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Abstract

We propose a Bayesian inferential procedure for the noncausal vector autoregressive

(VAR) model that is capable of capturing nonlinearities and incorporating effects

of missing variables. In particular, we devise a fast and reliable posterior simulator

that yields the predictive distribution as a by-product. We apply the methods to

postwar quarterly U.S. inflation and GDP growth series. The noncausal VAR model

turns out to be superior in terms of both in-sample fit and out-of-sample forecasting

performance over its conventional causal counterpart. In addition, we find GDP

growth to have predictive power for the future distribution of inflation over and above

the own history of inflation, but not vice versa. This may be interpreted as evidence

against the new Keynesian model that implies Granger causality from inflation to

GDP growth, provided GDP growth is a reasonable proxy of the marginal cost.
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1 Introduction

While the vast majority of empirical analysis of multivariate time series in macroeco-

nomics and finance is based on the linear vector autoregressive (VAR) model, there

has been an increasing interest in nonlinear multivariate time series models in the last

few decades, especially followed by the burgeoning literature on theoretical nonlinear

macroeconomic models. One such model is the noncausal VAR model recently put

forth by Davis and Song (2010), and Lanne and Saikkonen (2013). While these two

specifications differ somewhat from each other, they are both characterized by the

defining feature of any noncausal process of explicit dependence on the future such

that the current value has no linear representation in terms of current and past errors.

This tends to complicate interpretation as the errors of the noncausal VAR model be-

come predictable from past observations, and hence, cannot be thought of as shocks

in any economic sense. On the other hand, as pointed out by Lanne and Saikko-

nen (2013), the model has a nonlinear causal representation, and there is mounting

evidence of the versatility of nonlinearity that noncausal models are capable of gen-

erating (see, e.g., Gourieroux and Zakoïan (2013), and Lof (2012)). Although little

is known of the form of nonlinearity afforded by the noncausal VAR process, it can

be seen as a convenient shorthand way of writing a complicated nonlinear model. In

addtition to capturing nonlinearities, the noncausal VAR model is capable of incorpo-

rating effects of missing variables as suggested by Lanne and Saikkonen (2013), and

it may, therefore, be useful in many macroeconomic and financial applications, where

assessing the adequacy of the included set of variables tends to be problematic.

In this paper, we consider Bayesian analysis, including estimation and forecast-

ing of the noncausal VAR model (see DelNegro and Schorfheide (2011) and Karlsson

(2012) for recent reviews of the causal Bayesian VAR models). Our approach is an

extension of Lanne, Luoma, and Luoto (2012), who proposed corresponding meth-

ods for the univariate noncausal autoregressive (AR) model. In particular, we show

how the posterior density of the noncausal (and hence nonlinear) VAR model can

be manipulated to facilitate estimation by a straightforward extension of the com-

monly employed Gibbs sampling algorithm of Kadiyala and Karlsson (1997). The

resulting sampler also conveniently yields the posterior predictive distribution as a

by-product. Forecasting in the noncausal VAR model has previously been considered

by Nyberg and Saikkonen (2013), but their frequentist approach requires considerably

more complicated techniques than ours.

We apply the noncausal VAR model to quarterly U.S. inflation and GDP growth
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series (from 1955:1 to 2013:2), where clear evidence in favor of noncausality is de-

tected. The noncausal VAR model also turns out to be superior in point and density

forecasting. Finally, we devise a Bayesian procedure to test for Granger noncausality

in distribution (see Droumaguet and Wózniak (2012)), and apply it to these two vari-

ables. According to the new Keynesian model, inflation should Granger cause GDP

growth if the latter is a reasonable proxy of the marginal cost. In line with much

of the previous literature, we find no evidence of Granger causality from inflation

to GDP growth, which can be interpreted as evidence against the new Keynesian

model. Interestingly, however, there is strong evidence of Granger causality from

GDP growth to inflation, which has typically not been detected in analyses based on

the linear causal VAR model. The latter finding points to the nonlinear nature of

Granger causality in this case.

The plan of the rest of the paper is as follows. In Section 2, we review the noncausal

VAR model of Lanne and Saikkonen (2013) and discuss its interpretation. In Section

3, we introduce the Bayesian estimation procedure, while in Section 4 it is extended

to produce forecasts. The empirical application to U.S. inflation and GDP growth is

presented in Section 5. Finally, Section 6 concludes.

2 Model

The n-dimensional VAR(r, s) process yt (t = 0,±1,±2, ...) proposed by Lanne and

Saikkonen (2013) is generated by

Π (B) Φ
(
B−1

)
yt = εt, (1)

where Π (B) = In−Π1B−· · ·−ΠrB
r (n× n) and Φ (B−1) = In−Φ1B

−1−· · ·−ΦsB
−s

(n× n) are matrix polynomials in the backward shift operator B, and εt (n× 1)

is a sequence of independent, identically distributed (continuous) random vectors

with zero mean and finite positive definite covariance matrix. If Φj 6= 0 for some

j ∈ {1, ..., s}, equation (1) defines a noncausal vector autoregression referred to as
purely noncausal when Π1 = · · · = Πr = 0. The corresponding conventional causal

model is obtained when Φ1 = · · · = Φs = 0, and in keeping with the conventional

notation in the literature, we sometimes use the abbreviation VAR(r) in this case.

Stationarity of the process is guaranteed by the assumption that the matrix poly-

nomials Π (z) and Φ (z) (z ∈ C) have their zeros outside the unit disc, i.e.,

det Π (z) 6= 0, |z| ≤ 1, and det Φ (z) 6= 0, |z| ≤ 1. (2)
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Specifically, the process

ut = Φ
(
B−1

)
yt

is then stationary, and, as pointed out by Lanne and Saikkonen (2013), there exists

a δ1 > 0 such that Π (z)−1 has a well defined power series representation Π (z)−1 =∑∞
j=0Mjz

j = M (z) for |z| < 1 + δ1, indicating that the process ut has the causal

moving average representation

ut = M (B) εt =
∞∑
j=0

Mjεt−j. (3)

Notice that M0 = In and that (the elements of) the coeffi cient matrices Mj decay to

zero at a geometric rate as j →∞ (cf. Lemma 3 in Kohn (1979)). When convenient,

Mj = 0, j < 0, will be assumed.

In the same vein, due to the latter condition in (2), the process wt = |Π (B)| yt
has the following representation

wt =
∞∑

j=−(n−1)r

Njεt+j, (4)

where the coeffi cient matrices Nj decay to zero at a geometric rate as j → ∞ and,

when convenient, Nj = 0, j < − (n− 1) r, will be assumed. This can be seen by

writing Π (z)−1 = (det Π (z))−1 Ξ (z) = M (z), where Ξ (z) is the adjoint polynomial

matrix of Π (z) with degree at most (n− 1) r. Then, det Π (B)ut = Ξ (B) εt and, by

the definition of ut,

Φ
(
B−1

)
wt = Ξ (B) εt,

where wt = |Π (B)| yt. Now, one can find a 0 < δ2 < 1 such that Φ (z−1)
−1

Ξ (z)

has a well defined power series representation Φ (z−1)
−1

Ξ (z) =
∑∞

j=−(n−1)rNjz
−j =

N (z−1) for |z| > 1− δ2 (see Lanne and Saikkonen (2013)).
Hence, from (2) it follows that the process yt itself has the representation

yt =

∞∑
j=−∞

Ψjεt−j, (5)

where Ψj (n× n) is the coeffi cient matrix of zj in the Laurent series expansion of

Ψ (z)
def
= Φ (z−1)

−1
Π (z)−1 which exists for 1 − δ2 < |z| < 1 + δ1 with Ψj decaying

to zero at a geometric rate as |j| → ∞. The representation (5) implies that yt is a
stationary and ergodic process with finite second moments.

