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Abstract

We consider a nonlinear vector model called the logistic vector smooth transi-

tion autoregressive model. The bivariate single-transition vector smooth transition

regression model of Camacho (2004) is generalised to a multivariate and multitransi-

tion one. A modelling strategy consisting of specification, including testing linearity,

estimation and evaluation of these models is constructed. Nonlinear least squares

estimation of the parameters of the model is discussed. Evaluation by misspecifica-

tion tests is carried out using tests derived in a companion paper. The use of the

modelling strategy is illustrated by two applications. In the first one, the dynamic

relationship between the US gasoline price and consumption is studied and possible

asymmetries in it considered. The second application consists of modelling two well

known Icelandic riverflow series, previously considered by many hydrologists and

time series analysts.
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1 Introduction

Regime-switching nonlinear models with an observable switch or transition variable have

a rather long history. Quandt (1958, 1960) considered a model in which the coefficients

of a linear model change at a certain value of an observable stochastic variable. This

means that there is at some point an abrupt switch from one regression line to an-

other. Bacon and Watts (1971) generalized this feature such that instead of a switch,

the transition from one line to the other is smooth, hence the term ”smooth transi-

tion”. The univariate dynamic counterparts of these models appeared in the time se-

ries analysis a few years later. Tong (1978) and Tong and Lim (1980) introduced the

threshold autoregressive (TAR) model, whereas Chan and Tong (1986) were the first to

consider a smooth transition variant of it. Tsay (1989) constructed a systematic model

building strategy for threshold autoregressive models, for an alternative approach, see

Strikholm and Teräsvirta (2006) and Teräsvirta, Tjøstheim and Granger (2010, Section

16.4). Teräsvirta (1994) developed a similar strategy for smooth transition autoregres-

sive (STAR) models. The latter work was completed by Eitrheim and Teräsvirta (1996)

who derived misspecification tests for STAR models. A coherent modelling strategy for

smooth transition regression (STR) models, including misspecification tests, appeared

in Teräsvirta (1998). For a recent review, see Teräsvirta, Tjøstheim and Granger (2010,

Chapter 3). For a thorough treatment of univariate TAR models, see Tong (1990).

These models are single-equation models. The first nonlinear vector model with an ob-

servable switch variable was the vector threshold autoregressive (VTAR) model that Tsay

(1998) introduced. The same threshold variable controlled the switch in each equation,

and the threshold parameter was also the same. Anderson and Vahid (1998) discussed

testing the linear vector autoregressive (VAR) model against a vector smooth transition

model. Rothman, van Dijk and Franses (2001) introduced a smooth transition vector

error-correction model (STVECM) with a logistic transition function to investigate the

Granger-causality hypothesis between money, output, inflation and interest rates. In their

model, a single transition function controlled the transition in all equations. Camacho
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1 Introduction

(2004) considered a bivariate logistic smooth transition model with exogenous regressors,

in which each equation could have its own the transition variable. He devised a modelling

strategy, consisting of specification, estimation and evaluation stages, for building such

models. Recently, Auerbach and Gorodnichenko (2012) estimated a three-dimensional

two-regime vector STAR model to investigate the impact of fiscal policy on output. These

authors, however, fixed the parameters of the transition function in advance, making their

model (the conditional mean) completely linear for the estimation purposes. For a recent

survey of vector TAR and STAR models, see Hubrich and Teräsvirta (2013).

In this paper, the previous work is generalized in various ways. Our model can have

more than one transition. Exogenous variables are allowed as in Camacho (2004). Sea-

sonality is introduced using seasonal dummies or trigonometric functions. The LVSTAR

system can either have the same transition function for all equations or the transition

variable may vary from one equation to the next. In the latter case, linear equations are

allowed as well.

Following Teräsvirta (1994) and Camacho (2004), a complete modelling strategy is

constructed for building LVSTAR models. Linearity and misspecification tests when a

single transition variable is controlling the transition in the whole system need special

consideration and are discussed in Teräsvirta and Yang (2014). In addition to the mis-

specification tests for the conditional mean, testing constancy of the error covariance

matrix is considered as well. Nonlinear least squares estimation and the problem of find-

ing initial values are discussed in detail. Dynamic properties of estimated models are

investigated using generalized impulse response functions, see Koop, Pesaran and Potter

(1996). How the modelling strategy works is illustrated by applications to the relationship

between gasoline price and consumption in the US and to the daily flow of two Icelandic

rivers. Tsay (1998) fitted a bivariate VTAR model with exogenous variables, temperature

and precipitation, to the latter pair of time series, and we want to compare our results

with his.

The plan of the paper is as follows. The LVSTAR model is introduced in Section 2

and the modelling procedure in Section 3. The specification of the model is the topic of

Section 4. Parameter estimation by nonlinear least squares is considered in Section 5 and

model evaluation by misspecification tests in Section 6.1. Section 7 contains two empirical

applications. Final remarks can be found in Section 8. The relevant proofs are in the

Appendices.
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2 The statistical framework

2 The statistical framework

The linear vector autoregressive model with k lags (VAR(k)) is defined as follows:

yt = A′

1yt−1 +A′

2yt−2 + ...+A′

kyt−k +Φ′dt + εt

= F′xt + εt, (2.1)

where F = (A′

1, ...,A
′

k,Φ
′)′, is a (kp+q)×p matrix, xt = (y′

t−1, ...,y
′

t−k,d
′

t)
′ is a (kp+q)×1

vector, yt is a p×1 column vector, and each Ai, i = 1, ..., k, is a p×p matrix. Furthermore,

dt is a q × 1 vector consisting of deterministic components such as intercepts, trends and

seasonal dummies, and exogenous variables. Finally, Φ is a q × p matrix containing the

coefficients of the elements of dt. The p× 1 error vector εt is white noise with mean zero

and positive definite covariance matrix Ω.

Throughout the paper, matrices will be denoted by boldface capital letters, and vectors

by lowercase boldface ones.

2.1 The vector logistic STAR model

We generalize (2.1) into the logistic vector smooth transition autoregressive (LVSTAR)

model. This model has the following representation:

yt = F′

txt + εt = {
m
∑

i=1

(Gi−1
t −Gi

t)F
′

i}xt + εt, (2.2)

where the p×1 error vector is white noise with mean zero and positive definite covariance

matrix Ω, Fi = (A′

i1, ...,A
′

ik,Φ
′

i)
′, i = 1, ..., m, is a (kp + q) × p matrix, and Gi

t is a

diagonal matrix of transition functions:

Gi
t = diag { g(s1it|γi1, ci1), ..., g(spit|γip, cip) } , (2.3)

for i = 1, ..., m − 1, and G0
t = Ip, G

m
t = 0. The diagonal elements of Gi

t in (2.3) are

logistic functions of their transition variables:

g(sijt|γij, cij) = (1 + exp{−γij (sijt − cij)})
−1, γij > 0, (2.4)

for i = 1, ..., m − 1 and j = 1, ..., p. Some rows of F′

i, i = 2, ..., m, may be zero vectors,

in which case the corresponding equations are linear. In order to avoid identification

problems, the diagonal elements of the corresponding diagonal matrices Gi
t, i = 2, ..., m,

are assumed to equal one, say. This is also the case for subsets of F′

i, that is, not all

equations need to have the same number of transitions.

The function (2.4) is a continuous (for γij < ∞), monotonically increasing sigmoid

function of its argument sijt and bounded between zero and one. We assume that the
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2 The statistical framework

transition variable sijt is a weakly stationary random variable, but it can also be a time

trend: sijt = t/T , where T is the number of observations; see for example He et al.

(2009). Furthermore, γij is the slope or smoothness parameter, determining the shape

of the function, or the smoothness of the transition. The parameter cij is a location

parameter determining the midpoint of the transition. When γij = 0, the corresponding

equation becomes linear, and when γij → ∞, the transition in that equation becomes

abrupt. In that case, when also s1it = ... = spit, cj1 = ... = cjp and m = 2, the resulting

model is the multivariate TAR model of Tsay (1998).

As an example, consider the case where m = 2. Then (2.2) becomes

yt = {(Ip −G1
t )F

′

1 +G1
tF

′

2}xt + εt (2.5)

so there is a single transition in each equation of the model. In this case, each location

parameter c1j , j = 1, ..., p, has a straightforward interpretation. It represents the inflection

point in which the transition function has value 1/2, i.e., one is halfway through the

transition from F′

1 to F′

2 in the sense that in (2.5) the changing parameter matrix F′

t =

(1/2)(F′

1 + F′

2). When p = 1, (2.5) is the univariate logistic STAR model of Teräsvirta

(1994).

