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Abstract

The paper proposes and develops a smooth transition logit (STL) model that is designed to
detect and model situations in which there is structural change in the behaviour underlying
the latent index from which the binary dependent variable is constructed. The maximum
likelihood estimators of the parameters of the model are derived along with their asymptotic
properties and a Lagrange Multiplier test of the null hypothesis of linearity in the underlying
latent index. The development of the STL model is motivated by the desire to assess the
impact of deregulation in the Queensland electricity market by addressing the question of
whether or not increased competition has resulted in changes in the behaviour of the spot
price of electricity, specifically with respect to the well documented phenomenon of periodic
abnormally high prices or price spikes. In testing this conjecture the STL model allows the
timing of any change to be endogenously determined and also market participants’ behaviour
to change gradually over time. The main results reported in the paper provide clear evidence
in support of the structural change in nature and duration of price spikes in Queensland. The
endogenous dating of the structural change by the STL model agrees with the institutional
detail surrounding the process of deregulation and indicates that the full effect of the policy
change took about a year to occur. Notwithstanding the fact that the STL model was
specifically developed to tackle a problem couched in an Australian institutional framework
this research will be of general interest and applicability. In particular, it is applicable to
any situation in which the impact and dating of policy changes is required and where the
outcome of the policy is naturally measurable as a binary variable.
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1 Introduction

Linear models have a long and successful history in econometrics and applied macroeconomics.

However, the situations in which the underlying economic theory or mere observations of a

realised process support the notion of nonlinear behaviour are not uncommon and thus require

the use of nonlinear models. Popular examples of these include models that are piecewise or

locally linear such as switching regression models, smooth transition regression (STR) models or

Markov-switching regression models. In the former models the variable determining the (linear)

state is observable, whereas in Markov-switching models it is latent. In swiching regression and

Markov switching models the number of states is finite, most often two or three. An STR model

contains a continuum of linear states, and a transition from one state to another is controlled by

a transition variable that is typically a stationary random variable but may also be deterministic

such as time. Statistical modelling techniques covering specification, estimation and evaluation

of STR models have been discussed in various works; for surveys see Teräsvirta (1998) and

Teräsvirta (2004), for thorough treatment with examples, see Teräsvirta et al. (2010); with the

focus on forecasting with nonlinear models, see Teräsvirta (2006), and for vector models, see

Hubrich and Teräsvirta (2013).

A common feature of existing smooth transition models is that the variable or variables to

be modelled are continuous stationary random variables. This paper introduces and develops a

smooth transition logit (STL) model to model fundamental structural changes in the behaviour

of the latent index underlying a binary dependent variable. The maximum likelihood estimators

of the parameters of the model are derived along with their asymptotic properties. The focus

is on the (more complicated) case in which the transition variable is deterministic, i.e., a time

trend. In the STL model, the underlying latent index takes the familiar smooth-transition form

and is therefore a nonlinear function which allows for a gradual change in the way various

factors affect the probability of the event defined by the binary dependent variable. The STL

model proves a natural framework in which the null hypothesis of linearity in the underlying

latent index can be be tested against the alternative hypothesis of the presence of nonlinear

behaviour. The paper develops a Lagrange Multiplier (LM) or score type test for this purpose.

The LM approach has the benefit of requiring estimation of the linear model only, thus avoiding

unnecessary and statistically untenable estimation of an STL model when the linear logit model

adequately describes the data.
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The development of the STL model is motivated by the desire to assess the impact of dereg-

ulation in the Queensland electricity market. Queensland is a region of the Australian National

Electricity Market (NEM), which is the worlds largest interconnected power system encom-

passing New South Wales, Victoria, Queensland, South Australia and Tasmania. Wholesale

trading in this market is conducted as a spot market where supply and demand are instanta-

neously matched through a centrally-coordinated dispatch process on a five-minute basis and

the market clearing price is calculated for half-hourly intervals.

Starting in July 2007, the Queensland government systematically withdrew its involvement

in both the generation and retailing of electricity in Queensland. The natural question then

arises as to whether or not this change in policy has had a significant effect on the behaviour

of market participants and, in particular, if competition in the electricity market resulted in in-

creased strategic behaviour which in turn influenced electricity prices. To answer this question,

the time-series properties of abnormally high spot prices for electricity, or “price spikes”, defined

as instances in which the spot electricity price exceeds a given threshold, are examined. Price

spikes are a well documented feature of both the Queensland market and wholesale electricity

markets more generally (Barlow, 2002; de Jong and Huisman, 2003; Escribano, et al., 2002; Lu-

cia and Schwartz, 2002; Burger et al., 2003; Byström, 2005; Cartea and Figueroa, 2005; Mount

et al., 2006; Kanamura and Ōhashi, 2007). The main conjecture of the paper is that the price

spikes of longer duration than one-half hour interval, which is the time period over which the

market clearing price is computed, have became less frequent after market deregulation with a

concomitant increase in the probability of observing price spikes of half hour durations. This

outcome reflects a balance between strategic behaviour by generators aimed at manufacturing

higher prices and the increased investment in significant generation capacity by electricity re-

tailers. The increased probability of price spikes lasting only one half-hour period derives from

the technological advantage of the generators to manipulated their load within relatively tight

timeframes over the slightly longer period required by retailers to bring their own capacity online

in order to mitigate the effects of any price increases.

The primary objective of the paper then, is simply to ascertain whether the nature of the

spiking process has changed in such a way that provides tangible evidence of increased strategic

manipulation of prices in the electricity market. Furthermore, if there is evidence of a change

in pattern of price spikes can this change be dated to coincide with moves towards increased
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competition. It is to accomplish this objective that the STL model and the associated LM test

are developed because the model allows the timing of change to be endogenously determined and

for the market participants’ behaviour to change gradually over time as the market participants

learn the rules of engagement in the new competitive environment. It is important to appreciate

at the outset that modelling and predicting the actual durations of price spikes, while potentially

important objectives in their right, are beyond the scope of this paper.1

To preview the main results very briefly, clear evidence is found to support the presence

of structural change in the latent index underlying the generation of price spiking process in

Queensland. The LM test clearly rejects the null hypothesis of linearity in favour of the alterna-

tive hypothesis that the index has a nonlinear functional form. The estimation results strongly

support the hypothesis that the probability of single-period price spikes has indeed increased

since the introduction of FRC. The beginning of the change is found to occur around August

2008, which indicates a fairly long gestation period after the start of the deregulation process,

and the full effect of the policy change on the behaviour of market participants appears to be

completed by July 2009. During these twelve months, the probability of a price spike lasting for

longer than a single half-hour period gradually decreases.

The rest paper is organized as follows: Section 2 introduces the smooth transition logit model

and develops the estimation theory. Section 3 provides the details of a test for linearity based

on the smooth transition model and contains simulation results on the small-sample behaviour

of the test statistic. Section 4 discusses the theory for abnormal price events and the change in

market structure. Details of the data set are laid out in Section 5, and Section 6 provides the

results from the empirical analysis. Section 7 concludes.

2 The Smooth Transition Logit Model

It is assumed that the latent index y∗t is related to factors xt in a nonlinear fashion. For reasons

explained above, the impact of the factors may have changed over time. Therefore, the smooth

transition specification is chosen to describe the relationship and how it has evolved over time.