4



Taking conditonal expectation of equation (1) conditional on current and past

values of yt, it is seen that in the noncausal model, the elements of the Φj (j =

1, . . . , s) matrices capture the dependence of the variables included in yt on their

future expectated values. Alternatively, the conditional expectation of moving average

representation (5),

yt =

s−1∑
j=−∞

ΨjEt (εt−j) +

∞∑
j=s

Ψjεt−j.

shows how noncausality implies dependence on future errors. This follows from

the fact that, in the noncausal case yt and εt+j are correlated, and consequently,

Et (εt+j) 6= 0 for some j ≥ 0. This also implies that future errors can be predicted

by past values of the process yt, which, in turn, can be interpreted as the errors con-

taining factors not included in the model that are predictable by the variables in the

VAR model (see Lanne and Saikkonen (2013) for a more elaborate discussion on this

issue). Hence, the presence of noncausality might be seen symptomatic of missing

variables whose effects are captured by the noncausal specification. This suggests

that allowing for noncausality is likely to mitigate the effects of misspecification in

VAR analysis. In addition to missing variables, misspecification of functional form

may give rise to noncausality. As pointed out by Lanne and Saikkonen (2013), the

noncausal VAR model has a nonlinear causal representation (see also Gourieroux and

Zakoïan (2013) for a discussion on this point in the univariate noncausal AR model).

While little is known of the implied form of nonlinearity, the noncausal VAR model

can nevertheless be seen as a convenient shorthand representation of a complicated

nonlinear process. Hence, a noncausal VAR model is likely to capture potential mis-

specification in the form of both missing variables or nonlinearity. The simulation

results of Lof (2012) show that noncausality is easily confounded with very different

econometric and economic nonlinear models (including the exponential smooth tran-

sition autoregression and financial models with heterogenous agents), lending support

to these interpretations.

Because of the properties pointed out above, a potential application where the

noncausal VAR model might prove useful, is testing for Granger causality that is

known to depend on the variables included in the model (see, e.g., Lütkepohl 2005, 49—

51)). Moreover,there is a growing interest in generalizing the Granger causality test

to allow for nonlinearities (see, e.g., Péguin-Feissolle et al. (2013) and the references

therein), and the noncausal vector autoregression seems to offer one relatively general

nonlinear model that the test can be based on. Our approach to testing for Granger
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causality is discussed more thoroughly in Section 5.3 in conjunction with the empirical

application.

Finally, it should be pointed out that noncausal autoregressive models cannot be

identified by second order properties or Gaussian likelihood. Therefore, meaningful

application of the noncausal VAR model (1) requires that the error term εt is non-

Gaussian. For details on the identifiablity of the noncausal VAR model and the

assumptions needed for the derivation of the likelihood function we refer to Lanne and

Saikkonen (2013). In this paper, we assume that the distribution of εt is multivariate

t with scale matrix Σ and degrees of freedom λ.

3 Estimation

Lanne and Saikkonen (2013) studied maximum likelihood (ML) estimation of the non-

causal VAR model (1). Our estimation method is built upon their work as well as our

previous work on the Bayesian analysis of noncausal AR models (see Lanne, Luoma,

and Luoto (2012)). In particular, our basic estimation algorithm is a straightforward

extension of their Metropolis-within-Gibbs sampler (see also Geweke (2005, p. 206)).

It is described in Subsection 3.2, and it exploits the fact that the full conditional

posterior distributions of Π1, . . . ,Πr, Φ1, . . . ,Φs, and Σ can be readily sampled from

their known distributions. Our experience is that, in general, the sampler works well

and convergence occurs rapidly.

In the general case (r > 0, s > 0), however, the posterior distribution of the

parameters of (1) may be multimodal. If this occurs, the sampler tends to be inef-

ficient and it may get stuck at one of the modes. It is important to note that this

is not a serious problem if one is interested in forecasting, because the predictive

distribution of the model in (1) turns out to be relatively invariant with respect to

the multimodal posterior distribution (the forecasting procedure is described in Sec-

tion 4). However, it is well known that multimodality complicates the estimation

of the marginal likelihood and, if not properly handled, makes the commonly used

approaches such as importance sampling and density ratio marginal likelihood ap-

proximation (see Gelfand and Dey (1994)) ill-suited for this purpose. Therefore, for

the estimation of the marginal likelihood, we propose an alternative algorithm based

on a Mixture of t by Importance Sampling weighted Expectation Maximization (Mi-

tISEM) algorithm of Hoogerheide, Opschoor, and van Dijk (2012). This algorithm is

explained in Subsection 3.3.
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3.1 Likelihood function

For the Bayesian analysis of the noncausal VAR model in (1), we need to derive the

distribution of the observations conditional on the parameters, i.e., the likelihood

function, and specify the prior distribution of the parameters. We start by describing

the likelihood function, whose detailed derivation can be found in Lanne and Saikko-

nen (2013). The choice of the prior distribution is described in the next subsection.

To simplify notation in our subsequent developments, we define the matrices Π and Φ,

which are obtained by stacking Π′j for j = 1, ..., r and Φ′j for j = 1, ..., s, respectively.

As mentioned in Section 2, we assume that εt follows the multivariate t distribution

with scale matrix Σ and degrees of freedom λ. To make the model operational, we

reparametrize εt in the following manner:

εt = ω̃
− 1
2

t ηt, (6)

where ηt is a multivariate normally distributed random vector (ηt ∼ N (0,Σ)), and

λω̃t follows the chi-square distribution with λ degrees of freedom (λω̃t ∼ χ2 (λ)).

Under the chosen parameterization, yt generated by (1) is conditionally Gaussian

conditional on Σ and ω̃t. As will be seen, this property is critical in building a decent

posterior sampler (see also Geweke (1993), and Lanne, Luoma, and Luoto (2012)).

Notice also that the random vector (ω̃1, . . . , ω̃T ) can be interpreted as a vector of

parameters with hierarchical priors λω̃t ∼ χ2 (λ) (t = 1, . . . , T ) and λ ∼ Exp (λ) ,

where λ is a prior hyperparameter.

The first step in the derivation of the likelihood function is writing the ob-

served data y = (y′1, ..., y
′
T )′ in terms of vector z = (z′1, z

′
2, z

′
3)
′, whose elements

z1 = (u′1, ..., u
′
r)
′, z2 =

(
ε′r+1, ..., ε

′
T−s
)′
, and z3 = (v′1,T−s+1, ..., v

′
s,T )′, by (3) and (4),

are independent. Here,

vk,T−s+k = wT−s+k −
−k∑

j=−(n−1)r

NjεT−s+k+j, k = 1, ..., s, (7)

and the sum is interpreted as zero when k > (n− 1) r, that is, when the lower

bound exceeds the upper bound. Note that, by (1) and (4), vk,T−s+k can be ex-

pressed as a function of the observed data y and that the representation vk,T−s+k =∑∞
j=−k+1NjεT−s+k+j holds, showing that vk,T−s+k (k = 1, ..., s) are indeed indepen-

dent of εt, t ≤ T−s. Thus, by (6) and the preceding discussion, the joint (conditional)
density function of z conditional on ω̃ = (ω̃r+1, . . . , ω̃T−s)

′ and Σ can be expressed as

p (z |ω̃,Σ) = p (z1)

(
T−s∏
t=r+1

p (εt |ω̃t,Σ)

)
p(z3), (8)
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where p (·) denotes a density function.
As shown in Section 3.1 of Lanne and Saikkonen (2013), the random vector z

is related to the data vector y = (y′1, ..., y
′
T )′ by a linear transformation of the form

z = H3H2H1y, where H1, H2, and H3 are T × T nonsingular transformation

matrices that depend on the parameters Π and Φ. Furthermore, the determinants

of H2 and H3 equal unity (for details of these matrices, see Lanne and Saikkonen

(2013)). Thus, by (8), the conditional joint density function of the data y conditional

on the parameters and ω̃ can be expressed as

p (y |ω̃, θ ) = p (z1 (ϑ))

(
T−s∏
t=r+1

p
(
Π (B) Φ

(
B−1

)
yt |ω̃t,Σ

))
p(z3 (ϑ)) |H1| . (9)

In addition to the distinct elements of the matrix Σ, that is, the vector σ = vech(Σ),

the parameter vector θ also contains ϑ = (π′, φ′)
′, where π = vec(Π), and φ =

vec(Φ). The components of z can be expressed in terms of the observed data and

parameters. Specifically, z1 (ϑ) is defined by replacing ut in the definition of z1 by

