(2H̃ν − 1)

) 1
2

,

where B stands for the beta function.

The Hermite sheet Ẑ is self-similar and has the same correlation structure as a fBs

with Hurst parameter H̃. In the case k = 1, the process Ẑ is Gaussian (in fact, it

coincides with a fractional Brownian sheet with Hurst parameter H̃) but for k ≥ 2 it

is non-Gaussian. In the case k = 2, the name Rosenblatt sheet (and Rosenblatt process,

when d = 1; see [36]) is often used, in honor of Murray Rosenblatt’s seminal paper

[30]. See also the recent papers [15, 37] for more details on the Rosenblatt distribution,

including proofs that this distribution is infinitely divisible.

As our second main result, we obtain the following functional non-central limit

theorem (FNCLT) for generalized variations. The proof of this result is carried out in

§3.3 and §4.2.

Theorem 2.18 (FNCLT). Let f be as above such that Assumption 2.9 holds and sup-

pose that H ∈
(
1− 1

2k , 1
)d

. Then,

U
(n)
f

P−−−→
n→∞

Λ
1
2
H,f Ẑ in D([0, 1]d), (2.19)

where Ẑ is a d-parameter Hermite sheet of order k with Hurst parameter H̃, given by

(2.14), and ΛH,f is given by (2.13).

Remark 2.20. (1) The convergence (2.19) holds pointwise in L2(Ω,F,P), even when

Assumption 2.9 does not hold, see Proposition 3.26, below.

(2) Unlike in Theorem 2.11, the non-central limit Ẑ is defined on the original probability

space (Ω,F,P). In particular, Ẑ is driven by the same white noise W as Z.

(3) In the special case k = 1, the limit in (2.19) is Gaussian. In fact, then ΛH,f = a2
1

and Ẑ = Z.

Remark 2.21. Our method of proving the convergence of finite-dimensional distributions

of U
(n)
f , using chaotic expansions, is particularly suitable for providing estimates on

the speed of convergence (for example in the Wasserstein distance) as is done in [21]

following the original idea presented in [19], which combines the Malliavin calculus

and Stein’s method. In addition, the study of weighted variations of the fBs is still

partially incomplete, especially with regards to functional convergence (see [28]). To

keep the length of this paper within limits — and since proving functional convergence

of weighted variations requires slighly different methods — we have decided to treat

these two questions in a separate paper.
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3 Finite-dimensional convergence

In this section, we begin the proofs of Theorems 2.11 and 2.18. To be more precise, we

prove the finite-dimensional statements corresponding to (2.12) and (2.19), see Propo-

sitions 3.15 and 3.26, respectively. As a preparation, we study the correlation structure

of the increments of the fBs Z and recall the chaotic expansion of functionals of Z.

3.1 Correlation structure of increments

In what follows, it will be convenient to use the shorthand

Z
(n)
i := 〈m(n)H〉Z

([
i− 1

m(n)
,

i

m(n)

))
, 1 ≤ i ≤ m(n), n ∈ N. (3.1)

For any n ∈ N, the family
{
Z

(n)
i : 1 ≤ i ≤ m(n)

}
is clearly centered and Gaussian. We

will next derive its correlation structure.

To describe the correlation structure of the rescaled increments (3.1), let {BȞ(t) :

t ∈ R} be an auxiliary fractional Brownian motion with Hurst parameter Ȟ ∈ (0, 1).

Using the kernel (2.4), we may represent it as

BȞ(t) :=

∫
R
G

(1)

Ȟ
(t, u)dB(u), t ∈ R,

where {B(t) : t ∈ R} is a standard Brownian motion. Recall that BȞ is Ȟ-self similar,

i.e., {
BȞ(at) : t ∈ R

} L
=
{
aȞBȞ(t) : t ∈ R

}
for any a > 0, (3.2)

and has stationary increments, i.e.,{
BȞ([s, s+ t)) : t ∈ R

} L
= {BȞ([0, t)) : t ∈ R} for any s ∈ R. (3.3)

The discrete parameter process

BȞ([j, j + 1)), j ∈ Z,

which is stationary by (3.3), is called a fractional Gaussian noise. Its correlation func-

tion can be expressed as

rȞ(j) := E
[
BȞ([j, j + 1))BȞ([0, 1))

]
=
|j + 1|2Ȟ − 2|j|2Ȟ + |j − 1|2Ȟ

2
, j ∈ Z.

One can show, e.g., using the mean value theorem, that there exists a constant C(Ȟ) > 0

such that

|rȞ(j)| ≤ C(Ȟ)|j|−2(1−Ȟ), j ∈ Z. (3.4)

Thus, if k > 1
2 and Ȟ ∈

(
0, 1− 1

2k

)
, then∑
j∈Z
|rȞ(j)|k <∞. (3.5)

11



If Ȟ ∈
[
1 − 1

2k , 1
)
, then the series (3.5) diverges. In this case it is still useful to have

estimates for the partial sums corresponding to (3.5). Using (3.4), one can prove that

there exists a constant C ′(Ȟ, k) > 0 such that

∑
|j|<l

|rȞ(j)|k ≤

{
C ′(Ȟ, k) log l, Ȟ = 1− 1

2k ,

C ′(Ȟ, k)l1−2k(1−Ȟ), Ȟ ∈
(
1− 1

2k , 1
)
.

(3.6)

We can now describe the correlations of the rescaled increments (3.1) using the

correlation function of the fractional Gaussian noise as follows.

Lemma 3.7 (Correlation structure). For any n ∈ N, and 1 ≤ i(1), i(2) ≤ m(n),

E
[
Z

(n)

i(1)Z
(n)

i(2)

]
=

d∏
ν=1

rHν
(
i(1)
ν − i(2)

ν

)
.

Proof. Using first the linearity of Wiener integrals and then the product structure (2.3)

of the kernel G
(d)
H and Remark 2.5, we obtain for any s, t ∈ [0, 1]d such that s ≤ t,

Z([s, t)) =

∫
G

(d)
H ([s, t), u)W(du) =

∫ d∏
ν=1

G
(1)
Hν

([sν , tν), uν)W(du). (3.8)

Thus, by Fubini’s theorem,

E

[
Z

([
i(1) − 1

m(n)
,
i(1)

m(n)

))
Z

([
i(2) − 1

m(n)
,
i(2)

m(n)

))]

=

d∏
ν=1

∫
G

(1)
Hν

([
i
(1)
ν − 1

mν(n)
,
i
(1)
ν

mν(n)

)
, v

)
G

(1)
Hν

([
i
(2)
ν − 1

mν(n)
,
i
(2)
ν

mν(n)

)
, v

)
dv

=
d∏

ν=1

E

[
BHν

([
i
(1)
ν − 1

mν(n)
,
i
(1)
ν

mν(n)

))
BHν

([
i
(2)
ν − 1

mν(n)
,
i
(2)
ν

mν(n)

))]
.

For any ν ∈ {1, . . . , d}, the fractional Brownian motion BHν is Hν-self similar and has

stationary increments, cf. (3.2) and (3.3), so we obtain

E

[
BHν

([
i
(1)
ν − 1

mν(n)
,
i
(1)
ν

mν(n)

))
BHν

([
i
(2)
ν − 1

mν(n)
,
i
(2)
ν

mν(n)

))]
=
rHν
(
i
(1)
ν − i(2)

ν

)
mν(n)2Hν

,

from which the assertion follows.

3.2 Multiple Wiener integrals and central limit theorem

The proofs of Theorems 2.11 and 2.18 rely on particular representations of generalized

variations in terms of multiple Wiener integrals with respect to the underlying white

noise W. We will now briefly review the theory of multiple Wiener integrals and how

these integrals can be used to prove central limit theorems. As an application, we take
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the first step in the proof of Theorem 2.11 by establishing the convergence of finite-

dimensional laws.

In what follows, we write H := L2(Rd). Recall that H is a separable Hilbert space

when we endow it with the usual inner product. For any k ∈ N, we denote by H⊗k

the k-fold tensor power of H and by H�k ⊂ H⊗k the symmetrization of H⊗k. Note

that we can make the identification H⊗k ∼= L2(Rkd). For any h ∈ H�k, we may define

the k-fold multiple Wiener integral IWk (h) of h with respect to W. This is done, using

Hermite polynomials, by setting for any κ ∈ N, any orthonormal h1, . . . , hκ ∈ H, and

for any k1, . . . , kκ ∈ N such that k1 + · · ·+ kκ = k,

IWk

(
κ⊙
j=1

h
⊗kj
j

)
:= k!