This approach provides a great deal of flexibility around the manner and timing the change in

1Price spikes are particularly injurious to electricity retailers (who buy electricity at the spot price and sell
it to final consumers at a heavily regulated price) and consequently forecasting their occurrence has been the
subject of a fair amount of econometric investigation (Becker et al., 2007; Christensen et al., 2009; Christensen et
al., 2012; Clements et al., 2013; Eichler et al., 2013). Modelling the actual duration of abnormal price episodes is
still in its infancy.
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the market behaviour may have taken place.

Specifically,

y∗t = x′tφ+ x′tψG(st; γ, c) + et, (1)

where φ and ψ are n×1 parameter vectors, et are iid disturbances from the logistic distribution,

and

G(st; γ, c) = (1 + exp{−γ(st − c)})−1 = G(st), γ > 0 (2)

is a transition function, bounded between 0 and 1, and centered around the location parameter c.

For identification purposes, the slope parameter γ is assumed positive, implying G(st) is strictly

increasing, and thereby the loading of the factors varies from φ to φ + ψ as the values of st

increase. The role of the parameter γ is to control the speed of the transition from one extreme

state to another. As the value of γ increases the transition becomes rapid, and ultimately

approaches a step function as γ → ∞. At the other extreme, γ = 0 implies G(st) = 1/2, and

the model reduces to the standard linear logit model.

For estimation purposes, we follow Goodwin et al. (2011) and replace γ by eη in (2). The

slope parameter to be estimated is then η ∈ (−∞,∞). On one hand, the transformation avoids

the need of a positivity restriction on γ. On the other, the sensitivity of the value of the

likelihood function for variation in the value of γ is inversely related to the magnitude of γ.

In practice this means that when γ is large, the number of observations around the transition

is reduced, resulting in increased uncertainty about the exact shape of the transition and the

precision of the estimate. The exponential transformation focusses the search on a much smaller

range of parameter values for η, while still describing the same shape of transition as γ does

in the original parameterisation. Consequently, the numerical precision of the estimate of the

parameter governing the shape of the transition is much improved by this transformation.

The model defined by (1) and (2) is called the Smooth Transition Logit (STL) model. It

bears a passing similarity to the Smooth Transition Regression model by Bacon and Watts

(1971), the Smooth Transition Autoregressive model, see Chan and Tong (1986) and Teräsvirta

(1994), and the Panel Smooth Transition Regression model by González et al. (2005). The latent

index y∗t now generates the observed dichotomous 0/1 variable yt. Whenever y∗t is positive, we

observe yt = 1, otherwise we observe yt = 0. This approach yields the likelihood of any given
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observation as

f(yt,xt, st;θ) = F (xt, st;θ)yt{1− F (xt, st;θ)}1−yt (3)

where F (xt, st;θ) is the logistic cumulative distribution function and θ = (φ′,ψ′, γ, c)′ is a

vector of model parameters.

Writing Ft = F (xt, st;θ), the log-likelihood of the STL model is

LT =
T∑
t=1

`t =
T∑
t=1

{yt lnFt + (1− yt) ln(1− Ft)}.

Let zt = x′tφ+ x′tψG(st). The score becomes

∂LT
∂θ

=

T∑
t=1

∂`t
∂zt

∂zt
∂θ

=

T∑
t=1

{yt
Ft(1− Ft)

Ft
− (1− yt)

Ft(1− Ft)
1− Ft

}∂zt
∂θ

=
T∑
t=1

{yt(1− Ft)− (1− yt)Ft}
∂zt
∂θ

=
T∑
t=1

(yt − Ft)
∂zt
∂θ

(4)

in which

∂zt
∂θ

= w(t/T ) = (x′t,x
′
tG(st),x

′
tψ
∂G(st)

∂γ
,x′tψ

∂G(st)

∂c
)′ = K(st)xt (5)

and where

K ′(st) =

[
I G(st)I

∂G(st)
∂γ ψ ∂G(st)

∂c ψ

]
∂G(st)/∂γ = G(st){1−G(st)}(st − c)

∂G(st)/∂c = −γG(st){1−G(st)} .

When transformation γ = eη is used in estimation, the corresponding partial derivatives become

∂G(st)/∂η = eηG(st){1−G(st)}(st − c)

∂G(st)/∂c = −eηG(st){1−G(st)} .

As the conditional expectation and variance of yt are Ft and Ft(1−Ft), respectively, it follows
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that the information matrix

J = E(yt − Ft)2wtw
′
t

= EFt(1− Ft)



xtx
′
t xtx

′
tG(st) xt(x

′
tψ

∂G(st)
∂γ ) xt(x

′
tψ

∂G(st)
∂c )

xtx
′
tG(st) xtG(st)(x

′
tψ

∂G(st)
∂γ ) xtG(st)(x

′
tψ

∂G(st)
∂c )

(x′tψ
∂G(st)
∂γ )2 (x′tψ)2 ∂G(st)

∂γ
∂G(st)
∂c

(x′tψ
∂G(st)
∂c )2


. (6)

Consistency and asymptotic normality of the parameters in (3) can now be established

along the lines of Newey and McFadden (1994). In our case, the situation is somewhat more

complicated because the transition function in our STL model is time, or t/T. This requires

the use of triangular array asymptotics. For an illuminating discussion of this concept, see

Hillebrand et al. (2013).

In order to prove consistency of the maximum likelihood estimators of the parameters in the

STL model where st = t/T, we make the following assumptions:

Assumption C1. The true parameter vector is given by θ0 = (φ′0,ψ
′
0, γ0, c0)

′ ∈ Θ, which is a

compact space.

Assumption C2. The slope parameter γ0 satisfies γ0 > γ > 0, and φ0 6= ψ0 with ψ0 6= 0.

Note that γ0 is bounded away from infinity because the parameter space is compact.

Assumption C3: The matrix M(r) = EF (xt, r;θ){1− F (xt, r;θ)}xtx′t exists and is positive

definite for all r ∈ (0, 1) such that F (xt, r;θ) 6= 0.

In what follows,
p→ denotes convergence in probability and

D→ convergence in distribution.

We have the following theorem:

Theorem 1. Assume that conditions C1–C3 hold. Then the maximum likelihood estimator θ̂

is consistent for θ0, that is, θ̂
p→ θ0 as T →∞.

Proof. See the Appendix.

To prove asymptotic normality of the maximum likelihood estimator with st = t/T in (3),

we have to strengthen Assumption C1 as follows:

Assumption AN1: The true parameter vector θ0 is an interior point of Θ.

We state the following result:
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Theorem 2. Assume that conditions C1–C3 and AN1 hold and that θ̂
p→ θ0 as T →∞. Then

√
T (θ̂ − θ0)

D→ N (0,J−1) where

J = lim
T→∞

(1/T )

T∑
t=1

EFt(1− Ft)w(t/T )w′(t/T ) =

∫ 1

0
K(r)M(r)K ′(r)dr.

and M(r) is defined in Assumption C3.

Proof. See the Appendix.

