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1 Introduction

Admission practices at selective universities generate considerable public interest and political con-

troversy. For example, in the UK a highly publicized 2011 Sutton Trust report shows that nationally

just 3% of schools �mostly expensive and independent (as opposed to state-run) institutions �ac-

count for 32% of undergraduate admissions to Oxford and Cambridge, while these universities claim

to admit solely on the basis of academic merit. On the other hand, background-based admission

quotas such as caste-based reservation in India�s public universities and race-based a¢ rmative ac-

tion in American state-funded colleges have been the subject of intense public controversy, the

latter recently re-surfacing in the high-pro�le "Fisher versus University of Texas" lawsuit. Indeed,

the question of fair access to selective universities involves two issues of signi�cant interest to econo-

mists and policymakers, viz., (a) intergenerational mobility and (b) discrimination �both positive

and negative. Despite signi�cant media attention, rigorous analysis of the available micro-evidence

on these issues is scant in the literature. In this context, an important starting point would be

to directly measure the extent of equity-e¢ ciency trade-o¤ implicit in current admission protocols,

based on micro-level admissions data. In this paper, we develop a rigorous empirical framework

to model such trade-o¤s, and use it to infer whether all applicants are held to the same academic

standard during admissions.

Our approach is based on the productivity based view of optimal decisions, in the tradition

of Becker (1957). Viewed in this light, if admissions are purely meritocratic, then the marginal

admitted student from a state-school should be expected to perform equally well in post-admission

assessments (e.g., college exams) as the marginal admit from a private school. But her expected

performance would be worse if, say, a¢ rmative action leads to admitting state-school students who

are not expected to perform at or above the same standard as marginal private school students

in future. Conversely, taste-based discrimination against state-schools will lead to the marginal

state-school admit to perform better than the marginal independent school admit. The di¤erence

between expected performances of marginal candidates across demographic groups can therefore be

interpreted as a measure of deviation from meritocracy. A challenge in implementing this approach

directly is that a researcher typically observes a subset of the relevant applicant characteristics used

by admissions-tutors and the distributions of the unobserved characteristics may � and usually

do � di¤er across demographic groups. This "omitted characteristics" problem jeopardizes the

researcher�s attempt at reconstructing the decision-maker�s perceptions and makes it hard to assess

whether the decision-maker acted in an academically unbiased way. Problems of this type been
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recognized by previous researchers, especially in the context of detecting taste-based discrimination

in labor market hiring; see, for instance, Heckman (1998), Blank et al. (2004) and the references

therein. In the present paper, we devise a test for meritocratic admissions �based on the di¤erences

in admission-thresholds faced by di¤erent demographic groups �which is robust to the omitted

characteristics problem.

Speci�cally, we construct an empirical, threshold-crossing model of admissions involving ob-

served applicant covariates and unobserved heterogeneity, i.e., applicant characteristics observed

by admission-tutors but unobserved by the researcher. In our model, academic fairness corresponds

to using identical thresholds of expected future performance across applicants from di¤erent demo-

graphic groups. Our key assumption �for which we will provide suggestive empirical evidence �

is that applicants who are signi�cantly better in terms of easily observable indicators of academic

potential should statistically (but not necessarily with certainty) be more likely to appear stronger

to the admission tutor, based on characteristics observed by her but not by the researcher. The

distribution of unobservables, conditional on observables, is otherwise allowed to be arbitrarily dif-

ferent across demographic groups. We show that using this assumption in conjunction with pre and

post enrolment data, one can learn about the sign and magnitude of the di¤erences between admis-

sion thresholds applied to di¤erent demographic groups. We then apply these methods to analyze

admissions data from a popular undergraduate programme of study at a selective UK University.

In our sample, the application success rates are almost identical across gender and type of school

attended by the candidate �an "independent" school being an indicator of higher socioeconomic

status � both before and after controlling for key covariates. However, applying our method of

threshold detection, we �nd that admission standards faced by applicants who are male or from

independent schools exceed those faced by females or state school applicants, which is not apparent

from the equal success rates, thereby illustrating the usefulness of our approach.

A large volume of research exists in educational statistics on the analysis of admissions to se-

lective colleges and universities, focusing mainly on the United States. For a broad, historical

perspective on selectivity in US college admission, see Hoxby (2009). We are not aware of any

previous attempt in the academic literature in education, economics or applied statistics to for-

mally model and test the extent of meritocracy � in Becker�s sense �of college admissions. The

present paper attempts to �ll this gap. In particular, it focuses on the marginal admits in di¤erent

demographic groups and thereby shows that equal success rate in admissions across demographic

groups can be �and indeed is in our application �consistent with very di¤erent admission stan-

dards across these di¤erent groups. This is in contrast to many other studies �both academic and
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policy-oriented �which compare either average pre-admission test-scores (c.f. Zimdars et al., 2009,

Herrnstein and Murray, 1994) or average post-admission performance across all admitted students

from di¤erent socioeconomic groups (c.f. Keith et al., 1985, Sackett et al., 2009, Kane and William,

1998). Our paper also complements an existing literature on analyzing the consequences of a¢ rma-

tive actions in college admissions. Fryer and Loury (2005) provide a critical review of the relevant

theoretical literature and a comprehensive bibliography. On the empirical side, Arcidiacono (2005)

uses a structural model of admissions to simulate the potential, counterfactual consequences of

removing a¢ rmative action in US college admission and �nancial aid on applicant earning, while

Card and Krueger (2005) describe the reduced-form impact of eliminating a¢ rmative action on

minority students�application behavior in California. In the present paper, we construct a formal

econometric model where a¢ rmative action and meritocracy have contradictory empirical impli-

cations, and uses it in conjunction with admissions-related micro-data to detect deviations from

meritocracy in prevalent admission practises.

The rest of the paper is organized as follows: Section 2 sets up a simple theoretical model; Section

3 lays out the corresponding empirical model of meritocratic admissions; Section 4 contains the

identi�cation analysis; Section 5 discusses inference; Section 6 discusses the data setting and reports

a simulation exercise based on it; Section 7 reports the empirical �ndings and some robustness checks

regarding the interpretation of the results; Section 8 concludes. Technical proofs are collected in

an Appendix.

2 Benchmark Optimization Model

We start by laying out a benchmark economic model of admissions to help �x ideas. Based on this

economic model, in the next section we develop a corresponding econometric model incorporating

unobserved heterogeneity, which can be taken to admissions data.

Let W denote an applicant�s pre-admission characteristics, observed by the university. We

let W := (X;G), where G denotes one or more discrete components of W capturing the group

identity of the applicant (such as sex, race or type of high school attended) which forms the basis

of commonly alleged mistreatment. The variables in X are the applicant�s other characteristics

observed prior to admission which include one or more continuously distributed components like

standardized test-scores. Also, let Y denote the applicant�s future academic performance if admitted

to the university (e.g., GPA), and the binary indicator D denote whether the applicant received

an admission o¤er and the binary indicator A denote whether the admission o¤er was accepted by
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the applicant.

Let W denote the support of W , FW (�) denote the marginal cumulative distribution function

(C.D.F.) of W ; �� (w) denote a w-type student�s expected performance (w 2 W) if he/she enrols;

and let � (w) denote the probability that a w-type student upon being o¤ered admission eventually

enrols. Let c 2 (0; 1) be a constant denoting the fraction of applicants who are to be admitted,

given the number of available spaces.

Admission protocols: We de�ne an admission protocol as a probability p (�) : W ! [0; 1]

such that an applicant with characteristics w is o¤ered admission with probability p (w). A generic

objective of the university may be described as

sup
p(�)2F

Z
w2W

p (w)h (w)� (w)�� (w) dFW (w) subject to
Z
w2W

p (w)� (w) dFW (w) � c:

Here, F denotes the set of all possible p�s, and h (w) denotes a non-negative welfare weight, cap-

turing how much the outcome of a w-type applicant is worth to the university. For a¢ rmative

action policies, h (�) will be larger for applicants from disadvantaged socioeconomic backgrounds

or under-represented demographic groups. The overall objective is thus to maximize total welfare-

weighted expected outcome among the admitted applicants, subject to a capacity constraint. The

solution to the above problem takes the form described below in Proposition 1, which holds under

the following condition:

Condition C: h (w) > 0 and � (w) > 0 for any w 2 W.1 Further, for some � > 0,Z
w2W

� (w)1 f�� (w) � 0g dFW (w) � c+ �;

i.e., admitting everyone with �� (w) � 0 will exceed the capacity in expectation.

Proposition 1 Under Condition C, the solution to the problem:

sup
p(�)2F

Z
w2W

p (w)h (w)� (w)�� (w) dFW (w) subject to
Z
w2W

p (w)� (w) dFW (w) � c

takes the form:

popt (w) =

8>>><>>>:
1 if � (w) > ;

q if � (w) = ;

0 if � (w) < ;

(1)

where

� (w) := h (w)�� (w) ;  := inffr :
Z
w2W

� (w)1 f� (w) > rg dFW (w) � cg;

1Alternatively, we can simply rede�ne W to be the subset of the support of W with � (w) > 0.
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and q 2 [0; 1] satis�esZ
w2W

� (w) [1 f� (w) > g+ q1 f� (w) = g] dFW (w) = c:

The solution (1) is unique in the FW -almost-everywhere sense (i.e., if there is another solution, it

di¤ers from (1) only on sets whose probabilities are zero with respect to FW ). Proof in appendix.

The result basically says that the planner should order individuals by their values of � (W )

and �rst admit applicants with those values of W for which � (W ) is the largest, then to those for

whom it is the next largest and so on till all places are �lled. If the distribution of � (W ) has point

masses, then there could be a tie at the margin, which is then broken by randomization (hence

the probability q). In the absence of any point masses in the distribution of � (W ), the optimal

protocol is of a simple threshold-crossing form popt (w) = 1 f� (w) � g. For the rest of the paper,

we will assume that this is the case. It is useful to note that � (w) a¤ects the admission rule only

through its impact on ; the intuition is that individuals who do not accept an o¤er of admission

contribute nothing to the budget constraint and this is taken into account in the admission process.