This type of regime-switching can be convenient for modelling, for example, structural

shifts when the transition variable is the normalized time t/T , or business cycle asymme-

try where the regimes represent expansions and recessions, see Teräsvirta and Anderson

(1992) and Skalin and Teräsvirta (2002) for empirical examples.

The LVSTAR model defined in (2.2) has p different transition functions for each i =

1, ..., m−1, and each one can have its own transition variable. If γ1i = γ2i = ... = γpi = γi,

c1i = c2i = ... = cpi = ci, and s1it = s2it = ... = spit = sit, then the ith transition matrix

is Gi
t = g(sit|γi, ci)Ip. This may in some applications be a reasonable simplification and

reduces the complexity of the model.

Restrictions are required to make the model defined by (2.2), (2.3) and (2.4) iden-

tified. In each equation, the likelihood function is invariant to permutations of the or-

der of transitions. This is similar to the so-called label switching problem in mixture

models, for discussion see Redner and Walker (1984), Diebolt and Robert (1994) and

Richardson and Green (1997). To identify the model, one may assume that the tran-

sitions appear in the order their transition variables appear in vector xt. If two transition

functions of the ith equation have the same transition variable, sijt = sikt, j 6= k, identifi-

cation is achieved by assuming cij < cik. This generalises to situation in which more than

two transition functions have the same transition variable.

The LVSTAR model can be reparameterised as follows:

yt = (B′

1 +G1
tB

′

2 + ...+Gm−1
t B′

m)xt + εt = Ψ′

tB
′xt + εt, (2.6)

5



2 The statistical framework

where Ψt =
(

Ip,G
1
t , ...,G

m−1
t

)

′

is a mp × p full rank time-varying matrix. Furthermore,

B = (B1,B2, ...,Bm) is a (kp + q) × mp matrix, where B1 = F1, and Bi = Fi − Fi−1,

i = 2, ..., m. The representation (2.2) describes the transition through different extreme

regimes Fi, i = 1, ..., m, whereas the reparametrised form (2.6) is practical for specifica-

tion, estimation and evaluation, and hence will be employed hereafter. The special case

(2.5) where m = 2 has the reparameterised form

yt = (B′

1 +G1
tB

′

2)xt + εt.

Camacho (2004) considered this representation for modelling bivariate time series.

Moreover, the number of transitions in every equation is not necessarily restricted to

be the same. Suppose that equation j has mj extreme regimes. Let m = max(m1, ..., mp)

and formulate the models (2.2) and (2.6). In (2.2), restrict all the jth columns in Fi to

be the same, for all i ≥ mj . Equivalently, in (2.6), restrict all the jth columns in Bi to

be zeros, for all i > mj . In the following subsection, we will discuss the details of how to

make such restrictions in the following section.

We make the following assumption:

Assumption 2.1. The sequence of yt in (2.2), t = 1, ..., T is weakly stationary.

Assumption 2.1 is a high-level assumption. Stationarity of vector nonlinear models is

discussed in Saikkonen (2008). Stationarity conditions in his work are valid only for

LVSTAR models with a single transition function for all equations. Corresponding results

do not seem to exist for the case where each equation has its own transition function.

2.2 Restrictions on linear parameters

In this section we consider possible restrictions on the column space of the linear parameter

B, for example, multiple switches between the two extreme regimes, and linearity of

certain equations of the system. In some applications it is appropriate to specify the

transition function such that the extreme regimes associated with small and large absolute

values of st − c are identical. This can be achieved within a single-transition model by

using the exponential function

g(sjt|γj, cj) = 1− exp{−γj (sjt − cj)
2}, γj > 0,

for applications see Michael et al. (1997), Sarantis (1999), and Peel et al. (2001), or by

the second-order logistic function

g(sjt|γj, cj) = (1 + exp{−γj (sjt − cj1) (sjt − cj2)})
−1, γj > 0,
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3 Modelling strategy

where cj1 ≤ cj2 as proposed in Jansen and Teräsvirta (1996). More generally, multiple

switches between the two extreme regimes can be described by the general nth-order

logistic transition function.

In the framework of the LVSTAR model, assuming multiple switches between the two

extreme regimes can also be achieved by imposing restrictions on the parameter matrix

B. As an example, consider the 2-transition multivariate model

yt = (B′

1 +G1
tB

′

2 +G2
tB

′

3)xt + εt = Ψ′

tB
′xt + εt.

The assumption of multiple switches between two extreme regimes implies B2 +B3 = 0.

This is a more flexible alternative than the previous ones because γi1 6= γi2 is allowed.

3 Modelling strategy

Modelling stationary vector time series with LVSTAR models is carried out in a sys-

tematic fashion. The modelling strategy may be divided into three stages: specifica-

tion, estimation, and evaluation. Corresponding procedures for single-equation models

exist and have been successfully applied; see for example Box and Jenkins (1970) for

ARIMA models, Tsay (1989) and Teräsvirta, Tjøstheim and Granger (2010, Section 16.4)

for threshold autoregressive and switching regression models, and Teräsvirta (1998) or

Teräsvirta, Tjøstheim and Granger (2010, Section 16.3) for smooth transition regression

models. Camacho (2004) designed a modelling strategy for bivariate STAR models, and

we generalise it to our family of LVSTAR models. We also consider the special case in

which all equations are assumed to have the same transition variable. Tsay (1998) makes

this assumption for his two-regime vector threshold autoregressive (VTAR) model. In that

model, the whole transition function, i.e., both the threshold variable and thereshold, is

the same for all equations of the model.

Estimating a linear stationary VAR model is the first stage in specifying an LVSTAR

model. This involves selecting the lag length for the VAR model. Specification consists of

testing the linear VARmodel against LVSTAR one and, if linearity is rejected, determining

the structure of the LVSTAR model. This implies selecting the transition variable(s)

and determining the lag structure of the model. The latter means reducing the size of

the model by imposing appropriate parameter restrictions. The way linearity is tested

depends on the assumptions made about the system. If it is assumed that the LVSTAR

model only has a single transition variable, that is, it is the same for all equations, a joint

test involving the whole model can be applied. If this assumption is not made, testing

and transition variable selection may be carried out equation by equation as in Camacho

(2004), see Luukkonen et al. (1988) and Teräsvirta (1994, 1998).
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4 Specification of the Logistic Vector STAR model

Reducing the size of the model already involves parameter estimation. The parameters

of the LVSTAR model are estimated using nonlinear least squares. Numerical aspects of

this estimation problem will be considered later. In the linear VAR case, necessary and

sufficient conditions for the least squares estimators to be consistent and asymptotically

normal exist, but this is not the case for nonlinear LVSTAR model. Stability of the model

is a necessary condition, but explicit conditions for stability of the general LVSTAR model

do not seem to exist.

Evaluation of the model is done by checking (a necessary condition for) stability nu-

merically and subjecting the estimated model to misspecification tests. These include

testing the null hypothesis of no error autocorrelation, the null of no additive nonlinear-

ity, and testing parameter constancy. Constancy of the covariance matrix is tested as

well. We now consider these three stages of model building and begin with specification.

4 Specification of the Logistic Vector STAR model

As already mentioned, specification involves testing linearity against the LVSTAR model

and selecting the transition functions. Linearity testing requires a test of m = 1 against

m = 2, where m is the number of ’extreme states’ and m − 1 the number of transitions

in the system. Before the estimation, we need to determine m. If m = 1 is rejected

against m = 2, the next step is to test m = 2 against m = 3. The relevant test is

discussed in Teräsvirta and Yang (2014). There is a statistical argument in favour of

building the model ’from specific to general’: if m is chosen too large, the model will

contain unidentified nuisance parameters. This invalidates the asymptotic inference as

the parameters of the model cannot be consistently estimated. This is a well known

problem, first formulated and discussed by Davies (1977, 1987), see also Watson and Engle

(1985), and, later, in the univariate STAR context, by Saikkonen and Luukkonen (1988),

Luukkonen et al. (1988) and Teräsvirta (1994). A solution based on constructing the

empirical null distribution of the test statistic can be found in Hansen (1996), see also

Teräsvirta et al. (2010, Chapter 5) for discussion.