3 Testing Linearity

This section develops a Lagrange Multiplier type test of the linearity of the process. Before

fitting an STL model to the data, the null hypothesis of linearity must be tested. As with all

models of the smooth transition variety, if the true model is linear, then the smooth transition

model is not identified and its parameters cannot be estimated consistently. For this reason,

the testing problem is nonstandard in the sense that the standard χ2-based asymptotic theory

is not valid. A general discussion of this problem and how to construct linearity tests in this

situation can be found in Teräsvirta et al. (2010, Chapter 5).

The identification problem is circumvented as in Luukkonen et al. (1988) by approximating

the model defined by the alternative hypothesis. Consider the logistic cumulative distribution

function

F (xt, st;θ) = (1 + exp{−(x′tφ+ x′tψG(st; γ, c))})−1 = (1 + exp{−zt})−1. (7)

When γ = 0 in G(st; γ, c), zt becomes linear. We choose γ = 0 to be the linearity hypothesis in

the STL model. When the hypothesis is valid, c and ψ are unidentified nuisance parameters,

i.e., only φ+ψ/2 is identified. In order to test this null hypothesis, we follow Luukkonen et al.

(1988) and expand zt into a Taylor series around γ = 0. Choosing the first-order Taylor series,

one obtains

zt = x′tφ+ (1/2)x′tψ + (1/4)γx′tψ(st − c) +R1

where R1 is the remainder. After merging terms and reparameterising,

zt = x′tθ1 + stx
′
tθ2 +R1 = zAt +R1 (8)

7



where θ2 = θ2(γ) such that θ2(γ) = 0 if and only if γ = 0. The new null hypothesis is θ2 = 0,

where θ2 is an n × 1 vector. One can test the null hypothesis using zAt in (8) instead of zt in

(7). The former is linear in parameters and, besides, R1 = 0 under linearity because the order

of the Taylor approximation then equals zero. This being the case, the term exp{−R1} = 1 and

zt = zAt , so the asymptotic inference is not affected by the remainder when the null hypothesis

is valid. This is the case when the test is based on the LM principle, which only requires

estimation of the model under H0. Generalising this to higher-order Taylor series expansions is

straightforward.

We have thus defined an auxiliary logit model, in which the cumulative distribution function

equals

FA(xt, st;θ1,θ2) = (1 + exp{−(x′tθ1 + stx
′
tθ2)})−1 = (1 + exp{−zAt })−1. (9)

From (9) one obtains

∂zAt
∂θ1

= xt and
∂zAt
∂θ2

= stxt

so that the second block of the ‘auxiliary score’ is

∂LT (xt, st;θ1,θ2)

∂θ2
=

T∑
t=1

{yt − FAt (xt, st;θ1,θ2)}stxt.

The score of the auxiliary logit model estimated under H0 becomes

 ∂LT
∂θ1

∂LT
∂θ2

 |H0 =
T∑
t=1

 0

{yt − FA(xt, st; θ̃1,0)}stxt

 (10)

where θ̃1 is the maximum likelihood estimator of θ1 estimated under linearity.

In order to construct the test, we assume that the maximum likelihood estimators of the

parameters of the linear logit model are consistent and asymptotically normal when st = t/T .

In fact, this is a special case of Theorems 1 and 2. To proceed, note that the tth element of the

estimated covariance matrix of the score under H0 has the form

Dt =

 D11t D12t

D21t D22t

 |H0 = F̃At (1− F̃At )

 xtx
′
t (t/T )xtx

′
t

(t/T )xtx
′
t (t/T )2xtx

′
t


where F̃At = FAt (xt, t/T ; θ̃1,0) is the maximum likelihood (plug-in) estimator of FAt = FAt (xt, t/T ;θ1,0).
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This yields the average

DT = (1/T )

T∑
t=1

Dt = (1/T )

T∑
t=1

F̃At (1− F̃At )

 D11t D12t

D21t D22t

 . (11)

The (2, 2) block of the inverse of DT (positive definiteness assumed) equals

FT = (D22T −D21TD
−1
11TD12T )−1 (12)

where

D11T = (1/T )
T∑
t=1

F̃At (1− F̃At )xtx
′
t

D12T = D21T = (1/T )

T∑
t=1

F̃At (1− F̃At )(t/T )xtx
′
t

and

D22T = (1/T )

T∑
t=1

F̃At (1− F̃At )(t/T )xtx
′
t.

The LM statistic has the following form, see for example Godfrey (1988, p. 14),

LMNL = T−1
∂LT
∂θ′2
|H0F

∂LT
∂θ2
|H0 = T−1

∂LT
∂θ′2
|H0(D22 −D21D

−1
11 D12)

−1∂LT
∂θ2
|H0 (13)

where ∂LT /∂θ2|H0 is defined in (10) and F = limT→∞ FT . We make the following assumption:

Assumption C3A: The matrix MA(r) = EF (xt, r;θ1,0){1 − F (xt, r;θ1,0)}xtx′t exists and is

positive definite for all r ∈ (0, 1) such that F (xt, r;θ1,0) 6= 0.

The matrix F in (13) is obtained by using the following lemma:

Lemma 3. Assume that the condition C3A holds. Then the covariance matrix (11) has the

following limit as T →∞:

D = lim
T→∞

(1/T )
T∑
t=1

EF̃At (1− F̃At )

 D11t D12t

D21t D22t

 =

 ∫ 1
0 M

A(r)dr
∫ 1
0 rM

A(r)dr∫ 1
0 rM

A(r)dr
∫ 1
0 r

2MA(r)dr


where FA

t is as in (9) with θ2 = 0, and MA(r) is defined in Assumption C3A.

Proof: See the Appendix.
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Under H0, assuming that the result in Lemma 3 holds, LMNL has an asymptotic χ2-

distribution with n degrees of freedom. In practice, the covariance matrix D is replaced by

its consistent estimator (11).

In order to find out how the linearity test performs in small samples, we conduct a small

simulation experiment. We use a logit model with intercept and two stochastic variables x2t and

x3t such that

(x2t, x3t)
′ ∼ iidN


 0

0

 ,
 1 2ρ

2ρ 4




where ρ = −0.5, 0, 0.5. In the auxiliary logit model (8), xt = (1, x2t, x3t)
′, θ1 = (0, 1, 1), θ1 =

(1, 1, 1), or θ1 = (−1, 1, 1), and st = t/T . We test two null hypotheses. The first one is

θ2 = 0. Since in the application the null hypothesis is restricted to the intercept, we also test

the hypothesis θ21 = 0 assuming that θ22 = θ23 = 0 both under the null and the alternative.

We use four sample sizes, 50, 100, 200 and 500, report the outcomes for three significance levels,

0.01, 0.05 and 0.1, and carry out 10000 replications for each of the 36 designs.

H0 : θ2 = 0 H0 : θ21 = 0
T 1% 5% 10% 1% 5% 10%

50 0.0085 0.0542 0.1131 0.0118 0.0635 0.1242
100 0.0082 0.0497 0.1026 0.0102 0.0538 0.1044
200 0.0096 0.0514 0.1025 0.0114 0.0499 0.1031
500 0.0087 0.0525 0.1012 0.0096 0.0460 0.0955

Table 1: Size study results. The table presents the rejection frequencies at 1%, 5%, and 10%
level of significance for the two null hypotheses, θ2 = 0 and θ21 = 0, for sample sizes 100, 200,
and 500. The experiment design has ρ = 0.5 and θ1 = (1, 1, 1). The results are based on 10 000
replications.

