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Abstract

I consider multivariate (vector) time series models in which the error covariance

matrix may be time-varying. I derive a test of constancy of the error covariance

matrix against the alternative that the covariance matrix changes over time. I

design a new family of Lagrange-multiplier tests against the alternative hypothesis

that the innovations are time-varying according to several parametric specifications.

I investigate the size and power properties of these tests and find that the test

with smooth transition specification has satisfactory size properties. The tests are

informative and may suggest to consider multivariate volatility modelling.
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1 Introduction

1 Introduction

In univariate time series analysis, testing the adequacy of the estimated model has long

been standard practice, see Box and Jenkins (1970). In vector models, most of the tests

available in the literature, for checking the specification, have been designed to test the

conditional mean. However, the error covariance matrix can also be nonconstant over

time, even when the conditional mean is correctly specified, see Lütkepohl (2004) for a

detailed discussion. Tests exist for testing the constancy of the error variance in univariate

models, whereas less has been done in multivariate models.

The most recent work for testing the constancy of the error covariance matrix can be

found in Eklund and Teräsvirta (2007). They derived a family of test statistics against

various types of misspecification making the use of the constant conditional correla-

tion (CCC) framework of Bollerslev (1990). Typically, the tests derived from specific

parametric models may have the highest power against the assumed alternative, and

hence, offer guidance to the model builders. It is, however, desirable to have more tests

based on different assumptions about alternatives. The purpose of this paper is to de-

velop a new multivariate heteroskedasticity test as an alternative to the one proposed in

Eklund and Teräsvirta (2007).

The basic idea is to derive tests for the null hypothesis of constant covariance against

parsimoniously parameterised alternatives, such that the tests would still be powerful

against many kinds of departure from parameter constancy. The constancy tests in this

paper are of the Lagrange-multiplier type. Under the null hypothesis the covariance

matrix is constant over time, whereas under the alternative, the evolution of the covariance

matrix through time is fully specified.

The constancy tests in this work are based on the spectral decomposition of the error

covariance matrix. I develop several tests which allow for various possible specifications

under the spectral decomposition assumption. This considerably reduces the dimension of

the null hypothesis compared to the case where all the elements in the half-vectorization

of the covariance matrix can vary freely under the alternative hypothesis.

The constancy tests can be extremely useful, for instance, in the structural vector

models where the constant conditional correlation (CCC) assumption of Bollerslev (1990)

is not plausible, or the multivariate volatility models where the matrix exponential as-

sumption of Kawakatsu (2006) has been made. They are informative in the sense that

they suggest specifications for modelling the multivariate time-varying covariance matrix,

especially when some test results are significant while the others are not.

Nonlinearity and misspecification tests in multivariate models, such as the ones de-

veloped against the smooth transition alternative in Teräsvirta and Yang (2014a), may

suffer from the possible heteroskedasticity, because the time-varying covariance results in
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2 The model

a strong size-distortion. A solution to that problem is to apply the wild bootstrap version

of these tests, see the applications in Teräsvirta and Yang (2014b). However, the boot-

strap can be time-consuming especially in nonlinear models. Thus, it is essential to have

a joint test against heteroskedasticity for multivariate models before using the bootstrap.

Following Eklund and Teräsvirta (2007), three types of alternatives to constancy are

considered. The first one may be viewed as a multivariate generalization of the het-

eroskedasticity test of White (1980), and the second one generalizes the test against

autoregressive conditional heteroskedasticity of Engle (1982). The third variant of the

test generalizes the univariate constant variance test of Medeiros and Veiga (2003), in

which it is assumed that under the alternative hypothesis the variance changes smoothly

over time.

In addition to the spectral decomposition assumption, I assume that the time-varying

eigenvalues in the covariance matrix are functions of linear combinations of possible exoge-

nous variables. The simulation-based experiments show that the test based on the smooth

transition specification has satisfactory size among the others. All tests have good power

properties even in high-dimensional vector models when the alternative hypothesis is true.

The plan of the paper is as follows. The statistical model is introduced in Section 2.

The Lagrange-multiplier type test statistic is derived in Section 3. In Section 4, I discuss

different kinds of specification. The finite sample properties of the tests are investigated

in Section 5. Section 6 concludes.

2 The model

Consider the following multivariate (vector) model:

yt = f (xt) + ut, (2.1)

where yt = (y1t, ..., ypt)
′ is a p×1 vector of observable variables, ut are serially uncorrelated

errors with mean zero and time-varying covariance matrix Σt, f is a vector of functions,

and xt is a vector of variables which may contain lags of the dependent variable yt, the

intercept, deterministic dummy variables and exogenous variables. The model (2.1) may

be nonlinear.

The covariance Σt is a symmetric positive definite matrix, conditional on all the in-

formation available at time t. I make the following assumption:

Assumption 2.1. (Spectral decomposition) The time-varying conditional covariance ma-

trix Σt can be decomposed as follows:

Σt = PΛtP
′, (2.2)
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2 The model

where the time-invariant matrix P satisfies PP ′ = Ip, Ip being an identity matrix, and

Λt = diag(λ1t, ..., λpt) whose elements are all positive.