Φ (B−1) yt (t = 1, ..., r). Moreover, z3 (ϑ) is defined similarly by replacing vk,T−s+k in

the definition of z3 by an analog with a (B) yT−s+k and Π (B) Φ (B−1) yT−s+k+j used in

place of wT−s+k and εT−s+k+j, respectively, where j = − (n− 1) r, ....,−k, k = 1, ..., s,

and

|Π (z)| = a (z) = 1− a1z − · · · − anrznr. (10)

Lanne and Saikkonen (2013) also show that the determinant of H1 is independent of

the sample size T , and thus, following them, we propose to approximate the (condi-

tional) joint density of y by the second factor of (9):

p (y |ω̃, θ ) ≈
T−s∏
t=r+1

p (εt (ϑ) |ω̃t,Σ) , (11)

where

p (εt (ϑ) |ω̃t,Σ) =
ω̃
n
2
t

(2π)
n
2 |Σ|

1
2

exp

[
−1

2
ω̃tεt (ϑ)′Σ−1εt (ϑ)

]
,

and

εt (ϑ) = ut (ϑ2)− Π1ut−1 (ϑ2)− · · · − Πrut−r (ϑ2) . (12)

Finally, it should be pointed out that the approximate likelihood of Lanne and

Saikkonen (2013) is obtained by multiplying (11) by the (hierarchical) prior density

of ω̃ and then integrating out ω̃:

p (y |θ ) =

∫ T−s∏
t=r+1

p (εt (ϑ) |ω̃t,Σ) p (ω̃ |λ) dω̃, (13)
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where, from the assumption λω̃t ∼ χ2 (λ), the quantity p (ω̃ |λ) is obtained as the

following product:

p (ω̃t |λ) =
[
2λ/2Γ (λ/2)

]−1
λλ/2ω̃

λ/2−1
t exp [−λω̃t/2] for t = r + 1, . . . , T − s. (14)

A closed form representation of the approximate likelihood (13) is obtained from (8)

by replacing the latent data expression p (εt |ω̃t,Σ) with the density p (εt |Σ, λ), and

using the change of variable theorem:

p (y |θ ) =
T−s∏
t=r+1

p (εt (ϑ) |Σ, λ) , (15)

where we augment θ by the degrees of freedom parameter λ, and p (εt (ϑ) |Σ, λ) =

tn (εt (ϑ) |Σ;λ), the density function of the multivariate t-distribution for an n-dimensional

random vector εt (ϑ) with zero mean, scale matrix Σ, and degrees of freedom λ.1 For

simplicity, we shall usually drop the word ‘approximate’ and refer to (11) as the

likelihood function.

3.2 Basic Algorithm

We now turn to the estimation of the parameters of (1). As already discussed, this is

accomplished by a multivariate generalization of the Metropolis-within-Gibbs sampler

of Lanne, Luoma, and Luoto (2012). The detailed derivation of the full conditional

posteriors exploited in the sampler are given in the appendix, while we here only

describe the algorithm.

The conditional posteriors can be obtained from the product of (11), (14), and

the joint prior density of Φ, Π, Σ, and λ. Following the literature, we assume the

independent normal-Wishart prior for φ = vec(Φ), π = vec(Π), and Σ (see, e.g.,

Kadiyala and Karlsson (1997)), and, as already mentioned, an exponential prior for

λ. In particular, π ∼ N (π, V π) I (π), φ ∼ N
(
φ, V φ

)
I (φ), Σ ∼ iW (S, ν), and λ ∼

Exp (λ), where iW is used to denote an inverse-Wishart distribution, and φ, V φ, π,

V π, S, ν, and λ are the prior hyperparameters assumed to be known by the researcher.

1The density function of the multivariate t-distribution for an n-dimensional random vector x

with zero mean, λ degerees of freedom, and covariance matrix λ
λ−2Σ is given by

tn (x |µ,Σ;λ ) =
Γ [(λ+ n) /2]

(λπ)
n/2

Γ (λ/2)
√
|Σ|

(
1 +

1

λ
x′Σ−1x

)−(λ+n)/2
where Γ (·) is the gamma function and λ > 2 is assumed.
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Indicator functions I (φ) and I (π) equal unity in the stationary region defined by (2)

and zero otherwise.

To simplify notation, we introduce a Tn× 1 vector y∗ and a Tn ×sn2 matrix X∗,

which are obtained by stacking y∗t = ω̃
1/2
t Π (B) yt and X∗t = ω̃

1/2
t Π (B)Xt for t = r +

1, . . . , T−s, whereXt = In⊗
(
y′t+1, . . . , y

′
t+s

)
, respectively. We also define the matrices

Y and U, whose tth rows (t = r + 1, . . . , T − s) are given by u∗t = ω̃
1/2
t u′t (ϑ2) and

U∗t = ω̃
1/2
t

(
u′t−1 (ϑ2) , . . . , u

′
t−r (ϑ2)

)
, respectively. Then, the full conditional posterior

distributions of φ, π, and Σ under the given prior distributions have the following

expressions:

φ |y, π,Σ, ω̃ ∼ N
(
φ, V φ

)
I (φ) , (16)

π |y, φ,Σ, ω̃ ∼ N
(
π, V π

)
I (π) , (17)

V
−1
φ = V −1φ + X∗′ΩX∗, φ = V φ

(
V −1φ φ+ X∗′Ωy∗

)
,

V
−1
π = V −1π + Σ−1 ⊗U′U, π = V π

(
V −1π π + vec

(
U′YΣ−1

))
,

with Ω = IT−r−s ⊗ Σ−1, and

Σ |y, π, φ, ω̃ ∼ iW
(
S, ν

)
, ν = ν + T − s− r, (18)

S = S + E′E, E = Y −UΠ.

The full conditional posterior distributions of the remaining parameters, ω̃ and λ,

can be sampled from[
λ+ εt (ϑ)′Σ−1εt (ϑ)

]
ω̃t |y, π, φ,Σ, λ ∼ χ2 (λ+ n) (t = r + 1, . . . , T − s) , (19)

and, by a Metropolis within Gibbs step, from a distribution with the density kernel:

p (λ |y, ω̃ ) ∝
[
2λ/2Γ (λ/2)

]−(T−r−s)
λλ(T−r−s)/2

(
T−s∏
t=r+1

ω̃
(λ−2)/2
t

)
× exp

[
−
(

1

λ
+

1

2

T−s∑
t=r+1

ω̃t

)
λ

]
. (20)

Given the starting values of φ, π, Σ, ω̃, and λ, the expressions in (16)—(20) are

used sequentially to obtain an estimate of the posterior distribution of the pareme-

ters. In particular, the first four expressions are standard and can be readily used

to simulate random numbers. Note also that the stationarity restrictions (2) can be

imposed by discarding the draws from the unresticted posterior distributions of φ

and π that do not lie in the stationary region. Following Geweke (2005), we simu-

late from the conditional posterior of the degree-of-freedom parameter λ (20) using
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an independence-chain MH algorithm. As a candidate distribution for λ we use the

univariate normal distribution with mean equal to the mode of (20) and precision

parameter equal to the negative of the second derivative of the log posterior density,

evaluated at the mode. The acceptance probability is calculated using (20).

As already pointed out above, the sampler works well when the posterior distribu-

tion is unimodal. However, if the posterior is multimodal, it tends to be ineffi cient and

may get stuck at one of the modes. For these cases, in Section 3.3 below, we propose

an alternative algorithm based on a MitISEM algorithm of Hoogerheide, Opschoor,

and van Dijk (2012) that we apply in the estimation of the marginal likelihood.

3.3 Marginal Likelihood Estimation

In the general case (r > 0, s > 0), because of the complexity of model (1), the

marginal posterior distributions of its parameters tend to exhibit non-elliptical shapes

such as skewness and multimodality. As is well known, the Gibbs sampler does not

mix well with respect to a multimodal target posterior distribution, but tends to get

stuck at one of the modes (subspaces). Therefore, in this subsection, we explain how

to quickly construct an accurate approximation to the non-elliptical target posterior

distribution. This approximation can then be used as a candidate density, say, in the

Metropolis—Hastings algorithm or in importance sampling. In this paper, we use the

latter to estimate the marginal likelihood of model (1) (see Geweke (2005, p. 257) for

a detailed discussion).