Academically e¢ cient admissions: We de�ne an academically e¢ cient admission protocol

as one which maximizes total performance of the incoming cohort subject to the restriction on

the number of vacant places. Such an objective is also "academically fair" in the sense that the

expected performance criterion gives equal weight to the outcomes of all applicants, regardless

of their value of W , i.e., h (w) is a constant. In this case, the previous solution takes the form

popt (w) = 1 f�� (w) � g, where  solves

c =

Z
w2W

� (w)1 f�� (w) � g dFW (w) :

The key feature of the above rule is that  does not depend onW and so the value of an applicant�s

W a¤ects the decision on his/her application only through its e¤ect on �� (W ). To get some

intuition on this, consider the case where one of the covariates in W is gender and assume that

the admission threshold for women, female, is strictly lower than that for men, male. Then

the marginal female, admitted with w = (x; female), contributes female � � (x; female) to the

expected aggregate outcome and takes up � (x; female) places, implying a contribution of female

(= � (x; female) female=� (x; female)) to the objective of average realized outcome. Similarly,

the marginal rejected male, if admitted, would contribute male to the average outcome. Since

male > female we can increase the average outcome if we replaced the marginal female admit

with the marginal male reject. Thus di¤erent thresholds cannot be consistent with the objective of
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maximizing the overall outcome. The following graph illustrates the idea.2

0
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60 62 64 66 68 70
x

male female

Figure 1: Equal threshold versus equal probability of acceptance

In this graph, the solid curve represents the marginal density of academic merit for male applicants

and the dashed curve that for female applicants. Under identical thresholds, marked by the small-

dashed vertical line, the probability of acceptance equals the area � to the right of the line �

under the solid density curve for male applicants and under the dashed density curve for female

applicants. The graph shows that the latter area is signi�cantly larger, suggesting that if a common

threshold were used, admission rate for female applicants would be higher. Conversely, equating

admission probabilities across gender requires employing a larger threshold (marked by long dash)

for females than for males (solid line). The di¤erence between the thresholds is then a logical

measure of deviation from meritocratic admissions. Indeed, if the density curves have identical

right tails, then equal thresholds can be consistent with equal admission rates. Our goal is to use

actual admissions data to understand whether admission o¢ cers use identical thresholds across

socio-demographic groups. The key challenge is to allow for the possibility that admission-tutors�

inference about academic merit were based on more characteristics than we the researchers observe,

so that we cannot replicate the two density curves as in the previous graph. Therefore, we now

turn to the task of constructing an econometric model incorporating unobserved heterogeneity in

an empirical model of admissions.
2The �rst author is grateful to Amitabh Chandra and Doug Staiger for suggesting this illustration.
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3 Econometric Model

To set up the empirical framework, we assume that we observe the covariates X;G and the binary

admission outcome D (= 1 if admitted, and = 0 otherwise) for applicants in the current year

and one or more past years. In addition, we have data on outcomes (e.g college GPA) for those

past applicants who had enrolled. When referring to variables from past years or expectations

calculated on the basis of past variables, we will use the superscript "P ". Thus, our aim is to

evaluate academic e¢ ciency of current year�s admission, given data on (X;G;D) for all current

year applicants and (Y P ; XP ; GP j AP = 1) for past years�(successful) applicants, where AP = 1

denotes having enrolled in the university. Let Xg, Xh denote the support of X for applicants of

type g and h, respectively in the current year. Also, let XPg denote the support of XP conditional

on GP = g and AP = 1, i.e.,

XPg :=
�
x : Pr

�
AP = 1jXP = x;GP = g

�
> 0

	
:

This is the set of the values of XP which occur among the admits of type g in past years and so

one can, in principle, calculate (i.e., estimate) the values of �P (x; g) when x 2 XPg .

Now, let Z denote a scalar index of academic ability of a current applicant, based on char-

acteristics (such as reference letters) which are unobservable to the analyst but observed by the

admission-tutor, e.g., reference letters. This may also include any random idiosyncrasies in the tu-

tors�expectation formation process. We assume that larger values of Z, without loss of generality,

denote higher perceived academic potential.

Remark 1 Note that the interpretation of Z is not that it is the level of unobserved characteristics

themselves; rather, it is the applicant-quality inferred from such attributes. For example, if teachers

at private schools are better trained to write reference-letters, then admission-tutors are expected to

take this into account when forming their impression Z.

Under meritocratic admissions, admission tutors would decide on whether to admit applicant i

in the current year, based on ��i � � (Xi; Gi; Zi), their subjective assessment of i�s academic merit,

e.g., how applicant i will perform when admitted. In accordance with our economic model, we

assume that an applicant i with Gi = g, Zi = z and Xi = x 2 Xg is o¤ered admission (i.e., Di = 1)

if and only if ��i = � (x; g; z) � g, where �
�
i denotes the subjective conditional expectation of

applicant i�s academic potential calculated by the admission-tutor handling his �le and g denotes
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the university-wide baseline threshold for applicants of demographic type g. That is,

Di =

8<: 1 if � (Xi; Gi; Zi) � Gi ;

0 otherwise.
(2)

Academically e¢ cient admissions: In the above setting, we de�ne an admission practice

to be academically e¢ cient/fair if and only if g is identical across g. The underlying intuition is

that the only way covariates G should in�uence the admission process is through their e¤ect on

the perceived academic merit. Having a larger  for, say, females than males implies that a male

applicant with the same expected outcome as a female applicant is more likely to be admitted.

Conversely, under a¢ rmative action type policies, g will be lower for those gs which represent

historically disadvantaged groups. Therefore, we are interested in testing whether the values of the

threshold g are identical across g. We will call g the "admission threshold" for group g.

It is important to note that here we are not making any assumption about whether or not

G a¤ects the distribution of the outcome, conditional on X. In our set-up, a female applicant

with identical X as a male candidate can have a higher probability of being admitted and yet the

admission process may be academically fair if females have a higher expected outcome than males

with identical X.

4 Identi�cation Analysis

In order to develop a test of meritocratic admissions, we will make a set of assumptions using the

following notation. For any pair of individuals i and j, where i is of type g and has a value ofX equal

to xg and j is of type h and has X = xh with xg 2 Xg and xh 2 Xh, the notation xg �" xh will mean

that applicants i and j are identical with respect to all qualitative attributes and, moreover, every

continuously-distributed component of xg is at least " (� 0) standard deviations larger than the

corresponding component of xh. For example, if G = �school type�and X = (SAT;GPA;male),

then xg �" xh means that applicant i and j are both male or both female and that SATi >

SATj + "�SAT and GPAi > GPAj + "�GPA, where, �GPA and �SAT are the standard deviation of

GPA and SAT for the entire population of applicants. We will denote by Q� (ZjA) the �th quantile

of the random variable Z given the random variable A.

2We assume that applicants with x =2 XP
g are o¤ered admission with probability 1 (if they are stronger than the

best admitted candidate on whom data exist) or 0 (if they are worse than the worst admitted candidate on whom

data exist).
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Throughout the rest of the paper, we will maintain the following assumption:

Assumption M (Median restriction) (i) There exists " > 0 such that for any e � ", if xg 2 Xg
and xh 2 Xh and xg �e xh, then,

Median [ZjX = xg; G = g] � Median [ZjX = xh; G = h] ;

for any g and h; (ii) ��i = � (Xi; Gi; Zi) (introduced just before equation (2)) is continuously

distributed conditionally on any realization of (Xi; Gi).

A stronger version of Assumption M is �rst-order stochastic dominance, which has the same

intuitive interpretation as Assumption M (see immediately below):

Assumption SD (Stochastic Dominance) There exists " > 0 such that for any e � ", if xg 2

Xg and xh 2 Xh with xg �e xh, then the distribution of Z conditional on X = xg, G = g �rst

order stochastic dominates that of Z conditional on X = xh, G = h:

Pr [Z � ajX = xg; G = g] � Pr [Z � ajX = xh; G = h] ;

for any a and for all g; h; (ii) ��i = � (Xi; Gi; Zi) is continuously distributed conditionally on

any realization of (Xi; Gi).

Discussion: Crudely speaking, Assumption M/SD means that applicants who are better along

standard, observable indicators of academic ability are also likely to be better �"on average" �in

terms of the index of unobserved characteristics which the tutors weigh positively in determining ad-

missions. The motivation for this assumption comes from the fact that for meritocratic admissions,

the outcome of interest may be thought of as a measure of future academic performance whereas

the measures in X are a set of past academic performance in high-school or admissions-related

assessments. It is therefore likely that candidates who have performed signi�cantly better in past

assessments are statistically more likely to have performed better in those assessments (unobserved

by the researcher) which admission tutors view as positive determinants of future performance

and hence, under the assumption of being academically motivated, would weigh positively in the

decision to admit.

The magnitude of " controls the strength of Assumption M. Thus " = 0 corresponds to the

benchmark case where we are comparing a pair of g and h type applicants, such that the former

has scored higher in each previous assessment than the latter. A larger value of " corresponds to

a weaker assumption, since xg �" xh for a larger " will imply that the g-type individual is much

10



better than the h-type one in terms of observables and hence it is more likely that the conclusion

of Assumption M holds. When we use an " > 0, rather than " = 0, our identifying information for

admission-thresholds will come from pairs of applicants who are "well-separated" in terms of their

prior test-scores. In the application, we will use values of " = 0:1 and " = 0:25 which are strictly

positive and thus lead to comparison of applicant-pairs with no overlap of pre-admission test-scores.

Pairs who are very close to each other in terms of observables are not used in the analysis.

Assumption M is substantively much weaker than two informal arguments often used in applied

work �viz., (i) when the distribution of the observable covariates are balanced across treatment

and control groups in quasi-experimental designs, it is taken to imply that they are also balanced in

terms of unobservables (e.g., Greenstone and Gayer, 2009) and (ii) orthogonality of an instrument

with observed covariates is taken as suggestive evidence that it is orthogonal with unobserved

covariates (e.g., Angrist and Evans, 1998, p. 458). In our context, the type of variables typically

unobservable to researchers but likely to a¤ect admissions include achievements such as winning

special academic prizes, participation in science or math olympiads, high intellectual enthusiasm

conveyed by applicants�personal essays and the subjective impressions of previous teachers implied

via reference letters. Such speci�c information can identify individual applicants and therefore are

most likely to be withheld from researchers owing to privacy considerations. However, while making

admission decisions, tutors are likely to observe these characteristics for current applicants via their

dossiers or through personal interactions. It is intuitive that such achievements are statistically

more likely to have occurred for individuals who score higher in terms of easily observable entrance

assessments and aptitude tests than those who score lower (see also remark 1). See Section 6 below

for evidence that is suggestive and supportive of this assumption, in our application.

Finally, the continuity condition in Assumption M (ii) rules out "gaps" in the distribution of

Z, which helps to relate the probability of admission to the admission thresholds. Such continuity

is intuitive, especially when Z is a function of several underlying performance indicators which are

themselves continuously distributed.

Remark 2 Note that assumption M/SD does not say that applicants with higher X have higher

Z with probability one; it simply says that their values of Z tend to be higher in a stochastic sense.