κ∏
j=1

Pkj

(∫
hj(u)W(du)

)
, (3.9)

where � denotes symmetrization of the tensor product, and extended to general inte-

grands h ∈ H�k using a density argument. It is worth stressing that the multiple Wiener

integral is linear with respect to the integrand and has zero expectation. Moreover, by

(3.9), for h ∈ H one has

IW1 (h) =

∫
h(u)W(du), (3.10)

and if ‖h‖H = 1, then for any k ∈ N it holds that h⊗k ∈ H�k and

Pk
(
IW1 (h)

)
= IWk (h⊗k). (3.11)

Multiple Wiener integrals have the following isometry and orthogonality properties: for

any k1, k2 ∈ N, h1 ∈ H�k1 , and h2 ∈ H�k2 ,

E
[
IWk1

(h1)IWk2
(h2)

]
=

{
k1!〈h1, h2〉H⊗k1 , k1 = k2,

0, k1 6= k2.
(3.12)

Recall that any random variable Y ∈ L2(Ω,F,P) has a chaotic expansion in terms

of kernels F Yk ∈ H�k, k ∈ N, as

Y = E[Y ] +
∞∑
k=1

IWk
(
F Yk
)
, (3.13)

where the series converges in L2(Ω,F,P) (see, e.g, [14, Theorem 13.26]). Since the

apperance of the seminal paper of Nualart and Peccati [24], the convergence of random

variables admitting expansions of the form (3.13) to a Gaussian law has been well

understood, based on convenient characterizations using the properties of the kernels.

To describe the key result, recall that for any k1, k2, r ∈ N such the r < min{k1, k2},
the r-th contraction of h1 ∈ H⊗k1 and h2 ∈ H⊗k2 is defined as

(h1 ⊗r h2)
(
t(1), . . . , t(k1+k2−2r)

)
:=
〈
h1

(
t(1), . . . , t(k1−r), ·

)
, h2

(
· , t(k1−r+1), . . . , t(k1+k2−2r)

)〉
H⊗r
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for any t(1), . . . , t(k1+k2−2r) ∈ Rd. The following multivariate central limit theorem for

chaotic expansions appears in [4, Theorem 5], where it is proven using the results in

[26].

Lemma 3.14 (CLT for chaotic expansions). Let κ ∈ N and suppose that for any n ∈
N, we are given random variables Y

(n)
1 , . . . , Y

(n)
κ ∈ L2(Ω,F,P) such that for any j ∈

{1, . . . , κ},

Y
(n)
j =

∞∑
k=1

IWk
(
F

(n)
k (j, ·)

)
,

where F
(n)
k (j, ·) ∈ H�k, k ∈ N. Let us assume that the following conditions hold:

(a) For any j ∈ {1, . . . , κ},

lim sup
n→∞

∞∑
k=K

k!
∥∥F (n)

k (j, ·)
∥∥2

H⊗k
−−−−→
K→∞

0.

(b) There exists a sequence Σ,Σ1,Σ2, . . . of positive semidefinite d× d-matrices such

that for any (j1, j2) ∈ {1, . . . , κ}2 and k ∈ N,

k!
〈
F

(n)
k (j1, ·), F (n)

k (j2, ·)
〉
H⊗k
−−−→
n→∞

Σk(j1, j2),

and that
∑∞

k=1 Σk = Σ.

(c) For any j ∈ {1, . . . , κ}, k ≥ 2, and r ∈ {1, . . . , k − 1},∥∥F (n)
k (j, ·)⊗r F (n)

k (j, ·)
∥∥2

H⊗2(k−r) −−−→
n→∞

0.

Then we have (
Y

(n)
1 , . . . , Y (n)

κ

) L−−−→
n→∞

Nκ(0,Σ),

where Nκ(0, Σ) stands for the κ-dimensional Gaussian law with mean 0 and covariance

matrix Σ.

We apply now Lemma 3.14 to establish the following finite-dimensional version of

Theorem 2.11.

Proposition 3.15 (CLT for finite-dimensional laws). Suppose that H ∈ (0, 1)d \
(
1 −

1
2k , 1

)d
. Let κ ∈ N and

(
t(1), . . . , t(κ)

)
∈
(
[0, 1]d

)κ
. Then,

(
Z(t(1)), . . . , Z(t(κ)), U

(n)
f (t(1)), . . . , U

(n)
f (t(κ))

) L−−−→
n→∞

N2κ

(
0,

[
Ξ 0

0 Σ

])
, (3.16)

where Ξ is the covariance matrix of the random vector
(
Z(t(1)), . . . , Z(t(κ))

)
and

Σ(j1, j2) := ΛH,fR
(d)

H̃
(t(j1), t(j2)), (j1, j2) ∈ {1, . . . , κ}2.
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Remark 3.17. In the case H ∈
(
0, 1− 1

2k

]d
, the convergence(

U
(n)
f (t(1)), . . . , U

(n)
f (t(κ))

) L−−−→
n→∞

Nκ(Σ)

follows from the classical results of Breuer and Major [7].

Proof of Proposition 3.15. By (3.10), we have Z(t) = IW1
(
G

(d)
H (t, ·)

)
for any t ∈ [0, 1]d.

In particular, by (3.8) and linearity, we find that for any n ∈ N and 1 ≤ i ≤ m(n),

Z
(n)
i = IW1

(
h

(n)
i

)
,

where

h
(n)
i := 〈m(n)H〉g(n)

i , g
(n)
i := G

(d)
H

([
i− 1

m(n)
,

i

m(n)

)
, ·
)
,

satisfying
∥∥h(n)

i

∥∥
H

= 1, due to the relation (3.12) and Lemma 3.7. The expansion (2.7)

and the connection of Hermite polynomials and multiple Wiener integrals (3.11) allows

then us to write

U
(n)
f (t) =

∞∑
k=k

IWk
(
F

(n)
k (t, ·)

)
, t ∈ [0, 1]d, n ∈ N, (3.18)

where

F
(n)
k (t, ·) :=

ak
〈c(n)〉1/2

∑
1≤i≤bm(n)tc

(
h

(n)
i

)⊗k
, k ≥ k. (3.19)

For the remainder of the proof, let s, t ∈ {t(1), . . . , t(κ)}. Let us first look into

condition (a) of Lemma 3.14. By Lemma 3.7 and the relation (3.12), we obtain for any

n ∈ N and k ≥ k,〈
F

(n)
k (s, ·), F (n)

k (t, ·)
〉
H⊗k

=
a2
k

〈c(n)〉
∑

1≤i(1)≤bm(n)sc

∑
1≤i(2)≤bm(n)tc

〈(
h

(n)

i(1)

)⊗k
,
(
h

(n)

i(2)

)⊗k〉
H⊗k

=
a2
k

〈c(n)〉
∑

1≤i(1)≤bm(n)sc

∑
1≤i(2)≤bm(n)tc

〈
h

(n)

i(1) , h
(n)

i(2)

〉k
H

= a2
k

d∏
ν=1

1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)tνc∑
j2=1

rHν (j1 − j2)k.

(3.20)

Let k0 ∈ N be large enough so that Hν ∈
(
0, 1 − 1

2k0

)
for any ν ∈ {1, . . . , d}. Then we

have for any k ≥ k0,

0 ≤
d∏

ν=1

1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)sνc∑
j2=1

rHν (j1 − j2)k ≤
d∏

ν=1

1

cν(n)

mν(n)∑
j1=1

mν(n)∑
j2=1

|rHν (j1 − j2)|k0

≤
d∏

ν=1

(
sup
n∈N

mν(n)

cν(n)

)∑
j∈Z
|rHν (j)|k0 <∞,
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which follows from Remark 2.10 and the elementary estimate

sup
1≤j1≤`

∑̀
j2=1

|rHν (j1 − j2)|q ≤
∑
|j|<`

|rHν (j)|q, ` ∈ N, q ∈ R+. (3.21)

Thus, by (2.8), we have for K ≥ k0,

0 ≤ lim sup
n→∞

∞∑
k=K

k!
∥∥F (n)

k (s)
∥∥2

H⊗k
≤
∞∑
k=K

k!a2
k

d∏
ν=1

(
sup
n∈N

mν(n)

cν(n)

)∑
j∈Z
|rHν (j)|k0 −−−−→

K→∞
0,

and the condition (a) is verified.

To check condition (b) of Lemma 3.14, note that we can write for any ν ∈ {1, . . . , d},
assuming without loss of generality that tν ≥ sν ,

1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)tνc∑
j2=1

rHν (j1 − j2)k

=
1

2

(
1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)sνc∑
j2=1

rHν (j1 − j2)k +
1

cν(n)

bmν(n)tνc∑
j1=1

bmν(n)tνc∑
j2=1

rHν (j1 − j2)k

− 1

cν(n)

bmν(n)tνc−bmν(n)sνc∑
j1=1

bmν(n)tνc−bmν(n)sνc∑
j2=1

rHν (j1 − j2)k

)
.

(3.22)

We will now compute the limit of (3.22) separately in the following three possible cases:

(i) Hν ∈
(
1− 1

2k , 1
)
,

(ii) Hν = 1− 1
2k ,

(iii) Hν ∈
(
0, 1− 1

2k

)
.

In the case (i), we obtain, by Lemma A.1 of [29],

1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)sνc∑
j2=1

rHν (j1 − j2)k

=

(
bmν(n)sνc
mν(n)

)2−2k(1−Hν)

bmν(n)sνc−2+2k(1−Hν)

bmν(n)sνc∑
j1=1

bmν(n)sνc∑
j2=1

rHν (j1 − j2)k

−−−→
n→∞

κ(Hν , k)s2−2k(1−Hν)
ν = κ(Hν , k)sH̃νν .