As already mentioned, the proposed procedure closely resembles that of Hooger-

heide, Opschoor, and van Dijk (2012), and we refer to their paper for a more detailed

discussion on the topic (see also Cappé et al. (2008)). Following their recommenda-

tion, we use a mixture of multivariate t distributions as the candidate density:

f (θ |ψ ) =
G∑
g=1

αgtk
(
θ
∣∣µg, Vg; νg ) , (21)

where ψ =
(
µ′1, . . . , µ

′
G, vech (V1)

′ , . . . , vech (VG)′ , ν1, . . . , νG, α1, . . . , αG−1
)′
, the mix-

ing probabilities αg satisfy
∑G

g=1 αg = 1, and tk
(
θ
∣∣µg, Vg; νg ) (k = (s+ r)×n2 +n×

(n + 1)/2 + 1) refers to the density function of the multivariate t distribution with

mode µg, (positive definite) scale matrix Vg, and degrees of freedom νg. The number

of mixture components G is determined iteratively as explained at the end of this

subsection.

In order to obtain a convenient approximation to the target posterior density, we

minimize the Kullback—Leibler divergence between the target and candidate distrib-
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utions,
∫
p (θ |y ) log p(θ|y )

f(θ|ψ )dθ, with respect to ψ. Because the elements of vector ψ do

not enter the posterior density p (θ |y ), this is equivalent to maximizing∫
[log f (θ |ψ )] p (θ |y ) dθ = E [log f (θ |ψ )] , (22)

where E is the expectation with respect to the posterior distribution p (θ |y ).

We propose the following two-step procedure for computing the parameters ψ of

the candidate mixture distribution (21). In the first stage, the basic algorithm de-

scribed in the previous subsection is run several times, each time using very different

starting values θ0. All the simulated N0 draws are then together used to approximate

a sample from the posterior p (θ |y ). An initial estimate ψ0 can be found using the Ex-

pectation Maximization (EM) algorithm to maximize an estimate of E [log f (θ |ψ )],

given by
1

N0

N0∑
i=1

log f
(
θi |ψ

)
. (23)

In the second stage, we use the initial estimate ψ0 to draw an independently and

identically distributed sample θi (i = 1, . . . , N) from f (θ |ψ0 ) in (21). From this

sample we then calculate

1

N

N∑
i=1

W i log f
(
θi |ψ

)
with W i =

p
(
θi |y

)
f
(
θi |ψ0

) . (24)

This is a simulation-consistent estimate of expression (22), which can seen by noting

that ∫
[log f (θ |ψ )] p (θ |y ) dθ =

∫ [
p (θ |y )

f (θ |ψ0 )
log f (θ |ψ )

]
f (θ |ψ0 ) dθ

= E

[
p (θ |y )

f (θ |ψ0 )
log f (θ |ψ )

]
,

Now, ψ can be found by maximizing (24) by the EM algorithm. Once the candidate

density has been obtained, it is successfully used to estimate the marginal likelihood

p (y), and as mentioned above, to that end, we employ importance sampling.

Hoogerheide, Opschoor, and van Dijk (2012) use the EM algorithm to maximize

(24) in their bottom-up procedure which iteratively adds components into the mixture

(21), starting with one multivariate t distribution. Conversely, we start with a reason-

ably large number of distributions and remove the (nearly) singular ones (i.e., those

with (nearly) singular covariance matrices and very small probability weights). This

12



can be done because our basic algorithm tends to converge rapidly to the subspace

(mode) closest to the starting values, enabling us to quickly construct a reasonably

good approximation to the posterior distribution (a few thousand draws of each θ0
seems to be suffi cient for the approximation). Hence, we only need to calculate the

Importance Sampling (IS) weights W i (i = 1, . . . , N) once, while in the MitISEM

algorithm the IS weights must be evaluated at each iteration. Note that because

the basic algorithm described in Section 3.2 tends to get stuck at the local mode,

our procedure for initial estimation, is not able to move between different subspaces

(modes) in a balanced fashion, that is, according to their posterior probabilities. This

suggests that our initial estimates of the mixing probabilities αg (g = 1, . . . , G) may

be poor. However, in the empirical application in Section 5, we find it very hard to

improve the accuracy of our final approximation by adding additional components in

the mixture.

4 Forecasting

In this section, we consider evaluating the posterior predictive distribution of yT+h
(h ≥ 1) and, unless otherwise stated, we shall assume that the model is noncausal

and multivariate, i.e., s > 0 and n > 1. Our starting point is equation (4), which is

made operational by approximating the infinite sum on the right hand side by a finite

sum. Recalling that wt can be written as wt = |Π (B)| yt = a (B) yt, where

|Π (z)| = a (z) = 1− a1z − · · · − anrznr,

and substituting this into equation (4), we obtain the approximation

yT+h ≈ a1yT+h−1 + · · ·+ anryT+h−nr +
M−h∑

j=−(n−1)r

NjεT+h+j. (25)

M is a positive integer, and because the coeffi cient matrices Nj decay to zero at a

geometric rate as j →∞, the approximation error can be made negligible by setting
M suffi ciently large. An approximate predictive distribution of yT+h for h > 0,

conditional on information in period T , can be computed recursively starting from

h = 1, provided we are able to evaluate the conditional distribution of the last term on

the right hand side of (25) for every h > 0. In the univariate case (n = 1) considered

by Lanne et al. (2012a,b) this term contains the errors εT+1, ..., εT+M only, facilitating

a straightforward way to obtain forecasts. However, as emphasized by Nyberg and

Saikkonen (2013), in a multivariate case the error terms εT+1−(n−1)r, ..., εT are also

13



involved, and because εT−s+1, ..., εT (s > 0) cannot be expressed as functions of the

observed data (cf., (1)), additional complications arise.

The forecasting procedure is based on the joint density of the augmented data

vector
(
y′,ε′T+1, ..., ε

′
T+M

)′
. The derivation of this density and the resulting sampling

algorithm are described in the following two subsections, respectively. As the posterior

predictive distribution tends to be relatively invariant with respect to a multimodal

posterior distribution, the procedure is built upon the simpler algorithm described in

Section 3.2.

4.1 Augmented Data Density

The conditional distribution of the last term on the right hand side of (25) is obtained

by computing the joint density of the augmented data vector
(
y′,ε′T+1, ..., ε

′
T+M

)′
. A

detailed derivation of this joint density can be found in Nyberg and Saikkonen (2013),

and, in the univariate case, in Lanne, Luoma, and Luoto (2012), and Lanne, Luoto,

and Saikkonen (2012). We first review the result of Nyberg and Saikkonen (2013)

(modified slightly for ensuing derivations), and then use it to build an algorithm that

yields a predictive distribution of yT+h for h > 0 as a by-product.

Because the future errors enter the conditional density of y (9) only through the

elements of z3 = (v′1,T−s+1, ..., v
′
s,T )′ (see the discussion following (9)), the conditional

density of y and ε+ can be written as

p
(
y,ε+ |ω̃, θ

)
= p(z1) |H1|

(
T−s∏
t=r+1

p
(
Π (B) Φ

(
B−1

)
yt |ω̃t,Σ

))
p(z3 (ϑ) , ε+), (26)

where ε+ =
(
ε′T+1, ..., ε

′
T+M

)
, and we remove the term p(z1) |H1| from the above

expression based on the discussion preceding (11). Thus, in order to find the (condi-

tional) density of (y, ε+), we need to find the joint density of (z3, ε
+), whose deriva-

tion, in turn, can be reduced to the derivation of the joint density function of the

vector (ζ ′1, ζ
′
2)
′ defined below. Note that from (7), z3 = (v′1,T−s+1, ..., v

′
s,T )′ with

vk,T−s+k =
∑∞

j=−k+1NjεT−s+k+j, k = 1, ..., s. Define the sn× n matrices

N j =

 Nj

...