It turns out that changing ρ and varying θ1 do not have any effect on the results. For this

reason, in Table 1 we only report results for one experiment, in which the null hypothesis is

either θ2 = 0 or θ21 = 0. In all the experiments, the empirical size is very close to the nominal

size and this is true for even the smallest sample size considered. It does not matter which one

of the two null hypotheses is being tested: the outcome remains the same. Notwithstanding

the limited scope of the simulation experiment, our contention is that the empirical size of the

LM test of linearity of the latent index underlying the STL model does not suffer from any size

distortions.
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4 Price Spikes in Electricity Markets

Price spikes in the electricity market occur when the spot price of electricity exceeds a given price

threshold, taken here to be $80/MWh. The threshold price that is often used in the Australian

context is $100/MWh (Becker et al., 2007; Christensen et al., 2009; Christensen et al., 2012)

but the lower figure used in this research is chosen to reflect the marginal cost of electricity

generation by retailers in the Queensland region, where peaking plants are in mainly gas-fired.

The standard explanation for the occurrence of abnormal price events is a micro-theoretic one.

If demand rises to the point of system capacity (due perhaps to extreme weather conditions)

or if a significant portion of supply suddenly goes offline due to generation failure then a price

spike results. In other words, price spikes are simply a manifestation of scarcity and are not due

strategic behaviour on the part of market participants.

Increasingly, however, attention is being turned to strategic bidding behaviour in a competi-

tive market as an explanation of price spikes. Strategic bidding behaviour by generators occurs

as a consequence of the market clearing arrangements in the NEM. Generators are required to

bid a load at each of ten price bands, ranging from the floor price −$1000/MWh to the the

market price ceiling (MPC) imposed by regulation, for every half-hour interval of the next day.

The hypothetical half-hourly supply is therefore the sum of bid quantities in each of the bid

price bands. This gives the incorrect impression that the market operates only in half-hour

intervals. In fact, bid quantities can be changed (rebidding) as little as 5 minutes before actual

dispatch and in these 5 minute intervals generators are dispatched from the lowest to the high-

est bid prices until demand is met at a price which is known as the dispatch price. The spot

price of electricity paid by electricity retailers is, however, settled on an half-hourly basis and is

calculated as the average of the 5 minute dispatch prices over the relevant half hour.

It is now apparent that within each half hour interval there is an incentive to behave strate-

gically because if a spike occurs in the dispatch price for any 5 minute interval, then the average

(spot) price received over the half hour will be higher than in the absence of the spike. One

possible scenario is for base load generators to bid a small capacity at the lowest price band

and then bid all remaining capacity at the highest price allowed (bid splitting). If the lowest

bids from base load generators are fully dispatched and load is still required, the market oper-

ator must dispatch generators who have bid at higher prices. Once the price is forced up, the

base load generators are able to rebid all their available capacity in the next and subsequent 5
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minute intervals at the market floor price knowing that the half-hour average will be above their

marginal cost due to the spike in the dispatch price.
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Figure 1: Scatter plots of system load versus the logarithm of price for Queensland in the
months of June 2007 (top panel) and January and February 2009 (bottom panel). The dotted
line represents the threshold value (natural logarithm of $80/MWh) above which an irregular
price event occurs.

Figure 1, which is a scatter plot of load against the logarithm of the spot electricity price,

is an illustration of the differences that can arise in the pattern of price spikes. In June 2007

Queensland was in the grip of a severe drought which limited the cooling water available for

coal- and gas-fired base-load generators and also reduced the amount of water available for hydro

generation. The top panel of Figure 1 therefore shows a typical situation in which the system

is capacity constrained due to generation failure. Here price is regularly above the threshold

price at all levels of load. The bottom panel of Figure 1, the months of January and February

2009, tells a different story with price spikes happening mainly at high loads. The fact that

these extreme price events only occur at high loads, but not only at system capacity, suggests

that many of these irregular events may be attributable to strategic behaviour on the part of

the generators.

Starting in June 2007, the operation of the NEM in Queensland changed significantly with
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the sale of two partly government-owned energy retailers and further reductions in government-

owned generation capacity.2. In another structural development of note, privately-owned elec-

tricity retailers have embarked on a substantial program of investment in generation capacity

mainly in the form of gas-fired turbines. These plants have a higher marginal cost than the

base-load (mainly coal-fired) generators and therefore are used primarily as additional (peaking)

capacity if conditions demand it. The fundamental point of interest for this paper is whether or

not these developments, which have heralded the advent of competition in the electricity market,

have had the unintended consequence of promoting strategic behaviour.

In order to test this conjecture, this paper chooses to focus on the duration of price spikes,

where the duration of price spike is defined as the number of consecutive half hour periods that

price remains above the threshold. The testable hypothesis is whether or not the durations of

distinct price spikes have decreased since 2007 and is derived from the idea that strategically

manufactured price spikes have a shorter duration than the episodes which are simply related to

capacity shortages. If generators are able to manufacture short-lived abnormal price events then

they benefit in terms of higher average prices and the retailers are unable to use their peaking

generation capacity before the price spike dissipates.

On the assumption that the durations of price spike episodes, dt, measured in half hours are

available, a logistic model of these durations may be set up by defining a binary variable that

takes the value 0 if the spike is a single-period spike and 1 otherwise:

yt =

 0 : dt = 1

1 : dt > 1 .

The hypothesis to be tested is that Pr(yt = 0) is unchanged after the introduction of competition,

whereas the alternative is that it is increased. The problem for inference, however, is that

although the date of the commencement of moves toward the competitive market is known, the

effect of policy on the electricity market will have played out slowly in the subsequent years

making precise inference on the effects of the policy extremely difficult. It follows that this

problem is a very natural application for the the STL model in which the time of transition to

competition is treated as endogenous and allowed to evolve smoothly over time.

2Government involvement in electricity generation in 2014 stands at about 50% down from around 65% in
2007 and there is no government presence in retailing.
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5 Data

The data set comprises a set of durations of price spike episodes, dt, in the Queensland spot

electricity price for the period 1 January 1999 and the 31 July 2013, together with a number

of control variables thought to influence this duration which are all measured at the time of

the price spike. In other words, there is no time variation in the control variables. It is worth

reiterating that our objective is not to model the actual duration of the episode or to make

accurate predictions, but rather to ascertain if a significant change has occurred in the probability

of observing price spikes that last for only one half-hour interval. In so doing our control

variables are a minimum set which cover both demand and supply influences at the time the

commencement of each abnormal price episode.

The discussion of the bidding process and the potential for strategic behaviour highlights

the importance of load making it potentially the most important demand side control variable.

Figure 2 gives an interesting perspective on the problem. The top panel of Figure 2 illustrates

the average load for each half hour of the day in Queensland. This pattern is a very regular one

in which there is a steep increase in demand early morning reaching peak at about 8am and

then a second late flurry of demand in the late afternoon and early evening. The regularity of

the pattern suggests that perhaps it is unexpected load which is more important than load itself

as a control variable. While it has been noted that strategic behaviour is associated with high

loads, it is also the case the unexpectedly high loads will more than likely be associated with

longer abnormal price conditions. Accordingly, unexpected load, Lt, computed as the difference

between an estimate of the load from a simple autoregressive model and the actual load is used

in the estimation.