The choice of the transition variables for the LVSTAR model can in some cases be

based on economic theory implications. More often, however, economic theory may sug-

gest many potential transition variables. For example, the theory may not be explicit

about which lag of a given variable to choose. In the univariate case, a common way is

to conduct a linearity test for each potential transition variable and choose the one which

produces the strongest rejection measured in the p-value.

In the multivariate case we can conduct linearity tests equation by equation as in

Luukkonen et al. (1988), Teräsvirta (1994) and Camacho (2004). For each equation, one
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5 Estimation of parameters

may choose the transition variable that produces the smallest p-value in the test as in

the univariate case. If linearity is not rejected for any transition variable in the set, the

corresponding equation is assumed to be linear. However, in the multivariate case, if

there are several very significant transition variable candidates for some equations, the

question is which combination of transition variables to choose for the LVSTAR model.

A joint test of linearity against a LVSTAR model in which different equations would have

different (predetermined) transition variables would be useful.

To illustrate, consider the p-dimensional single-transition logistic VSTAR model in

(2.6):

yt = B′

1xt +GtB
′

2xt + εt, (4.1)

where the sequence {εt} is iidN (0,Ω). The null hypothesis of linearity can be written

as H0: γj = 0, j = 1, ..., p, and the alternative hypothesis is H1: at least one γj > 0,

j = 1, ..., p. The basic idea of the joint test is to replace the transition function by a

first-order Taylor expansion. For details, see Teräsvirta and Yang (2014).

If it is assumed a priori that potential nonlinearity in the vector system is controlled

by a single transition variable, this has to be taken into account in testing linearity.

Economic theories or in some cases common sense may suggest this special case. A good

example is the investigation of the evolution of different prices of an asset in different

markets controlled by the difference between the prices, see Tsay (1998). In that paper,

the price difference is the sole transition variable. A joint linearity test against LVSTAR

with a single transition variable is therefore advisable, as it makes it possible to control

the (asymptotic) size of the test for the whole system. The joint test with a single

transition variable is a special case of the joint test with different transition variables, see

Teräsvirta and Yang (2014).

Our suggestion for specifying a LVSTAR model with a single transition variable is

to conduct the joint linearity tests with each potential transition variable. If none of

these tests rejects linearity, one can retain the linear VAR model. If the null hypothesis

is rejected for at least one transition variable, we choose the one producing the smallest

p-value in the test. Furthermore, we test each equation separately using the selected

transition variable in order to find out whether some equations are in fact linear.

5 Estimation of parameters

In this section we consider nonlinear least squares (NLS) estimation of the parameters

in the LVSTAR model (2.6). We focus on traditional derivative-based optimization tech-

niques. The model has the parameters θ = {B,Ω,Γ,C}, where B = (B1,B2, ...,Bm),

Γ = {γij} and C = {cij}, i = 1, ..., m− 1, j = 1, ..., p. The NLS estimators are obtained

9



5 Estimation of parameters

by solving the following minimization problem:

θ̂ = argmin
θ

QT (θ), (5.1)

where QT (θ) =
∑T

t=1 (yt −Ψ′

tB
′xt)

′

(yt −Ψ′

tB
′xt).

In practice, the objective function QT (θ) can be rather flat in many directions and

meanwhile possess many local optima. Finding a suitable starting-value of θ for the

nonlinear optimization algorithm is therefore essential. We employ a grid search algorithm

for finding the starting-value. The set of the parameters θ is divided into two subsets:

the ’nonlinear parameter set’ {Γ,C} and the linear set containing the parameters in B.

The basic idea of the grid search is to construct a discrete grid in the parameter space of

Γ and C. For each point in the grid, that is, a fixed pair of Γ and C, one estimates the

parameters in B. For fixed Γ and C, B is estimated by linear regression. Such a regression

is carried out for all values in the grid. The pair of Γ and C yielding the smallest sum of

squared residuals and the corresponding estimate of B are selected as the starting-value

for the ensuing nonlinear optimization.

Because of the possibility of local optima the grid should be sufficiently dense. It

could be necessary to allow it to be more dense in some areas than in others. A dense

grid requires a large number of points. But then, the number should not be too large

because the computational burden increases with the number of grid points. Finding a

proper balance between these conflicting requirements may not always be easy.

Since the error covariance matrix Ω does not enter the objective function QT , it is

convenient to find the initial estimates of the parameters equation by equation. For

equation j, let the corresponding parameters be Γj , Cj and βj, and the corresponding

residual sum of squares Qj,T . The grid search is carried out as follows:

1. Construct a discrete grid in the parameter space of Γj and Cj.

2. For each pair of Γj and Cj in the grid, compute the corresponding β̂j and the

residual sum of squares Qj,T .

3. Find the smallest Qj,T and choose the corresponding β̂j and the pair of Γj and Cj

as suitable starting values.

In constructing the grid, one has to choose combinations of Γj and Cj such that the

corresponding transition functions display a sufficient amount of variation in the grid. For

example, if the location parameter c in a logistic function is chosen outside the observed

support of the transition variable, the corresponding slope parameter γ has to be small

enough to compensate for that.
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5 Estimation of parameters

If there is a single transition function for the whole system, the initial estimates are

worked out as follows. For fixed Γ andC, the conditional minimizer of QT can be obtained

by solving the first-order condition equations

T
∑

t=1

xt (yt −Ψ′

tB
′xt)

′

Ψ′

t = 0

that can be rewritten as
T
∑

t=1

xty
′

tΨ
′

t =

T
∑

t=1

xtx
′

tBΨtΨ
′

t. (5.2)

The equation (5.2) leads to the following closed form of the NLS estimator ofB conditional

on Γ and C:

vec(B̂) =

[

T−1

T
∑

t=1

(ΨtΨ
′

t)⊗ (xtx
′

t)

]−1 [

T−1

T
∑

t=1

vec (xty
′

tΨ
′

t)

]

. (5.3)

Expressed otherwise,

vec(B̂) = (M′M)
−1

M′vec(Y′) (5.4)

where M = (Υ1,Υ2, ...,ΥT )
′ is a Tp × mp(kp + q) matrix and Υt = Ψt ⊗ xt is an

mp(kp+q)×p matrix. The T ×p residual matrix Ê = (ε̂1, ..., ε̂T )
′ where ε̂t = yt−Ψ′

tB̂
′xt

is a column vector of residuals. The estimated error covariance matrix equals

Ω̂ = T−1Ê′Ê.

It is seen from (5.4) that T ≥ m(kp+ q) is a necessary condition for M′M to have full

rank and, consequently, to ensure that the solution (5.4) is unique.

The grid may be replaced by a heuristic estimation algorithm such as simulated anneal-

ing or differential evaluation. Simulations by Schleer (2013) show that these algorithms

compare well with grid searches and may in many cases lead directly to the global opti-

mum.

After selecting the starting-values, the parameters can be estimated using NLS. In

order to alleviate the computational burden, it is advisable to follow the suggestion of

Sollis et al. (1999) made for estimating univariate STAR models. The first iteration con-

sists of re-estimating the parameters in Γj and Cj , given the starting values for βj . This

is done by NLS. Following this, the new value of βj , call it β̂
(2)

j , is calculated as in Step

2 of the above algorithm. In the next iteration β̂
(2)

j is fixed in re-estimating the parame-

ters in Γj and Cj. Iteration is continued until convergence. Dividing each iteration into

these two steps reduces the dimension of the nonlinear estimation problem and thus saves

computation time. If the grid has been dense, the initial step-length of the nonlinear

optimization algorithm must be sufficiently short so that optimization with a high prob-

ability leads to the local minimum closest to the value found by the grid search. If the
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6 Evaluation

LVSTAR model has same transition function for all equations, the same approach can be

used. The difference is that the linear step now consists of estimating a linear VAR model

instead of a single equation.

The dimension of the grid can be further reduced for models with more than one

transition by keeping the nonlinear parameters from the previously estimated model fixed

and restricting the grid search to the new transition. This alleviates the computational

burden.