Assumption 2.1 implies that the conditional error covariance matrix is time-varying in

the way that the eigenvectors remain constant while the corresponding eigenvalues can

vary over time.

For better understanding of this assumption, consider the random variable η ∼
N(0, Ip) in R

p, where the covariance Ip is an identity matrix. Any vector Gaussian

distribution N(0,Σ), where Σ has a spectral decomposition Σ = PΛP ′, can be repre-

sented through left-multiplying η by PΛ1/2, where P is a rotation matrix in R
p and Λ

is a scaling matrix. Note that the ordering of the column vectors in P is not unique,

but each element in the diagonal of Λ corresponds to a certain column vector in P . As-

sumption 2.1 implies that, for a certain ordering of the column vectors in P , the rotation

matrix P is constant over time, whereas the scaling matrix Λ can be time-varying.

Assumption 2.1 is a sufficient condition for the matrix exponential modelling of the

multivariate volatilities, see for example the matrix exponential GARCHmodel in Kawakatsu

(2006). The matrix exponential transformation making the eigenvalues to be exponential

functions has the advantage that it ensures positive definiteness of the covariance ma-

trix. It is not only useful for the multivariate GARCH models, but allows for many other

possible forms as well.

Assumption 2.1 is also a sufficient condition for the existence of a matrix (several

ordered linear combinations) such that left-multiplying both sides of (2.1) by this matrix

(the ordered linear combinations) removes the contemporaneous correlation. Thus, the as-

sumption is applicable in the structural vector models, which identify the shocks and allow

for heteroskedasticity. See, for example, Lanne and Lütkepohl (2008) and Lanne et al.

(2009). In this case, the vector of eigenvalues is simply the vector of variances of the

structural model with identifed shocks, and hence may be heteroskedastic. Compared to

Assumption 2.1, although the CCC assumption implies a constant correlation structure,

the correlation between errors cannot be removed if the variances are time-varying.

Note that Assumption 2.1 is different from the constant conditional correlation (CCC)

decomposition in Bollerslev (1990). Under the CCC assumption, the contemporaneous

correlation structure of the errors is assumed time-invariant, while under Assumption 2.1,

both the correlations and the variances of the error vector are time-varying.

Under Assumption 2.1, the log-likelihood function for observation t = 1, ..., T based
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3 LM test statistic

on vector Gaussian distributed errors is:

logLt = c− 1

2
log |Σt| −

1

2
u′

tΣ
−1

t ut

= c− 1

2
log |Λt| −

1

2
w′

tΛ
−1

t wt

= c− 1

2

p
∑

i=1

(

log λit + w2

itλ
−1

it

)

, (2.3)

where wt = P ′ut = (w1t, ..., wpt)
′ contains the errors after a certain rotation P . When

the error vector is not Gaussian, (2.3) is the quasi Gaussian log-likelihood function for

observation t. Let ϕi be the vector of parameters in λit for i = 1, ..., p, and define ϕ =

(ϕ′

1
, ...,ϕ′

p)
′. Let φ be the vector of the parameters in the conditional mean. Consequently,

θ = (ϕ′,φ′)′ is the vector of all parameters except the ones in P . Under Assumption 2.1,

the matrix P does not contribute to maximizing the log-likelihood function, but serves

to identify Λt in Σt = PΛtP
′. Therefore θ excludes P .

Based on Assumption 2.1, I make the following assumption:

Assumption 2.2. The time-varying components are functions of xt, λit = hi(xt), i =

1, ..., p, where hi(xt) is a positive function. The function hi(xt) is at least second-order

differentiable almost everywhere. Furthermore, the argument xt = ϕ′

izit, where ϕi is a

vector of parameters and zit is a vector of predetermined variables with respect to the

information available at time t.

Assuming hi to be at least second-order differentiable ensures the existence of the corre-

sponding information matrix. Assumption 2.2 allows for a wide variety of error covariance

structures. The exponential function hi(xt) = exp(xt) is one possibility, which ensures the

function is strictly positive-valued. Although the functional form of hi is quite flexible,

it does not play a role in deriving the test statistic. In the following, h′

i is the first-order

and h′′

i the second-order derivative of the the function hi with respect to xt. It can be see

later in the following sections, the elements of zit are determined by the specification of

heteroskedasticity.

3 LM test statistic

Our focus is on testing the constancy of the whole covariance matrix when the alternative

is characterized by Assumptions 2.1 and 2.2. The null hypothesis to be tested is thus:

H0 : λit = λi, i = 1, ..., p. (3.1)

or, put differently,

H0 : ϕ = (ϕi0, 0, ..., 0)
′, (3.2)
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3 LM test statistic

where ϕi0 is the coefficient of the intercept zi0 = 1. That is, the vector ϕ has only one

non-zero element under the null hypothesis.