Nj−s+1

 , j = 0, 1, ...,

and write z3 as
∑∞

j=0NjεT−s+1+j. Define next the sn×1 vector ζ1 = z3−
∑∞

j=snNjεT−s+j+1

14



and the sn (n− 1)× 1 vector ζ2 =
(
ε′T+1, . . . , ε

′
T−s+sn

)′
and write

[
ζ1
ζ2

]
=

[
Q11 Q12

0 Isn(n−1)

] εT−s+1
...

εT−s+sn

 ≡ Q
 εT−s+1

...

εT−s+sn

 , (27)

where Q11 = [N 0 · · · N s−1], Q12 = [N s · · · N sn−1], and
(
ε′T−s+1, ..., ε

′
T−s+sn

)′
is an

sn2 × 1 vector.

Now, it can readily be checked that (see Appendix A.2 in Nyberg and Saikkonen

(2013))

p(z3, ε
+) ≈ p(ζ1, ζ2

∣∣ε+ )

T+M∏
t=T−s+sn+1

p (εt) , (28)

where ε+ =
(
ε′T−s+sn+1, . . . , ε

′
T+M

)
, and

ζ1 = z3 −
M+s−1∑
j=sn

N jεT−s+j+1.

Furthermore, from (27) it is seen that the matrix R = Q−1 describes the linear

transformation (ζ ′1, ζ
′
2)
′ → (εT−s+1, . . . , εT−s+sn)′ so that

p(ζ1, ζ2
∣∣ε+ ) =

T−s+sn∏
t=T−s+1

p (εt) |R| , (29)

where  εT−s+1
...

εT−s+sn

 =

[
Q−111 −Q−111Q12

0 Isn(n−1)

][
ζ1
ζ2

]
.

Thus, εT−s+1, . . . , εT are obtained as functions of the observed data through z3 (ϑ)

and the errors ε+ =
(
ε′T+1, ..., ε

′
T+M

)′
, and we (sometimes) use the notation εt (ϑ, ε+)

for t = T − s + 1, . . . , T to make the dependence explicit. By combining (26), (28),

and (29), and using (6), we obtain the expression

p
(
y,ε+ |ω̃, θ

)
≈

T∏
t=r+1

p
(
εt
(
ϑ, ε+

)
|ω̃t,Σ

) T+M∏
t=T+1

p (εt |Σ, λ) |R| , (30)

which is a multivariate extension of the expression (9) in Lanne, Luoma, and Luoto

(2012).
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4.2 Simulating the Predictive Distribution

Next, we turn to the estimation of the predictive distribution of yT+h for h > 0. By

exploiting the conditional density of y and ε+ (30), this distribution can be obtained

by a straightforward extension of the procedure of Lanne, Luoma, and Luoto (2012).

This procedure involves estimating the posterior distributions of the parameters φ,

π, Σ, and λ, and the latent variables ω̃ and ε+.

Using the priors described in Section 3.2, the full conditional posterior densities of

φ, π, Σ, ω̃, and λ can be obtained by following exactly the same steps as in estimating

the posterior distribution of the parameters, as discussed in Section 3.2. However,

because we now use the joint (conditional) density of y and ε+ (30) instead of the

(approximate) data density (11), we must multiply the conditional posterior density

of each of the parameters φ, π, Σ, ω̃, and λ given in Section 3.2 by the following

expression:

|R|
T∏

t=T−s+1
p
(
εt
(
ϑ, ε+

)
|ω̃t,Σ

) T+M∏
t=T+1

p (εt |Σ, λ) . (31)

To see this, note that the augmented data density (30) can be expressed as the product

of two terms, the (approximate) data density (11), and (31). It follows that we can

use the components of the conditional posterior densities as proposal densities in the

Metropolis-Hastings (MH) algorithm (see Chib and Greenberg (1994)), and by the

definition of the Metropolis—Hastings algorithm, the acceptance probabilities of the

algorithm given below are then based solely on (31).

Due to the high-dimensional posterior distribution of ε+ =
(
ε′T+1, . . . , ε

′
T+M

)′
(with

nM parameters to be estimated in total), sampling all the error terms using a single-

block proposal distribution leads to an ineffi cient sampler. Therefore, the error terms

εT+1, . . . , εT+M are sampled using multiple blocks. In particular, sampling is per-

formed by the randomized block MH method of Chib and Ramamurthy (2010), where

at each iteration the error terms are first randomly clustered into an arbitrary number

of blocks, and then simulated one block at time by a MH step. However, the perfor-

mance of the sampler can be further increased by applying the randomized block MH

method only for the first m error terms because typically only the first, say, m < M

error terms are strongly dependent on the data, and therefore their posterior distri-

butions are potentially correlated. The remaining error terms can be conveniently

grouped into additional b groups. In other words, the sampler can be tuned by the

parametersm and b, and the hierarchical prior density p (εT+1 |Σ, λ) · · · p (εT+M |Σ, λ)

is used as a candidate density for each individual block.
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We start from initial parameter values φ0, π0, ε+0, Σ0, ω̃0, and λ0, and then

sequentially simulate φj, πj, ε+j, Σj, ω̃j, and λj for j = 1, . . . , J by the following

steps:

1. Draw a candidate φ∗ from φ
∣∣y, πj−1,Σj−1, ω̃j−1 ∼ N

(
φ, V φ

)
I (φ) (see (16))

and accept this proposal with probablity

min

{∏T
T−s+1 p

(
εt (φ∗, πj−1, ε+,j−1)

∣∣ω̃j−1t ,Σj−1 ) |R (φ∗, πj−1)|∏T
T−s+1 p

(
εt
(
ϑj−1, ε+,j−1

) ∣∣ω̃j−1t ,Σj−1
) ∣∣R (ϑj−1)∣∣ , 1

}

If the proposed value is rejected, set φj at its current value φj−1. Here we use

the notation R (φ, π) to indicate the dependence of R on φ and π (see (4) and

(27), and the related discussions).

2. Draw a candidate π∗ from π
∣∣y, φj,Σj−1, ω̃j−1 ∼ N

(
π, V π

)
I (π) (see (17)) and

accept the proposal with probability

min

{ ∏T
T−s+1 p

(
εt
(
φj, π∗, ε+,j−1

) ∣∣ω̃j−1t ,Σj−1 ) ∣∣R (φj, π∗)∣∣∏T
T−s+1 p

(
εt
(
φj, πj−1, ε+,j−1

) ∣∣ω̃j−1t ,Σj−1
) ∣∣R (φj, πj−1)∣∣ , 1

}

If the proposed value is rejected, set πj at its current value πj−1.

3. Randomly group the errors εj−1T+1, . . . , ε
j−1
T+m into the bj blocks ε

+,j−1
1 , ε+,j−12 , ...,

ε+,j−1bj
.2[HUOM!] For i = 1, . . . , bj + b draw a candidate block ε+∗i using the hi-

erarchical prior density
∏T+M

t=T+1 p (εt |Σ, λ), and accept the proposal with prob-

ability

min

{ ∏T
T−s+1 p

(
εt
(
ϑj, ε+∗i , ε+,j−i

) ∣∣ω̃j−1t ,Σj−1 )∏T
T−s+1 p

(
εt
(
ϑj, ε+,j−1i , ε+,j−i

) ∣∣ω̃j−1t ,Σj−1
) , 1}

where ε+,j−i contains the most currently updated values of all the error terms

except for those in the ith block. If the proposal ε+∗i is rejected, set ε+,ji at its

current value ε+,j−1i .

2We follow the procedure of Chib and Ramamurthy (2010) to obtain the random blocks

ε+1 , ε
+
2 , . . . , ε

+
bj
, in the jth iteration. The algorithm is started by randomly permuting εT+1, . . . , εT+m.

The shuffl ed error terms are denoted by εT+ρ(1), . . . , εT+ρ(m), where ρ (1) , . . . , ρ (m) is a permuta-

tion of the integers 1, 2, . . . ,m. Then, the blocks ε+1 , ε
+
2 , . . . , ε

+
bj
are obtained recursively as follows.