6 Evaluation

6.1 Misspecification tests

Finding out whether the estimated LVSTAR model appears to satisfy the assumptions

under which it was estimated is an integral part of model building. We employ the three

multivariate misspecification tests constructed in Teräsvirta and Yang (2014). They are

the test of no serial correlation test, the test of no additive nonlinearity, and the parameter

constancy test. All of them are the extensions of the three univariate misspecification tests

developed in Eitrheim and Teräsvirta (1996). The multivariate serial correlation test is

derived from the autocorrelation VARMA form, see Godfrey (1988, pp. 117-118). The

multivariate additive nonlinearity test is the just the joint linearity test for the casem > 2.

The multivariate parameter constancy test is a special case of the joint linearity test in

which the transition variable is the normalized time τ = t/T .

Lütkepohl (2004) draws attention to the possibility that the error covariance matrix

of a vector model may in practice be nonconstant. Testing the constancy of this matrix

is therefore an important part of model evaluation. In this work, we use both the test

developed in Eklund and Teräsvirta (2007) and the one by Yang (2014). These are tests

against multivariate heteroskedasticity but based on different assumptions. The one in

Eklund and Teräsvirta (2007) is derived presuming that the correlations of the errors are

time-invariant, whereas the test developed by Yang (2014) is based on the assumption

that the rotating projection of the covariance matrix is time-invariant. The simulation

results in Eklund and Teräsvirta (2007) suggest that the size of the test is only slightly

affected by violations of the assumption of constant correlations. The same is true for the

assumption of constant rotation projection in Yang (2014).

6.2 Stability of the system

In this paper, the LVSTAR process is assumed weakly stationary. A necessary condition

for this is stability. In the linear VAR case, the necessary and sufficient conditions for
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exponential stability and weak stationarity coincide. There are no necessary and sufficient

conditions for weak stationarity of the vector LSTAR models (such conditions are lacking

for the general univariate STAR model as well).

A naive approach to checking weak stationarity consists of checking the roots of the lag

polynomials of the extreme regimes and seeing whether or not they lie outside the complex

unit disk. However, this would only provide a sufficient condition for weak stationarity.

Besides, in practice this is only possible for single-transition models whose equations share

the same transition function.

Exponential stability may be studied numerically by generating paths of realisations

from the LVSTAR model by switching off the noise, starting from a large number of initial

points and seeing whether or not the paths of realisations converge. Convergence to a

single stationary point is a necessary condition for exponential stability. Since the method

is numerical, the conclusion following from repeated convergence to the same point can

only be that the stability assumption is not contradicted by these calculations. If it is, the

model may be respecified and re-estimated or abandoned. This diagnostic is employed in

the examples of Section 7. The ’histories’, i.e., sets of values of the time series in question

are natural starting-values for stability calculations.

6.3 Heteroskedasticity-robust tests

Heteroskedasticity is a common feature in both financial and macroeconomic time series

of sufficiently high frequency. It has an adverse effect on the empirical size of linearity

and misspecification tests. From the results of the tests of the empirical applications in

the following section, it can be seen that the tests are much more likely to reject the null

of linearity when the covariance matrix is not constant over time. In such circumstances,

it is important to have asymptotically valid tests that are reliable in finite samples.

A straightforward way of deriving Lagrange multiplier type tests that are asymp-

totically heteroskedasticity-robust is to use heteroskedasticity-consistent covariance ma-

trix estimates (HCCME) suggested in White (1980). Nevertheless, the findings in the

Monte Carlo experiments in Godfrey and Tremayne (2005) indicated that in small sam-

ples, asymptotic critical values are not useful when heteroskedasticity-robust versions of

the standard Lagrange multiplier tests are applied. The wild bootstrap turned out to be

superior to the tests based on the HCCME in their simulations.
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7 Empirical applications

7 Empirical applications

7.1 Gasoline price and consumption

We consider two applications of the LVSTAR model and begin by looking at the interac-

tion between the US real gasoline prices and gasoline consumption. The time series are

the monthly real gasoline prices and the monthly real gasoline consumption from February

1973 to December 1998. A rather common, albeit not unanimous, view in the literature is

that the effects of energy price shocks on some macroeconomic aggregates are asymmetric.

In particular, energy price increases are perceived to have larger effects than energy price

decreases. We want to find out whether this is also the case for the relationship between

the gasoline price and the gasoline consumption.

This pair of time series has been analysed in Kilian and Vigfusson (2011), KV for

short. The original series are transformed into logarithms and differenced, so the two

variables to be modelled are approximate monthly growth rates. Figure 1 shows the

levels of both series. Let yt = (y1,t, y2,t)
′ where y1,t is the real gasoline price change and

y2,t the real gasoline consumption change. In order to model the presumed asymmetry,

KV censored the price variable in the consumption equation such that it obtained value

zero for negative values of the series, that is, y+1,t−d = max(0, y1,t−d), given a suitable lag

d. They estimated the following multivariate VAR(k) model:

y1t = a10 +

k
∑

i=1

a11,iy1,t−i +

k
∑

i=1

a12,iy2,t−i + ε1t,

y2t = a20 +

k
∑

i=0

a21,iy1,t−i +

k
∑

i=1

a22,iy2,t−i +

k
∑

i=0

f21,iy
+
1,t−i + ε2t, (7.1)

where E(εit) = 0, E(ε2it) = σ2
i , i = 1, 2, and E(ε1tε2t) = 0. The last assumption is needed

for identification. The triangular form (7.1) implies weak exogeneity of the price variable,

which is not an unreasonable assumption. The focus of KV was on testing the hypothesis

f21,i = 0, i = 0, ..., k, in (7.1). They were interested in possible asymmetry in the effect

of a price change on consumption but found no compelling evidence against symmetry.

We begin by fitting a linear VAR model to the series and testing linearity of the

two equations against the LVSTAR model. In doing so, we treat lags of both variables

as potential transition variables, as we do not know in advance which variable controls

potential nonlinearity. It appears that k = 2 is a sufficient lag length because the relevant

LM test, see Teräsvirta and Yang (2014), does not reject the null hypothesis of no serial

correlation. However, the multivariate Lomnicki-Jarque-Bera test in Lütkepohl (2005)

strongly rejects the null hypothesis of multivariate normality, and constancy of the error

covariance matrix is rejected by the tests of Eklund and Teräsvirta (2007) and Yang
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7 Empirical applications

(2014). These rejections may indicate misspecification of the conditional mean, or the

presence of outliers in the linear model, or both.

Linearity of the VAR model is tested equation by equation. For both equations, we

test using yj,t−d, j = 1, 2, d = 1, ..., 6, as transition variables. Table 1 contains the results.

The p-values (multiplied by 100) of Wilks’s Λ test, Rao’s F test, see Teräsvirta and Yang

(2014), and the wild bootstrap LM test are reported. In this application, the first two

produce almost identical results, whereas the results of the wild bootstrap tests deviate

from them. Linearity is strongly rejected for many transition variables in the first two

tests, whereas the same happens in a much smaller number of wild bootstrap tests. The

presence of heteroskedasticity is a likely explanation to this difference in performance.

We choose the transition variable according to the p-values of the third-order wild

bootstrap tests. This means choosing y1,t−4 for the price equation and y1,t−1 for the

consumption equation. After estimating the two-regime LVSTAR model, the test of no

additive nonlinearity indicates that the price equation may have another transition with

y1,t−5 as the transition variable. But then, one transition seems to be sufficient for the

consumption equation. The final LVSTAR model thus consists of a two-transition price

equation with transition variables y1,t−4 and y1,t−5, and a single-transition consumption

equation with transition variable y1,t−1. Removing the variables corresponding to in-

significant parameter estimates and imposing some restrictions based on the discussion in

Section 2.2, we end up with the following estimated LVSTAR model:

y1,t = 0.290
0.006

y1,t−1 − 0.283
0.006

y1,t−2 + 0.139
0.005

y2,t−2 + 0.202
0.010

+
(

0.088
0.006

y1,t−1 + 0.134
0.003

y2,t−1 + 0.283
0.007

y1,t−2 − 0.372
0.007

y2,t−2

)

×
(

1 + exp
{

−97.24
13.653

(

y1,t−4 − 0.160
0.026

)

/σs

})

−1

+
(

0.463
0.006

y1,t−1 + 0.134
0.003

y2,t−1 − 0.018
0.007

y1,t−2 + 0.105
0.007

y2,t−2 − 0.460
0.013

)

×
(

1 + exp{−94.491
65.695

(

y1,t−5 + 0.604
0.037

)

/σs}
)

−1

+ ε̂1,t,

y2,t = −0.214
0.007

y1,t−1 − 1.098
0.009

y2,t−1 + 0.123
0.006

y1,t−2 − 0.249
0.010

y2,t−2 + 0.496
0.028

+
(

0.051
0.008

y1,t−1 + 0.726
0.010

y2,t−1 − 0.123
0.006

y1,t−2 + 0.071
0.011

y2,t−2 − 0.216
0.029

)

×
(

1 + exp
{

−21.677
4.086

(

y1,t−1 + 1.582
0.092

)

/σs

})

−1

+ ε̂2,t, (7.2)

T = 311, tr{Ω̂ML} = 6.77, σs = 2.43,

where the figures below the parameter estimates are standard deviation estimates, and σs

is the sample standard deviation of y1,t. The model (7.2) is evaluated by misspecification

tests mentioned in Section 6.1, and the results can be seen in Table 2. The model passes

almost all the wild bootstrap tests at significance level 0.05. The p-value 0.04 for y1,t−4
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7 Empirical applications

in the consumption is not small enough to make us reject the null hypothesis of no addi-

tive nonlinearity, given the number of observations and the number of tests we conduct.