The tests to be considered here are Lagrange-multiplier tests. This family of tests

has the advantage that there is no need to estimate the model under the alternative

hypothesis. Consequently, I only have to estimate the model under the null hypothesis

(3.1). The log-likelihood function for observation t appears in (2.3). I define the average

score vector and the average information matrix of the quasi log-likelihood function as

follows:

s(θ) = T−1

T
∑

t=1

∂ logLt

∂θ
(3.3)

I(θ) = −T−1

T
∑

t=1

E

[

∂2 logLt

∂θ∂θ′

]

, (3.4)

where logLt has been defined in (2.3). Let θ̃, φ̃, ϕ̃ and ϕ̃i, i = 1, ..., p, be the estimates

of the parameters under the null hypothesis. Thus, I have the average score vector s(θ̃)

and the average information matrix I(θ̃) evaluated under the null hypothesis. The LM

test statistic takes the form

LM = T s(θ̃)′I−1(θ̃)s(θ̃) (3.5)

and is asymptotically χ2 distributed, with the the degrees of freedom equal to the number

of restrictions, when the null hypothesis is valid.

The information matrix I(θ̃) evaluated under the null hypothesis is a block diagonal

matrix. Thus, I define the corresponding blocks of the average score vector and of the

average information matrix of the quasi log-likelihood function as follows:

sϕ(θ) = T−1

T
∑

t=1

∂ logLt

∂ϕ
(3.6)

Iϕ(θ) = −T−1

T
∑

t=1

E

[

∂2 logLt

∂ϕ∂ϕ′

]

. (3.7)

Under Assumption 2.2, the Lagrange-multiplier test (3.5) can be equivalently applied as

follows:

LM = T sϕ(θ̃)
′I−1

ϕ (θ̃)sϕ(θ̃), (3.8)

see Godfrey (1978), Breusch and Pagan (1978) and Breusch and Pagan (1980) for details.

I have the following theorem:

Theorem 3.1. Under Assumption 2.1 and 2.2, the corresponding blocks of the average

score vector and of the average information matrix of the quasi Gaussian log-likelihood
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based in (2.3) are

sϕ(θ̃) = (2T )−1

T
∑

t=1

[

ζ̃1g̃1tz̃
′

1t, ... , ζ̃pg̃ptz̃
′

pt

]

′

(3.9)

Iϕ,i(θ̃) = (2T )−1

T
∑

t=1

ζ̃2i E [z̃itz̃
′

it] , (3.10)

where ζ̃i = h̃′

iλ̃
−1

i , g̃it = w̃2

it/λ̃i − 1, h′

i is the scalar first-order derivative of the positive

function hi, and they are evaluated under the null hypothesis of constancy. The LM test

statistic (3.5) has the following form:

LM =
1

2

p
∑

i=1





(

T
∑

t=1

g̃itz̃
′

it

)(

T
∑

t=1

z̃itz̃
′

it

)−1( T
∑

t=1

g̃itz̃it

)



 . (3.11)

Under regularity conditions, the LM statistic in (3.11) is asymptotically χ2 distributed

with degrees of freedom equal to the number of restrictions.

Proof. See Appendix A.

z̃it = zit only if zit is observable, or z̃it is the ML estimate of zit under the null hypothesis.

In the following section, it is shown that z̃it may contain the transformed error term w̃t

estimated from the restricted model. The number of restrictions is the number of zeros

in (3.2). Moreover, it is seen from (3.11) that the general positive function hi and its

derivative have been cancelled out as the argument of hi is a constant under H0. There

is thus no need to uniquely define the functional form of hi when setting up the test.

Consider the fact that T−1
∑T

t=1
g̃2it converges to 2 in probability under the null hy-

pothesis and that the errors are Gaussian. Denote

R2

i =

(

T
∑

t=1

g̃2it

)−1( T
∑

t=1

g̃itz̃
′

it

)(

T
∑

t=1

z̃itz̃
′

it

)−1( T
∑

t=1

g̃itz̃it

)

, (3.12)

for i = 1, ..., p. Computing R2

i is quite easy. After obtaining the sequence {g̃it}Tt=1
for

i = 1, ..., p, run a simple auxiliary regression of g̃it on z̃it and collect the residuals. Denote

the SSGi the sum of squared g̃it, and the RSSi the corresponding residual sum of squares

in the auxiliary regression. It follows that

R2

i =
SSGi −RSSi

SSGi

. (3.13)

Thus,
p
∑

i=1

T
SSGi − RSSi

SSGi
=

p
∑

i=1

TR2

i (3.14)

is asymptotically equivalent to the LM statistic (3.5). The test can be carried out as

follows:
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4 Specifications for heteroskedastic residuals

• Estimate the vector model (2.1) under the null hypothesis of constant covariances.