Remark 3 The restriction on the median cannot be replaced by a restriction on the conditional

expectation for identi�cation purpose since we are considering a discrete-choice problem, viz., D =

1f� (X;G;Z) � Gg. See Manski (1975) for why a conditional quantile restriction is necessary for

the identi�cation of discrete-choice models.
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Remark 4 Assumption M allows the distribution of the unobservable Z to di¤er by background

variables; in particular, we allow both the location as well as the scale of Z to depend on G (condi-

tional on X) and thus also allow for the realistic situation of larger uncertainty regarding applicants

from historically under-represented communities.

4.1 Sign of threshold di¤erences

We �rst show how assumption M or SD can help identify the sign of threshold di¤erences across

demographic groups. To do this, we impose an intuitive assumption on the structure of the �

function.

Assumption CM (Conditional Monotonicity) (i) � (x; g; z) is strictly increasing in z for every

x and g; (ii) if xg and xh satisfy xg �" xh, then � (xg; g; z) > � (xh; h; z) for any z, and any

g 6= h.

Discussion: Part (i) of Assumption CM is essentially de�nitional (regarding Z) in that higher

values of the index of ability based on unobserved characteristics are associated with higher values

of the perceived expected outcome. Part (ii) says that if a g-type applicant is better than an h-type

applicant along a set of key observable characteristics and is at least equally good along the ability

index which is unobservable to us but observable to the decision-makers, then the g-type applicant

will be perceived to have a higher expected outcome by the decision-maker. It is important for

part (ii) that the g-type applicant is at least as good as the h-type applicant along the index Z;

without this condition, it is easy to come up with counter examples. For instance, suppose that

admission tutors base their assessment on past written exams whose scores X are observed by us

(researchers) and the quality of the reference letter Z, unobserved by us. Then a female candidate

who has scored lower on every component of X than a male candidate but has a much better

recommendation may or may not be perceived as having a lower potential than the male candidate.

But a female candidate who has an equally strong recommendation Z as a male candidate but has

scored lower on every X than him will likely be perceived to have lower academic potential (note

also remark 1) in expectation.

Now, assumptions M and CM can be used to identify the sign of threshold di¤erences. To see

this, de�ne the function

p (x; g) : = Pr [D = 1jX = x;G = g]

: = Pr
�
� (X;G;Z) > gjX = xg; G = g

�
;
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and the setM (g; h; ") as

M(g; h; ") := f(xg; xh) 2 Xg �Xh : xg �" xh; p (xg; g) � 0:5 < p (xh; h)g : (3)

Note that the set M (g; h; ") can be directly computed from the data because it depends only on

observables.

Now, suppose that one �nds thatM (g; h; ") is non-empty. Then, for any (xg; xh) inM (g; h; "),

since p (xg; g) = Pr
�
� (xg; g; Z) > gjxg; g

�
� 0:5, it must be true that

g � Median [� (X;G;Z) jX = xg; G = g]

= � (xg; g;Median [Zjxg; g]) , by assumption CM(i)

> � (xh; h;Median [Zjxg; g]) , by CM(ii)

� � (xh; h;Median [Zjxh; h]) , by assumption M

= Median [� (X;G;Z) jX = xh; G = h] , by CM(i)

� h, since 0:5 < p (xh; h) .

Thus, the non-emptiness of the setM (g; h; ") leads to the inequality g > h.

Under the stronger SD assumption, non-emptiness of the set

SD(g; h; ") := f(xg; xh) 2 Xg �Xh : xg �" xh; p (xg; g) < p (xh; h)g (4)

would analogously imply that g > h. This is because if (xg; xh) 2 SD (g; h; "), then because

1� p (xg; g) = Pr
�
� (X;G;Z) < gjX = xg; G = g

	
, we have that

g = Q1�p(xg ;g) [� (X;G;Z) jX = xg; G = g]

= �
�
xg; g;Q

1�p(xg ;g) [Zjxg; g]
�
, since � (xg; g; �) is increasing

> �
�
xg; g;Q

1�p(xh;h) [Zjxg; g]
�
, since p (xg; g) < p (xh; h)

� �
�
xg; g;Q

1�p(xh;h) [Zjxh; h]
�
, by assumption SD since xg �" xh

� �
�
xh; h;Q

1�p(xh;h) [Zjxh; h]
�
, by assumption CM(ii) since xg �" xh

= Q1�p(xh;h) f� (xh; h; Z) jxh; hg , since � (xh; h; �) is increasing

� h,

since

1� p (xh; h) = Pr f� (X;G;Z) < hjX = xh; G = hg .

13



Intuitively speaking, here the identi�cation-relevant information comes from those pairs of g-

type and h-type applicants for whom the dominance condition xg �" xh holds and yet the g-

type�s probability of being accepted is lower. Assumption M (or SD) guarantees that these g-

type applicants are also better, in a stochastic sense, in terms of unobservables. Note that these

identifying pairs include applicants who are close to each other (albeit at least " standard deviations

apart) in terms of observables and also those that are farther apart. Also that when g � h > 0,

it must be the case thatM (h; g; ") is empty. Therefore, if one �nds thatM (g; h; ") is empty, then

one may test ifM (h; g; ") is non-empty. If so, then one can conclude that g < h.

Note that so far we have not used any information on post-admission performance of applicants

and not taken any stance on what the ultimate measure of academic merit is. We have only assumed

that the observed covariates X are used by admission tutors to infer an overall measure of academic

potential. Thus the signs of threshold di¤erences obtained above are valid under any expectation

formation process (i.e., � (�; �; �)), as long as assumptions CM are satis�ed.

4.2 Magnitude of threshold di¤erence

In order to infer the extent of deviation from meritocracy (over and above its direction), we need

to specify a post-enrolment outcome as the relevant measure of academic merit. Accordingly,

we now assume that post-entrance exam performance (e.g. �nal GPA) is the relevant outcome.3

Accordingly, de�ne

�P (x; g) = E
�
Y P jXP = x;GP = g;AP = 1

�
; (5)

the conditional expectation of outcome Y P for a past enrolled applicant given his/her characteristics

(XP ; GP ) = (x; g) and impose the following stronger (than CM) assumption on the structure of

� (Xi; Zi; Gi).

Assumption AS (Additive Separability) The tutors�subjective assessment � satis�es

��i � � (Xi; Gi; Zi) = �P (Xi; Gi) + Zi;
3 Indeed, one may use any other post-enrolment outcome which is observed for all enrolled students, e.g., �nishing

the program, salary upon graduation etc. and de�ne meritocracy in terms of that outcome.
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where �P (x; g) is de�ned in (5).4 ; 5

Discussion: Assumption AS also concerns the structure of the "production" function � (�; �; �),

as perceived by admission tutors, when faced with both "hard" information which is easy to record

for past and current applicants and "soft information", observable to admission tutors only for

the current applicants but otherwise di¢ cult to record and hence unobservable to researchers. For

example, tutors can infer the intellectual enthusiasm of each applicant in the current pool from

his/her personal essay. But it is unlikely that tutors would remember such information about past

cohorts, especially when faced with hundreds of applications to process every year. Therefore, a

plausible method of selection is that when considering a current applicant, tutors form an initial

impression of his/her future success ��P (X;G), based on the easily observable "hard" information

like aptitude test score (e.g., SAT), high-school GPA etc. Then they adjust this initial impression,

using an index of ability Z inferred from the "soft" information for each applicant in the current

year which are unobserved by analysts (e.g., quality of reference letters and personal statements)

to form the overall expectation �P (Xi; Gi) + Zi.6

Assumptions AS and M yield a lower bound on the magnitude of threshold di¤erences. To see

this, note that

1� p (Xg; g) : = 1� Pr [D = 1jX = xg; G = g]

= Pr
�
Z < g � �P (xg; g) jX = xg; G = g

�
:

This implies that

g = �
P (xg; g) +Q

1�p(xg ;g) [Zjxg; g] ;
4Note from (5) that in general �P (x; g), will di¤er from E[Y P jXP = x;GP = g] which is typically unknown

to admission tutors in universities because they, like us, do not observe potential outcomes of applicants who were

not admitted. Indeed, a large literature in educational statistics on so-called "validation studies" use predicted

performance of admitted candidates to infer the relative predictive ability of standardized test scores vis-a-vis high

school grades and socioeconomic indicators and prescribe policies based on this analysis. See for example, Kobrin

et al. (2001), Kuncel et al. (2008) and Sawyer (1996, 2010). Since our analysis evaluates what admission tutors

are likely to do �rather than what one could have done under ideal circumstances like having experimental data �

using �P (x; g) rather than E[Y P jXP = x;GP = g] � is the correct approach here. Obviously, under selection on

observables, these two quantities are identical.
5We are implicitly assuming that regressing outcome data for past applicants observed by the analyst yields a

consistent estimate of �P (X;G) used by admission-tutors, which is likely when tutors rely on more recent data,

rather than historical data unobserved by analysts, to make predictions.
6Strictly speaking, Assumptions AS and CM are non-nested in that the former does not require the "monotonicity"

in x for �xed z while Assumption CM does not require the additively separable structure. On the other hand,

monotonicity is quite natural in this context and thus CM is a substantively weaker assumption.
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since Z is continuously distributed (by part (ii) of Assumption M). Similarly for individuals with

(X;G) = (xh; h) with g 6= h,

h = �
P (xh; h) +Q

1�p(xh;h) [Zjxh; h] :

Then,

g � h = �P (xg; g)� �P (xh; h) +Q1�p(xg ;g) [Zjxg; g]�Q1�p(xh;h) [Zjxh; h] .

Now if p (xg; g) < 0:5 � p (xh; h), then

g � h > �P (xg; g)� �P (xh; h) +Q1�0:5 [Zjxg; g]�Q1�0:5 [Zjxh; h]

= �P (xg; g)� �P (xh; h) +Median [Zjxg; g]�Median [Zjxh; h] .

So if in addition, xg �" xh, then by Assumption M, Median [Zjxg; g] � Median [Zjxh; h] and hence

g � h > �P (xg; g)� �P (xh; h) :

Taking the supremum of the RHS over (xg; xh) satisfying (xg; xh) 2 M (g; h; ") and (xg; xh) 2

XPg �XPh (so that we can compute �P (xg; g)� �P (xh; h) for all these pairs), we get

g � h � sup
(xg ;xh)2M(g;h;")

�
�P (xg; g)� �P (xh; h)

�
� � (g; h) : (6)

The RHS of the above inequality is based only on observables and is easy to compute once we

specify regression models for �P (�; �) and p (�; �). Thus we obtain a lower bound on the magnitude

of threshold di¤erences in addition to its sign. Under the stronger condition of Assumption SD, we

have the bound

g � h � sup
(xg ;xh)2SD(g;h;")

�
�P (xg; g)� �P (xh; h)

�
; (7)

where SD (g; h; ") is de�ned in (4).