Results of the joint wild bootstrap serial error correlation and parameter constancy tests

look fine enough. The results of the tests of constancy of the error covariance matrix (not

reported) indicate that there is unmodelled conditional heteroskedasticity in the errors.

They explain why the results of the wild bootstrap based tests differ from those tests

assuming independent identically distributed errors.

Figure 2 depicts the estimated transition functions for the gasoline price change equa-

tion and the consumption change equation. The transition in the consumption equation

is smoother than the two transitions in the price equation. As a whole, the observations

cover the whole range of values of the transition functions from zero to one. Figure 3

shows the values of the transition functions over time for both equations.

Figure 4 sums up the results of checking the stability of our estimated model, as

discussed in Section 6.2. We use all histories in the data set as the initial values, and the

paths are shown in Figure 4. The realised price observation sequences converge to −0.302

and the consumption ones to 0.218. No matter which initial values or histories are used,

the trajectories converge to the same stationary point.

As is the case in autoregressive models in general, it is not possible to interpret single

coefficients of the model. In order to shed light on the question of possible asymmetry

of the gasoline prices and consumption to shocks, we compute generalized multivariate

impulse functions as suggested in Koop et al. (1996) and represent them using highest

density regions (HDR) of Hyndman (1996); see also Teräsvirta et al. (2010, Section 15.3).

The HDRs, which in this example are unimodal, are illustrated using boxplots. Responses

to positive shocks are shown separately from responses to negative ones.

The lower panel of Figure 5 shows that the response of consumption change to price

change shocks is asymmetric. A negative price shock causes a stronger response than

a positive one in the sense that the density has greater dispersion in the former case

than in the latter. This difference lasts two months before disappearing. Negative price

shocks thus cause greater uncertainty in the consumer behaviour than positive ones. The

directions are as expected: a negative price shock on the average increases consumption

growth, whereas a positive shock decreases it. The response of price to price shocks

appears in the upper panel of Figure 5. The two consumption shocks in Figure 6, are

symmetric around zero, as the responses to positive and negative shocks are mirror images

of each other. Note, however, that given weak exogeneity of the price variable, interpreting

these responses is problematic.
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7 Empirical applications

7.2 Icelandic river flows

We turn to two daily Icelandic river flow series from the years 1972–1974, in which the

flow is measured in cubic metres per second. The series are from the Hydrological Survey

of the National Energy Authority of Iceland and were first analyzed using univariate

nonlinear models by Tong, Thanoon and Gudmundsson (1985). Tsay (1998) considered

the two rivers, Jökulsá eystra and Vatndalsá, jointly and fitted a bivariate threshold

autoregressive model with a single threshold to the series.

Tong et al. (1985) describe the rivers and the observation station. Jökulsá is the bigger

river of the two, with a large drainage basin that includes a glacier. Vatndalsá has a much

smaller drainage area, and some of the flow is due to groundwater. The weather station

lies between the two drainage basins at about 650 metres. The temperatures measured

there are higher than the ones on the glacier of Jökulsá, which affects the results of

modelling. Tong et al. (1985) point out that measuring the rainfall accurately is difficult

because of high winds in the area. This may also explain some of the empirical results.

Before modelling, the precipitation series is shifted forward by one day due to the

way the rainfall is recorded, see Tong et al. (1985). The flow, precipitation and the

temperature are graphed in Figure 7. The flow is strongest in the spring when the snow

is melting and slows down in the summer. The spring peak is more pronounced in the

Vatndalsá flow than the Jökulsá one, because the drainage area of the latter contains the

glacier, which smooths the flow.

We denote the Jökulsá flow by y1t, the Vatndalsá one by y2t, precipitation by xt and

temperature by zt. We complement our model by a seasonal component that contains an

annual half-cycle (a sine function) and an annual cycle. It has the form

δ1 sin(nπ/365) + δ2 sin(2nπ/365) + δ3 cos(2nπ/365), (7.3)

where n represents the nth day of the year.

We begin by testing linearity. The column ’Lin to R2’ in Table 3 reports the results

from the wild bootstrap third-order linearity tests. The null hypothesis of linearity is

rejected very strongly for both flows and all transition variables; some of the p-values lie

below 10−16.∗ The test results are thus inconclusive, and following Tsay (1998) we select

the temperature as the transition variable for both flow equations. Since the flows are

heavily autocorrelated, choosing a lag of the flow would have been another possibility.

The results of the wild bootstrap test of no additive nonlinearity for the estimated the

two-regime (single-transition) LVSTAR model can be found in column ’R2 to R3’ of

∗The numbers stored in a computer system are not continuous. There exists a positive number ǫ such

that 1 + ǫ 6= 1, and for any x < ǫ, 1 + x = 1. This ǫ is the smallest positive floating-point number. In R,

ǫ = 2.220446e− 16.
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Table 3. They show that the nonlinearity attributed to the temperature has been well

described, but there are still many strong rejections of the null hypothesis. The model is

thus extended to a three-regime one. Somewhat subjectively, we select the precipitation

of lag one xt−1 as the new transition variable for both equations. Column ’R3 to R4’

in Table 3 contains the results of the tests of no additive nonlinearity. There are still

a number of rejections, especially in the Vatndalsá equation. Since we do not want to

complicate the model further, however, we terminate the search for transitions.

After removing redundant variables and lags and imposing some other parameter

restrictions, the estimated model has the form (7.4)–(7.6).

Before interpreting the results, we evaluate the model. The wild bootstrap tests of no

error autocorrelation up to lag 10 can be found in Table 4, and they do not indicate prob-

lems. The tests of parameter constancy do not reject the null hypothesis either. These

results do not challenge the specified model. Both the results from the error covariance

matrix constancy tests in Eklund and Teräsvirta (2007) and Yang (2014) reject strongly,

which indicates the presence of heteroskedasticity. This explains the difference between

the results of wild bootstrap based tests and the ones assuming i.i.d. errors. A look at Pan-

els (a) and (b) in Figure 7 suggests that there will still be heteroskedasticity in the errors

of the estimated LVSTAR model. Indeed, both the test of Eklund and Teräsvirta (2007)

and the one by Yang (2014) strongly reject when parameter constancy (homoskedasticity)

is tested against heteroskedastic errors.

Next we provide some comments on the estimated model. To begin with, the transition

in the Jökulsá equation driven by the temperature, shown in Figure 8, is very smooth. The

regime change begins at temperatures around 0◦C and is completed when the temperature

approaches 10◦C. This is due to the glacier. When the temperature increases, so does

the flow from the glacier. However, since the glacier is located at 1000 − 1800 metres,

considerably higher than the weather station, the flow increases gradually as a function of

the temperature. Vatndalsá without a glacier, has a much more rapid transition driven by

the temperature, and the estimate of the location parameter equals 0.3◦C, see Figure 9.

Figures 10 and 11 show the transitions driven by the precipitation in the two rivers.

Since we are using the same observations for both rivers and the mid-point of transition

in Jökulsá is much higher than the one in Vatndalsá it seems that the flow of the small

river is affected more rapidly by the rain than that of the big one, which is be reasonable.