The bottom panel of Figure 2 shows the number of price spikes (solid line) recorded as starting

in each half hour of the day (left hand scale) and the associated average duration (dashed line)

of these irregular events (right hand scale). The point of interest is that the spikes earlier in

the day tend to be smaller in number but longer in duration, while in the afternoon peak when

demand is at its zenith, the number of spikes increases dramatically but the duration of each

irregular event is very short. This observation is suggestive of the conclusion that the peak loads

of the late afternoon are more likely to be associated with strategic behaviour. Accordingly the

half hour of the day on which the spike starts, Ht, is included as a control variable.

Temperature effects also play an important role in contributing to episodes of price spikes.
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Figure 2: Plots of the average shape of load (top panel) and the number of spikes (bottom panel,
solid line) and the average duration of spikes (bottom panel dashed line) by time of day.

The daily temperature range TRt as well as the heating degree days (HDD) and cooling degree

days (CDD) are also included in our modelling analysis. The cumulative heating degree days

(CHN,t) and cumulative cooling degree days (CCN,t) indices over a period of N consecutive

days are defined respectively by

CHN,t =
∑N

k=1HDDt−k, HDDt = max
(
T − T t, 0

)
CCN,t =

∑N
k=1CDDt−k, CDDt = max

(
T t − T, 0

) (14)

where T is a threshold temperature and T t is the average temperature on the tth day measured

in degrees Celsius. The choice of threshold, in this instance 18◦C, is set by convention and

is the standard used in the United States. In the southern (northern) hemisphere the HDD

(CDD) season would be from May to September, while the CDD (HDD) season would be from

November to March. These measures provide an indicator of system stress. If abnormally hot

or cold weather persists for a number of days then it is likely that the capacity of the system

will be tested.

The only connection between Queensland and the other parts of the NEM is via two regional

transmission lines to the adjacent New South Wales region. The interconnector flow between

the connected region of New South Wales and Queensland, QNIt, is also used as a control

variable. The convention for measuring the flow is in a northerly direction which means that if
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QNIt is positive, electricity is flowing into Queensland from New South Wales. The main idea

being captured with this variable is that of inter-regional transmission constraints. The higher

the flow to Queensland the more severe is the inter-regional capacity constraint. A positive

interconnector flow indicates that the Queensland system is already under stress, which makes

it more likely that a price spike episode, when it occurs, will be of longer duration.

Table 2

Summary statistics of the variables used in the estimation of the STL model of price spikes in
Queensland. The data set is constructed using daily data for the period 1 January 1999 to 31

July 2013.

dt yt Lt Ht TRt CH3,t CC3,t QNIt

pre-July 2007
mean 3.823 0.608 29.209 29.689 10.123 3.344 9.766 286.838
sd 5.424 0.488 90.571 9.646 3.713 5.144 9.365 402.935
max 74.000 1.000 377.000 47.000 23.000 21.400 32.950 1547.700
min 1.000 0.000 −229.000 0.000 0.600 0.000 0.000 −350.000

post-July 2007
mean 3.195 0.557 52.173 29.221 10.065 3.636 9.641 445.242
sd 3.572 0.497 83.843 8.421 3.717 5.623 9.302 476.714
max 27.000 1.000 311.000 47.000 20.300 22.100 29.500 1535.150
min 1.000 0.000 −247.000 4.000 2.000 0.000 0.000 −5234.820

Total
mean 3.619 0.592 36.679 29.536 10.104 3.439 9.726 338.368
sd 4.907 0.492 89.072 9.266 3.713 5.305 9.343 434.613
max 74.000 1.000 377.000 47.000 23.000 22.100 32.950 1547.700
min 1.000 0.000 −247.000 0.000 0.600 0.000 0.000 −5234.820

Table 2 provides the summary statistics of the variables used in the estimation for the periods

before and after July 2007. Mean durations decrease slightly both in raw form and in 0/1 form

but the significance of these figures is difficult to assess. A different story emerges if yt is explored

in terms of proportions. In the period prior to July 2007, 39% of price spike episodes lasted for

one period, but in the post-July 2007 period this proportion rose to 44%. A simple t-test of

difference in proportions yields a p-value of 0.0206 of the null hypothesis of equal proportions.

So there is strong evidence to suggest that there is a change in the nature of the spiking process

which we would argue is consistent with increased strategic behaviour. Interestingly enough,

the 6% increase in the number of single-period abnormal events is observed despite the fact that

average unexpected load and interconnector flow both increased, both of which would support

price spike episodes of longer duration.
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6 Estimation Results

As argued previously, our interest lies in ascertaining whether or not the probability of a single-

period price spike has changed significantly after the deregulation of the Queensland electricity

market, while controlling for the market conditions at the times of the price events. Therefore,

we are focusing on the constant term in the STL model, and testing its constancy against a

smooth transition over time. Linearity is clearly rejected (value of the LM type statistic with

one degree of freedom is 17.2 with p-value less than 10−4). This lends strong support to our

hypothesis that the strategic behaviour may have changed. To examine the quality of such

change, we set out to estimate a range of nonlinear models, thus hoping to ensure robust and

reliable conclusions.

Table 3 reports the results of simple logit models of the duration of irregular price events in

the Queensland electricity markets. The linear logit model serves as a crude overall description

of the role of the various factors, and offers no opportunity to model any structural change in

the electricity market. It useful in ascertaining that the variables proposed as control factors do

indeed have significant explanatory power in terms of the probability of observing an irregular

price episode of longer than half hour period. The effect of the unexpected load on the price

spike duration is as expected. The higher the unexpected load, the higher the probability of a

price spike of longer than half an hour. The time of the day variable has a strongly negative

effect on the duration. This picks up the effect observed in Figure 2 that one-period spikes

predominantly occur later in the day. An interesting phenomenon is that the daily temperature

range has a negative effect on price spike duration. Temperature range exhibits a cyclical

pattern such that a high ranges coincides with the winter months whereas during summer the

difference in daily maximum and minimum temperature is small. The estimated effect may

be interpreted as picking up the fact that the summer months experience much higher loads

and the system operates much closer to capacity. The is no doubt that the system operates

under higher stress in the Queensland summer months leading to a higher probability of longer

price spikes. Conversely, the loads in winter are much lower and many generators experience

scheduled maintenance so that the expectation is for shorter abnormal price events, all other

things equal. The cumulative heating and cooling day variables are both positive indicating

that persistently hot or cold weather will contribute to system stress and make the duration of

irregular price events longer. Finally, the higher the interconnector flow from New South Wales
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Table 3

Estimated linear logit model, regime switching logit regressions with dummy variables that
determine the onset of full retail competition at different points in time, and the smooth

transition logit model with estimated location and speed of transition.

linear logit RS–logit RS-logit RS-logit STL
(2007) (2008) (2009)

Lt 0.0010 0.0012 0.0012 0.0012 0.0013
(0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

Ht −0.0151 −0.0163 −0.0167 −0.0166 −0.0167
(0.0048) (0.0049) (0.0049) (0.0049) (0.0049)

TRt −0.0426 −0.0454 −0.0483 −0.0475 −0.0480
(0.0139) (0.0140) (0.0141) (0.0141) (0.0141)