Intuitively speaking, here the identi�cation-relevant information also comes from those pairs

of g-type and h-type applicants for whom the dominance condition xg �" xh holds and yet the

g-type�s probability of being accepted is lower. Assumption M (or SD) guarantees that these g-

type applicants are also better, in a stochastic sense, in terms of unobservables. Therefore, if these

g-type applicants also have higher predicted performance based on observables, then they must

have been facing a higher threshold leading to a lower probability of admission.

Some Alternative Identi�cation Strategies: In the healthcare context, Chandra and

Staiger (2009) attempt to identify di¤erence in expected outcome thresholds for surgery by as-

suming an index restriction on the unobservable�s distribution. This approach fails when the
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distribution of the unobservables di¤ers across G, conditional on observables, which is known to

be the key di¢ culty in detecting who the marginal treatment recipients are. For example, in the

admission context, it is quite likely that students from disadvantaged backgrounds have larger mean

and variance in academic ability, conditional on having obtained the same score in school-leaving

examinations as students from wealthier backgrounds. In contrast, our analysis imposes no such

restriction on the unobservables�distribution. In a healthcare application, Bhattacharya (2013)

suggests an alternative approach to testing outcome-oriented treatment assignment via a partial

identi�cation analysis using a combination of observational data and prior experimental �ndings

from randomized controlled trials. Such experimental results are typically di¢ cult to come by in

the college admission context. For law-enforcement and healthcare provision, several researchers

have used reasoning based on economic optimization by the subjects to detect racial prejudice (c.f.

Persico, 2009 for a survey). However, these approaches rely on the speci�cs of the context and do

not generalize to situations involving university admissions. For example, it is both di¢ cult for

university-applicants to alter their potential academic outcomes in response to admission protocols

and impractical for them to want to do this, given the one-shot nature of admission exercise.

5 Estimation and Inference

Given the identi�cation analysis above, our next task is to develop a formal inference method for

testing threshold-di¤erences. For this purpose, we will make the stronger assumption of SD, rather

than M. Indeed, these two assumptions have the same intuitive interpretation; the evidence for SD

(see section 6 and and also part B of the Appendix) is strong and conducting statistical inference

under it is slightly simpler.

The key task regarding inference � corresponding to Assumptions SD and CM � is to test

whether SD (g; h; ") de�ned in equation (4), viz.,

SD(g; h; ") := f(xg; xh) 2 Xg �Xh : xg �" xh; p (xg; g) < p (xh; h)g

is nonempty. Observe that the null hypothesis of an empty SD (g; h; ") is equivalent to the hypoth-

esis that �0 � 0, where

�0 := inf
(xg ;xh)2Xg�Xh; xg�"xh

[p (xg; g)� p (xh; h)] .

We will now outline how to test the emptiness of SD (g; h; "), based on an inference method

developed for "intersection bounds" by CLR (2013). Although our identi�cation method is non-

parametric in the sense of not requiring functional form speci�cations, estimation and inference for

17



the nonparametric case is complicated. Due to relatively small sample-size, the two-sample nature

of the problem and the complicated construction of "intersection bounds" for nonparametric esti-

mates (requiring subjective choice of various tuning parameters), we do not consider such methods

here. Instead, we focus on the case where p (�; �) is parametrically speci�ed as a probit.7 That is,

p (xg; g) = Pr [D = 1j (X;G) = (xg; g)] = �
�
x0g�0;g

�
; and p (xh; h) = �

�
x0h�0;h

�
;

where (�0;g; �0;h) are the probit coe¢ cients; and � is the C.D.F. of the standard normal. Note that

under our parametric speci�cation, �(x0g�g) � �(x0h�h) is equivalent to x0g�g � x0h�h and thus

SD (g; h; ") =
�
xg �" xh; x0g�0;g � x0h�0;h

	
;

and thus emptiness of SD (g; h; ") is equivalent to the hypothesis that �0 � 0, where

�0 := inf
(xg ;xh)2Xg�Xh; xg�"xh

�
x0g�0;g � x0h�0;h

�
.

The quantity �0 is exactly of the form analyzed in CLR (2013). We construct a one-sided 95%

con�dence interval Ĉn (0:95) =
�
�1; �̂n0 (0:95)

�
for �0 by adapting the CLR method, as outlined

in part C of the Appendix, for each choice of g and h. If �̂n0 (0:95) < 0, then we conclude that

SD (g; h; ") is non-empty.

Inference on the magnitude bounds: When bounding the magnitude of threshold di¤er-

ences as described in subsection (4.2), we consider a slightly more conservative bound which is easier

to conduct inference on. Note from (6) that the key parameter of interest is a supremum over the

domain SD (g; h; "), de�ned in (4). Now, since p (xg; g) needs to be estimated, we need to conduct

inference on the supremum of an estimated object, viz., �P (xg; g) � �P (xh; h) over an estimated

domain. This problem is not covered by existing methods in the literature on partial identi�cation

or moment inequalities. Instead of developing distribution theory for this supremum, we will work

with a slightly conservative version of the bound, viz., we replace the supremum � (g; h) (de�ned

in (6)) by the upper �th quantile, and conduct inference on it. That is, we use the implication of

(6) that for any � 2 (0; 1),

g � h � � (g; h) � ��0 (g; h) ; (8)

where ��0 (g; h) is the �th quantile of the di¤erence in (6):

�� (g; h) := Q�

24�P (Xg; g)� �P (Xh; h)
������ (Xg; Xh) 2 Xg �Xh; Xg �" Xh;p (Xg; g) � p (Xh; h)

35 : (9)

7We take the supports Xg and Xh, to be known.
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For any � (bounded away from 0 and 1), we obtain a corresponding lower bound for g � h. If

��0 (g; h) is larger than zero, then so is � (g; h) and thus we can conclude that g > h. In the

application, we show results for � = 0:80. In the terminology of partial identi�cation analysis, this

is analogous to calculating an "outer identi�cation region" for model parameters. Our estimator of

��0 (g; h) is the natural sample analog of (9):

�̂
�
(g; h) = Q̂�

�
�̂P (Xg; g)� �̂P (Xh; h) jXg �" Xh; p̂ (Xg; g) � p̂(Xh; h)

�
;

where Xg is associated with G = g, and Xh with G = h; Q̂� is the �th quantile based on the

empirical distribution of (Xg; Xh); and �̂P and p̂ are functions estimated in a preliminary step.

This can be stated as a two-sample moment condition problem where the moments are nonsmooth

in the parameters.8 As such, the distribution theory for obtaining con�dence intervals for ��0 (g; h)

does not follow directly from existing results in the econometrics literature and requires an inde-

pendent analysis. In an online appendix posted on the second author�s website, we show that the

asymptotic distribution of the eventual estimator �̂
�
(g; h) is asymptotically normal with a consis-

tently estimable asymptotic variance. Based on the estimate of the asymptotic variance, one can

construct con�dence intervals for the lower bound ��0 (g; h).

6 Empirical Analysis

Background: Our empirical analysis is based on admissions data for three recent cohorts of appli-

cants to a competitive and popular undergraduate degree programme at a selective UK University.

Like in many other European and Asian countries, students enter British universities to study a

speci�c subject from the start, rather than the US model of following a broad general curriculum

in the beginning, followed by specialization in later years. Consequently, admissions are conducted

8Denote the two sets of observations associated with g and h, by fXg;igngi=1 and fXh;jgnhj=1,respectively; let

n = ng + nh; and let n be the total number of observations in the current cohort. Then our estimator �̂
�
= �̂

�
(g; h)

is the solution in � to the sample moment equation:

M�
n (�; �̂) = 0;

where �̂ = (�̂
0
g; �̂

0
h; �̂

0
g; �̂

0
h)
0; (�̂g; �̂h) and (�̂g; �̂h) are �rst-step estimates of linear regression and probit models,

respectively (the former is based on the past cohorts�data and the latter is on the current cohort�); and

M�
n (�; �) :=

1

ngnh

ngX
i=1

nhX
j=1

�
�� 1fX 0

g;i�g �X
0
h;j�h � �g

�
1fXg;i �" Xh;j ; X

0
g;i�g � X 0

h;j�hg: (10)

From (10), it transpires that our estimator is a two-sample moment based estimator, where the sample moment

conditions are nonsmooth in the parameters but the population versions (upon taking expectations) are.
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primarily by faculty members (i.e., admission tutors) in the speci�c discipline to which the can-

didate has applied. An applicant competes with all other applicants to this speci�c subject and

no switches are permitted across disciplines in later years. The admission process is held to be

strictly academic where extra-curricular achievements, such as leadership qualities, suitability as

team-members, engagement with the community etc., are given no weight. In that sense, these

admissions are more comparable with Ph.D. admissions in US universities. Furthermore, almost

all UK applicants sit two common school-leaving examinations, viz., the GCSE and the A-levels

before entering university. Each of these examinations requires the student to take written tests in

speci�c subjects �e.g., Math, History, English, Physical and Biological Sciences etc. The exami-

nations are centrally conducted and hence scores of individual students on these examinations are

directly comparable, unlike high-school GPA in the US where candidates undergo school-speci�c

assessments which may not be directly comparable across schools. In addition, all applicants take

a multiple-choice aptitude test, similar to the SAT in the US, and write an essay that is graded.

Choice of sample: For our empirical analysis, we focus on UK-domiciled applicants. The

application process consists of an initial stage whereby a standardized "UCAS" form is �lled by

the applicant and submitted to the university. This form contains the applicant�s unique identi�er

number, gender, school type, prior academic performance record, personal statement and a letter

of reference from the school. The aptitude-test and essay scores are separately recorded. All of

this information is then entered into a spread-sheet held at a central database which all admission

tutors can access. About one-third of all applicants are selected for interview by the university on

the basis of the aptitude test and the rest rejected. Selected candidates are then assessed via a

face-to-face interview and the interview scores are recorded in the central database. This sub-group

of applicants who have been called to interview will constitute our sample of interest. Therefore, we

are in e¤ect testing the academic e¢ ciency of the second round of the selection process, taking the

�rst round as given. Accordingly, from now on, we will refer to those summoned for interview as the

applicants. The �nal admission decision is made by considering all candidate-speci�c information

from among the applicants called for interviews. For our application, we use anonymized data

for three cohorts of applicants from their records held at the central admissions database at the

university.