The transition of the small river driven by the precipitation has a low mid-point at 1.41,

suggesting that the response to even small amounts of rain is nonlinear.
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y1t = 0.93
0.002

y1,t−1 + 0.34
0.004

y1,t−2 − 0.21
0.002

y1,t−3 − 0.7
0.028

y1,t−4 + 0.21
0.002

y1,t−5

+0.43
0.005

y1,t−6 − 0.14
0.002

y1,t−7 − 0.10
0.005

y1,t−8 − 0.08
0.005

y1,t−10

+0.08
0.005

y1,t−12 + 0.24
0.005

y1,t−14 + 0.09
0.002

y1,t−15

−0.18
0.005

y2,t−1 − 0.05
0.005

y2,t−5

+0.26
0.005

y2,t−7 + 0.12
0.002

y2,t−8 − 0.34
0.005

y2,t−9 − 0.07
0.002

y2,t−10

+0.07
0.004

y2,t−13 + 0.06
0.003

y2,t−15

−0.06
0.002

zt−1 + 4.94
0.068

+
(

0.06
0.003

y1,t−1 + 3.01
0.019

y1,t−2 + 0.09
0.004

y1,t−3 − 0.7
0.028

y1,t−4 − 0.17
0.004

y1,t−5

−0.86
0.024

y1,t−6 − 0.07
0.004

y1,t−7 + 1.43
0.023

y1,t−8 + 0.07
0.004

y1,t−9 − 1.1
0.023

y1,t−10

+0.25
0.025

y1,t−12 − 0.14
0.004

y1,t−13 − 0.05
0.025

y1,t−14

−0.96
0.026

y2,t−1 + 0.77
0.027

y2,t−3 + 0.17
0.003

y2,t−4 + 0.83
0.027

y2,t−5

+0.07
0.003

y2,t−6 + 0.5
0.026

y2,t−7 − 0.39
0.003

y2,t−8 + 0.18
0.003

y2,t−10

−0.17
0.022

y2,t−11 + 0.16
0.018

y2,t−13 + 0.09
0.002

y2,t−14 − 1.21
0.011

y2,t−15

+0.88
0.003

xt−1 + 0.06
0.005

xt−2 − 0.41
0.003

xt−3 − 0.54
0.009

zt + 1.67
0.008

zt−1 + 2.91
0.411

)

×
(

1 + exp
{

−0.59
0.030

(

zt − 4.52
0.191

)})

−1

+
(

−0.14
0.002

y1,t−1 − 0.46
0.005

y1,t−2 − 0.08
0.003

y1,t−3 + 1.08
0.008

y1,t−4 + 0.07
0.002

y1,t−5

− 1.1
0.013

y1,t−6 + 0.09
0.003

y1,t−7 + 0.72
0.022

y1,t−8 − 0.25
0.005

y1,t−9 + 0.78
0.022

y1,t−10

+0.22
0.005

y1,t−11 + 0.19
0.017

y1,t−12 − 0.06
0.013

y1,t−14 + 0.11
0.004

y1,t−15

−0.72
0.012

y2,t−1 − 0.26
0.004

y2,t−2 + 0.5
0.013

y2,t−3 + 0.14
0.004

y2,t−4

−0.07
0.005

y2,t−6 − 0.7
0.023

y2,t−7 + 0.07
0.005

y2,t−8 + 0.95
0.02

y2,t−9 + 0.14
0.005

y2,t−10

−0.98
0.014

y2,t−11 − 0.24
0.006

y2,t−12 + 0.24
0.018

y2,t−13 + 0.52
0.013

y2,t−15

+0.35
0.002

xt−1 − 0.17
0.005

zt + 10.45
0.179

)

×
(

1 + exp
{

−12.77
1.564

(

xt−1 − 5.17
0.017

)})

−1

−4.01
0.201

sin
( nπ

365

)

+ 0.53
0.027

sin

(

2nπ

365

)

− 2.16
0.110

cos

(

2nπ

365

)

+ ε̂1,t, (7.4)
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y2t = −0.12
0.001

y1,t−1 + 0.71
0.002

y1,t−2

+0.23
0.003

y1,t−6 − 0.06
0.002

y1,t−8 − 0.14
0.002

y1,t−10

+0.1
0.003

y1,t−12 − 0.15
0.002

y1,t−14

+0.05
0.002

y2,t−1

−0.02
0.001

y2,t−6 + 0.08
0.002

y2,t−9

−0.09
0.002

y2,t−11 + 0.06
0.001

y2,t−15

+0.31
0.005

xt−2 + 3.09
0.036

+
(

0.1
0.001

y1,t−1 + 0.62
0.002

y1,t−2 − 0.64
0.003

y1,t−4

+0.12
0.003

y1,t−6 + 0.12
0.003

y1,t−8 + 0.04
0.003

y1,t−10

−0.05
0.001

y1,t−11 − 0.12
0.003

y1,t−12 + 0.19
0.003

y1,t−14

−0.19
0.003

y2,t−1 + 0.2
0.003

y2,t−5

−0.27
0.003

y2,t−7 − 0.09
0.003

y2,t−9

+0.35
0.003

y2,t−11 − 0.23
0.003

y2,t−13

+0.05
0.001

xt−1 − 0.04
0.001

xt−2 + 0.06
0.001

xt−3 − 2.49
0.051

)

×
(

1 + exp
{

−2.63
0.411

(

zt − 0.31
0.066

)})

−1

+
(

0.05
0.001

y1,t−1 + 0.09
0.002

y1,t−2 − 0.07
0.001

y1,t−3 − 0.1
0.003

y1,t−4 + 0.02
0.001

y1,t−5

− 0.1
0.003

y1,t−6 + 0.36
0.003

y1,t−10

−0.34
0.003

y1,t−12 + 0.67
0.003

y1,t−14

−0.74
0.003

y2,t−1 + 0.63
0.003

y2,t−3 − 0.83
0.003

y2,t−5

+0.68
0.004

y2,t−7 − 0.28
0.004

y2,t−9

−0.14
0.003

y2,t−11 + 0.38
0.003

y2,t−13 − 0.18
0.002

y2,t−15

+0.05
0.001

xt−1 − 0.33
0.005

xt−2 − 1.82
0.04

)

×
(

1 + exp
{

−9.37
4.122

(

xt−1 − 1.41
0.081

)})

−1

−0.72
0.110

sin
( nπ

365

)

+ 0.45
0.020

sin

(

2nπ

365

)

− 0.28
0.067

cos

(

2nπ

365

)

+ ε̂2,t, (7.5)

Ω̂ =









15.18 0.44

0.44 1.95









, (7.6)

and tr{Ω̂} = 17.13.
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It is seen from the estimates of the coefficients of the lagged flow that the flow does

increase with the temperature as is expected. A seemingly mysterious detail is that there

are cross-effects, although there is no linkage between the rivers. Tsay (1998) also found

these cross-effects in his Vector TAR model. We shall return to this point in the discussion

of generalised impulse responses.

The temperature itself does enter the Jökulsá flow equation, but the coefficients are

hard to interpret. This may be due to the fact that there is only one weather station, and

its readings may therefore not be useful other than in the transition function. The same

is true for Vatndalsá.

As in the preceding example, in order to illustrate the dynamic behaviour of the es-

timated model we estimate generalised impulse response functions. For the transition

variable of the temperature, we define two separate sets of histories: one when the tem-

perature zt ≥ 0.3 at the moment of shock, and the other when zt < 0.3. This value equals

the estimate of the location parameter in the transition function of the Vatndalsá equa-

tion. It also represents the point in which melting of snow has begun (the flow has begun

to increase) in parts of the Jökulsá drainage basin. The shocks are divided to positive and

negative ones. This gives eight different types of shocks according to the flow shocked,

the temperature, and the sign of the shock. As in the previous application, the impulse

response functions are described using HDRs and boxplots. The results are in Figures 12

- 15.

The effects of shocks generally last longer in the ’summer’, zt ≥ 0.3, than in the

’winter’, zt < 0.3. Although the mode of the HDR converges to zero quite quickly in the

summer, the densities shrink towards a point much more slowly than in the winter. Most

of the responses are close to being symmetric: the most pronounced asymmetry can be

found in the flow of Vatndalsá in the summer, see Figure 15. A negative shock to that

flow causes a much stronger response than a positive one. The most puzzling finding is

the strong response of the Jökulsá flow to shocks to the Vatndalsá equation in the summer

in Figure 14. It is also asymmetric and even stronger than the response of the flow of

this river to own shocks. The HDRs of the latter can be found in Figure 12. But then,

as Figure 13 shows, the flow of Vatndalsá is not much affected by shocks to the flow of

Jökulsá.