CH3,t 0.0532 0.0551 0.0600 0.0592 0.0597
(0.0117) (0.0117) (0.0119) (0.0119) (0.0119)

CC3,t 0.0184 0.0197 0.0238 0.0220 0.0238
(0.0066) (0.0066) (0.0067) (0.0067) (0.0068)

QNIt 0.0008 0.0009 0.0009 0.0009 0.0009
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Constant φ 0.5952 0.7391 0.7119 0.7164 0.7173
(0.2351) (0.2389) (0.2384) (0.2383) (0.2392)

DJan 2007
t −0.4177

(0.0958)

DJan 2008
t −0.6741

(0.1127)

DJan 2009
t −0.7730

(0.1256)

Constant ψ −0.8055
(0.1252)

η 5.0199
(1.6792)

c 0.7162
(0.0103)

N 2284 2284 2284 2284 2284

log-likelihood −1498.845 −1489.306 −1480.840 −1479.744 −1476.998

BIC 3051.826 3040.481 3023.549 3021.357 3031.333

Standard errors in parentheses

into Queensland, indicating the Queensland system is already struggling to cope with demand,

the higher the probability of a price spike with duration longer than half an hour.

We now turn to the question of particular interest, namely, whether or not there is a change

in the probability of observing one-period price spikes associated with the move to full retail

competition. Accordingly, three regime switching (RS–logit) models are estimated, each of which

include a dummy variable to account for structural change. These dummy variables are defined
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as

Dj
t =

 1 : t ≥ j j = Jul 2007, Jul 2008, Jul 2009

0 : t < j .

Qualitatively, we can conclude that the last three models offer a better fit in terms of likelihood

value than the first two. Another observation is that while the moves to full competition in the

Queensland market started in mid-2007, the models with a structural change dated a year or two

later seem to fit the data better than the model in which the threshold is dated on July 2007.

The estimated values of the coefficients on the control variables remain practically unchanged.

However, the probability of a single-period price event is significantly reduced when compared to

the linear logit model, and the magnitude of reduction is greater the later the break in structure

is imposed. This is in line with the presumption that the strategic behaviour may have taken a

while to adjust to the policy change.

The next step is to estimate the STL model. The last column of Table 3 reports the results.

As with the regime switching models, the resulting estimates, significance and sign, on the

various control variables remain unchanged. The fit of the model is somewhat improved in

comparison to the models just discussed, thus providing evidence that an instantaneous change

in probability of long versus short price events does not enjoy as much support from the data,

but that a more gradual transition does. Furthermore, the increased probability of observing

half-hour price spikes is most stark in the STL model. The location of the transition is centered

around mid January 2009. However, the transition takes place over several months, starting

August 2008 and completed July 2009. Approximately 120 price events happened during the

transition, out of which about 70 were longer than half an hour in duration.

An interesting detail in Table 3 is that BIC prefers the RS-logit (2008) and (2009) models

to the STL model. This raises the question of testing the null hypothesis γ = ∞ (threshold

model) against the STL one (γ < ∞). The likelihood ratio (LR) test would seem an obvious

choice, but it cannot be applied to this problem. The reason is that because of the threshold

the log-likelihood function is not well behaved under the null hypothesis. As a result, the

asymptotic null distribution of the LR statistic is not known. However, the STL model offers a

more plausible interpretation than a threshold model. It is more natural to think that both the

electricity generators and retailers learn their new strategic behaviour gradually rather than to

presume that they do it simultaneously at a given point of time.
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Figure 3: Simple grid to date the structural change in strategic behaviour by participants in the
Queensland electricity market. The value of the log-likelihood function from the estimation of the
logit model which includes a dummy variable dating the change at each month in the interval
January 2007 to December 2009 (left axis) is plotted together with the estimated transition
function from the smooth transition model (right axis).

As a check on the results of the STL model, 36 simple RS–logit models were estimated with

each regression including as an explanatory variable the dummy variable defined as

Dj
t =

 1 : t ≥ j j = Jan 2007,Feb 2007, · · ·Nov 2009,Dec 2009

0 : t < j .

For each logit regression the value of the log-likelihood function was recorded. The results of

this rather crude grid search are presented in Figure 3 (left axis) together with the estimated

transition function from the smooth transition logit model based on the parameter estimates re-

ported in Table 3. The estimated location for the smooth transition coincides with the threshold

model with the highest likelihood values.

7 Conclusions

This paper introduces a smooth transition logit model for a binary response variable. The

maximum likelihood estimators of the parameters of the STL model are shown to be consistent

and asymptotically normal. A test of the linearity of the process generating the latent probability

index underlying the binary dependent variable is also provided. Notwithstanding the fact

that the STL model was specifically developed to tackle a problem couched in an Australian

institutional framework, our contention is that this research will be of general interest and
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applicability. In particular, it is applicable to any situation in which the impact and dating of

effective policy changes is required and where the outcome of the policy is naturally measurable

as a binary variable. Potential examples which spring immediately to mind are changes in

individual choices in response to policy-induced incentive changes in the area of public transport,

and patient outcomes in response to changes in health policy, either organisational or funding

related.

In any event, the STL model is ideally suited for exploring whether or not there has been

a gradual shift in the behaviour of electricity generators in the Queensland electricity market.

Prior to 2007 most electricity generation was in the hands of the public sector, but subsequent

developments has seen a substantial shift with privately owned generators and retailers of elec-

tricity becoming the major players. To this end, the maintained conjecture of the paper is that

the change in the competitive environment has been accompanied by an increase in strategic

behaviour on the part of generators who increasingly have used bidding behaviour to cause short-

lived spikes in electricity prices. The testable hypothesis is that the probability of occurrence of

short price spikes of half-hour duration in the spot electricity market will have increased after

the move toward increased competition, if other conditions prevailing at the time of the price

spike are accounted for. Another hypothesis is that the change in the durations of the irregular

price episodes will have taken place gradually over a number of years as the market participants

experienced the operation of the competitive market. For the same reason, the timing of the

change will have occurred at a somewhat later date than the introduction of the competitive

market structure.

We provide estimation results that are conclusive and robust in terms of comparison to

several simple logit models in which a structural break is imposed by including a time dummy

variable. Our LM type test of linearity strongly rejects the notion that the process underlying the

binary variable is a linear one. The smooth transition model performs extremely well allows an

interpretation of the estimated model that supports the intuition behind the research question.

The estimation results suggest that the probability of occurrence of half-hourly price spikes

started to increase in late 2007, was in full swing by late 2008 and was largely completed by the

middle of 2009.
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Kanamura T, Ōhashi K. 2007. On transition probabilities of regime switching in electricity

prices. Energy Economics 30: 1158 – 1172.

Lucia JJ, Schwartz ES. 2002. Electricity prices and power derivatives: Evidence from the nordic

power exchange. Review of Derivatives Research 5: 5 – 50.
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A Proofs

A.1 Consistency

We introduce the following notation: ||x|| denotes the Euclidean norm of vector x, ||X|| denotes

the Hilbert-Schmidt norm of matrix X, and
D→ denotes convergence in distribution. To prove

Theorem 1, we first formulate and prove three lemmas.