(In fact, Lemma A.1 of [29] requires that k ≥ 2, but it is straightforward to check that

the limits stated therein are valid also when k = 1.) With k > k we may choose ε > 0
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so that k + ε < min
(

1
2(1−Hν) , k

)
, whence

∣∣∣∣∣ 1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)sνc∑
j2=1

rHν (j1 − j2)k

∣∣∣∣∣ ≤ 1

cν(n)

mν(n)∑
j1=1

mν(n)∑
j2=1

|rHν (j1 − j2)|k+ε

≤ 1

mν(n)1−2k(1−Hν)

∑
|j|<mν(n)

|rHν (j)|k+ε −−−→
n→∞

0

(3.23)

by the estimate (3.6). Treating the other summands on right-hand side of (3.22) simi-

larly, we arrive at

lim
n→∞

1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)tνc∑
j2=1

rHν (j1 − j2)k

=


κ(Hν ,k)

2

(
sH̃νν + tH̃νν − (tν − sν)H̃ν

)
= κ(Hν , k)R

(1)

H̃ν
(sν , tν), k = k,

0, k > k.

In the case (ii), rearranging and applying Lemma A.1 of [29] yields

1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)sνc∑
j2=1

rHν (j1 − j2)k

=

(
1 +

log
( bmν(n)sνc

mν(n)

)
log
(
mν(n)

) ) bmν(n)sνc/mν(n)

bmν(n)sνc log(bmν(n)sνc)

bmν(n)sνc∑
j1=1

bmν(n)sνc∑
j2=1

rHν (j1 − j2)k

−−−→
n→∞

ι(k)sν .

When k > k, we have Hν ∈
(
0, 1− 1

2k

)
and, consequently,∣∣∣∣∣ 1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)sνc∑
j2=1

rHν (j1 − j2)k

∣∣∣∣∣ ≤ 1

log
(
mν(n)

)∑
j∈Z
|rHν (j)|k −−−→

n→∞
0.

Again, a similar treatment of the other summands on right-hand side of (3.22) estab-

lishes that

lim
n→∞

1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)tνc∑
j2=1

rHν (j1 − j2)k

=


ι(k)

2

(
sν + tν − (tν − sν)

)
= ι(k)R

(1)

H̃ν
(sν , tν), k = k,

0, k > k.
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Finally, in the case (iii), we deduce in a straightforward manner that for any k ≥ k,

lim
n→∞

1

cν(n)

bmν(n)sνc∑
j1=1

bmν(n)tνc∑
j2=1

rHν (j1 − j2)k =
1

2

∑
j∈Z

rHν (j)k
(
sν + tν − (tν − sν)

)
=
∑
j∈Z

rHν (j)kR
(1)

H̃ν
(sν , tν)

using Lemma A.1 of [29].

Returning to the expression (3.20), we have shown that for any k ≥ k,

k!
〈
F

(n)
k (s), F

(n)
k (t)

〉
H⊗k
−−−→
n→∞

k!a2
k〈b(k)〉R(d)

H̃
(s, t). (3.24)

When k = 1, we need to check, additionally, that the covariance matrix appearing in

the limit (3.16) is block-diagonal. To this end, note that it follows from the assumption

H ∈ (0, 1)d \
(

1
2 , 1
)d

, that b
(1)
ν = 0 for some ν ∈ {1, . . . , d}, which in turn implies that∥∥F (n)

1 (s, ·)
∥∥2

H
−−−→
n→∞

0.

By the Cauchy–Schwarz inequality, we have then〈
F

(n)
1 (s, ·), G(d)

H (t, ·)
〉
H
−−−→
n→∞

0,

which ensures block diagonality, and concludes the verification of condition (b).

In order to check condition (c) of Lemma 3.14, let k ≥ max(k, 2) and r ∈ {1, . . . , k−
1}. Using the bilinearity of contractions and inner products, we obtain∥∥F (n)

k (t, ·)⊗r F (n)
k (t, ·)

∥∥2

H⊗2(k−r)

=
a4
k

〈c(n)〉2
∑

1≤i(j)≤bm(n)tc
j∈{1,2,3,4}

〈(
h

(n)

i(1)

)⊗k ⊗r (h(n)

i(2)

)⊗k
,
(
h

(n)

i(3)

)⊗k ⊗r (h(n)

i(4)

)⊗k〉
H⊗2(k−r)

=
a4
k

〈c(n)〉2
∑

1≤i(j)≤bm(n)tc
j∈{1,2,3,4}

〈
h

(n)

i(1) , h
(n)

i(2)

〉r
H

〈
h

(n)

i(3) , h
(n)

i(4)

〉r
H

〈
h

(n)

i(1) , h
(n)

i(3)

〉k−r
H

〈
h

(n)

i(2) , h
(n)

i(4)

〉k−r
H

= a4
k

d∏
ν=1

1

cν(n)2

bmν(n)tνc∑
j1,j2,j3,j4=1

rHν (j1 − j2)rrHν (j3 − j4)rrHν (j1 − j3)k−rrHν (j2 − j4)k−r.

Following the proof of Lemma 4.1 of [20], we apply the bound

|rHν (j1)|r|rHν (j2)|k−r ≤ |rHν (j1)|k + |rHν (j2)|k, j1, j2 ∈ Z,

which is a consequence of Young’s inequality, and use repeatedly (3.21) to deduce that

∥∥F (n)
k (t, ·)⊗r F (n)

k (t, ·)
∥∥2

H⊗2(k−r) ≤ 16da4
k

d∏
ν=1

mν(n)φν(n)

cν(n)2
, (3.25)
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where

φν(n) :=
∑

|j1|<mν(n)

|rHν (j1)|r
∑

|j2|<mν(n)

|rHν (j2)|k−r
∑

|j3|<mν(n)

|rHν (j3)|k.

We need to analyze the asymptotic behaviour of φν(n) as n → ∞. This can be

accomplished by considering separately the three possible cases:

(i’) Hν ∈
(
1− 1

2k , 1
)
,

(ii’) Hν = 1− 1
2k ,

(iii’) Hν ∈
(
0, 1− 1

2k

)
.

In the case (i’) we have clearly Hν ∈
(
1 − 1

2(k−r) , 1
)
∩
(
1 − 1

2r , 1
)
, and by the estimate

(3.6), it follows that

φν(n) ≤ C ′′(Hν , k, r)mν(n)3−4k(1−Hν),

where C ′′(Hν , k, r) := C ′(Hν , r)C
′(Hν , k − r)C ′(Hν , k). Since Hν ∈

(
1 − 1

2k , 1
)
⊂(

1− 1
2k , 1

)
, we obtain

lim sup
n→∞

mν(n)φν(n)

cν(n)2
≤ lim sup

n→∞

C ′′(Hν , k, r)

mν(n)4(k−k)(1−Hν)
<∞.

Let us then consider to the case (ii’). We have still Hν ∈
(
1− 1

2(k−r) , 1
)
∩
(
1− 1

2r , 1
)
, so

by (3.6) we find that

φν(n) ≤ C ′′(Hν , k, r)mν(n)2−2k(1−Hν) log
(
mν(n)

)
= C ′′(Hν , k, r)mν(n) log

(
mν(n)

)
.

Necessarily Hν ∈
[
1 − 1

2k , 1
)
, whence there is an index n0 ∈ N such that cν(n) ≥

mν(n) log
(
mν(n)

)
for all n ≥ n0. We deduce then that

lim
n→∞

mν(n)φν(n)

cν(n)2
≤ lim

n→∞

C ′′(Hν , k, r)

log
(
mν(n)

) = 0.

In the remaining case (iii’) we have
∑

j∈Z |rHν (j)|k < ∞. Since there is n0 ∈ N such

that cν(n) ≥ mν(n) for all n ≥ n0, we find that

lim
n→∞

mν(n)φν(n)

cν(n)2

≤ lim
n→∞

1

mν(n)

∑
|j1|<mν(n)

|rHν (j1)|r
∑

|j2|<mν(n)

|rHν (j2)|k−r
∑
j3∈Z
|rHν (j3)|k = 0

by Lemma 2.2 of [20].

Finally, let us return to the upper bound (3.25). The crucial observation is that

the assumption H ∈ (0, 1)d \
(
1 − 1

2k , 1
)d

implies that there is at least one coordinate

ν ∈ {1, . . . , d} that falls within case (ii’) or (iii’). Thus,∥∥F (n)
k (t, ·)⊗r F (n)

k (t, ·)
∥∥2

H⊗2(k−r) −−−→
n→∞

0,

concluding the verification of the condition (c), and the convergence (3.16) follows.
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3.3 Convergence to the Hermite sheet

We prove next a pointwise version of Theorem 2.18 in L2(Ω). The argument is based

mainly on the chaotic expansion (3.18) and the isometry property (3.12) of multiple

Wiener integrals. However, compared to the proof of Proposition 3.15, we need to

analyze the asymptotic behaviour of the associated kernels more carefully.