The first block ε+1 is initialized at εT+ρ(1). Each error term εT+ρ(l) in turn for l = 2, 3, . . . ,m, is

included in the first block with probability (tuning parameter) pε, and used to start a new block

with probability (1− pε). The procedure is repeated until each reshuffl ed error term is included in

one of the blocks.
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4. Draw a candidate Σ∗ from Σ
∣∣y, πj, φj, ε+j, ω̃j−1 ∼ iW

(
S, ν

)
(see (18)) and

accept the proposal with probability

min

{ ∏T+M
t=T+1 p

(
εt
∣∣Σ∗, λj−1 )∏T+M

t=T+1 p
(
εt
∣∣Σj−1, λj−1

) , 1}
If the proposed value is rejected, set Σj at its current value Σj−1. Here S =

S+Ẽ′Ẽ, ν = T−r+ν, and Ẽ is obtained by stacking ε′t
(
ϑj
)
for t = r+1, . . . , T−s

and then ε′t
(
ϑj, ε+j

)
for t = T − s+ 1, . . . , T .

5. Draw ω̃jt for t = r + 1, . . . , T using (19):[
λj−1 + εt

(
ϑj, ε+j

)′ (
Σj
)−1

εt
(
ϑj, ε+j

)]
ω̃t
∣∣y, πj, φj, ε+j,Σj, λj−1 ∼ χ2

(
λj−1 + n

)
.

6. Draw λj using an independence-chain MH algorithm. As a candidate distribu-

tion for λ, use a univariate normal distribution, with mean equal to the mode of

(20) and precision parameter equal to the negative of the second derivative of

the log posterior density evaluated at the mode. The acceptance probability can

be calculated using the product of the right hand side of (20) and the product∏T+M
t=T+1 p (εt |Σ, λ).

At each iteration, calculate forecasts yT+h for h > 0 (h = 1, ...H) using (25)

with πj, φj, and ε+j. Note that the above procedure can be applied for the purely

noncausal VAR (r = 0) model, by removing Step 2 from the algorithm and setting

ϑj = φj.

5 Empirical Application

We illustrate the use of the noncausal Bayesian VAR model with an application to

U.S. GDP growth and inflation for which a noncausal VAR model is found to provide

superior fit and out-of-sample forecast performance over its causal counterpart. More-

over, we examine Granger causality (in distribution) between the two variables, and

based on the selected noncausal specification, we find no evidence of Granger causal-

ity from inflation to GDP growth. As discussed in Section 5.3, this indicates that

the output gap is not driving inflation in the new Keynesian model. However, there

seems to be a reverse Granger causal relationship, not detected in the corresponding

conventional causal VAR model.

Both series are computed as 400 ln (Zt/Zt−1), where Zt is either the GDP or the

implicit price deflator of the GDP. The resulting series are denoted by xt and πt,
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respectively. Our quarterly data set runs from 1955:1 to 2013:2, and the source of the

data is the FRED database of the Federal Reserve Bank of St. Louis.

In estimation, we use the priors discussed in Section 3.2 above. We set the prior

hyper parameter λ at 5, because relatively small values of λ seem to increase the

performance of the sampler. The VAR coeficients φ and π are assumed prior inde-

pendent, and the elements of the hyperparameters φ and π are set to zero. Following

Litterman (1980, 1986), we set the diagonal elements of V π and V φ such that the

prior standard deviations of the parameters for own and foreign lags (or leads) equal

γ1/l
γ3 and σiγ1γ2/σjl

γ3 , respectively, where l = 1, . . . , r (or l = 1, . . . , s). Here the

ratio σi/σj accounts for the different units of measurement of the dependent variable

(i = 1, . . . , n) and j th (j 6= i) explanatory variable. The parameter γ1 > 0 is often

referred to as the overall tightness of the prior, 0 < γ2 ≤ 1 as the relative tightness of

the other variables, and γ3 > 0 as the lag decay rate. The values of these hyperpara-

meters are set at γ1 = 2 , γ2 = 1, and γ3 = 1, and, following the literature, σ2i is set at

the residual standard error of a univariate causal AR(p) (p = r+s) model for variable

i (i = 1, . . . , n). The degrees of freedom parameter ν is set to 10. We also assume that

the prior scale matrix of Σ is diagonal. In particular, S = (ν − n− 1)diag(σ21, . . . , σ
2
n),

indicating that E (Σ) = diag(σ21, . . . , σ
2
n). With these parameter values, independent

normal-Wishart prior is relatively flat.

5.1 Estimation Results

We estimate all causal and noncausal second, third and fourth-order VAR models

and compute their marginal likelihoods. As discussed in Section 3.3 above, the mar-

ginal likelihoods are estimated using importance sampling (see, e.g., Geweke (2005,

p. 257)). In the general case (r > 0, s > 0), the importance density function (21)

is obtained by the procedure explained in Section 3.3.3 Throughout, the results are

based on N = 100, 000 independent draws from (21). The resulting mixture impor-

tance distributions typically involve three component distributions, two of which have

modes that are relatively far apart (the detailed results, not reported, are available

upon request.).4

3Note that, in the purely causal and noncausal cases, we use tk
(
θ
∣∣∣Ê (θ |y ), ̂var (θ |y ); 20

)
as

the importance density function. Here Ê (θ |y ) and ̂var (θ |y ) refer to the estimates of E (θ |y ) and

var(θ |y ), respectively, calculated from the posterior distribution of θ, obtained by the algorithm of

Section 3.2.
4To obtain an initial estimate ψ0 (cf. (23)) for the parameters of the mixture importance density

(21), the basic algorithm explained in Section 3.2 is run 15 times, each time using very different
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The estimated log marginal likelihoods of all estimated models and their numerical

standard errors (obtained by the Delta method) are presented in Table 1. There is

clear evidence in favor of noncausality, and hence nonlinearity, as conditional on the

order, a noncausal model with one lag always maximizes the marginal likelihood, while

the causal model yields the smallest value. Among all models, the noncausal VAR(1,2)

model is the best, followed by the second-order VAR(1,1) model. Noncausality has

previously been found in U.S. inflation series by Lanne and Saikkonen (2011), and

Lanne, Luoma, and Luoto (2012), among others. Very small standard errors indicate

accurate estimation, and hence, facilitate model selection. The error distribution

indeed seems to be fat-tailed, as required for identification; the posterior mode of

the degree-of-freedom parameter λ equals 4.19. For comparison, we also computed

the maximum likelihood estimates of Lanne and Saikkonen (2013), and the posterior

modes of all parameters turned out to lie close to the maximum likelihood estimates.

However, the posterior densities of most coeffi cients are bimodal, with one clearly

dominating mode.5

5.2 Forecasts

As discussed in Section 4, predictive distributions are obtained as a by-product of the

estimation of the noncausal VAR model. In order to gauge the forecast performance,

we compute pseudo out-of-sample forecasts from a number of models for the period

1970:1 to 2013:2. The forecasts are computed recursively, at each step reestimating

each model using an expanding data window starting at 1955:1. We consider the

forecast horizons of one, four, and eight quarters, as is common in the inflation and

GDP growth forecasting literature.

We report the results of two evaluation criteria, the root mean squared forecast

error (RMSFE) based on the median of the predictive distribution and the sum of

log predictive likelihoods (PL) computed over the forecast period are reported. The

RMSFE summarizes the accuracy of point forecasts, while the PL yields information

on the forecasting performance of the entire predictive density. Geweke (1999, 2001),

Geweke and Amisano (2010), and Chan et al. (2013), among others have also used

the latter metric to evaluate the accuracy of density forecasts, and as emphasized

by Geweke (1999, 2001), it is also very closely connected to the log of the marginal

likelihood. As a matter of fact, when the log predictive likelihoods are evaluated at

randomly selected starting values (N0 is set at 15× 5000; see the discussion following (23) ).
5Detailed estimation results are not presented to save space, but they are available upon request.

20



the observed values over the entire sample period (1955:1—2013:2 here), these two

measures are equal. Following Bauwens et al. (2011) and Clark and Doh (2011), we

compute the predictive likelihoods using kernel density estimation of the forecasted

densities of the VAR(r, s) models.

The sums of log predictive likelihoods of all third-order VAR models are reported

in Table 2, and the VAR(1,2) model selected in the in-sample analysis above, out-

performs the other specifications by a wide margin.at all forecast horizons. The

corresponding figures for the univariate density forecasts reported in the right-hand

side panel of Table 3 also indicate the superiority of the VAR(1,2) model in predicting

inflation. For GDP growth, the results are not quite as clear cut: the VAR(1,2) model

is the winner at the one-quarter horizon, but it is beaten by the VAR(0,3) model at

the two longer forecast horizons.