Choice of covariates: We chose a preliminary set of potential covariates to be the observables,

based on the information recorded on UCAS forms and the university�s application records. We

use as observable components (i.e.,X) the aptitude test scores, the examination essay-score and

the interview score. A more detailed description of these covariates is provided in Table 0, below.
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The unobservable index of achievement Z is thus based on recommendation letters, the applicant�s

personal essay (distinct from the substantive essay they write as part of the aptitude test), any

prizes or distinctions obtained among possibly other indicators. Given that those summoned for

interview constitute our "population" of interest, we found that in terms of A-level grades, GCSE

scores and whether the applicant previously read two subjects recommended for entry, there is very

little variation across these applicants and including these covariates makes no di¤erence to our

eventual results. Therefore, we eventually dropped these variables from the analysis.

Group identities G: We consider academic e¢ ciency of admissions with regards to two dif-

ferent group identities, viz., type of school attended by the applicant and the applicant�s gen-

der. Selective universities in the UK are frequently criticized for the relatively high proportion of

privately-educated students admitted (see the Introduction). The implication is that applicants

from independent schools, where spending per student is very much higher than in state schools

(Graddy and Stevens, 2005), have an unfair advantage in the admission process. In the UK, as in

most OECD countries, the higher education participation rate is higher for women, having over-

taken that for men in 1993. However, selective universities in the UK appear to have lagged behind

the trend: in 2010-11, 55% of undergraduates across all UK universities were female, but 44% of

students admitted to the university we are analyzing were female. Typically, gender imbalances

are more pronounced in certain programmes and includes the one we study, where male enrolment

is nearly twice the female enrolment.

Outcome: After entering university, the candidates take preliminary examinations in three

papers at the end of their �rst year. Each script is marked blindly, i.e., the marking tutors do not

know anything about the candidate�s background or gender. We use the average score over the three

papers as the �rst outcome �labelled prelim_tot �which can range from 0 to 100. An advantage

of using the preliminary year score as the relevant outcome measure is that every admitted student

sits the same preliminary exam in any given year; so there is no confounding from the di¤erence

in score distributions across di¤erent optional subjects, as often happens in the �nal examinations

at the end of the 3-year course. The disadvantage of using the �rst year score is that applicants

from relatively modest socioeconomic backgrounds are more likely to "catch up" at the end of three

years and thus an assessment based on prelim scores may bias a researcher towards overestimating

the extent of a¢ rmative action.

In view of these considerations, we use as a second outcome the students�performance in the

�nal examinations in eight papers which are taken at the end of three years and based on which

the student receives his/her degree. At this stage, students do not all sit the same papers; but the
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marking is still blind and the scores re�ect relative competence with respect to the others taking

the same paper. The disadvantage of this outcome is that students take examinations in di¤erent

papers which they self-select into and therefore any real improvement relative to the �rst-year

is, to some extent, confounded with e¢ cient sorting into options. Using Duke University data,

Arcidiacono et al. (2011) have recently documented large di¤erences in patterns of major choice

between candidates who are the likely bene�ciaries of a¢ rmative action policies during admissions

compared to the major choice patterns of other enrolled students. However, unlike in Arcidiacono

et al., here the sorting is not into easier and harder subjects (like STEM and non-STEM majors)

but only into di¤erent options which are intellectually similarly demanding.

Summary statistics: We provide summary statistics for our sample in Table 1. The left half

of table 1 shows that male applicants have better aptitude test scores and interview averages. They

perform slightly worse on average in their GCSE and A-levels. These di¤erences are statistically

signi�cant at the 5% level. Note that there is no signi�cant di¤erence in o¤er rates between male

and female candidates. The independent and state school applicants are quite similar in terms of

most characteristics except for a slightly higher GCSE for the former.

In Table 2 we report the results of a probit regression of receiving an o¤er across all applicants.

Table 2 strengthens the �ndings from Table 1 by showing that even after controlling for covariates,

gender and school-type do not a¤ect the average admission-success rate among applicants. The

value of McFadden�s pseudo-R2 for the probit model is about 50% and the corresponding R2 for a

linear probability model (not reported here) is about 45% �which are about 10 times higher than

the goodness-of-�t measures typically reported by applied researchers working with cross-sectional

data. This suggests that the commonly observed covariates explain a very large fraction of admission

outcomes. Moreover, Table 2 also shows that the aptitude test and interview scores have the largest

impact upon receiving an o¤er for the applicant population (in terms of the t-statistics).

Evidence of median-dominance: Among the pre-admission variables that we observe in

our dataset it�s only the performance in the interview that is assigned by tutors. This is the

type of variable most likely to be missing in other datasets since they re�ect subjective assessment

by the admission-tutors. We will �rst check our Assumption M by treating the interview score

as the unobservable component. That is, we will verify whether the median interview score is

higher for those types of applicants who are better in terms of all other "tutor-independent" test-

scores obtained in prior assessments. If that is true, then our Assumption M regarding the truly

unobservable determinants of admissions is also more credible. The concrete steps leading to our

test are as follows. Consider X = (Aptitude_test_score;Exam_essay)0. First, run a median
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regression of interview score (which now plays the role of Z) on X and quadratics in components

of X plus G, where G represents gender or school-type, and compute the predicted values. These

represent Median[ZjX;G]. We then compare these predicted values for pairs of applicants where

the �rst applicant is of type G = g and the second applicant is of type G = h. In Figure 2, we

depict histograms capturing the marginal distribution of the conditional median di¤erences, for

di¤erent combinations of g and h. The analog of our Assumption M here is that these histograms

should have an entirely positive support, up to estimation error. For example, the histogram in the

top left panel of Figure 2 shows the estimated marginal distribution of the variable

Median[interview j Xg; g = male]�Median[interview j Xh; h = female]

across all paired realizations (Xg; Xh) satisfying Xg �" Xh. We choose " = 0:0; if we demonstrate

median dominance for " = 0:0, then dominance will hold for all higher values of ".
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Figure 2: Evidence of Median Dominance

It is evident that all four of these histograms have entirely positive support, suggesting that

the median dominance conditions hold even for " = 0. In the appendix, we also show analogous

histograms for the 25th and 75th quantiles with " = 0:0. There is overwhelming evidence that

these histograms also have positive support and thus that the stronger SD condition is also likely

to be true.
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6.1 A thought experiment

Before performing empirical analysis of the actual data, we conduct a thought experiment where

we investigate the usefulness of our approach in a situation where the "truth" is known. The idea

is to treat one of the observed covariates �viz., the interview score �as unobserved, note that this

"missing" covariate satis�es our assumption of median monotonicity (see Figure 2) and then run

a simulation experiment where tutors accept applicants based on all characteristics including the

interview score but the researcher does not observe it. In this simulation experiment, we vary the

acceptance thresholds and check how small a di¤erence in thresholds can our bounds-based method

detect when the interview score remains "unobserved" to us. The purpose is to investigate how

well our method works when we a priori know the admission thresholds. In order implement this,

we use the above dataset where we treat a school type as G, and aptitude test and examination

essay scores and gender as the commonly observed covariates, X. The interview score is taken to be

unobserved by us (researchers) but observed by admission tutors for whom the admission decision

is to be made. This will play the role of Z. We generate arti�cial observations on admissions

in the following way. Using academic performance in the �rst year examination as the outcome,

we estimate a regression model where X are used as regressors. We then generate the predicted

outcomes for each current year applicant by using coe¢ cient estimates from the previous regression

and adding a contribution from the "unobserved" interview score Z (normalized to have mean zero

across the entire sample). If this sum plus a stochastic slippage error exceeds a threshold value of

61:5 for state-school students (G = h) and 61:5+ � for independent school applicants (G = g), then

the student is assumed to have been o¤ered admission, i.e., the admission-dummy D is set to be 1.

It is set to be 0 otherwise. That is, we set

�g =
hXn

i=1
1 fGi = ggXiX 0

i

i�1Xn

i=1
1 fGi = ggXiYi;

�h =
hXn

i=1
1 fGi = hgXiX 0

i

i�1Xn

i=1
1 fGi = hgXiYi;

Di = 1
�
X 0
i�g1 fGi = gg+X 0

i�h1 fGi = hg+ 0:05Zi + ui � 61:5 + � � 1 fGi = gg
	
;

where 0:05Zi is the contribution from an "unobserved" interview score; ui is the stochastic slippage

component drawn from the normal distribution N (0;1 fGi = gg+ 2� 1 fGi = hg) and thus the

sum 0:05Zi + ui represents the unobserved index variable Zi; and �nally, �, which is set externally

by us, is the extent of a¢ rmative action. A positive value of � indicates that independent school

applicants are being held to a higher threshold of expected performance.

For each value of �, we then perform our bounds analysis by pretending that we observe X but
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not the interview score. This is meant to capture the situation that admission tutors may base their

decision on some subjectively assessed performances Z, unobserved by the researcher, in addition

to the prediction based on the commonly observed covariates. Since the interview-score satis�es

Assumption M (see Figure. 2), our bounds analysis is applicable in this case. Accordingly, Table 3

reports true values of � and the corresponding lower bounds on it, obtained by using our method

(see eqn (8)) with � = 0:5 (median), � = 0:80 as well as the mean, using " = 0:1. The table can be

read as follows. The �rst column reports the true value of �, the second column shows the upper

limit of the one-sided con�dence interval for testing emptiness of SD (g; h; "). The point estimates

for median, mean and 80th percentile of the di¤erence � (Xg; g) � � (Xh; h) over SD (g; h; ") are

reported in the next three columns. Finally, equal tailed con�dence intervals (obtained by repeated

sampling from this design) are reported below the estimates.

It can be seen from Table 3 that threshold di¤erences of 2 or more points out of 100 (overall

standard deviation of the outcome distribution is about 5 points) are clearly detected; a positive

di¤erence of 1 or less still yields a nonempty SD (g; h; ") and positive point-estimates for � but the

associated con�dence intervals contain 0. For a negative value of �, an empty SD (g; h; ") cannot

be rejected, as expected. Overall, this table presents strong evidence that our method works well

in practice.

7 Results

We now turn to the real application where we use the aptitude test score, the examination essay

score and the interview score as the covariates X for de�ning dominance. That is, if a g-type

candidate has scored " standard deviations higher on each of these three key assessment scores than

an h-type candidate, then the conditional distribution (or median) of the unobservable component

of assessment for the former is assumed to dominate that for the latter for all g and h, as per

Assumption M or SD above.