Proposition 3.26 (Pointwise NCLT). Suppose that H ∈
(
1 − 1

2k , 1
)d

. Then, for any

t ∈ [0, 1]d,

U
(n)
f (t)

L2(Ω)−−−−→
n→∞

Λ
1
2
H,f Ẑ(t), (3.27)

where Ẑ is the Hermite sheet appearing in Theorem 2.18.

Proof. Fix t ∈ [0, 1]d. By the chaotic expansion (3.18), we have for any n ∈ N,

U
(n)
f (t) = IWk

(
F

(n)
k (t, ·)

)
+

∞∑
k=k+1

IWk
(
F

(n)
k (t, ·)

)
.

Using the property (3.12) and Parseval’s identity, we find that

E

[( ∞∑
k=k+1

IWk
(
F

(n)
k (t, ·)

))2]
=

∞∑
k=k+1

k!
∥∥F (n)

k (t, ·)
∥∥2

H⊗k
.

Since H ∈
(
1− 1

2k , 1
)d

, we may choose ε ∈ (0, 1] so that H ∈
(
1− 1

2(k+ε) , 1
)d

. Combining

(3.20) and (3.23), we find that

∞∑
k=k+1

k!
∥∥F (n)

k (t, ·)
∥∥2

H⊗k
≤

∞∑
k=k+1

k!a2
k

d∏
ν=1

1

mν(n)1−2k(1−Hν)

∑
|j|<mν(n)

|rHν (j)|k+ε −−−→
n→∞

0,

where convergence to zero is a consequence of the bound (3.6). Thus, it remains to

show that

IWk
(
F

(n)
k (t, ·)

) L2(Ω)−−−−→
n→∞

IWk

(
Λ

1
2
H,f Ĝ

(k)

H̃
(t, ·)

)
= Λ

1
2
H,f Ẑ(t),

which follows by (3.12), if we can show that

F
(n)
k (t, ·) H⊗k−−−→

n→∞
Λ

1
2
H,f Ĝ

(k)

H̃
(t, ·). (3.28)

In the special case k = 1, the convergence (3.27) follows already. Namely,

IW1
(
F

(n)
1 (t, ·)

)
= a1Z

(
bm(n)tc
m(n)

)
L2(Ω)−−−−→
n→∞

a1Z(t) = Λ
1
2
H,fZ(t) = Λ

1
2
H,f Ẑ(t)

by the L2-continuity of Z. Thus, we can assume that k ≥ 2 from now on.
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We will prove the convergence (3.28) in two steps. First, we show that
(
F

(n)
k (t, ·)

)
n∈N

is a Cauchy sequence in H⊗k. Later, we characterize the limit. Let n1, n2 ∈ N and

consider∥∥F (n1)
k (t, ·)− F (n2)

k (t, ·)
∥∥2

H⊗k

=
∥∥F (n1)

k (t, ·)
∥∥2

H⊗k
+
∥∥F (n2)

k (t, ·)
∥∥2

H⊗k
− 2
〈
F

(n1)
k (t, ·), F (n2)

k (t, ·)
〉
H⊗k

. (3.29)

By Definition (3.19), we have〈
F

(n1)
k (t, ·), F (n2)

k (t, ·)
〉
H⊗k

= a2
k〈m(n1)〉k−1〈m(n2)〉k−1

∑
1≤i(1)≤bm(n1)tc

∑
1≤i(2)≤bm(n2)tc

〈
g

(n1)

i(1) , g
(n2)

i(2)

〉k
H⊗k

.

Mimicking the proof of Lemma 3.7, we obtain〈
g

(n1)

i(1) , g
(n2)

i(2)

〉
H⊗k

=
d∏

ν=1

∫
G

(1)
Hν

([
i
(1)
ν − 1

mν(n1)
,

i
(1)
ν

mν(n1)

)
, v

)
G

(1)
Hν

([
i
(2)
ν − 1

mν(n2)
,

i
(2)
ν

mν(n2)

)
, v

)
dv

=

d∏
ν=1

E

[
BHν

([
i
(1)
ν − 1

mν(n1)
,

i
(1)
ν

mν(n1)

))
BHν

([
i
(2)
ν − 1

mν(n2)
,

i
(2)
ν

mν(n2)

))]

=
d∏

ν=1

Hν(2Hν − 1)

∫ i
(1)
ν

mν (n1)

i
(1)
ν −1
mν (n1)

∫ i
(2)
ν

mν (n2)

i
(2)
ν −1
mν (n2)

|v1 − v2|−2(1−Hν)dv1dv2,

where the final equality follows (see, e.g., [17, p. 574]) since Hν > 1 − 1
2k >

1
2 for any

ν ∈ {1, . . . , d}. Adapting the argument used in [18, pp. 1064–1065], we deduce that

lim
n1,n2→∞

〈
F

(n1)
k (t, ·), F (n2)

k (t, ·)
〉
H⊗k

= a2
k

d∏
ν=1

Hk
ν (2Hν − 1)k

∫ t

0

∫ t

0
|v1 − v2|−2k(1−Hν)dv1dv2

= a2
k

d∏
ν=1

t2H̃νν Hk
ν (2Hν − 1)k

∫ 1

0

∫ 1

0
|v1 − v2|−2k(1−Hν)dv1dv2

= a2
k

d∏
ν=1

t2H̃νν κ(Hν , k) = a2
k〈b(k)〉R(d)

H̃
(t, t).

(3.30)

Thus, by (3.24) and (3.29),

lim
n1,n2→∞

∥∥F (n1)
k (t, ·)− F (n2)

k (t, ·)
∥∥2

H⊗k
= 0,

whence
(
F

(n)
k (t, ·)

)
n∈N is a Cauchy sequence.
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To characterize the limit of
(
F

(n)
k (t, ·)

)
n∈N, let us consider for any s(1), . . . , s(k) ∈ Rd,

F
(n)
k

(
t, s(1), . . . , s(k)

)
= ak〈m(n)〉k−1

∑
1≤i≤bm(n)tc

k∏
κ=1

G
(d)
H

([
i− 1

m(n)
,

i

m(n)

)
, s(κ)

)

= ak〈m(n)〉k−1
∑

1≤i≤bm(n)tc

k∏
κ=1

d∏
ν=1

G
(1)
Hν

([
iν − 1

mν(n)
,

iν
mν(n)

)
, s(κ)
ν

)

= ak

d∏
ν=1

1

mν(n)

bmν(n)tνc∑
j=1

k∏
κ=1

mν(n)G
(1)
Hν

([
j − 1

mν(n)
,

j

mν(n)

)
, s(κ)
ν

)
,

where the second equality is a consequence of Remark 2.5. Since

G
(1)
Hν

([
j − 1

mν(n)
,

j

mν(n)

)
, s(κ)
ν

)
=

1

χ(Hν)

((
j

mν(n)
−s(κ)

ν

)Hν− 1
2

+

−
(
j − 1

mν(n)
−s(κ)

ν

)Hν− 1
2

+

)
,

it follows from Lemma 3.32, below, that

F
(n)
k (t, ·) −−−→

n→∞
C ′′′
(
ak, H, k

)
Ĝ

(k)

H̃
(t, ·) a.e. on Rkd (3.31)

for some constant C ′′′
(
ak, H, k

)
> 0. By the Cauchy property of

(
F

(n)
k (t, ·)

)
n∈N, the

convergence (3.31) holds also in H⊗k. Clarke De la Cerda and Tudor [9, pp. 4–6] have

shown that E
[
Ẑ(t)2

]
= k!

∥∥Ĝ(k)

H̃
(t, ·)

∥∥2

H⊗k
= R

(d)

H̃
(t, t). In view of (3.30), we find that

C ′′′
(
ak, H, k

)2
= k!a2

k

〈
b(k)
〉

= ΛH,f ,

whence (3.28) follows.

The following technical lemma was essential in the proof of Proposition 3.26.

Lemma 3.32. Suppose that k ≥ 2, Ȟ ∈
(

1
2 , 1
)
, and v > 0. Then,

1

n

bnvc∑
j=1

k∏
κ=1

n

((
j

n
−sκ

)Ȟ− 1
2

+

−
(
j − 1

n
−sκ

)Ȟ− 1
2

+

)
−−−→
n→∞

(
Ȟ−1

2

)k ∫ v

0

k∏
κ=1

(u−sκ)
Ȟ− 3

2
+ du

(3.33)

for almost any s = (s1, . . . , sk) ∈ Rk.

Proof. We may assume that s := max(s1, . . . , sk) < v, as otherwise (3.33) is trivially

true. In fact, ∫ v

0

k∏
κ=1

(y − sκ)
Ȟ− 3

2
+ dy =

∫ v

s

k∏
κ=1

(y − sκ)Ȟ−
3
2 dy.
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We split the sum on the left-hand side of (3.33) for any n ∈ N, such that bnvc > bnsc+3,

as

1

n

bnvc∑
j=1

k∏
κ=1

n

((
j

n
− sκ

)Ȟ− 1
2

+

−
(
j − 1

n
− sκ

)Ȟ− 1
2

+

)

=
1

n

bnsc+2∑
j=bnsc+1

k∏
κ=1

n

((
j

n
− sκ

)Ȟ− 1
2

−
(
j − 1

n
− sκ

)Ȟ− 1
2

+

)

+
1

n

bnvc∑
j=bnsc+3

k∏
κ=1

n

((
j

n
− sκ

)Ȟ− 1
2

−
(
j − 1

n
− sκ

)Ȟ− 1
2

)
=: S(1)

n + S(2)
n .