Lemma 4. The array of expectations Ew(t/T )w′(t/T ) has the following positive definite limit

as T →∞:

Q = lim
T→∞

(1/T )

T∑
t=1

Ew(t/T )w′(t/T )

= lim
T→∞

(1/T )

T∑
t=1

K(t/T )MK ′(t/T ) =

∫ 1

0
K(r)MK ′(r)dr

where M = Extx
′
t, and

K ′(r) =

[
I G(r)I ∂G(r)

∂γ ψ ∂G(r)
∂c ψ

]
.

Proof. Write

Ew(t/T )w′(t/T ) = K(t/T )Extx
′
tK
′(t/T ) = K(t/T )MK ′(t/T )

for t = 1, ..., T and all T . Let t = [Tr], and write

QT = (1/T )
T∑
t=1

Ew(t/T )w′(t/T ) = (1/T )
T∑
t=1

K([Tr]/T )MK ′([Tr]/T )

=
T∑
t=1

∫ (t+1)/T

t/T
K([Tr]/T )MK ′([Tr]/T )dr

=

∫ (t+1)/T

1/T
K([Tr]/T )MK ′([Tr]/T )dr →

∫ 1

0
K(r)MK ′(r)dr

as T →∞. Now consider

M −M(h) = E[1− F (xt, h;θ){1− F (xt, h;θ)}]xtx′t.

Note that 0 ≤ F (xt, h;θ){1 − F (xt, h;θ)} ≤ 1/2 for all h. Then M is positive definite as
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Assumption C3 states that M(h) is positive definite for F (xt, h;θ) 6= 0. �

Lemma 5. When Assumptions C1–C3 are satisfied, the STL model (1) with (2) is identified.

Proof. Since M = Exx
′

is positive definite, then (θ − θ0)′K(t/T )MK ′(t/T )(θ − θ0) is

positive definite for θ 6= θ0. It follows that E{(θ − θ0)′K(t/T )x}2 > 0 for θ 6= θ0. Then

(φ− φ0)
′x+ k1(t/T )(ψ −ψ0)

′x+ k2(t/T )(γ − γ0)ψ′x+ k3(t/T )(c− c0)ψ′x 6= 0

when Assumption C2 holds, where k1(t/T ), k2(t/T ), and k3(t/T ) are bounded nonlinear nonzero

functions of t/T , t = 1, ..., T . Thus, φ′x 6= φ′0x for φ 6= φ0, ψ
′x 6= ψ′0x for ψ 6= ψ0, γψ

′x 6=

γ0ψ
′x for γ 6= γ0 and cψ′x 6= c0ψ

′x for c 6= c0. Following Newey and McFadden (1994), we

argue that as the logistic functions F (z) and 1 − F (z) are strictly monotonic, F (xt, t/T ;θ) 6=

F (xt, t/T ;θ0) and 1− F (xt, t/T ;θ) 6= 1− F (xt, t/T ;θ0). From this it follows that

f(yt,xt, t/T ;θ) = F (xt, t/T ;θ)yt(1− F (xt, t/T ;θ))1−yt 6= f(yt,xt, t/T ;θ0)

for θ 6= θ0, so the model is identified. �

Lemma 6. Under Assumptions C1–C3, E| ln f(yt,xt, t/T ;θ)| <∞.

Proof. It is seen from (1) and (2) that (3) is continuous at each θ ∈ Θ with probability 1.

We have

| ln f(yt,xt, t/T ;θ)| = |yt lnF (xt, t/T ;θ) + (1− yt) ln{1− F (xt, t/T ;θ)}|

≤ | lnF (xt, t/T ;θ)|+ | ln{1− F (xt, t/T ;θ)}|.

Using (5), we obtain the following expansion of Ft around θ ∈ Θ:

lnF (xt, t/T ;θ) = lnF (xt, t/T ;θ) + F (xt, t/T ;θ∗){1− F (xt, t/T ;θ∗)}w∗′(t/T )(θ − θ)

where w∗(t/T ) = K∗(t/T )xt with

K∗(t/T ) = (I, G(t/T, γ, c)I,ψ
∂G(t/T )

∂γ
|γ=γ∗ ,ψ

∂G(t/T )

∂c
|c=c∗)′. (15)
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In (15), γ < γ∗ < γ and c < c∗ < c, so θ∗ = (φ′,ψ′, γ∗, c∗)′. We have

| lnF (xt, t/T ;θ)| = | lnF (xt, t/T ;θ) + {1− F (xt, t/T ;θ∗)}x′tK∗′(t/T )(θ − θ)|

≤ | lnF (xt, t/T ;θ)|+ |1− F (xt, t/T ;θ∗)|

×||K∗′(t/T )||2 × ||xt|| × ||θ − θ||.

Since θ,θ ∈ Θ and Θ is compact, ||θ − θ|| ≤ C1 < ∞. By Assumption C1 and continuity and

differentiability of G(t/T ), the elements inK∗(t/T ) are bounded, implying ||K∗′(t/T )||2 ≤ C2 <

∞. Thus | lnF (xt, t/T ;θ)| ≤ | lnF (xt, t/T ;θ)| + C1C2||xt|| and, because 1 − F (z) = F (−z),

| lnF (−xt, t/T ;θ)| ≤ | lnF (−xt, t/T ;θ)|+ C1C2||xt||. Thus,

| ln f(yt,xt, t/T ;θ)| ≤ | lnF (xt, t/T ;θ)|+ | lnF (−xt, t/T ;θ)|

+2C1C2||xt|| < ∞ (16)

because Extx
′
t exists, see Lemma 4. Now, (16) implies that E| ln f(yt,xt, t/T ;θ)| <∞. �

We are now ready to prove Theorem 1. This is done by verifying the conditions of Theo-

rem 2.5 in Newey and McFadden (1994). They are:

(i) If θ 6= θ0, then ln f(yt,xt, t/T ;θ) 6= ln f(yt,xt, t/T ;θ0).

(ii) The parameter space Θ is a compact space.

(iii) ln f(yt,xt, t/T ;θ) is continuous at each θ ∈ Θ with probability 1.

(iv) E| ln f(yt,xt, t/T ;θ)| <∞.

Condition (i) follows from Lemma 5 and (ii) holds because of Assumption C1. Validity of

Condition (iii) follows from the structure of the logistic cumulative distribution function and

G(t/T ). Finally, Condition (iv) is verified by Lemma 6. �

Asymptotic normality

In this section we prove Theorem 2. This is done by verifying the conditions of Theorem 3.3 in

Newey and McFadden (1994). They are:

The conditions of Theorem 2.5 (consistency) are valid, and
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(i) θ0 is an interior point of Θ.

(ii) f(yt,xt, t/T ;θ) is twice continuously differentiable and f(yt,xt, t/T ;θ) > 0 in a neigh-

bourhood N of θ0.

(iii)
∫

supθ∈N || ∂∂θf(y,x, t/T ;θ)||du <∞, where u = (y,x′)′.

(iv) J = limT→∞(1/T )
∑T

t=1 E[ ∂∂θ ln f(yt,xt, t/T ;θ0){ ∂
∂θ′ ln f(yt,xt, t/T ;θ0)}] exists and is non-

singular.

(v) E supθ∈N || ∂2

∂θ∂θ′ ln f(yt,xt, t/T ;θ)|| <∞.