As far as the point forecasts are concerned, the result in the left-hand side panel

of Table 3 show that for inflation the purely noncausal VAR(0,3) model is the most

accurate at the four and eight-quarter horizons, while it is marginally outperformed

by the VAR(2,1) model at the one one-quarter horizon. Also for GDP growth the

noncausal models always outperform the causal VAR(3,0) model. However, at the one

and eight-quarter horizons, it is the VAR(2,1) model that yields the most accurate

point forecasts, with the VAR(1,2) and VAR(0,3) models being the winners at the

four-quarter horizon.

Probably the most surprising finding is that the univariate AR(1,2) model yields

more accurate point and density forecasts of GDP growth than any of the VAR mod-

els, indicating that inflation contains no useful information for future GDP growth

over and above the univariate noncausal model. Moreover, the AR(1,2) model outper-

forms the causal AR(3) model (not shown), attesting to the ability of the noncausal

model to take effects of missing variables (other than inflation) into account. In

contrast, for inflation the univariate AR model is clearly inferior to any of the VAR

models, which suggests that GDP growth is useful in forecasting inflation in ways not

captured by the univariate noncausal model.

5.3 Granger Causality

Because the noncausal VAR model can capture effects of missing variables and mis-

specified functional form, it is particularly useful in checking for Granger causality, as

discussed above. Moreover, this can be done in a straightforward manner by means

of Bayesian analysis, while conducting the corresponding classical test seems compli-
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cated, or potentially even impossible. This follows from the diffi culty of expressing the

hypothesis of no marginal predictive power in terms of the parameters of the VAR

model (see Nyberg and Saikkonen (2013, Section 4.1) for further discussion). Our

Bayesian approach simply relies on comparing the marginal predictive likelihoods of

the univariate and bivariate models to check whether the variable excluded from the

univariate model has marginal predictive power for the other variable (at any forecast

horizon). Hence, our procedure is based on comparing out-of-sample predictions (at

all horizons), in line with Granger’s (1969) seminal paper. In practice, this compar-

ison is conducted at a number of forecast horizons to confirm the robustness of the

findings. While the Granger noncausality test is typically defined in terms of the

mean squared forecast error, our procedure corresponds to the concept of Granger

causality in distribution defined by Droumaguet and Wózniak (2012), who propose

a similar approach. Instead of predictive likelihoods, however, these authors use in-

sample marginal likelihoods, which is feasible in their Markov-switching VAR model,

allowing for the imposition of the Granger causality restrictions.

As pointed out at the beginning of this section, testing for Granger causality from

inflation to GDP growth is particularly interesting because it can also be seen as a test

of the new Keynesian model. In particular, assuming GPD growth is a reasonable

proxy for the marginal cost, inflation should Granger cause it if the marginal cost

indeed is driving inflation in accordance with the model (see, e.g., Rudd and Whelan

(2005) and the references therein). In Table 4, we report the results of Granger

causality analysis only for the forecast horizons of one, four and eight quarters, but

the conclusions are robust with respect to horizon. Twice the logarithmic Bayes

factors of the bivariate VAR(1,2) model against the univariate AR(1,2) model for GDP

growth are also negative at all prediction horizons considered, indicating virtually

no predictive ability of inflation for GDP growth over and above ist own history.6

Supposing GDP growth is a reasonable proxy for the marginal cost, this can be

interpreted as evidence against the new Keynesian model as it indicates that marginal

cost is not driving inflation. Interestingly, however, there is strong evidence in favor

of Granger causality from GDP growth to inflation, with twice the logarithmic Bayes

factors around 20. In view of the results in Subsection 5.2, these findings are not

surprising. The former outcome is also common in the previous literature (see, e.g.,

Lanne and Luoto (2013) and the references therein), whereas there is little evidence

6According to Kass and Raftery (1995), values less than 2 of twice the natural logarithm of the

Bayes factor indicate no evidence, while values greater than 20 indicate very strong evidence in favor

of Granger causality.
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in favor of Granger causality from GDP growth to inflation, and based on the causal

VAR(3,0) model, also we were not able to find Granger causality in either direction.7

6 Conclusion

In this paper, we have devised Bayesian methods of estimation and forecasting in

the noncausal VAR model. In particular, we have proposed a relatively fast and reli-

able posterior simulator that yields the predictive distribution as a by-product. It is

well known, however, that the posterior distributions of the parameters of nonlinear

models tend to exhibit non-elliptical shapes such as skewness and multimodality, and

based on our empirical findings, the noncausal VAR model is not an exception. Fortu-

nately, it turned out that this has only marginal effect on the predictive distribution,

but it nevertheless complicates the estimation of the marginal likelihood. Therefore,

to successfully estimate the marginal likelihood of the model, we also proposed an

alternative estimation procedure that closely resembles the MitISEM algorithm of

Hoogerheide, Opschoor, and van Dijk (2012).

We demonstrated the new methods with an empirical application to U.S. inflation

and GDP growth for which a noncausal VAR model turned out to be superior in both

in-sample and out-of-sample performance over its conventional causal counterpart. In

addition, we found GDP growth to have predictive power for the future distribution

of inflation, but not vice versa, which may be interpreted as evidence against the

new Keynesian model, provided GDP growth is a reasonable proxy of the marginal

cost. In contrast, in line with the previous literature, we found no Granger causality

in either direction in the causal VAR model. This suggests that either Granger

causality is nonlinear, and hence, not detected in the linear causal VAR model, or

alternatively, the noncausal model is capable of capturing the effects of variables

not included in the model in a way that facilitates detecting the Granger causal

relationship from GDP growth to inflation. Of course, both of these factors may also

be present simultaneously.

We have only applied our method to a low-dimensional vector autoregression.

However, the method can be readily used for larger dimensions, such as a VAR model

comprising of the seven variables in the US macroeconomic model of Smets and

7In the causal VAR(3,0) model, Granger causality can easily be checked by comparing the unre-

stricted model to the restricted model with the lags of the other variable set to zero in each equation

in turn (cf. Droumaguet and Wózniak (2012)). In both cases, twice the logarithmic Bayes factor

based on the in-sample sum of log marginal likelihoods (from 1955:1—2013:2) is less than unity.
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Wouters (2007), but this kind of an exercise calls for an informative prior distribution

that shrinks the parameters towards the chosen prior mean, hence preventing overfit-

ting. Nevertheless, with larger models, overparameterization may cause convergence

problems for our Metropolis-within-Gibbs sampler that tends to increase posterior

correlation between the coeffi cients of leads and lags.

Appendix

In this appendix we derive the full conditional posterior distributions of the groups of

unobservables, namely, φ, π, Σ, ω̃, and λ, given in expressions (16), (17), (18), (19),

and (20).

To derive the full conditional posterior of φ in the general case (r > 0, s > 0),

note that the term Π (B) Φ (B−1) yt in (9), and, hence, in (11) can be rewritten as

Π (B) [yt−Φ1yt+1−· · · −Φsyt+s] = Π (B) [yt −Xtφ], where Xt = In⊗
(
y′t+1, . . . , y

′
t+s

)
.

From (11), this yields

p (y |θ, ω̃ ) ∝ exp

[
−1

2

T−s∑
t=r+1

(y∗t −X∗t φ)′Σ−1 (y∗t −X∗t φ)

]
= exp

[
−1

2
(y∗ −X∗φ)′Ω (y∗ −X∗φ)

]
, (.32)

where y∗ and X∗ are obtained by stacking y∗t = ω̃
1/2
t Π (B) yt and X∗t = ω̃

1/2
t Π (B)Xt

for t = r + 1, . . . , T − s, respectively, and Ω = IT−r−s ⊗ Σ−1. Rewriting the right

hand side of (.32) in terms of the generalized least squares estimator of φ (see, e.g.,

Hamilton (1994, p. 220)), multiplying the resulting equation by the appropriate prior

density, and completing the square for φ, we obtain the prior distribution (16) in

Section 3.2:

φ |y, π,Σ, ω̃ ∼ N
(
φ, V φ

)
I (φ) ,

where V φ =
(
V −1φ + X∗′ΩX∗

)−1
and φ = V φ

(
V −1φ φ+ X∗′Ωy∗

)
.Following Chib and

Greenberg (1994), we draw from this full conditonal posterior by sampling from the

untruncated variant, N
(
φ, V φ

)
, until we obtain a draw that lies in the stationary

region.