Using the mean value theorem, we obtain for any y ∈ R and n, j ∈ N, such that
j−1
n > y, the bounds

n

((
j

n
− y
)Ȟ− 1

2

−
(
j − 1

n
− y
)Ȟ− 1

2

)
≤
(
Ȟ − 1

2

)(
j − 1

n
− y
)Ȟ− 3

2

, (3.34)

n

((
j

n
− y
)Ȟ− 1

2

−
(
j − 1

n
− y
)Ȟ− 1

2

)
≥
(
Ȟ − 1

2

)(
j

n
− y
)Ȟ− 3

2

. (3.35)

Since we are aiming to prove (3.33) for almost any s ∈ Rk, we may assume (by symme-

try) that s = s1 > sκ for any κ ∈ {2, . . . , k}. Then we have for j ∈ {1, 2},

lim sup
n→∞

k∏
κ=2

n

((
bnsc+ j

n
− sκ

)Ȟ− 1
2

−
(
bnsc+ j − 1

n
− sκ

)Ȟ− 1
2

+

)
<∞

by (3.34), and

0 ≤
(
bnsc+ j

n
− s1

)Ȟ− 1
2

−
(
bnsc+ j − 1

n
− s1

)Ȟ− 1
2

+

≤
(
bnsc+ 2

n
− s1

)Ȟ− 1
2

−−−→
n→∞

0.

Hence, we find that S
(1)
n → 0 as n→∞.

Finally, invoking (3.34), we obtain

S(2)
n ≤

(
Ȟ − 1

2

)k 1

n

bnvc∑
j=bnsc+3

k∏
κ=1

(
j − 1

n
− sκ

)Ȟ− 3
2

=

(
Ȟ − 1

2

)k ∫ bnvc
n

bnsc+2
n

k∏
κ=1

(
bnyc+ 1

n
− 1

n
− sκ

)Ȟ− 3
2

dy

≤
(
Ȟ − 1

2

)k ∫ bnvc−1
n

bnsc+1
n

k∏
κ=1

(y − sκ)Ȟ−
3
2 dy −−−→

n→∞

(
Ĥ − 1

2

)k ∫ v

s

k∏
κ=1

(y − sκ)Ȟ−
3
2 dy
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and similarly by (3.35),

S(2)
n ≥

(
Ȟ − 1

2

)k 1

n

bnvc∑
j=bnsc+3

k∏
κ=1

(
j

n
− sκ

)Ȟ− 3
2

=

(
Ȟ − 1

2

)k ∫ bnvc
n

bnsc+2
n

k∏
κ=1

(
bnyc+ 1

n
− sκ

)Ȟ− 3
2

dy

≥
(
Ȟ − 1

2

)k ∫ bnvc+1
n

bnsc+3
n

k∏
κ=1

(y − sκ)Ȟ−
3
2 dy −−−→

n→∞

(
Ȟ − 1

2

)k ∫ v

s

k∏
κ=1

(y − sκ)Ȟ−
3
2 dy.

(The convergence of the bounding integrals above, as n→∞, is ensured by Lebesgue’s

dominated convergence theorem.) Thus, the convergence (3.33) follows from the sand-

wich lemma.

4 Functional convergence

To show that Theorems 2.11 and 2.18 indeed hold in the functional sense, we need to

establish tightness of the relevant families of processes in the space D([0, 1]d). To this

end, we use the tightness criterion due to Bickel and Wichura [6, Theorem 3]. To apply

this criterion, we need to bound the fourth moments of the increments of U
(n)
f uniformly

over n ∈ N.

4.1 Moment bound and diagrams

As a preparation for the proof of tightness, we establish a moment bound for non-linear

functionals of stationary Gaussian processes indexed by Nd. The bound is a multipa-

rameter extension of Proposition 4.2 of [33], albeit under more restrictive assumptions.

Lemma 4.1 (Moment bound). Let f be as in §2 and {Yi : i ∈ Nd} a Gaussian process

such that E[Yi] = 0 and E[Y 2
i ] = 1 for any i ∈ Nd. Moreover, suppose that there exists

a function ρ : Zd → [−1, 1] such that E[Yi(1)Yi(2) ] = ρ(i(1) − i(2)) for any i(1), i(2) ∈ Nd.
If p ∈ {2, 3, . . .} and the Hermite coefficients ak, ak+1, . . . of the function f satisfy

C ′′′′(f, p) :=

∞∑
k=k

(p− 1)k/2
√
k!|ak| <∞,

then for any l ∈ Nd,∣∣∣∣∣E
[(
〈l〉−1/2

∑
1≤i≤l

f(Yi)

)p]∣∣∣∣∣ ≤
(

2dC ′′′′(f, p)2
∑
|i|<l

|ρ(i)|k
)p/2

.

The proof of Proposition 4.2 of [33] is based on a graph theoretic argument that

involves multigraphs. We prove Lemma 4.1 using slightly different (but essentially anal-

ogous) formalism based on diagrams, defined below. Breuer and Major [7] used diagrams
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to prove their central limit theorem for non-linear functionals of Gaussian random fields

via the method of moments. In fact in the proof of Lemma 4.1, we adapt some of the

arguments used in [7].

Definition 4.2. Let p ∈ {2, 3, . . .} and (k1, . . . , kp) ∈ Np be such that k1 + · · · + kp
is an even number. A diagram of order (k1, . . . , kp) is a graph G = (VG, EG) with the

following three properties:

(1) We have VG =

p⋃
j=1

{(j, 1), . . . , (j, kj)}.

(2) The degree of any vertex v ∈ VG is one.

(3) Any edge
(
(j, k), (j′, k′)

)
∈ EG has the property that j 6= j′.

We denote the class of diagrams of order (k1, . . . , kp) by G(k1, . . . , kp). For the sake

of completeness we set G(k1, . . . , kp) := ∅ when k1 + · · · + kp is an odd number (no

diagrams can then exist by the handshaking lemma of graph theory). Let us also define

two functions λ1 and λ2 of an edge e =
(
(j, k), (j′, k′)

)
∈ EG, where j < j′, by setting

λ1(e) := j and λ2(e) := j′.

Diagrams are connected to Hermite polynomials and Gaussian random variables via

the so-called diagram formula, which is originally due to Taqqu [33, Lemma 3.2]. Below,

we state a version of the formula that appears in [7, p. 431].

Lemma 4.3 (Diagram formula). Let p ∈ {2, 3, . . .} and let Y1, . . . , Yp be jointly Gaus-

sian random variables with E[Yi] = 0 and E[Y 2
i ] = 1 for any i ∈ {1, . . . , p}. For any

(k1, . . . , kp) ∈ Np, we have

E

[ p∏
j=1

Pkj (Yj)

]
=

∑
G∈G(k1,...,kp)

∏
e∈EG

E
[
Yλ1(e)Yλ2(e)

]
,

where a sum over an empty index set is interpreted as zero.

Remark 4.4. The diagram formula can be used to estimate the cardinalities of classes

of diagrams. As pointed out by Bardet and Surgailis [2, p. 461], using Lemma 4.3 and

Lemma 3.1 of [33] in the special case Y := Y1 = · · · = Yp, we obtain

|G(k1, . . . , kp)| = E

[ p∏
j=1

Pkj (Y )

]
≤ (p− 1)(k1+···+kp)/2

√
k1! · · · kp!. (4.5)

Proof of Lemma 4.1. Fix l ∈ Nd. Let us define for any K ≥ k, a polynomial function

fK(x) =
K∑
k=k

akPk(x), x ∈ R.
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By Fatou’s lemma, Lemma 4.3, and inequality (4.5), it follows that

E
[∣∣f(Yi)− fK(Yi)

∣∣p] ≤ ∞∑
k1,...,kp=K+1

|ak1 · · · akp ||G(k1, . . . , kp)|

≤
( ∞∑
k=K+1

(p− 1)k/2
√
k!|ak|

)p
−−−−→
K→∞

0

for any i ∈ Nd. Thus, if ε > 0, then there exists K(l) ∈ N such that∣∣∣∣∣E
[(
〈l〉−1/2

∑
1≤i≤l

f(Yi)

)p]
−E

[(
〈l〉−1/2

∑
1≤i≤l

fK(l)(Yi)

)p]∣∣∣∣∣ ≤ ε, (4.6)

by Minkowski’s inequality and the fact that Xn
Lp(Ω)−−−−→ X implies E[Xp

n]→ E[Xp] when

p ∈ {2, 3, . . .}. Lemma 4.3 yields now the expansion

E

[(
〈l〉−1/2

∑
1≤i≤l

fK(l)(Yi)

)p]

= 〈l〉−p/2
∑

1≤i(j)≤l
j∈{1,...,p}

K(l)∑
k1,...,kp=k

ak1 · · · akp
∑

G∈G(k1,...,kp)

∏
e∈EG

E
[
Yi(λ1(e))Yi(λ2(e))

]

=

K(l)∑
k1,...,kp=k

ak1 · · · akp
∑

G∈G(k1,··· ,kp)

IG(l),

where

IG(l) := 〈l〉−p/2
∑

1≤i(j)≤l
j∈{1,...,p}

∏
e∈EG

ρ
(
i(λ1(e)) − i(λ2(e))

)
, G ∈ G(k1, . . . , kp). (4.7)

By Lemma 4.8, below, and inequality (4.5), we obtain the bound∣∣∣∣∣
K(l)∑

k1,...,kp=k

ak1 · · · akp
∑

G∈G(k1,··· ,kp)

IG(l)

∣∣∣∣∣
≤

(
K(l)∑
k=k

(p− 1)k/2
√
k!|ak|

)p(
2d
∑
|i|<l

|ρ(i)|k
)p/2

≤
(

2dC ′′′′(f, p)2
∑
|i|<l

|ρ(i)|k
)p/2

.