Collect the residuals ũt, t = 1, ..., T . Compute the empirical covariance matrix Σ̃,

and the eigenvalue decomposition Σ̃ = P̃ Λ̃P̃
′

, where Λ̃ = diag(λ̃1, ..., λ̃p).

• Compute the transformed residuals w̃t = P̃
′

ũt, and g̃it = w̃2

it/λ̃i−1, for t = 1, ..., T ,

i = 1, ..., p.

• For each equation, regress g̃it on z̃it and compute the corresponding TR2

i . Compute

the LM test
∑p

i=1
TR2

i .

In the next section, I will discuss different specifications of z̃it.

4 Specifications for heteroskedastic residuals

There are a number of possible specifications for heteroskedasticity in the errors. I will

consider three useful covariance specifications against the homoskedasticity in the follow-

ing. They have already been considered in Eklund and Teräsvirta (2007), but as already

mentioned, the decomposition of Σt is different from theirs.

The first time-varying variance specification (White specification), proposed in a single-

equation case by White (1980) as an alternative to homoskedasticity, is obtained by defin-

ing:

λit = hi(σ
2

i + δ′

ivech(xtx
′

t)) (4.1)

where vech() represents the half-vectorization which collects the lower triangular elements

of a symmetric matrix; δi, i = 1, ..., p, are q(q+1)/2-dimension column vectors of param-

eters; and the column vector xt defined in (2.1), has dimension q. The null hypothesis of

a constant covariance matrix in (3.1) is

H0 : δi = 0, i = 1, ..., p. (4.2)

The corresponding number of degrees of freedom of the LM test is q2(q + 1)/2.

The second variance specification (ARCH specification) is obtained by defining

λit = hi(σ
2

i +

q
∑

j=1

αijw
2

i,t−j) (4.3)

Note that we use the transformed error wi,t−j instead of ui,t−j, because Λt is the covariance

matrix of wt. The null hypothesis corresponding to (3.1) is

H0 : αij = 0, i = 1, ..., p, j = 1, ..., q. (4.4)

The corresponding number of degrees of freedom of the LM test is pq.
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4 Specifications for heteroskedastic residuals

The third (smooth transition) specification is obtained by assuming ut to be a het-

eroskedastic error term with a smoothly changing covariance matrix, that is,

Σt = Et(utu
′

t) = Σ1 +G(st)Σ2 (4.5)

where Σ1 and Σ2 are symmetric matrices, and G(st) is called a transition function whose

value is controlled by an observable transition variable st. We assume that the transition

variable st is a weakly stationary random variable, but it can also be a time trend.

Assume that the transition function is a real-valued, bounded, monotonically increas-

ing and at least second-order differentiable function, e.g. a logistic function:

G(st) = G(st; γ, c) = (1 + exp(−γ(st − c)))−1 (4.6)

where the parameter γ > 0 determines the smoothness of the transition, and c is the

location parameter. It is seen from (4.5) and (4.6) that the covariance matrix changes

smoothly from Σ1 to Σ1+Σ2 as a function of st. Both Σ1 and Σ1+Σ2 must be positive

definite matrices.

Following Assumption 2.1 and Equation (4.5), write Σ1 = PΛ1P
′ and Σ2 = PΛ2P

′.

It is obvious that

Σt = P (Λ1 +G(st)Λ2)P
′ = PΛtP

′ (4.7)

where

Λ1 = diag (λ11, ..., λ1p)

Λ2 = diag (λ21, ..., λ2p)

Λt = diag (λ1t, ..., λpt)

λit = λ1i +G(st)λ2i,

s.t. λ1i > 0, λ1i + λ2i > 0, (4.8)

for i = 1, ..., p.

The null hypothesis under the specification (4.6), (4.7) and (4.8) is: H0 : γ = 0. It is

seen that under the null hypothesis G(st) = 1/2 and hence the parameters in Σ2 are not

identified. In order to solve the identification problem, Luukkonen et al. (1988) suggested

to approximate the transition function (4.6) by its first-order Taylor expansion around

γ = 0. This means writing

λit = λ1i + (ast + b+ rt)λ2i ≈ λ∗

0i + λ∗

1ist, (4.9)

where a and b are constants, and rt is the remainder. In this case, the null hypothesis is:

H0 : λ∗

1i = 0, i = 1, ..., p. (4.10)
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5 Finite sample properties of the test

The corresponding number of degrees of freedom of the LM test is p.

The transition function can also be approximated by a higher-order Taylor expansion.

This may often increase the power of the test. For a Taylor expansion of order N > 1,

(4.9) can be extended to:

λit ≈
N
∑

n=0

λ∗

nis
n
t . (4.11)

The null hypothesis is

H0 : λ∗

ni = 0, i = 1, ..., p, n = 1, ..., N. (4.12)

In this case, the number of degrees of freedom of the LM test is pN . However, in the

following the focus will be on the first-order approximation to the logistic function (4.6).