Since the rivers are not connected, the effects of shocks to the Vatndalsá flow to the

flow of Jökulsá have no physical explanation. It seems plausible to think, however, that

change in the flow of the former is a leading indicator that precedes a corresponding change

in the flow of the latter. Since Vatndalsá has a smaller drainage area that is located at a

lower altitude than that of Jökulsá and has no glacier, changes in precipitation and how

snow is melting there signal corresponding changes in the flow of the larger river. In the
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summer when the snow has melted in the Vatndalsá drainage base and the flow slowed

down, one would also expect a reduced flow in this river. Interestingly, the response

begins with a one-day lag, which may be due to the inertia caused by the glacier. That

the opposite cross-effect is very small may be explained by the size difference of these

rivers. Shocking a big flow (Jökulsá when the snow is melting, say) does not have a

similar dynamic indicator effect on the flow of the smaller river. Finally, these responses

are almost negligible when the temperatures are below freezing.

For the transition variable of the precipitation, we also define two separate sets of

histories: one when the precipitation xt−1 > 5 at the moment of shock, and the other

when xt−1 < 1.4. The remaining histories are discarded. For space reasons, some of the

HDRs are not shown, but they are available at

http://creates.au.dk/research/research-papers/supplementary-downloads/.

8 Concluding remarks

We generalise previous versions of vector LSTAR or LSTR models to the case in which

the model can have a different transition variable or variables for each equation and the

model can at the same time contain more than one transition. This is the case in our first

application. In the second one, the transition variables are the same, but the transition

functions are not restricted to be identical. In this application, relaxing the restriction of

identical transitions turns out to be important. We devise a modelling strategy for this

class of nonlinear models, consisting of specification, including testing linearity, estimation

and evaluation stages. Parameter estimation is carried out by nonlinear least squares,

and a major tool at the evaluation stage is a set of misspecification tests as in Teräsvirta

(1996), Teräsvirta (1998) and Camacho (2004). The dynamic behaviour of the model is

characterised by generalised impulse response functions. The two applications show how

the strategy works in practice and how the estimated model can be interpreted using

impulse responses and highest density regions.

In this work the LVSTAR process is assumed stationary, unless the transition variable

is time, but generalizing the approach to nonstationary linearly cointegrated series, as

in Rothman et al. (2001), appears straightforward. This is true as long as the short-run

dynamic behaviour of the model, including the drift towards the equilibrium, is char-

acterized using nonlinearity of STAR type. Specifying and accommodating a nonlinear

equilibrium correction relation is from a statistical point of view a much more complicated

problem. Some discussion can be found in Ripatti and Saikkonen (2001). We leave these

extensions to further work.
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Eklund, B. and Teräsvirta, T.: 2007, Testing constancy of the error covariance matrix in

vector models, Journal of Econometrics 140, 753–780.

Godfrey, L. G.: 1988, Misspecification tests in econometrics, Cambridge University Press,

Cambridge.

Godfrey, L. G. and Tremayne, A. R.: 2005, The wild bootstrap and heteroskedasticity-

robust tests for serial correlation in dynamic regression models, Computational Statistics

& Data Analysis 49, 377–395.

Hansen, B. E.: 1996, Inference when a nuisance parameter is not identified under the null

hypothesis, Econometrica 64, 413–430.
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Teräsvirta, T.: 1994, Specification, estimation, and evaluation of smooth transition au-

toregressive models, Journal of the American Statistical Association 89, 208–218.
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Figure 1: Top panel: Monthly growth rate of gasoline price (log difference); Bottom panel: Monthly

growth rate of gasoline consumption (log difference), both from February 1973 to December 1998.
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Table 1: p-values of linearity tests for the VAR(2) model against the LVSTAR model in Section 7.1. The upper part is the linearity tests in the gasoline price

change equation, and the lower part is the linearity tests in the gasoline consumption change equation. 3e is the third-order parsimonious test. trans. variable

stands for transition variables, WLK for Wilks’s statistic, RAO for Rao’s statistic and WB for wild bootstrap. All p-values are multiplied by 100.

trans. variable y1,t−1 y1,t−2 y1,t−3 y1,t−4 y1,t−5 y1,t−6 y2,t−1 y2,t−2 y2,t−3 y2,t−4 y2,t−5 y2,t−6 t/T

Order Test Gasoline price change equation

1 WLK 0.10 0.14 0.25 0.00 0.01 31.82 0.86 9.41 6.65 0.00 54.91 17.45 7.11

RAO 0.10 0.14 0.25 0.00 0.01 31.83 0.86 9.42 6.66 0.00 54.92 17.46 7.12

WB 2.68 2.52 18.12 4.66 6.42 11.26 23.92 24.40 69.00 19.24 50.22 30.16 1.40

3 WLK 0.00 0.69 0.06 0.05 0.02 27.26 22.50 7.30 30.66 0.17 39.20 54.55 14.98

RAO 0.00 0.71 0.06 0.05 0.02 27.53 22.75 7.43 30.95 0.17 39.50 54.83 15.19

WB 5.38 26.44 2.28 0.62 2.30 56.80 54.64 11.34 88.98 3.46 88.08 49.72 4.32

3e WLK 0.24 0.02 0.22 0.00 0.01 42.27 1.64 16.67 9.05 0.01 58.84 23.23 9.03

RAO 0.25 0.02 0.22 0.00 0.01 42.29 1.64 16.69 9.06 0.01 58.86 23.25 9.04

WB 5.38 2.24 7.52 1.72 5.92 34.50 36.06 12.62 78.42 12.62 55.68 35.72 3.86

Order Test Gasoline consumption change equation

1 WLK 3.24 0.22 0.09 21.41 21.42 23.23 0.00 19.77 20.23 44.91 44.71 93.13 0.07

RAO 3.25 0.22 0.09 21.42 21.43 23.24 0.00 19.79 20.24 44.93 44.73 93.13 0.07

WB 1.06 0.24 0.10 32.74 82.66 15.64 4.84 36.34 50.28 70.72 28.70 91.46 2.52

3 WLK 0.00 0.43 0.28 19.86 6.46 56.26 0.00 17.24 10.58 73.68 81.04 17.04 0.00

RAO 0.00 0.44 0.29 20.10 6.58 56.54 0.01 17.47 10.75 73.89 81.21 17.26 0.00

WB 0.04 0.56 0.12 3.36 14.34 28.22 4.30 47.88 27.14 78.80 44.62 53.12 0.82

3e WLK 4.30 0.27 0.11 32.94 19.12 16.65 0.01 27.48 31.90 60.63 55.47 58.99 0.08

RAO 4.31 0.27 0.11 32.96 19.14 16.67 0.01 27.50 31.92 60.65 55.49 59.01 0.08

WB 2.52 0.26 0.04 42.00 49.48 14.28 13.78 43.94 70.38 39.30 34.86 97.14 5.28
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change equation. The tests of no additive nonlinearity are based on the third-order Taylor expansion. WLK stands for Wilks’s statistic, RAO for Rao’s statistic

and WB for wild bootstrap. All p-values are multiplied by 100.