In view of (4.6),∣∣∣∣∣E
[(
〈l〉−1/2

∑
1≤i≤l

f(Yi)

)p]∣∣∣∣∣ ≤
(

2dC ′′′′(f, p)2
∑
|i|<l

|ρ(i)|k
)p/2

+ ε,

and letting ε→ 0 concludes the proof.
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The key ingredient in the proof of Lemma 4.1 was the following uniform bound

for the absolute value of the quantity IG(l). We will derive this bound adapting the

asymptotic analysis of the moments of a non-linear functional of a Gaussian random

field, carried out in [7, pp. 435–436].

Lemma 4.8. For any k1, . . . , kp ≥ k, G ∈ G(k1, . . . , kp), and l ∈ Nd,

|IG(l)| ≤
(

2d
∑
|i|<l

|ρ(i)|k
)p/2

,

where IG(l) is defined by (4.7).

Proof. As pointed out by Breuer and Major [7, p. 435], the quantity IG(l) is invariant

under permutation of the levels of the diagram G. More precisely, if σ is a permutation

of the set {1, . . . , p}, then we define a new diagram G̃ ∈ G(kσ(1), . . . , kσ(p)) such that(
(j, k), (j′, k′)

)
∈ EG̃ if and only if

(
(σ−1(j), k), (σ−1(j′), k′)

)
∈ EG. For such a diagram

G̃ it holds that IG(l) = IG̃(l). Relying on this invariance property we assume, without

loss of generality, that

k1 ≤ k2 ≤ · · · ≤ kp−1 ≤ kp. (4.9)

Let us introduce the notation kG(j) := |{e ∈ EG : λ1(e) = j}| ∈ {0, 1, . . . , kj} for

any j ∈ {1, . . . , p}. Since λ1(e) < λ2(e) for any e ∈ EG, we have

|IG(l)| ≤ 〈l〉−p/2
∑

1≤i(κ)≤l
κ∈{1,...,p}

p∏
j=1

∏
e∈EG
λ1(e)=j

∣∣ρ(i(j) − i(λ2(e))
)∣∣

= 〈l〉−p/2
∑

1≤i(κ)≤l
κ∈{2,...,p}

p∏
j=2

∏
e∈EG
λ1(e)=j

∣∣ρ(i(j) − i(λ2(e))
)∣∣ ∑

1≤i(1)≤l

∏
e∈EG
λ1(e)=1

∣∣ρ(i(1) − i(λ2(e))
)∣∣.

(4.10)

Using Young’s inequality (see [7, p. 435]) and the trivial estimate

sup
1≤i≤l

∑
1≤i(1)≤l

∣∣ρ(i(1) − i
)∣∣q ≤∑

|i|<l

|ρ(i)|q, q ≥ 0,

one can show that

sup
1≤i(κ)≤l
κ∈{2,...,p}

∑
1≤i(1)≤l

∏
e∈EG
λ1(e)=1

∣∣ρ(i(1) − i(λ2(e))
)∣∣ ≤∑

|i|<l

|ρ(i)|kG(1).

Applying this procedure, mutatis mutandis, to (4.10) repeatedly we arrive at

|IG(l)| ≤ 〈l〉−p/2
p∏
j=1

∑
|i|<l

|ρ(i)|kG(j). (4.11)
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By Hölder’s inequality, we have for any j ∈ {1, . . . , p},

∑
|i|<l

|ρ(i)|kG(j) ≤ 〈2l〉1−kG(j)/kj

(∑
|i|<l

|ρ(i)|kj
)kG(j)/kj

≤ 〈2l〉1−kG(j)/kj

(∑
|j|<l

|ρ(i)|k
)kG(j)/kj

,

where we use the proviso kj ≥ k to deduce the second inequality. Returning to (4.11),

we have thus established that

|IG(l)| ≤
(
2d
)p/2〈2l〉p/2−∑p

j=1 kG(j)/kj

(∑
|i|<l

|ρ(i)|k
)∑p

j=1 kG(j)/kj

. (4.12)

Breuer and Major [7, p. 436] have shown that whenever (4.9) holds, we have

p∑
j=1

kG(j)

kj
− p

2
≥ 0 (4.13)

(see also Remark 4.15, below). By (4.13), we may use the rough estimate
∑
|i|<l |ρ(i)|k ≤

〈2l〉 to deduce that(∑
|i|<l

|ρ(i)|k
)∑p

j=1 kG(j)/kj

=

(∑
|i|<l

|ρ(i)|k
)∑p

j=1 kG(j)/kj−p/2(∑
|i|<l

|ρ(i)|k
)p/2

≤ 〈2l〉
∑p
j=1 kG(j)/kj−p/2

(∑
|i|<l

|ρ(i)|k
)p/2

.

(4.14)

The assertion follows now by applying (4.14) to (4.12).

Remark 4.15. Strictly speaking, the inequality (4.13) is shown in [7] as a part of a more

extensive argument that uses the assumption that the diagram G is not regular (see [7,

p. 432] for the definition of regularity). However, the assumption of non-regularity of G

is completely immaterial concerning the validity of (4.13) and, in fact, not used in the

proof in [7, p. 436].

4.2 Tightness

Furnished with the moment bound of Lemma 4.1, we prove the following lemma that

enables us to complete the proofs of Theorems 2.11 and 2.18.

Lemma 4.16 (Tightness). Suppose that H ∈ (0, 1)d and that Assumption 2.9 holds.

Then, the family
{
U

(n)
f : n ∈ N

}
is tight in D([0, 1]d).
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Proof. The assertion follows from Theorem 3 of [6], provided that

sup
n∈Nd

sup
s, t∈[0,1]d

s<t

E
[
U

(n)
f ([s, t))4

]
〈t− s〉2

<∞. (4.17)

But since for any n ∈ N, the realization of U
(n)
f is constant on any set of the form[

i− 1

m(n)
,

i

m(n)

)
, 1 ≤ i ≤ m(n),

it suffices to show (see [6, p. 1665]) that

sup
n∈N

sup
s, t∈En
s<t

E
[
U

(n)
f ([s, t))4

]
〈t− s〉2

<∞, (4.18)

where En := {i/m(n) : 0 ≤ i ≤ m(n)}, instead of (4.17).

Using Lemmas 3.7 and 4.1, we arrive at

sup
n∈N

sup
s,t∈En
s<t

E
[
U

(n)
f ([s, t))4

]
〈t− s〉2

= sup
n∈N

〈
m(n)

c(n)

〉2

sup
1≤l≤m(n)

E

[(
〈l〉−1/2

∑
1≤i≤l

f
(
X

(n)
i

))4
]

≤ sup
n∈N

(
2dC ′′′′(f, 4)

d∏
ν=1

ψν(n)

)2

,

where

ψν(n) :=



1

mν(n)1−2k(1−Hν)

∑
|j|<mν(n)

|rHν (j)|k ≤ C ′(Hν , k), Hν ∈
(
1− 1

2k , 1
)
,

1

log
(
mν(n)

) ∑
|j|<mν(n)

|rHν (j)|k ≤ C ′(Hν , k), Hν = 1− 1
2k ,∑

|j|<mν(n)

|rHν (j)|k ≤
∑
j∈Z
|rHν (j)|k <∞, Hν ∈

(
0, 1− 1

2k

)
.

(The first two inequalities above follow from the estimate (3.6).) We have, thus, verified

the tightness condition (4.18).

Proof of Theorem 2.11. Recall that, for a family of pairs of random elements, tightness

of marginals implies joint tightness. Thus, it follows from Lemma 4.16 that the family{(
Z, U

(n)
f

)
: n ∈ N

}
is tight in D([0, 1]d)2. The assertion follows then from Proposition

3.15 and Theorem 2 of [6].