5 Finite sample properties of the test

When investigating the properties of a classical test statistic, two aspects are of prime

importance. First, I have to check whether the empirical size of the test (the probability

of rejecting the null when it is true) is close to the nominal size (used to calculate the

asymptotic critical values) at typical sample sizes. Given that empirical size is a reasonable

approximation to the nominal size, I then have to investigate the empirical power of

the test (the probability of rejecting the null when it is false) for a number of different

alternative hypotheses.

In order to investigate the size and power properties of the test in finite samples, I

conduct a series of Monte Carlo simulations. I consider the bivariate case p = 2, the

trivariate case p = 3 and a high-dimensional case p = 5. The data generating process is

a special case of (2.1):

yi,t = 0.8yi,t−1 + ui,t, i = 1, ..., p, (5.1)

where the error term ui,t is independent and identically distributed. This is a simple

design in the sense that the variables in the VAR model are only linked through the

covariance matrix. The finite sample sizes I investigate in the size experiments are T = 100

and T = 500. The autoregressive model in (5.1) is exactly the same as the one in

Eklund and Teräsvirta (2007), which makes it easy to compare the size properties of the

two tests under the null hypothesis of constant covariance matrix. Thus, I will not repeat

their size experiments here.

I report my results using the size discrepancy and power plots recommended by

Davidson and MacKinnon (1998). The number of replications of the Monte Carlo simu-

lations is N = 10000.
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5 Finite sample properties of the test

For space reasons, only a fraction of the results are shown. The remaining ones are

available at:

http://creates.au.dk/research/research-papers/supplementary-downloads/.

5.1 Size experiments

In investigating the finite sample size behaviour of the test statistics, I assume ui,t to be

either i.i.d. Gaussian or t(5) distribution in the basic data generating process (5.1). The

LM type tests are derived assuming that the errors are Gaussian. The t(5)-distribution

contradicts this assumption, but I consider it to see what kind of an effect a fat-tailed

error distribution may have on the empirical size of the test.

In the bivariate case, the covariance matrix has the structure:

Σ =

(

1 ρ

ρ 1

)

, (5.2)

where ρ = 0.9, 0 and −0.9. Eklund and Teräsvirta (2007) used the same design for the

bivariate case. In the trivariate case, The covariance matrix has the structure:

Σ =









1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1









, (5.3)

where ρ = 0.9 and 0. For the high-dimensional case p = 5, I only report the results from

ρ = 0 for space reasons. It will be seen that for p ≥ 3 the correlation may affect the size

properties. In the following, I conduct the three LM tests by setting

White specification: zit = (1, vech(xtx
′

t)
′)′, where xt = yt−1

;

ARCH(5) specification: z̃it = (1, w̃2

i,t−1
, ..., w̃2

i,t−5
)′, where w̃i,t−q, q = 1, ..., 5 are esti-

mates of the transformed errors under the null hypothesis of constancy;

Smooth transition specification: zit = (1, τ)′, where τ = t/T .

In the smooth transition specification I choose st = τ to be the transition variable. This

is because I just focus on testing whether the covariance matrix changes over time.

I compare the size properties of the three LM tests when ρ = 0. I report the results

from the case p = 5 in Figures 1 to 4. My finding is that the empirical distributions of

all three tests converge towards their limiting distribution when T increases. The test

against the White specification over-rejects in all the cases, especially when the errors are

t(5), whereas the test against the ARCH(5) specification seems to under-reject. It is seen

from Figures 3 to 4 that when the errors are t(5), the tests against the White specification

11
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5 Finite sample properties of the test

and the ARCH(5) specification have greater size distortion than test against the smooth

transition specification. The latter test performs well in almost all cases.

To see whether the correlation ρ plays a role, I conducted experiments to investigate

the actually sizes of the tests with respect to different sample sizes. The sample sizes I

used for these experiments are T = 25, 50, 100, 250, 500 and 1000, respectively. Not all

the plots are given here in the paper, but the reader can reach them by visiting the link

given above.

The finding is that the correlation hardly affects the size properties in the bivariate

case, but it may do so in trivariate case. The results from the White specification show

slightly different convergence rate of the tests. Figure 5 shows that the test against the

White specification converges towards its limiting distribution a bit faster when there is

no correlation in errors in finite sample case from T = 25 to 50. It is the same for the

case when the errors are t(5), see Figure 6. There is no clear sign that the correlation

affects the size of the test against the ARCH(5) specification. This may be due to the fact

that the ARCH specification (4.3) does not allow for any cross-effects between different

equations. Moreover, the correlation does not affect the size of the test against the smooth

transition specification. It is seen that this test is free from size distortion in almost all

cases considered.

5.2 Power experiments

In power simulations I assume that the data generating process hi(ϕ
′

izit) = ϕ′

izit for

simplicity. I only consider the bivariate case p = 2 and the high-dimensional case p = 5.

The data generating process is still (5.1), but now the covariance matrix will change over

time. The errors are drawn from the conditional vector Gaussian distribution. I will

conduct the following three kinds of power simulations.