In accordance with the discussion in Section 5 the �rst step is to examine emptiness of SD (g; h; ")

using data on only X and D. We �rst investigate this graphically by plotting the marginal C.D.F. of

the di¤erence in admission probabilities p (Xg; g)� p (Xh; h) for pairs of (Xg; Xh) satisfying Xg �"
Xh for " = 0:1 for various combinations of g and h.9 When the event fXg �" Xhg happens with

positive probability, an empty SD (g; h; ") is equivalent to Pr [Xg �" Xh; p (Xg; g) < p (Xh; h)] = 0,
9Since we concluded dominance with " = 0:0, with Z being the interview score, we chose a slightly higher (i.e.,

more conservative) value of " = 0:1 to investigate emptiness of SSD" (g; h).
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where the probability is taken with respect to the distributions of Xg and Xh. Therefore, a positive

mass at and below zero for these C.D.F.�s indicates that SD (g; h; ") is nonempty. In the left panel,

when g = male, h = female, the C.D.F. is represented by the solid curve labelled male_fem; and

when g = female and h = male, it is the dashed curve, labelled fem_male.
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Figure 3: Evidence of Emptiness

Clearly, the �rst curve has signi�cant mass below zero and the dashed curve has almost no mass

below zero, suggesting a positive probability that p (Xmale;male) < p (Xfemale; female) although

Xmale �" Xfemale. This evidence is still present in the right panel with independent and state

schools replacing male and female, respectively, but to a slightly lesser extent, suggesting that

indep may be only slightly larger than state. To perform the test formally, in Table 4 column 2, we

report �̂0n (0:95), the upper limit of a one-sided con�dence interval, calculated using the method

of CLR, as explained in Section 5. A negative upper limit indicates that the set SD (g; h; ") is

nonempty and consequently we reject the null of g � h in favour of g > h. It is evident from

Table 4 that we reject emptiness for g = male, h = female and for g = indep, h = state but do not

reject emptiness in the other cases. This clearly suggests that males and private school applicants

face higher admission thresholds.

The exact upper limits of con�dence intervals reported in Table 4 vary slightly across functional

speci�cations (e.g. whether higher order terms and interactions in the test scores are or are not used

to estimate p (�; �)), but two empirical �ndings are robust across all speci�cations: (a) the gender

gap is large, persistent and statistically signi�cant in every case, and (b) the independent-state
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school di¤erence is comparatively smaller.

Given the conclusion of the test of emptiness, we now impose Assumption AS and compute

lower bounds for male � female and indep � state, based on � = 0:8 (c.f. eq. (9)). We use

a value of " = 0:1 and later we compare estimates obtained using " = 0:25. In Tables 5A and

5B we report the estimated lower bounds �̂
�
for � = 0:80, given by (6) and (7), using prelim

and �nals performance as outcomes, respectively. The �rst column, labeled "upper limit", reports

�̂0n (0:95) from the previous table. When this number is negative, it indicates that the SD (g; h; ")

is nonempty, whence we proceed to compute �̂
�
. Under Assumptions SD and CM, a nonempty

SD (g; h; ") already indicates that g > h. Upon imposing the substantively stronger assumption

of AS and calculating lower bounds on the magnitude of the threshold di¤erences, we get values of

3:78 and 2:14 for gender and school-type, respectively, suggesting that the marginal male admits and

the marginal independent school admit perform signi�cantly better in their �rst year examinations.

In terms of the overall distribution of �rst year exam scores, these di¤erences amount to about 65%

and 40%, respectively, of one standard deviation.

Comparing these results with the �nals performance reported in Table 5B, we see that the

magnitude of the lower bound has now shrunk by more than 50%. That is, the marginal male

admit is expected to perform at least 1:95 points higher than the marginal female admit. This

gender di¤erence is still signi�cant but the one for school-type is not. Since it is the lower bound

which has shrunk, it is not immediate whether the actual di¤erence has also shrunk. However,

the large magnitude di¤erence does suggest some shrinking of the actual gaps resulting from either

catch-up over time and/or some extent of e¢ cient sorting into options.

Finally, in Table 6, we compare estimates using " = 0:25 with those obtained using " = 0:1.

The di¤erences in results can be seen to be very small.

The exact magnitudes of the lower bounds reported in Tables 5-6 vary slightly across functional

speci�cations (e.g. whether higher order terms and interactions in the test scores are or are not used

to estimate �P (�; �)), but three empirical �ndings are robust across all speci�cations: (a) the gender

gap is large, persistent and statistically signi�cant in every case; (b) the independent-state school

di¤erence is comparatively smaller; and (c) the lower bounds based on the �nal-year examinations

are smaller then the ones based on �rst-year performance but the gender gap in admission thresholds

remains signi�cant.

Interpretation of the empirical �ndings: It would be natural to conjecture that the thresh-

old di¤erences arise primarily from the implicit or explicit practice of a¢ rmative action, viz., the

overweighting of outcomes for historically disadvantaged groups. A second possibility is that, in
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face of political and/or media pressure, admission tutors try to equate an application success rate

for, say, males with one for females, which is also consistent with our empirical �ndings (see Tables

1A and 1B). This would make the e¤ective male threshold higher if, say, the conditional male

outcome distribution has a thicker right tail (see Figure 4). A third possibility is that female ap-

plicants are set a lower admission threshold in order to encourage more female candidates to apply

in future. Note from Table 1A that the number of female applications is nearly half the number

of male ones. Regardless of what the underlying determinants of the tutors�behavior are, we can

conclude from our analysis that the admission practice under study deviates from the outcome-

oriented benchmark and makes male and independent school applicants face signi�cantly higher

admission thresholds.

In order to gain some further insight into how the threshold discrepancies arise, we plot the

empirical C.D.F.s of predicted academic performance based on the observable characteristics. This

is done by regressing �rst-year examination scores in university on aptitude test and essay score,

interview grades and gender/schooltype for enrolled students. The estimated CDFs of predicted

performance by gender (the left panel) and by schooltype (the right panel) are plotted in �g. 4.

It is clear that the male distribution �rst-order stochastic dominates the female distribution. This

means that if admissions were determined solely by predicted performance based on observables

(i.e., there is no unobserved heterogeneity), any common acceptance rate across gender will result

in a higher predicted outcome for the marginal accepted male than the marginal accepted female.
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Figure 4: Source of Di¤erences

This can be seen in Figure 4, by looking along any �xed cuto¤ on the vertical axis. Any such
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horizontal cut-o¤ line10 will intersect the female C.D.F. at a point that will lie strictly to the left

of the point of intersection with the male C.D.F. A similar, albeit relatively weaker, dominance

situation occurs for school-type, as can be seen in the right-hand graph in Figure 4. Our results in

table 4 imply that allowing for unobserved heterogeneity does not change this scenario substantively,

and suggests that equating the application success-rates (see table 1) leads to the use of higher

admission thresholds for male and for private school candidates.

7.1 Robustness of interpretation

We now investigate whether our �ndings could be consistent with two alternative explanations.

G-blind admissions: The �rst possibility is where admission tutors ignore G completely in

forming their assessment and use a common admission cut-o¤ across G; the question is whether

by including G in our analysis, we are "detecting" threshold di¤erences that are not there in the

actual admission process. Even if this is the case, we would argue that in order for admissions to

be meritocratic, admission tutors should take G into account. For example, suppose G denotes a

school type, state-school students are more able than independent school students with the same

test score, and therefore perform better in university exams. If tutors ignore G, then an independent

and a state school student with identical pre-admission test scores will have equal probability of

admission, even though the state-school student is more meritorious, which would contradict the

notion of meritocratic admissions. Nonetheless, for interpreting our �nding of di¤erent thresholds,

one might investigate G-blindness as a possible explanation. Accordingly, let ��P (X) denote the

expected future performance based on X but not G and consider an alternative admission rule

D = 1
�
��P (X) + Z � G

	
;

where, under a G-blind admission process, G will not vary by G. Now, for xg 2 Xg,

p (xg; g) := Pr [D = 1j(X;G) = (xg; g)] = Pr[Z � g � ��P (X) j(X;G) = (xg; g)];

Then, we have

g = ��
P (xg) +Q

1�p(xg ;g) [Zjxg; g] :

Similarly, for xh 2 Xh,

h = ��
P (xh) +Q

1�p(xh;h) [Zjxh; h] ;
10For instance, if the top 30% of applicants are accepted among both males and among females, then we should be

looking along the horizontal line at 1-0.3=0.7 on the vertical axis.
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and thus

g � h = ��P (xg)� ��P (xh) +Q1�p(xg ;g) [Zjxg; g]�Q1�p(xh;h) [Zjxh; h] ;

implying, under Assumption M, that

g � h � sup
(xg ;xh)2SD(g;h;")

�
��P (xg)� ��P (xh)

�
;

where SD (g; h; ") is de�ned in (4). If the supremum exceeds zero, then we can conclude that

admissions were not generated in a fully G-blind way. The RHS lower bound is similar to (6) except

that �P (�) is not conditioned on G. We compute the 80th percentile instead of the supremum, as

before and report this in column 1 of the following table (under the heading "G-blind"), for " = 0:1

and for the outcome being the �nals performance.

Alternative Interpretations

Category G-blind No-Interview Benchmark

Male-Female 1.97 2.85 1.93

Indep-State 1.65 0.96 0.75

The table shows that the threshold di¤erences are in fact slightly larger if we assume that G is

not used to predict future outcomes and thus G-blind admissions are unlikely to be an explanation.

Biased interviews scores: A second issue concerns the use of interview scores in calculating

the lower bounds. Suppose that tutors are biased in favour of type-g applicants and award them

higher interview marks (relative to true performance) than type h. But as we saw in Figure 2, the

interview score does appear to satisfy Assumption M (with " = 0), which would be unlikely if one

type of candidates was systematically awarded higher interview scores relative to their performance

in the other more "objective" tests. For example for g = male and h = female, if males are awarded

systematically higher interview scores, then we would expect to see a signi�cant mass in the negative

orthant of the top right histogram in Figure 2, which is clearly not the case. Furthermore, our

method of identifying threshold di¤erences is based on the predicted performance in university

exams as a function of interview and other test-scores, rather than the test scores in themselves.

Under biased interview scores, g-type candidates with low ability but high interview scores (due

to the bias) will perform relatively poorly upon being admitted and thus have lower values of

�P (x; g) for �xed x. This will make our bounds, based on the di¤erence �P (x; g) � �P (xh; h)

for those with p (x; g) < p (xh; h), negative (or less positive). So interpreting a positive lower

bound as symptomatic of nonacademic bias against g-type candidates is robust to interview scores

30



being biased in favor of g-type applicants. The bounds obtained upon ignoring interview scores

altogether are reported in the third column of the previous table. The lower bound on the male-

female di¤erence is now much larger than the benchmark case and the independent-state di¤erence

similar in magnitude (both being statistically insigni�cant). Thus our substantive conclusions

remain valid.