It is also straightforward to confirm that the full conditional posterior distribution

of π under the chosen prior is

π |y, φ,Σ, ω̃ ∼ N
(
π, V π

)
I (π) ,

where V π =
(
V −1π + Σ−1 ⊗U′U

)−1
and π = V π

(
V −1π π + vec (U′YΣ−1)

)
. The tth

rows of the matrices Y and U [vai Y and U?] are given by u∗t = ω̃
1/2
t u′t (ϑ2) and
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U∗t = ω̃
1/2
t

(
u′t−1 (ϑ2) , . . . , u

′
t−r (ϑ2)

)
, respectively. To see this, note that by (12), the

conditional density in (11) can also be rewritten in terms of ut (ϑ2). Following Zellner

(1971, p. 225), from (11), we then obtain

p (y |θ, ω̃ ) ∝ exp

[
−1

2
tr (Y −UΠ)′ (Y −UΠ) Σ−1

]
, (.33)

whose right hand side can be written in terms of ordinary least squares quantities.

Thus, by the prior density of π and (.33), expression (17) in Section 3.2 is obtained by

standard calculations (see, e.g., Zellner (1971, p. 240) and Karlsson (2012)). Again,

exactly as in the case of φ, sampling from (17) is carried out by drawing from the

untruncated variant, N
(
π, V π

)
until obtaining a draw that lies in the stationary

region.

Note that, in the purely causal case (s = 0), the vectors u∗t and U
∗
t reduce to ω̃

1/2
t y′t

and ω̃1/2t

(
y′t−1, . . . , y

′
t−r
)′
, respectively, and the conditional posterior distribution of

π is π |y,Σ, ω̃ ∼ N
(
π, V π

)
I (π), where π and V π are as in (17). Furthermore, in

the purely non-causal case (r = 0), the vectors u∗t and U
∗
t in (17), can be replaced

with ω̃
1/2
t y′t and ω̃

1/2
t

(
y′t+1, . . . , y

′
t+s

)
, respectively, and then the right hand side of

(.33) can be expressed as exp
[
−1
2
tr (Y −UΦ)′ (Y −UΦ) Σ−1

]
. In this case, the

full conditional posterior of φ reduces to φ |y,Σ, ω̃ ∼ N
(
φ, V φ

)
I (φ), where V φ =(

V −1φ + Σ−1 ⊗U′U
)−1

and φ = V φ

(
V −1φ φ+ vec (U′YΣ−1)

)
.

From (.33), it can also be seen that under the inverse-Wishart prior, Σ has the

conditional posterior of the form

Σ |y, π, φ, ω̃ ∼ iW
(
S, ν

)
,

where S = S + E′E, E = Y − UΠ, and ν = ν + T − s − r. That is, the expression
(18) in Section 3.2 follows directly from (.33).

The kernel of p (ω̃ |y, π, φ,Σ, λ) is obtained as a product of (11) and (14), where

ω̃r+1, . . . , ω̃T−s are conditionally independent. Specifically,

p (ω̃t |y, π, φ,Σ, λ) ∝ ω̃
n+λ
2
−1

t

exp
[
−ω̃t

(
λ+ εt (ϑ)′Σ−1εt (ϑ)

)
/2
]
. (t = r + 1, . . . , T − s)

Thus, by the properties of the chi-squared distribution, we obtain expression (19):[
λ+ εt (ϑ)′Σ−1εt (ϑ)

]
ω̃t |y, π, φ,Σ, λ ∼ χ2 (λ+ n) . (t = r + 1, . . . , T − s)
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From (14) and the assumption λ ∼ Exp (λ), it follows that the conditional poste-

rior density of λ can be written as

p (λ |y, ω̃ ) ∝
[
2λ/2Γ (λ/2)

]−(T−r−s)
λλ(T−r−s)/2

(
T−s∏
t=r+1

ω̃
(λ−2)/2
t

)
exp

[
−
(

1

λ
+

1

2

T−s∑
t=r+1

ω̃t

)
λ

]
.

It is the hierarchical prior structure in which λ affects the data only through ω̃ that

lies behind this result.

Following Geweke (2005), we simulate from the conditional posterior of the degree-

of-freedom parameter λ using an independence-chain MH algorithm. As a candidate

distribution of λ, we use the univariate normal distribution with mean equal to the

mode of (20) and precision parameter equal to the negative of the second derivative

of the log posterior density, evaluated at the mode. The acceptance probability is

determined by (20).
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Table 1: Model selection.
Model ln ML Std.err.

VAR(2,0) —941.10 0.0035

VAR(1,1) —939.96 0.0066

VAR(0,2) —940.07 0.0055

VAR(3,0) —944.77 0.0045

VAR(2,1) —942.45 0.0071

VAR(1,2) —939.44 0.0045

VAR(0,3) —941.21 0.0056

VAR(4,0) —950.11 0.0089

VAR(3,1) —947.47 0.0280

VAR(2,2) —944.55 0.0192

VAR(1,3) —943.77 0.0090

VAR(0,4) —945.79 0.0056

The figures in the second and third

columns are the sums of the logarithmic

marginal likelihoods of all second, third

and fourth-order VAR models for inflation

and output growth from 1955:1 to 2013:2,

and their standard errors, respectively.

30



Table 2: Sums of h-step-ahead log predictive likelihoods.

Model h = 1 h = 4 h = 8

VAR(3,0) —702.8 —770.8 —799.0

VAR(2,1) —701.5 —773.1 —803.4

VAR(1,2) —698.2 —763.9 —794.6

VAR(0,3) —708.7 —767.5 —796.9

The figures are the sums of the log pre-

dictive likelihoods (ln PL(h)) with one, four

and eight quarter forecast horizons (h) for each

model. The forecasts are computed recursively

in the period 1970:1—2013:2, at each step rees-

timating each model using an expanding data

window starting at 1955:1.
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Table 3: Pseudo out-of-sample forecast analysis.

RMSFE ln PL(h)

Model h = 1 h = 4 h = 8 h = 1 h = 4 h = 8

Inflation

VAR(3,0) 1.108 1.541 2.038 —258.2 —314.2 —355.3

VAR(2,1) 1.103 1.572 2.114 —259.1 —314.6 —356.1

VAR(1,2) 1.126 1.525 2.035 —253.8 —306.4 —347.3

VAR(0,3) 1.105 1.511 2.007 —261.0 —312.6 —352.4

AR(1,2) 1.131 1.654 2.166 —276.7 —328.9 —363.8

GDP Growth

VAR(3,0) 3.428 3.691 3.608 —449.2 —457.0 —446.7

VAR(2,1) 3.281 3.661 3.514 —447.7 —458.1 —447.1

VAR(1,2) 3.331 3.623 3.578 —445.7 —458.0 —449.4

VAR(0,3) 3.316 3.623 3.534 —449.7 —456.0 —445.5

AR(1,2) 3.188 3.404 3.362 —442.6 —448.6 —437.3

The figures are the root mean square forecast errors (RMSFE) and sums

of the log predictive likelihoods (ln PL(h)) with one, four and eight quarter

forecast horizons (h) for inflation and GDP growth. The forecasts are com-

puted recursively in the period 1970:1—2013:2, at each step reestimating each

model using an expanding data window starting at 1955:1.
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Table 4: Granger causality analysis.

AR(1,2) Model for h = 1 h = 4 h = 8

Inflation 19.9 19.5 14.33

GDP Growth —2.7 —8.2 —10.5

The figures are twice the natural logarithm of the

Bayes factor of the bivariate VAR(1,2) model against

the univariate AR(1,2) for either inflation or GDP

growth. The Bayes factors are are based on the sum of

the h-step (marginal) log predictive likelihoods summed

over 1970:1—2013:2.
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