5.2.1 Power simulations under Assumption 2.1

In this case, the covariance matrix of the errors will change under Assumption 2.1. That

is,

Σt = PΛtP
′. (5.4)

First, I consider the case that the covariance matrix changes once through time and

the transition is threshold-like. The threshold point is at T/2, that is, c = 0.5. Then I

consider the special case that the covariance matrix changes once through time but the

transition is rather smooth. The smooth function takes the form (4.6) where γ = 12 and

c = 0.5. The transition variable is the normalized time st = t/T . Figures 7 and 8 show the

results from the experiments where p = 5, T = 500. The former one has abrupt change,
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5 Finite sample properties of the test

while the latter one has smooth change. The smooth change implies that Λt is actually

changing everywhere over the time horizon, not only once. It is seen that the test against

the smooth transition specification performs always the best in both the case in which

the transition is abrupt and the case in which the transition is rather smooth. This is

not surprising because the DGP is just the smooth transition specification. Moreover, the

sample size T = 500 is big enough to see that the power of the other tests do not increase

fast, and this implies that the p-values from these tests may suggest the specification of

the covariance change.

Next I investigate the power of the tests when λit in the covariance matrix evolves

through time using the ARCH specification (4.3). More specifically, I assume an ARCH(2)

process for all eigenvalues with parameters σ2

i = 1, αi1 = 0.25 and αi2 = 0.2. Figure 9

shows the results from the typical case p = 5, T = 500. It is not surprising that the test

against the ARCH specification outperforms the others. However, it is seen that the other

tests have just a little power even when the sample size is 500.

Finally, I consider the case when λit in the covariance matrix evolves through time

using the White specification (4.1). The parameters are σ2

i = 1 and δi = (1, ..., 1)′ is a

p(p+ 1)/2× 1 vector. I still report the results from the typical case p = 5, T = 500, see

Figure 10. This time the test against the White specification is the best performer. It is

seen that the other tests have very little power in this case even in large samples.The tests

can be very informative and suggest the specification of the covariance change, especially

when the true DGP follows ARCH or White specifications.

5.2.2 Power simulations when Assumption 2.1 is violated

It is important to investigate the consequences of violating Assumption 2.1. Since As-

sumption 2.1 is very restrictive, one may argue that if the null hypothesis of constant

covariance matrix is rejected, it would be difficult without any further investigation to

distinguish between a rejection due to time-varying Λ, time-varying P or a combination

of the two. Here I investigate the case that

Σt = P tΛP ′

t. (5.5)

The data generating process takes the form (5.1). Λ = diag(0.50, 0.40) for p = 2, and

Λ = diag(0.50, 0.40, 0.30, 0.25, 0.20) for p = 5.

I consider the case that P changes once through time. The transition is threshold-like,

and the threshold point is at T/2. The way to determine the values in the matrices P 1

and P 2 is tricky. Let U i, i = 1, 2, be a p × p matrix whose elements are a sample of

independent draws from a standard Gaussian distribution. Let P i be the eigenvectors of

13



5 Finite sample properties of the test

U iU
′

i. Then, the rotation (orthonormal basis) P i are uniformly distributed over the set

of all rotation matrices (orthonormal bases).

The case that P changes smoothly through time will also be considered. I use the

way mentioned in the previous paragraph to pick P 1 and P 2. However, the conditional

covariance matrix at time t should be computed as follows:

Σt = P 1ΛP ′

1
(1−G(τ ; γ, c)) + P 2ΛP ′

2
G(τ ; γ, c) (5.6)

where G has been defined in (4.6), τ = t/T , γ = 12 and c = 0.5.

Figures 11 to 13 depict the rejection frequencies for several typical cases. I also compare

these tests with the test in Eklund and Teräsvirta (2007), since Assumption 2.1 is violated.

The results in Figure 11 show that in low-dimensional case (p = 2) all the tests from

Assumption 2.1 have little power except the test in Eklund and Teräsvirta (2007). It is

interesting to see that, when the dimension increases, the power of my test against smooth

transition specification approaches that of the test in Eklund and Teräsvirta (2007), see

Figure 12. And Figure 13 gives a ranking of the power performance for p = 5 when the

sample size increases. The conclusion is that my tests can detect the change in Λ, but it

is not very sensitive to the change in the rotation matrix P .

5.2.3 Power simulations under the constant conditional correlation assump-

tion

I also simulated the situation when the constant conditional correlation (CCC) assumption

is satisfied. Under the CCC assumption, the time-varying covariance matrix can be

decomposed as follows:

Σt = DtQD′

t, (5.7)

where

Dt = diag(ω
1/2
1t , ..., ω

1/2
pt ) (5.8)

(5.9)

is a diagonal matrix of error standard deviations, and Q = [ρij ] is the corresponding

correlation matrix. The value of ρij is chosen in following way. Let U be a p× p matrix

whose elements are a sample of independent draws from a standard Gaussian distribution,

and denote uij the element ofU iU
′

i where i is the row number and j is the column number.