8 Summary and Conclusion

This paper has proposed a rigorous empirical approach to testing, on the basis of micro-data,

whether and to what extent an existing admission protocol is e¢ cient, i.e., meritocratic, when a

researcher observes some but not all applicant-speci�c information observed by admission tutors.

The approach works by obtaining the sign and lower bounds on the magnitude of di¤erence in

admission thresholds faced by applicants of di¤erent demographic groups. These quantities are

robust to the unobserved characteristics problem, under an intuitive assumption about the ranking

of applicants by unobservable attributes. They reveal information about the extent of bias in the

admission process relative to the meritocratic ideal of admitting students with the highest academic

potential. Since our methods are based on predicted probability of acceptance and predicted

performance in university, they can be applied to situations where applicants come from diverse

backgrounds and report scores from di¤erent aptitude tests, since the necessary predicted values

can be calculated based on candidate-speci�c covariates. Applying our methods to admissions

data for a selective UK university, we �nd that admission thresholds faced by male applicants are

signi�cantly higher than females while those for private-school applicants slightly higher relative

to state school applicants. In contrast, average admission rates are nearly identical across gender

and across school-type, both before and after controlling for other covariates. Our methods are

potentially useful for testing outcome-based fairness of binary decisions such as approval of mortgage

applications, referrals to expensive medical treatment etc., where allegations of unfair decision are

common and where eventual outcomes are observed for those who were approved or treated.
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Table 0: Variable-Label
gcsescore Overall score in GCSE, 0-4

alevelscore Average A-level scores 80-120
aptitude test Overall score in Aptitude Test 0-100

essay Score on Substantive Essay 0-100
Interview Performance score in interview 0-100

prelim_avg Average score in first year university exam; 0-100
finals_avg Average Score in final year examination; 0-100

offer Whether offered admission
accept Whether accepted admission offer

The alevelscore is an average of the A-levels achieved by or predicted for the candidate by his/her school, excluding general studies. 
Scores are calculated on the scale A=120, A/B = 113, B/A = 107, B = 100, C = 80, D = 60, E = 40, as per England-wide UCAS 
norm. gcsescore is an average of the GCSE grades achieved by the candidate for eight subjects, where A* = 4, A = 3, B = 2, C = 1, D 
or below =0. The grades used are mathematics plus the other seven best grades.
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Table 1. Means by Gender and by Schooltype

Variable Female (N=365) Male (N=620) pvalue_diff State (N=548) Indep (N=437) pvalue_diff
gcsescore 3.83 3.75 0 3.70 3.87 0

alevelscore 119.73 119.44 0.01 119.60 119.73 0.02
aptitude test 62.53 65.24 0 63.82 64.94 0.0015

essay 63.23 64.49 0 64.06 64.07 0.5
interview 64.23 65.29 0.04 65.02 65.17 0.65

Prelim_avg 60.98 61.89 0.04 61.15 62.10 0.03
Finals_avg 64.89 65.34 0.28 65.02 65.37 0.88

offer 0.363 0.357 0.41 0.361 0.357 0.5
accept 0.34 0.34 0.5 0.33 0.35 0.46

Table 2. Probit of receiving offer

Regressor Coef. Std. Err. z p-value
gcsescore 0.26 0.25 1.04 0.30

alevelscore 0.08 0.06 1.26 0.21
aptitude test 0.09 0.01 7.01 0.00

essay 0.01 0.01 0.44 0.66
interview 0.23 0.02 10.59 0.00

indep -0.13 0.15 -0.88 0.38
male -0.18 0.16 -1.13 0.26

N=985, Pseudo-R-squared=0.5

Note: The data pertain to three cohorts of applicants. The variable names are explained in table 0. Column 6 records the p-value
corresponding to a test of equal means against a one-sided alternative. Differences in unconditional offer rates across school-types
(highlighted) are seen to be statistically indistinguishable from zero at 5%. 
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Table 3: Simulation: Indep-State

True difference, δ RHS of CLR CI, 
indep-state Median Mean 80%ile

4 -4.14 3.32 3.35 4.02
(1.35, 4.93) (1.59, 5.02) (2.21, 6.21)

3 -4.45 1.92 1.88 2.63
(0.28, 3.22) (0.05, 3.01) (1.96, 4.07)

2 -3.57 1.33 1.31 1.54
(0.76, 2.78) (0.28, 2.31) (0.51, 2.88)

1 -1.66 0.86 0.86 1.21
(0.14, 1.60) (-0.08, 1.36) (-0.88, 1.99)

0 0.13 -0.06 0.11 0.29
(-1.88, 0.47) (-1.78, 0.47) (-1.45, 0.61)

-2 1.86 . . .

Table 4: Test Emptiness of S(g,h) for ε=0.1

Difference
Upper limit of 

CLR CI
g=male, h=female -1.53
g=female, h=male 0.35
g=indep, h=state -0.33
g=state, h=indep 0.79

Note: Results of Simulation exercise as described in section 6.1 of text. The first column is the true threshold difference used in the
simulation. Column 2 reports the right limit of the one-sided confidenceinterval for testing emptiness with a negative value indicating
emptiness.. A larger fraction indicates that the set S is more likely to be non-empty. The last thress columns report the estimated
lower bounds on the threshold differences, based on the median, mean and 80th percentiles of the conditional mean differences over
the set S(g,h).

Upper limit of 95% confidence interval for a test of empty conditioning set S(g,h) based on CLR.Negative value indicates non-empty 
set and implies that group g faces a higher threshold, resulting from assumptions CM and SD in the text.
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Table 5A: Threshold Differences, Prelim, Mean=61.58, s.d.=5.91

Difference
upper limit of CI 

for testing 
emptiness

lower bd: 80 %ile pvalue lower bd

male-female -1.53 3.78 0.07
female-male 0.35 . .
indep-state -0.33 2.14 0.04
state-indep 0.79 . .

Table 5B: Threshold Differences, Finals, Mean=64.94, s.d.=4.22

Difference
upper limit of CI 

for testing 
emptiness

lower bd: 80 %ile pvalue lower bd

male-female -1.53 1.95 0.09
female-male 0.35 . .
indep-state -0.33 0.75 0.46
state-indep 0.79 . .

Table 6: Threshold Differences for different ε 

PRELIM, Mean=61.58, s.d.=5.91 FINALS, Mean=64.94, s.d.=4.22
ε 0.1 0.25 ε 0.1 0.25

male-female 3.78 3.11 male-female 1.95 2.03
pvalue 0.07 0.1 pvalue 0.09 0.12

indep-state 2.14 2.64 indep-state 0.75 0.99
pvalue 0.04 0.04 pvalue 0.46 0.5
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Technical Appendix
Part A: Proof of Proposition 1

Consider any feasible rule p (�) satisfying the budget constraint. Since popt (�) satis�es the budget

constraint with equality (recall the de�nition of  and q) and p (�) is feasible, we must haveR
w2W � (w) p

opt (w) dFW (w) = c �
R
w2W � (w) p (w) dFW (w); (11)

implying that R
w2W � (w)

�
popt (w)� p (w)

�
dFW (w) � 0: (12)

Let W (p) :=
R
w2W p (w)� (w)� (w) dFW (w). Now, the productivity resulting from p (�) di¤ers

from that from popt (�) by

W
�
popt

�
�W (p)

=
R
w2W

�
popt (w)� p (w)

�
� (w) [� (w)� ] dFW (w) + 

R
w2W

�
popt (w)� p (w)

�
� (w) dFW (w)

�
R
w2W

�
popt (w)� p (w)

�
� (w) [� (w)� ] dFW (w)

=
R
�(w)>

�
popt (w)� p (w)

�
� (w) [� (w)� ] dFW (w)

+
R
�(w)<

�
popt (w)� p (w)

�
� (w) [� (w)� ] dFW (w)

=
R
�(w)> [1� p (w)] [� (w)� ]� (w) dFW (w) +

R
�(w)< p (w) [ � � (w)]� (w) dFW (w) � 0;(13)

where the �rst inequality holds by (12) and that  > 0. Therefore, we have W
�
popt

�
� W (p) for

any feasible p (�), and the solution popt (�) given in (1) is optimal.

To show the uniqueness, consider any feasible rule p (�) which di¤ers from popt (�) on some set

whose measure is not zero, i.e.,
R
w2S(p) dFW (w) > 0 for S (p) := fw 2 W j popt (w) 6= p (w)g. Now,

assume that the last equality in (13) holds for this p (�). In this case, since the last equality on the

RHS of (13) holds with equality, p (�) must take the following form:

p (w) =

8<: 1 if � (w) > ;

0 if � (w) < ;

for almost every w (with respect to FW ). This implies that p (w) = popt (w) for almost every w

except when � (w) = . Since the measure of S (p) is not zero, we must have popt (w) 6= p (w) for

� (w) = , and S (p) = fw 2 W j � (w) = g, which, together with the budget constraint, implies

that q > p (w) when � (w) = . However, this in turn implies that we have a strict inequality

in the third line on the RHS of (13), which contradicts our assumption. Therefore, we now have

shown that W
�
popt

�
>W (p) for any feasible p (�) with

R
w2S(p) dFW (w) > 0, leading to the desired

uniqueness property of popt (�).
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Part B: Evidence of dominance: Other quantiles

The following histograms are for substantiating assumption SD. They are analogous to those

reported in �gure 2 but for quantiles other than the median. For example, the top left histogram

in Fig. 5 corresponds to

Q:25[interview j Xmale;male]�Q0:25[interview j Xfemale; female]

computed across all pairs of males and females satisfying Xmale �"=0 Xfemale. The strictly positive

support of these histograms implies dominance with respect to quantiles other than the median.
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Figure 5: Dominance for 25th percentile
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Figure 6: Dominance for 75th percentile
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Part C: Test of emptiness

The null hypothesis of an empty SD (g; h; ") can be stated as �0 � 0, where

�0 = inf
(xg ;xh)2Xg�Xh; xg�"xh

[p (xg; g)� p (xh; h)].