Condition (i) follows from Assumption AN1 and (ii) holds due to the properties of the STL

model. To verify (iii), recall that

f(yt,xt, t/T ;θ) = F (xt, t/T ;θ)yt(1− F (xt, t/T ;θ))1−yt

= F ytt (1− Ft)1−yt . (17)

We need the following partial derivatives:

∂

∂θ
F ytt = ytF

yt−1
t

∂Ft
∂zt

∂zt
∂θ

= ytF
yt
t (1− Ft)

∂zt
∂θ

and

∂

∂θ
(1− Ft)1−yt = (1− yt)(1− Ft)−yt

(
−∂Ft
∂zt

)
∂zt
∂θ

= −(1− yt)(1− Ft)1−ytFt
∂zt
∂θ

. (18)

Using (17) and (18) and writing ft = f(yt,xt, t/T ;θ) we have

∂ft
∂θ

=
∂

∂θ
F ytt (1− Ft)1−yt = {∂F

yt
t

∂zt
(1− Ft)1−yt + F ytt

∂

∂zt
(1− Ft)1−yt}

∂zt
∂θ

= {ytF ytt (1− Ft)2−yt − (1− yt)F yt+1
t (1− Ft)1−yt}

∂zt
∂θ

= F ytt (1− Ft)1−yt(yt − Ft)
∂zt
∂θ

= ft(yt − Ft)
∂zt
∂θ

. (19)
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From (19) one obtains

||∂ft
∂θ
|| ≤ |ft(yt − Ft)| × ||w(t/T )|| ≤ C1||K(t/T )|| × ||xt|| ≤ C1C2||xt||

for some positive constants C1 and C2 as ft(yt − Ft) is bounded for all t and the elements of

K(t/T ) are bounded. Following Newey and McFadden (1994), integration over du is equivalent

to summing over y (y is dichotomous) and taking an expectation over ||w(t/T )||. This yields

∫
||∂ft
∂θ
||du ≤ 2C1C2E||xt||

where E||xt|| <∞ for θ ∈ N for t = 1, ..., T, and all T , because Extx
′
t exists. Thus, (iii) holds.

(iv) Consider the gradient vector

∂ ln ft
∂θ

= (yt − Ft)
∂zt
∂θ

.

Then

E
∂ ln ft
∂θ

∂ ln ft
∂θ′

= E(yt − Ft)2
∂zt
∂θ

∂zt
∂θ′

.

By Lemma 6,

E
∂ ln ft
∂θ

∂ ln ft
∂θ′

= K(t/T )EFt(1− Ft)xtx′tK ′(t/T ) = K(t/T )M(t/T )K ′(t/T ) (20)

where M(t/T ) = EFt(1 − Ft)xtx′t is positive definite by Assumption C3, see also Lemma 4.

Then

JT = (1/T )

T∑
t=1

K(t/T )M(t/T )K ′(t/T ) (21)
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is positive definite for T ≥ T0 > 2n+ 2. Writing Ft = Ft(t/T ) and t = [Tr] in (21) one obtains

JT = (1/T )

T∑
t=1

K([Tr]/T )[EFt([Tr]/T ){1− Ft([Tr]/T )}xtx′t]K ′([Tr]/T )

= (1/T )

T∑
t=1

K([Tr]/T )[EFt([Tr]/T ){1− Ft([Tr]/T )}xtx′t]K ′([Tr]/T )

=

T∑
t=1

∫ (t+1)/T

t/T
K([Tr]/T )[EFt([Tr]/T ){1− Ft([Tr]/T )}xtx′t]K ′([Tr]/T )dr

=

∫ (T+1)/T

1/T
K([Tr]/T )[EFt([Tr]/T ){1− Ft([Tr]/T )}xtx′t]K ′([Tr]/T )dr

→
∫ 1

0
K(r)M(r)K ′(r)dr = J (22)

as T →∞.

(v) Consider

∂2

∂θ∂θ′
ln f(yt,xt, t/T ;θ) = (yt − Ft)

∂2zt
∂θ∂θ′

− Ft(1− Ft)
∂zt
∂θ

∂zt
∂θ′

= (yt − Ft)
∂

∂θ
K(t/T )xt − Ft(1− Ft)K(t/T )xtx

′
tK
′(t/T ).

Then

E|| ∂2

∂θ∂θ′
ln f(yt,xt, t/T ;θ)|| ≤ E{|yt − Ft| × ||

∂

∂θ
K(t/T )xt|

+|Ft(1− Ft)| × ||K(t/T )xtx
′
tK
′(t/T )||}

≤ E{|| ∂
∂θ
K(t/T )xt||+ ||K(t/T )xtx

′
tK
′(t/T )||}

≤ E{|| ∂
∂θ
K(t/T )|| × ||xt||+ ||K(t/T )||2 × ||xt||2}

≤ C3E||xt||+ C4E||xt||2 <∞

for positive constants C3 and C4 because (a) |yt − Ft| and |Ft(1 − Ft)| are bounded by 1,

(b) ||K(t/T )|| and || ∂∂θK(t/T )|| are bounded because G(t/T ) is continuous and infinitely many

times differentiable for all θ ∈ Θ and t ≤ T for any T, and (c) E||xt|| and E||xt||2 exist because

Extx
′
t does. �
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A.2 The covariance matrix of the average score

In this section we give a proof of Lemma 3. Consider the covariance matrix

DT =

 D11T D12T

D21T D22T

 = (1/T )

T∑
t=1

EFAt (1− FAt )

 D11t D12t

D21t D22t

 |H0

where

D11T = (1/T )

T∑
t=1

EFAt (1− FAt )xtx
′
t = (1/T )

T∑
t=1

MA(t/T )

D12T = D′21T = (1/T )
T∑
t=1

(t/T )MA(t/T )

and

D22T = (1/T )
T∑
t=1

(t/T )2MA(t/T ) (23)

with FAt = F (xt, t/T ;θ1,0). Taking (23), writing t/T = [Tr]/T, where [Tr] = t, yields

D22T =
T∑
t=1

∫ (t+1)/T

t/T
([Tr]/T )2MA([Tr]/T )dr =

∫ (T+1)/T

1/T
([Tr]/T )2MA([Tr]/T )dr

→
∫ 1

0
r2MA(r)dr = D22

as T →∞. Likewise, limT→∞D12T =
∫ 1
0 rM

A(r)dr = D12 and limT→∞D11T =
∫ 1
0 M

A(r)dr =

D11. �

*** The following result may not be needed for anything:

From Lemma 4, the fact that E{(yt−Ft)|xt} = 0, the law of iterated expectations and noting

the limit of (20) it follows that the expected Hessian has the form

EH = lim
T→∞

(1/T )

T∑
t=1

E
∂2

∂θ∂θ′
ln f(yt,xt, t/T ;θ0)

= lim
T→∞

(1/T )

T∑
t=1

{E(yt − Ft)
∂2zt
∂θ∂θ′

|θ=θ0 − EFt(1− Ft)
∂zt
∂θ

∂zt
∂θ′
|θ=θ0}

= − lim
T→∞

(1/T )

T∑
t=1

EFt(1− Ft)K(t/T )xtx
′
tK
′(t/T )

= − lim
T→∞

(1/T )
T∑
t=1

EFt(1− Ft)K(t/T )M(t/T )K ′(t/T ) = −J .�
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