Joint error serial correlation Joint parameter constancy

lags(J) 1 2 3 4 5 6 7 8 9 10 eq. GP GC P&C

WLK 70.93 9.17 19.99 35.31 25.43 36.51 18.43 25.74 5.05 16.05 WLK 52.74 10.53 27.37

RAO 70.93 9.17 20.00 35.32 25.45 36.54 18.47 25.80 5.09 16.14 RAO 54.34 11.45 29.48

WB 90.00 11.00 32.50 50.30 35.90 72.30 60.10 60.10 24.50 57.20 WB 28.80 35.60 46.60

No additive nonlinearity

eq. test y1,t−1 y1,t−2 y1,t−3 y1,t−4 y1,t−5 y1,t−6 y2,t−1 y2,t−2 y2,t−3 y2,t−4 y2,t−5 y2,t−6 t/T

GP WLK 3.46 17.85 0.41 1.75 1.59 20.85 8.75 78.71 66.47 0.45 84.65 7.41 86.43

RAO 3.47 17.88 0.42 1.76 1.60 20.88 8.77 78.73 66.50 0.45 84.66 7.43 86.45

WB 45.10 73.40 13.10 25.20 24.10 67.00 12.40 70.00 89.30 4.60 76.90 67.60 40.90

GC WLK 5.81 64.24 37.79 4.63 11.24 8.10 93.22 31.05 34.43 74.13 26.96 60.22 6.29

RAO 5.83 64.27 37.83 4.65 11.26 8.12 93.23 31.09 34.47 74.15 26.99 60.25 6.31

WB 63.00 27.00 50.00 4.00 6.30 9.50 67.00 31.20 11.20 59.40 13.20 88.40 37.90
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Table 3: p-values of the wild bootstrap version of the third-order LM-type misspecification tests for the

estimated model (7.4) and (7.5) against additive nonlinearity. Jokul stands for the Jökulsá flow equation,

and Vatn for the Vatnsdalsá flow equation. Only the wild bootstrap results from the third-order linearity

tests are reported. All p-values are multiplied by 100.

Lin to R2 R2 to R3 R3 to R4

Trans. variable Jokul Vatn Jokul Vatn Jokul Vatn

y1,t−1 0.00 3.06 0.10 0.00 0.00 0.30

y1,t−2 0.00 4.38 0.10 0.00 0.40 0.00

y1,t−3 0.00 1.70 0.80 0.00 7.40 0.00

y1,t−4 0.00 15.82 3.70 0.10 10.80 0.90

y1,t−5 0.00 59.20 0.60 0.10 16.80 1.20

y1,t−6 0.00 7.58 5.70 0.00 42.50 0.80

y1,t−7 0.00 10.60 0.10 0.00 6.70 0.10

y2,t−1 1.46 0.00 0.40 0.00 0.00 0.00

y2,t−2 2.18 0.16 0.30 0.00 7.90 0.00

y2,t−3 1.54 2.14 0.70 0.00 3.90 0.00

y2,t−4 5.36 13.24 3.60 0.00 12.20 0.00

y2,t−5 6.40 33.44 5.50 0.00 1.90 0.20

y2,t−6 4.16 12.80 3.30 0.00 4.60 0.10

y2,t−7 9.28 7.76 9.30 0.00 26.00 0.00

xt−1 0.00 0.02 0.10 0.10 0.20 1.40

xt−2 0.18 0.00 11.90 0.00 0.10 1.60

xt−3 8.68 1.04 0.30 0.00 17.40 65.00

zt 0.00 0.00 82.60 10.60 53.70 80.50

Table 4: p-values of the wild bootstrap version of the LM-type joint serial correlation tests of the

estimated model (7.4) and (7.5). The sample size of the wild bootstrapping is 1000. The p-values are all

multiplied by 100.

Joint error serial correlation

lag(J) 1 2 3 4 5 6 7 8 9 10

100×p-value 36.60 1.20 13.50 14.00 27.60 3.40 12.40 12.10 24.10 10.70

Table 5: p-values of the wild bootstrap version of the partial and joint parameter constancy tests of

the estimated model (7.4) and (7.5). All p-values are multiplied by 100.

Partial and joint parameter constancy

test Jokul Vatns Joint

100×p-value 5.30 45.4 9.70
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Figure 2: Transition functions for the gasoline price change equation and the consumption change

equation. Top panel: the first transition driven by y1,t−4 in the price equation; Mid-panel: the second

transition driven by y1,t−5 in the price equation; Bottom panel: the transition driven by y1,t−1 in the

consumption equation. Each circle represents an observation.

31



Tables and Figures

1975 1980 1985 1990 1995

0.0
0.2

0.4
0.6

0.8
1.0

1975 1980 1985 1990 1995

0.0
0.2

0.4
0.6

0.8
1.0

1975 1980 1985 1990 1995

0.0
0.2

0.4
0.6

0.8
1.0

Figure 3: Values of the transition functions over time. Top panel: the transition driven by y1,t−4 in

the price equation; Mid-panel: the transition driven by y1,t−5 in the price equation; Bottom panel: the

transition driven by y1,t−1 in the consumption equation.
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Figure 4: Stability of the two processes. Top panel: the price change equation, stable point= −0.302.

Bottom panel: the consumption change equation, stable point= 0.218.
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Figure 5: Boxplots of generalized impulse response functions of the LVSTAR model (7.2) represented

with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel: gasoline price

percent change to positive price shocks; Top right panel: gasoline price percent change to negative

price shocks. Bottom left panel: gasoline consumption percent change to positive price shocks; Bottom

right panel: gasoline consumption percent change to negative price shocks.
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Figure 6: Boxplots of generalized impulse response functions of the LVSTAR model (7.2) represented

with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel: gasoline price

percent change to positive consumption shocks; Top right panel: gasoline price percent change to

negative consumption shocks. Bottom left panel: gasoline consumption percent change to positive

consumption shocks; Bottom right panel: gasoline consumption percent change to negative consumption

shocks.
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Figure 7: Daily river flow, precipitation and temperature series, 1972-1974.
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(a) The estimated transition function. Each circle represents an observation.
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(c) Values of the transition function over time.

Figure 8: Transitions of the Jökulsá flow driven by the temperature.
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(a) Estimated transition function. Each circle represents an observation.
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(c) Values of the transition function over time.

Figure 9: Transitions of the Vatnsdalsá flow driven by the temperature.
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(a) Estimated transition function. Each circle represents an observation.
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(b) Transition variable; the inflection point (solid line) and the interval for the smooth transition (dashed

lines).
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(c) Values of the transition function over time.

Figure 10: Transitions of the Jökulsá flow driven by the precipitation.
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(a) Estimated transition function. Each circle represents an observation.
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(b) Transition variable; the inflection point (solid line) and the interval for the smooth transition (dashed

lines).
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(c) Values of the transition function over time.

Figure 11: Transitions of the Vatnsdalsá flow driven by the precipitation.
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Figure 12: Boxplots of generalized impulse response functions of the LVSTAR model (7.4) and (7.5)

represented with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel:

Jökulsá to positive Jökulsá shocks below freezing; Top right panel: The same above freezing. Bottom

left panel: Jökulsá to negative Jökulsá shocks below freezing; Bottom right panel: The same above

freezing.
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(a) Jökulsá shocks Vatnsdalsá (+) zt < 0.4
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(b) Jökulsá shocks Vatnsdalsá (+) zt > 0.4
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(c) Jökulsá shocks Vatnsdalsá (-) zt < 0.4
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(d) Jökulsá shocks Vatnsdalsá (-) zt > 0.4

Figure 13: Boxplots of generalized impulse response functions of the LVSTAR model (7.4) and (7.5)

represented with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel:

Vatnsdalsá to positive Jökulsá shocks below freezing; Top right panel: The same above freezing. Bottom

left panel: Vatnsdalsá to negative Jökulsá shocks below freezing; Bottom right panel: The same above

freezing.
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(a) Vatnsdalsá shocks Jökulsá (+) zt < 0.4
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(b) Vatnsdalsá shocks Jökulsá (+) zt > 0.4
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(c) Vatnsdalsá shocks Jökulsá (-) zt < 0.4
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(d) Vatnsdalsá shocks Jökulsá (-) zt > 0.4

Figure 14: Boxplots of generalized impulse response functions of the LVSTAR model (7.4) and (7.5)

represented with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel:

Jökulsá to positive Vatnsdalsá shocks below freezing; Top right panel: The same above freezing. Bottom

left panel: Jökulsá to negative Vatnsdalsá shocks below freezing; Bottom right panel: The same above

freezing.
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(a) Vatnsdalsá shocks Vatnsdalsá (+) zt < 0.4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−4
−2

0
2

4

(b) Vatnsdalsá shocks Vatnsdalsá (+) zt > 0.4
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(c) Vatnsdalsá shocks Vatnsdalsá (-) zt < 0.4
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(d) Vatnsdalsá shocks Vatnsdalsá (-) zt > 0.4

Figure 15: Boxplots of generalized impulse response functions of the LVSTAR model (7.4) and (7.5)

represented with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel:

Vatnsdalsá to positive Vatnsdalsá shocks below freezing; Top right panel: The same above freezing.

Bottom left panel: Vatnsdalsá to negative Vatnsdalsá shocks below freezing; Bottom right panel: The

same above freezing.
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