ρij = uij/
√
uiiujj.

I consider first that the error variances ωit change once through time and the transition

is threshold-like. The threshold point is as T/2, that is, c = 0.5. Second, I consider the

case in which the error variances ωit change smoothly through time from ωi1 to ωi2. The

transition function takes the form (4.6). Let st = t/T , γ = 12 and c = 0.5.
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It is seen from the results that the tests derived from Assumption 2.1 have very

satisfactory power, though the model is misspecified. It is surprising to see that the

test against the smooth transition specification has the best performance not only in the

threshold case but in the smooth transition case as well. It performs even better than

the test in Eklund and Teräsvirta (2007) especially in the high-dimensional finite sample

case, see Figures 14.

6 Concluding remarks

In this work, I develop a test of constancy of the error covariance matrix against the al-

ternative that the covariance matrix changes over time. The test is based on the spectral

decomposition of the covariance matrix. This implies that the conditional error covariance

is time-varying in the way that the eigenvectors remain constant through time and only

the corresponding eigenvalues are time-varying. There exist linear combinations which

make error vectors in the corresponding structural vector model contemporaneously un-

correlated but still heteroskedastic. I design a family of LM tests against the alternative

hypothesis that the errors are time-varying and follow parametric specifications.

Three specifications are considered. They are: the White specification which gener-

alizes the heteroskedasticity test of White (1980), the ARCH specification which gener-

alizes the test against autoregressive conditional heteroskedasticity of Engle (1982) and

the smooth transition specification which generalizes the test against smoothly changing

variance of Medeiros and Veiga (2003). The test of constancy of the error covariance ma-

trix is very easy to implement and use. From the simulation experiments it is seen that

the test has satisfactory size and power properties even in vector models.
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Teräsvirta, T. and Yang, Y.: 2014a, Linearity and misspecification tests for vector smooth

transition regression models, Research Paper 2014-04, CREATES, Aarhus University.
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A Proof for Theorem 3.1

A Proof for Theorem 3.1

Proof. Based in (2.3), assume that ϕ = (ϕ′

1
, ...,ϕ′

p)
′ and λit = hi(ϕ

′

izit), i = 1, ..., p. I

have

∂ logLt

∂ϕi

=
∂ logLt

∂λit

∂λit

∂ϕi

(A.1)

∂2 logLt

∂ϕi∂ϕ
′

i

=
∂2 logLt

∂λ2

it

∂λit

∂ϕi

∂λit

∂ϕ′

i

+
∂ logLt

∂λit

∂2λit

∂ϕi∂ϕ
′

i

(A.2)

∂2 logLt

∂ϕi∂ϕ
′

j

= 0 for i 6= j. (A.3)

Furthermore, in (A.1), (A.2) and (A.3), I have

∂ logLt

∂λit

=
1

2λit

git (A.4)

∂2 logLt

∂λ2

it

=
1

2λ2

it

(

1− 2w2

itλ
−1

it

)

(A.5)

∂λit

∂ϕi

= h′

izit (A.6)

∂2λit

∂ϕi∂ϕ
′

i

= h′′

i zitz
′

it, (A.7)

where git = w2

it/λit − 1, h′

i and h′′

i are the scalor first-order and second-order derivatives

of the positive function hi, respectively.

The corresponding blocks of the average score vector and of the average information

matrix of the quasi log-likelihood are defined to be:

sϕ(θ) = T−1

T
∑

t=1

∂ logLt

∂ϕ
(A.8)

Iϕ(θ) = −T−1

T
∑

t=1

E

[

∂2 logLt

∂ϕ∂ϕ′

]

. (A.9)

It can be seen from (A.3) that the corresponding hession matrix (∂2 logLt/∂ϕ∂ϕ′) is

block diagonal, and so is Iϕ(θ) in (A.9).

From (A.1), (A.4) and (A.6), it is seen that:

∂ logLt

∂ϕi

=

(

h′

i

2λit

)

gitzit (A.10)

Thus, under the null hypothesis of constant covariance over time, I have the average score

vector:

sϕ(θ̃) = T−1

T
∑

t=1

[(

h̃′

1

2λ̃1

)

g̃1tz̃
′

1t, ... ,

(

h̃′

p

2λ̃p

)

g̃ptz̃
′

pt

]

′

. (A.11)

where g̃it = w̃2

it/λ̃i − 1.
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A Proof for Theorem 3.1

From (A.2), and (A.4) to (A.7), I have that

E

[

∂2 logLt

∂ϕi∂ϕ
′

i

]

= E

[

∂2 logLt

∂λ2

it

∂λit

∂ϕi

∂λit

∂ϕ′

i

]

+ E

[

∂ logLt

∂λit

∂2λit

∂ϕi∂ϕ
′

i

]

= E

[

1

2

(

h′

i

λit

)2
(

1− 2w2

itλ
−1

it

)

zitz
′

it

]

+ E

[

1

2λit

gith
′′

i zitz
′

it

]

= −1

2

(

h′

i

λit

)2

E [zitz
′

it] , (A.12)

due to the fact that E
[

1− 2w2

itλ
−1

it

]

= −1 and E [git] = 0.