Proof of Theorem 2.18. Analogously to the proof of Theorem 2.11, above, we deduce

from Lemma 4.16 that
{(

Λ
1
2
H,f Ẑ, U

(n)
f

)
: n ∈ N

}
is tight in D([0, 1]d)2. Moreover,

Proposition 3.26 implies that

U
(n)
f (t)

P−−−→
n→∞

Λ
1
2
H,f Ẑ(t), t ∈ [0, 1]d,
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which, in turn, implies the corresponding convergence of finite-dimensional laws. Thus,

by Theorem 2 of [6], we have(
Λ

1
2
H,f Ẑ, U

(n)
f

) L−−−→
n→∞

(
Λ

1
2
H,f Ẑ, Λ

1
2
H,f Ẑ

)
in D([0, 1]d)2. (4.19)

Since the limit in (4.19) belongs to C([0, 1]d)2 and since substraction is a continuous op-

eration on C([0, 1]d)2 (with respect to the Skorohod topology), the continuous mapping

theorem implies that

U
(n)
f − Λ

1
2
H,f Ẑ

L−−−→
n→∞

0 in D([0, 1]d). (4.20)

It remains to note that the convergence (4.20) holds also in probability as the limit is

deterministic.

5 Application to power variations

5.1 Convergence of power variations and their fluctuations

As an application of Theorems 2.11 and 2.18, we study the asymptotic behaviour of

signed power variations of the fBs Z. Let p ∈ N be fixed throughout this section. We

consider a family {V (n)
p : n ∈ N} of d-parameter processes, given by

V (n)
p (t) := 〈m(n)pH−1〉

∑
1≤i≤bm(n)tc

Z

([
i− 1

m(n)
,

i

m(n)

))p
, t ∈ [0, 1]d, n ∈ N.

The realizations of V
(n)
p belong to the space D([0, 1]d), as was the case with generalized

variations. To describe the asymptotic behaviour of V
(n)
p , we introduce

vp(t) := γp〈t〉, t ∈ [0, 1]d,

ρp(y) := yp − γp, y ∈ R,

where γp is the p-th moment of the standard Gaussian law, that is,

γp :=

∫
R
ypγ(dy) =


0, p is odd,
p/2∏
j=1

(2j − 1), p is even.

Since the function ρp is a polynomial, it belongs to L2(R, γ) and is a linear combination

of finitely many Hermite polynomials. Moreover, it is easy to check that the Hermite

rank of ρp is given by

k =

{
1, p is odd,

2, p is even.

Thus, the Hermite coefficients of ρp satisfy Assumption 2.9. In what follows, we denote

by ΛH,ρp the constant given by (2.13), substituting f with ρp therein.

As a straightforward application of Theorems 2.11 and 2.18, we obtain a functional

law of large numbers (FLLN) for V
(n)
p as n→∞.
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Proposition 5.1 (FLLN). We have

V (n)
p

P−−−→
n→∞

vp in D([0, 1]d).

Proof. For any t ∈ [0, 1]d and n ∈ N, the following decomposition holds

V (n)
p (t) =

〈c(n)〉
1
2

〈m(n)〉
U

(n)
ρp (t) + vp

(
bm(n)tc
m(n)

)
. (5.2)

Since vp is uniformly continuous and

sup
t∈[0,1]d

∥∥∥∥t− bm(n)tc
m(n)

∥∥∥∥
∞
<

1

m(n)
−−−→
n→∞

0,

it follows that

vp

(
bm(n) · c
m(n)

)
−−−→
n→∞

vp in D([0, 1]d). (5.3)

Note that cν(n)
1
2 /mν(n)→ 0 as n→∞ for any ν ∈ {1, . . . , d}, whence

〈c(n)〉
1
2

〈m(n)〉
U

(n)
ρp

P−−−→
n→∞

0 in D([0, 1]d), (5.4)

by Theorems 2.11 and 2.18 (and the non-randomness of the limit). Since the limits in

(5.3) and (5.4) are continuous and addition is a continuous operation on C([0, 1]d)2 (with

respect to the Skorohod topology), the assertion follows from the continuous mapping

theorem.

Fluctuations of the process V
(n)
p around the FLLN limit vp, as n → ∞, are also of

interest. The decomposition (5.2) suggests a non-trivial limit for the rescaled fluctuation

process
〈m(n)〉
〈c(n)〉

1
2

(
V (n)
p (t)− vp(t)

)
, t ∈ [0, 1]d, (5.5)

In fact, we can write for any t ∈ [0, 1]d and n ∈ N,

〈m(n)〉
〈c(n)〉

1
2

(
V (n)
p (t)− vp(t)

)
= U

(n)
ρp (t)− β(n)

p (t), (5.6)

where

β(n)
p (t) :=

〈m(n)〉
〈c(n)〉

1
2

(
vp(t)− vp

(
bm(n)tc
m(n)

))
≥ 0.

If p is odd, then β
(n)
p = 0 = vp for any n ∈ N. Recalling that k = 1, Theorems 2.11

and 2.18 imply the following result, which extends Theorem 10 of [23] (see also [8] for

a related result).

Corollary 5.7 (Odd power variations). Suppose that p is odd.
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(1) If H ∈ (0, 1)d \
(

1
2 , 1
)d

, then(
Z,
〈m(n)〉
〈c(n)〉

1
2

V (n)
p

)
L−−−→

n→∞

(
Z,ΛH,ρpZ̃

)
in D([0, 1]d)2,

where Z̃ is the fBs of Theorem 2.11.

(2) If H ∈
(

1
2 , 1
)d

, then

〈m(n)〉
〈c(n)〉

1
2

V (n)
p

P−−−→
n→∞

a1Z in D([0, 1]d),

(cf. Remark 2.20).

Suppose that p is even. In the special case d = 1, it is not difficult to see that

β
(n)
p (t) < c(n)−

1
2 → 0 as n→∞ for any t ∈ [0, 1]. Thus, some of the existing functional

limit theorems for power variations of fBm (e.g., Theorem 3 of [11] with an even power)

can be recovered from Theorems 2.11 and 2.18 due to the decomposition (5.6). However,

when d ≥ 2, the fluctuation process (5.5) may fail to converge in D([0, 1]d). The reason

for this is that, while β
(n)
p vanishes on the lattice En = {i/m(n) : 0 ≤ i ≤ m(n)} for

any n ∈ N, fluctuations of β
(n)
p in the complement of En may be non-negligible or even

explosive when n→∞, as the following example shows.

Example 5.8. Consider the case where d ≥ 2, m(n) := (n, . . . , n) for any n ∈ N, and

H ∈
(
0, 3

4

)d
. Then we have by the mean value theorem,

β(n)
p (t) = nd/2−1

d∑
ν=1

(∏
κ6=ν

ξ(n)
κ (t)

)
{ntν}, t ∈ [0, 1]d, n ∈ N,

where ξ(n)(t) is some convex combination of n−1bntc and t. We will now show that βn
cannot converge to a continuous function in D([0, 1]d) as n → ∞ (similar, but slightly

longer, argument shows that a discontinuous limit in D([0, 1]d) is also impossible).

To this end, suppose that β
(n)
p → β in D([0, 1]d), where β ∈ C([0, 1]d). Then, it

follows that β
(n)
p → β uniformly. By the continuity of β, there exists an open set

E ⊂
[

2
3 , 1
]d

such that

sup
s,t∈E

|β(s)− β(t)| ≤ 1

2d
. (5.9)

Note that there exists n0 ∈ N such that E ∩ En 6= ∅ for any n ≥ n0. Moreover, we can

find n1 ≥ n0 such that

inf
t∈E

∏
κ6=ν

ξ(n)
κ (t) ≥ 1

2d−1
for any n ≥ n1.

Thus, we find that for any n ≥ n1,

sup
t∈E

β(n)
p (t) ≥ nd/2−1

2d−1
, (5.10)
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while

inf
t∈E

β(n)
p (t) = 0. (5.11)

But when β
(n)
p → β uniformly, the estimate (5.9) is not compatible with (5.10) and

(5.11), which is a contradiction. (This also shows that β
(n)
p cannot converge to β along

a subsequence.)

Remark 5.12. Since β
(n)
p (t) = 0 if t ∈ En, for any n ∈ N, choosing the sequence(

m(n)
)
n∈N so that E1 ⊂ E2 ⊂ · · · (for example, set m(n) :=

(
1

2n , . . . ,
1

2n

)
for any

n ∈ N), one can ensure that the fluctuation process (5.5) convergences pointwise on a

dense subset of [0, 1]d to a limit given by Theorem 2.11 or 2.18.

5.2 Multilinear interpolations

We have seen above that the rescaled fluctuations (5.5) of the power variations V
(n)
p ,

n ∈ N, around their LLN limit vp do not necessarily satisfy a functional limit theorem in

D([0, 1]d) when d ≥ 2 and p is even. Note that it is implicit in the definition of V
(n)
p that

the corresponding partial sums are interpolated in a piecewise constant manner. Such an

interpolation can have very poor precision in higher dimensions. In fact, interpolating

V
(n)
p using a more appropriate, multilinear method enables functional convergence in

the general case.