Thus, under the null hypothesis of constant covariance over time, the diagonal block

i of the average information matrix takes the form:

Iϕ,i(θ̃) =
1

2T

T
∑

t=1

(

h̃′

i

λ̃i

)

2

E [z̃itz̃
′

it] . (A.13)

The LM test can be consistently estimated as follows:

LM =
1

2

p
∑

i=1





(

T
∑

t=1

g̃itz̃
′

it

)(

T
∑

t=1

z̃itz̃
′

it

)−1( T
∑

t=1

g̃itz̃it

)



 , (A.14)

where (h′

i/λit) has been cancelled out.
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Figure 1: The size discrepancy plot: Gaussian errors p = 5, T = 100 and N = 10000. LM test against

smooth transition specification (solid), LM test against ARCH specification (dashed) and LM test against

White specification (dotted). The grey area represents the 95% confidence region.
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Figure 2: The size discrepancy plot: Gaussian errors p = 5, T = 500 and N = 10000. LM test against

smooth transition specification (solid), LM test against ARCH specification (dashed) and LM test against

White specification (dotted). The grey area represents the 95% confidence region.
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Figure 3: The size discrepancy plot: t(5) errors p = 5, T = 100 and N = 10000. LM test against smooth

transition specification (solid), LM test against ARCH specification (dashed) and LM test against White

specification (dotted). The grey area represents the 95% confidence region.
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Figure 4: The size discrepancy plot: t(5) errors p = 5, T = 500 and N = 10000. LM test against smooth

transition specification (solid), LM test against ARCH specification (dashed) and LM test against White

specification (dotted). The grey area represents the 95% confidence region.
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Figure 5: The size discrepancy plot of LM test against White specification: Gaussian errors p = 3,

T = 25, 50, 100, 250, 500, 1000 from 1 to 6 and N = 10000. From top to bottom: ρ = 0.9, 0.
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Figure 6: The size discrepancy plot of LM test against White specification: t(5) errors p = 3, T =

25, 50, 100, 250, 500, 1000 from 1 to 6 and N = 10000. From top to bottom: ρ = 0.9, 0.
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Figure 7: The power plot: Σt = PΛtP
′ with threshold change at T/2, p = 5, T = 100 and N = 10000.

LM test against smooth transition specification (solid), LM test against ARCH specification (dashed),

LM test against White specification (dotted) and test in Eklund and Teräsvirta (2007) (dot-dashed).
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Figure 8: The power plot: Σt = PΛtP
′ with smooth change at T/2, γ = 12, p = 5, T = 100 and

N = 10000. LM test against smooth transition specification (solid), LM test against ARCH specification

(dashed), LM test against White specification (dotted) and test in Eklund and Teräsvirta (2007) (dot-

dashed).
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Figure 9: The power plot: Σt = PΛtP
′ with ARCH specification, p = 5, T = 500 and N = 10000. LM

test against smooth transition specification (solid), LM test against ARCH specification (dashed) and

LM test against White specification (dotted).
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Figure 10: The power plot: Σt = PΛtP
′ with White specification, p = 5, T = 500 and N = 10000.

LM test against smooth transition specification (solid), LM test against ARCH specification (dashed)

and LM test against White specification (dotted).
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Figure 11: The power plot: Σt = P tΛP ′

t
with smooth change at T/2, γ = 12, p = 2, T = 100 and

N = 10000. LM test against smooth transition specification (solid), LM test against ARCH specification

(dashed), LM test against White specification (dotted) and test in Eklund and Teräsvirta (2007) (dot-

dashed).
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Figure 12: The power plot: Σt = P tΛP ′

t
with smooth change at T/2, γ = 12, p = 5, T = 100 and

N = 10000. LM test against smooth transition specification (solid), LM test against ARCH specification

(dashed), LM test against White specification (dotted) and test in Eklund and Teräsvirta (2007) (dot-

dashed).

25



Figures

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nominal size

A
ct

ua
l s

iz
e

Figure 13: The power plot: Σt = P tΛP ′

t
with smooth change at T/2, γ = 12, p = 5, T = 500 and

N = 10000. LM test against smooth transition specification (solid), LM test against ARCH specification

(dashed), LM test against White specification (dotted) and test in Eklund and Teräsvirta (2007) (dot-

dashed).
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Figure 14: The power plot: Σt = DtQD′

t
with smooth change at T/2, γ = 12, p = 5, T = 100 and

N = 10000. LM test against smooth transition specification (solid), LM test against ARCH specification

(dashed), LM test against White specification (dotted) and test in Eklund and Teräsvirta (2007) (dot-

dashed).
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