Definition 5.13. For any n ∈ N, we define a (piecewise) multilinear interpolation

operator Ln : R[0,1]d → C([0, 1]d) acting on a function g : [0, 1]d → R, sampled on the

lattice En, by

(Lng)(t) :=
∑

i∈{0,1}d
g

(
bm(n)tc+ i

m(n)

)
α

(n)
i (t), t ∈ [0, 1]d, (5.14)

where the weights

α
(n)
i (t) := 〈{m(n)t}i(1− {m(n)t})1−i〉, i ∈ {0, 1}d,

belong to [0, 1] and satisfy ∑
i∈{0,1}d

α
(n)
i (t) = 1. (5.15)

Remark 5.16. (1) In the cases d = 1 and d = 2, the definition (5.14) reduces to the

well-known (piecewise) linear and bilinear interpolation formulae, respectively.

(2) The definition (5.14) involves slight abuse of notation. Namely,

bm(n)tc+ i

m(n)
/∈ [0, 1]d (5.17)

when tν = 1 and iν = 1 for some ν ∈ {1, . . . , d}. But then α
(n)
i (t) = 0, whence

(5.17) is of no concern.
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The fluctuation process, analogous to (5.5), obtained by substituting the power

variation V
(n)
p with its multilinear interpolation Ṽ

(n)
p := LnV

(n)
p satisfies the following

functional limit theorem. In particular, it applies with any d ∈ N and p ∈ N.

Theorem 5.18 (Interpolated power variations). (1) If H ∈ (0, 1)d \
(

3
4 , 1
)d

, then(
Z,
〈m(n)〉
〈c(n)〉1/2

(
Ṽ (n)
p − vp

)) L−−−→
n→∞

(
Z,ΛH,ρpZ̃

)
in C([0, 1]d)2,

where Z̃ is the fBs of Theorem 2.11.

(2) If H ∈
(

3
4 , 1
)d

, then

〈m(n)〉
〈c(n)〉1/2

(
Ṽ (n)
p − vp

) P−−−→
n→∞

ΛH,ρpẐ in C([0, 1]d),

where Ẑ is the Hermite sheet of Theorem 2.18.

The proof of Theorem 5.18 is based on the following two simple lemmas concerning

the multilinear interpolation operators. First, we show that the function vp is a fixed

point of the operator Ln for any n ∈ N.

Lemma 5.19 (Fixed point). We have Lnvp = vp for any n ∈ N.

Proof. Let t ∈ [0, 1]d and n ∈ N. By rearranging, we obtain that

(Lnvp)(t) =
∑

i∈{0,1}d
γp

〈
bm(n)tc+ i

m(n)
{m(n)t}i(1− {m(n)t})1−i

〉

= γp

d∏
ν=1

∑
j∈{0,1}

bmν(n)tνc+ j

mν(n)
{mν(n)tν}j(1− {mν(n)tν})1−j .

It remains to observe that for any ν ∈ {1, . . . , d},∑
j∈{0,1}

bmν(n)tνc+ j

mν(n)
{mν(n)tν}j(1− {mν(n)tν})1−j =

bmν(n)tνc+ {mν(n)tν}
mν(n)

= tν ,

and the assertion follows.

Second, we show that convergence in probability in the space D([0, 1]d) can be

converted to convergence in probability in C([0, 1]d) via interpolations.

Lemma 5.20 (Convergence and interpolation). Let X1, X2, . . . be random elements in

D([0, 1]d) and X a random element in C([0, 1]d), all defined on a common probability

space. If Xn
P−→ X in D([0, 1]d) as n→∞, then

LnXn
P−−−→

n→∞
X in C([0, 1]d).
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Proof. By (5.15), we can write for any t ∈ [0, 1]d and n ∈ N,

(LnXn)(t)−X(t) =
∑

i∈{0,1}d

(
Xn

(
bm(n)tc+ i

m(n)

)
−X

(
bm(n)tc+ i

m(n)

))
α

(n)
i (t)

+
∑

i∈{0,1}d

(
X

(
bm(n)tc+ i

m(n)

)
−X(t)

)
α

(n)
i (t).

Thus, invoking (5.15) again, we obtain the bound

sup
t∈[0,1]d

|(LnXn)(t)−X(t)| ≤ sup
t∈[0,1]d

|Xn(t)−X(t)|+ wX
(
m(n)−1

)
,

where

wX(u) := sup
{
|X(s)−X(t)| : s, t ∈ [0, 1]d, ‖s− t‖∞ ≤ u

}
, u > 0,

is the modulus of continuity of X, which satisfies limu→0wX(u) = 0 a.s. since the realiza-

tions of X are uniformly continuous. Thus, limn→∞wX
(
m(n)−1

)
= 0 a.s. Finally, since

convergence to a continuous function in D([0, 1]d) is equivalent to uniform convergence,

it follows that supt∈[0,1]d |Xn(t)−X(t)| P→ 0 as n→∞.

Proof of Theorem 5.18. We have for any n ∈ N, by Lemma 5.19 and the linearity of the

operator Ln,

〈m(n)〉
〈c(n)〉1/2

(
Ṽ (n)
p − vp

)
= Ln

(
〈m(n)〉
〈c(n)〉1/2

(
V (n)
p − vp

))
= LnU

(n)
ρp + Lnβ

(n)
p .

Note that the function

t 7→ vp

(
bm(n)tc
m(n)

)
coincides with vp on En. Since Lng depends on the function g only through the values

of g on En, we find that

Lnvp = Lnvp

(
bm(n)·c
m(n)

)
,

whence

Lnβ
(n)
p =

〈m(n)〉
〈c(n)〉1/2

(
Lnvp − Lnvp

(
bm(n)·c
m(n)

))
= 0.

The assertion in the case (2) follows now from Theorem 2.18 and Lemma 5.20. In

the case (1) one can apply Theorem 2.11, Lemma 5.20, and Skorohod’s representation

theorem [14, Theorem 4.30].
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A Extension to Gaussian moving averages

We outline briefly, how Theorem 2.11 can be extended beyond the fBs setting. Namely,

with minimal changes to the proof, we can also derive a central limit theorem for

generalized variations of a multi-parameter Gaussian moving average process

Ž(t) :=

∫
Ǧ(d)(t− u)W(du), t ∈ Rd,

as long as the kernel Ǧ(d) has the product form

Ǧ(d)(u) :=
d∏

ν=1

Ǧ(1)
ν (uν), u ∈ Rd,

where for any ν ∈ {1, . . . , d} we assume that Ǧ
(1)
ν (s) = sHν−

1
2Aν(s), s ∈ R, for some

Hν ∈
(
0, 1 − 1

2k

)
and function Aν : R → R+ that is slowly varying at 0 and vanishing

on R \ R+, such that Ǧ
(1)
ν satisfies conditions (A1) and (A2) in [10, pp. 2555–2556].

Let us consider the normalized increments

Ž
(n)
i :=

∥∥∥∥Ǧ(d)

([
0,

1

m(n)

)
− ·
)∥∥∥∥−1

L2(Rd)

Ž

([
i− 1

m(n)
,

i

m(n)

))
, 1 ≤ i ≤ m(n), n ∈ N.

(A.1)

Modifying the proof of Lemma 3.7 and following [10, p. 2557] one can show that the

correlation structure of the increments (A.1) converges to the correlation structure of

the corresponding increments of the fBs, that is,

lim
n→∞

E
[
Ž

(n)

i(1)Ž
(n)

i(2)

]
=

d∏
ν=1

rHν
(
i(1)
ν − i(2)

ν

)
, i(1), i(2) ∈ Zd. (A.2)

Moreover, adapting the proof of Lemma 1 in [4] one can construct a function ρ : Zd →
R+ such that

∑
i∈Zd ρ(i)k <∞ and that for any i(1), i(2) ∈ Zd,∣∣E[Ž(n)

i(1)Ž
(n)

i(2)

]∣∣ ≤ ρ(i(1) − i(2)
)
. (A.3)

Using (A.2), (A.3), and the Lebesgue’s dominated convergence theorem, it is possible

to modify the proof of Theorem 2.11 to establish that the processes Ž and

1

〈m(n)〉
1
2

∑
1≤i≤bm(n)tc

f
(
Ž

(n)
i

)
, t ∈ [0, 1]d,

where f is as in Theorem 2.11 with Hermite rank k, converge as n → ∞ in law to(
Ž,Λ

1
2
H,f Z̃

)
in the space D([0, 1]d)2, where Z̃ is the fBs, or in this case a standard

Brownian sheet, of Theorem 2.11.
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Stat. 46(1), 45–58.

[22] D. Nualart (2006): The Malliavin calculus and related topics, 2nd ed. Springer,

Berlin.

[23] D. Nualart and S. Ortiz-Latorre (2008): Central limit theorems for multiple

stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118(4), 614–

628.

[24] D. Nualart and G. Peccati (2005): Central limit theorems for sequences of multiple

stochastic integrals. Ann. Probab. 33(1), 177–193.

[25] M. S. Pakkanen (2014): Limit theorems for power variations of ambit fields driven

by white noise. Stochastic Process. Appl. 124(5), 1942–1973.

[26] G. Peccati and C. A. Tudor (2005): Gaussian limits for vector-valued multiple
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