The quantity �0 is of a form analyzed in Chernozhukov, Lee and Rosen (2013, CLR). We con-

sider constructing a 95% con�dence interval for �0 in the parametric case p (xg; g) = �
�
x0g�0h

�
and p (x0h�0h) by following the CLR method. Accordingly, denote the dimension of (�0g; �

0
h)
0 by

k, a k-variate standard normal by Nk and the asymptotic variance of (�̂
0
g; �̂

0
h)
0 by 
, that is,

AVar[(�̂
0
g; �̂

0
h)
0] = 
. Denote the �th quantile of a random variable W by Q� (W ). Now the null

hypothesis is equivalent to

inf
(xg ;xh)2Xg�Xh; xg�"xh

[x0g�0;g � x0h�0;h] � 0

In order to map the notation of this paper into the CLR notation, let

v = (xg; xh) ;  = (�g; �h) ;

V = f(xg; xh) 2 Xg �Xh : xg �" xhg ;

�̂n (v) = [x0g�̂g � x0h�̂h];

sn (v) = jj(x0g;�x0h)
̂1=2jj; ZFn (v) =
(x0g;�x0h)
̂1=2

jj(x0g;�x0h)
̂1=2jj
Nk;

kn;V (p) = Qp[supv2V Z
F
n (v)];

�̂n0 (p) = infv2V [�̂n (v) + kn;V (p) sn (v)]:

Then a 100p% one-sided con�dence interval (CI) for �0 is given by Ĉn (p) =
�
�1; �̂n0 (p)

�
. If

�̂n0 (p) < 0, then we conclude that SD (g; h; ") is non-empty. In the application, we use p = 0:95

and report the CI, Ĉn (0:95), for each choice of g; h.
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Part D: Asymptotic distribution of �̂
�
(g; h) [Technical Appendix for Online

Publication]
First, we outline some main points for our derivation of the asymptotic distribution of the

quantile-based lower bound estimator �̂
�
(= �̂

�
(g; h)) of ��0(= ��0 (g; h)).

1 Then, we formally

present a set of conditions required for our asymptotic analysis, our obtained result, and its

proof.

Outline of asymptotic analysis: As stated earlier in Section 5, �̂
�
(g; h) is de�ned as

a solution to the sample moment condition M�
n (�; �̂) = 0, where �̂ is a vector containing

preliminary probit and linear-regression estimators. In handling this moment condition, we

are faced with two non-standard problems: The �rst one is the non-smoothness ofM�
n (�;�).

Since this objective, de�ned in (D.8), is computed based on indicator functions, it is neither

continuous nor di¤erentiable, which makes it impossible to use standard Taylor-expansion

arguments. However, we can check the (continuous) di¤erentiability of the limit �M� (�;�)

of M�
n (�;�), and apply the Taylor expansion to �M�(�̂

�
; �̂) (instead of M�

n (�̂
�
; �̂)), which

is a usual trick as in Pakes and Pollard (1989, PP) and Chen, Linton and Keilegom (2003,

CLK) and which guarantees the
p
n asymptotic normality. The second problem is that M�

n

is computed based on two samples fXg;ig and fXh;jg. For results as in PP or CLK, a key
is the so-called stochastic equicontinuity property (SEP) of an objective function. Various

results and techniques for verifying this property are available in the standard one-sample

case, as found in Andrews (1994). However, such results have not been well-established in

the literature for two-sample cases like ours, and we below derive the SEP of a normalized

objective: �n (�;�) =
p
n[M�

n (�;�)� �M� (�;�)].

To obtain further insights on the development of asymptotic theory, look at the following

key decomposition:

0 =
p
nM�

n (�̂
�
; �̂) =

p
n[M�

n (�̂
�
; �̂)� �M�(��0 ;�0)]

=
p
n[ �M�(�̂

�
; �̂)� �M�

�
��0 ;�0

�
]�
p
n[M�

n (�
�
0 ;�0)� �M�(��0 ;�0)]

+
p
n[M�

n (�̂
�
; �̂)� �M�(�̂

�
; �̂) +M�

n (�
�
0 ;�0)� �M�(��0 ;�0)]; (D.2)

where we note that �M� (�;�) = E[M�
n (�;�)] and �M�

�
��0 ;�0

�
= 0; the �rst term on the RHS

can be further expanded by the Taylor expansion, which may be called as a delta-method

term; and the second term may be called as a central limit theorem (CLT) term while the

third may be called as a stochastic-equicontinuity one. As inferred from its name, the second

term gives the limit normal distribution. Since M�
n involves double summations, a standard

1We note that ��0 (g; h), �̂
�
(g; h), �M� (�;�) and M�

n (�;�) (and some other components) depend upon

the choice of " (� 0), but for notational simplicity, we suppress their dependence on ".
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CLT cannot be directly applied. However, M�
n admits a projection-based decomposition

(as U and V statistics) and can be asymptotically expressed as the sum of two (normalized)

summations each of which is based on one sample, to which the standard CLT can be applied.

The third term on the RHS of (D.2) is shown to be asymptotically negligible. This is proved

by using the SEP of �n (�;�) (Lemma 3) as well as the convergence of (�̂
�
; �̂) to

�
��0 ;�0

�
(Lemmas 1 and 2).

It is not trivial to verify the SEP of �n (�;�). Note again that the object M�
n involves

double summations. In this respect, it has some similarity to U and V statistics. However,

results for such statistics (e.g., Nolan and Pollard, 1987, 1988; Sherman, 1993, 1994; Section

8.2 of Newey and McFadden, 1994) are not directly applicable to our case, since our M�
n is

based on two samples but U and V statistics are computed using pairs (or higher tuples)

drawn from a single sample. Therefore, we present the SEP of �n (�;�) and a related uniform

convergence (UC) result in Lemma 3, and develop an independent proof, which is based on

a covering-number technique (from empirical process theory) and the Bernstein exponential

inequality. The result of the lemma may be the most comparable to Sherman�s U -statistic

results (in particular Theorem 3 of Sherman, 1993 and a set of results in Sherman, 1994).

Although we exploit the fact that a set of functions concerned is Euclidean as in Sherman

(1993, 1994) (as well as in Nolan and Pollard, 1987, 1988), our proof is di¤erent form theirs.

While they use a sort of symmetrization technique, we use the Bernstein inequality, by

which we can exploit the independence between two samples �direct use of such inequality

may not be necessarily possible for U or V statistics which consist of one sample. Our proof

strategy for the SEP and UC results can be used generally in other contexts where two-sample

problems arise. Given the SEP of relevant objects, asymptotic theory in various econometrics

problems can be relatively easily developed (c.f. Andrews, 1994). In this respect, we can

say that our results and proof extend applicability of the stochastic equicontinuity based

technique to two-sample cases.

We note that derivations of asymptotic normality of estimators usually require the consis-

tency of the estimators. This is also the case here, and we present the consistency of (�̂
�
; �̂)

in Lemmas 1 and 2. The consistency result of �̂ is quite standard (�̂ is the vector of probit

and linear-regression estimators). We note that �̂
�
is a two-stage estimator which depends

upon the preliminary estimator �̂ (while we formalize (�̂
�
; �̂) as a one-stage moment estima-

tor which simultaneously solves a system of moment equations). For the consistency of �̂
�
,

we apply the result from CLK, who analyzed two-stage estimators when objective functions

are not smooth (recall again that the empirical objective function M�
n (�; �) is not continu-

ous). While CLK�s focus seems to be the case when preliminary (�rst-stage) estimators are

nonparametric, their consistency theorem is still applicable to the case when a preliminary

estimator is parametric like ours. A key in applying CLK�s consistency result is also the
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SEP of
�
M�

n (�;�)� �M� (�;�)
�
= �n (�;�) =

p
n, which follows from that of �n (�;�).

Conditions for deriving the asymptotic distribution of �̂
�
(g; h): We here present

a set of conditions required for our asymptotic result. First, we work with the following

asymptotic scheme:

Assumption 1 Let N and n be the numbers of observations of past and current, respectively;

Ng and ng be those of g-type observations of past and current data (Nh and nh are de�ned

analogously). There exist some constants cPg ; cg 2 (0; 1) and �c 2 (0;1), such that Ng=N !
cPg as Ng; N !1, and ng=n! cg as ng; n!1 (N = Ng+Nh; n = ng+nh), and n=N ! �c

as n;N !1.

This implies that the ratios of g-type applicants do not degenerate in both the past and

current data (as n;N ! 1), which also means that the limit ratios of h-type applicants
are well-de�ned cPh = 1 � cPg and ch := 1 � cg. In our subsequent asymptotic analysis, we

suppose "n; ng ! 1" and/or "N;Ng ! 1", which we often denote only by "n ! 1" for
notational simplicity.

Assumption 2 (i) There exist some compact interval �� in R and some compact set A in

R4d such that ��0 2 Int
�
��
�
and �0 2 Int (A). (ii) The matrix E[XP

i (X
P
i )

0jGP
i ] is invertible

given any realization of GP
i ; E[XiX

0
ijGi] is also invertible given any realization of Gi. (iii)�

(Y P
i ; X

P
i ; G

P
i )
	N
i=1

and f(Xi; Gi)gni=1 are I.I.D. sequences of random vectors, and they are

mutually independent. (iv) The supports of (Y P
i ; X

P
i ; G

P
i ) and (Xi; Gi) are bounded.

Assumption 3 (i) Each component of Xi is either continuously-distributed with support

which is some compact subset of R or discretely distributed with support of �nite elements
(i.e., there is no component whose distribution is a mixture of continuous and discrete ones).

At least one component of Xi = (Xi;1; : : : ; Xi;d)
0 is continuously distributed conditionally

on Gi and the other components of Xi, and each of coe¢ cients of �0 associated to the

continuously-distributed components is not zero.

(ii) Let Xi;1 be the �rst component of Xi and the continuously-distributed component given in

the part i). There exists the conditional probability density of Xi;1, fg (x1jx2; : : : ; xd), given
Gi = g and the other components Xi;�1(:= (Xi;2; : : : ; Xi;d)

0) = x�1(:= (x2; : : : ; xd)
0), that is,

fg satisfyingR
A1

R
A�1

fg (x1jx�1) dx1 Pr [dx�1 2 A�1; G = g] = Pr [Xi;1 2 A1; Xi;�1 2 A�1; Gi = g] ;

for any g (in the support of Gi), and for any Borel sets A1 and A�1 (on the supports of Xi;1

and Xi;�1, respectively).

(iii) For any g (in the support of Gi),

sup fg (x1jx�1) <1;
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where the supremum is taken over the support of Xi. For any g (in the supports of Gi),

fg (x1jx�1) is continuous in the continuously-distributed components of x = (x1; : : : ; xd)0, and
for any x�1, fg (x1jx�1) is continuously di¤erentiable in x1 on the closure of fz 2 R j fg (zjx�1) > 0g,
and the �rst derivative satis�es

sup f 0g (x1jx�1) <1;

where the supremum is taken over the support of Xi.

Assumption 4 The probability density fIg�Ih (�) of Ig;i�Ih;j := X 0
g;i�0;g�X 0

h;j�0;h is strictly

positive when E[1fXg;ix �" Xh;j; X
0
g;i�g � X 0

h;j�hgjX 0
g;i�g �X 0

h;j�h = � ] > 0.

The conditions of Assumption 2 are quite standard. Recall the notations of Xg;i and Xh;j

(introduced in Section 5). Then, by (iii), we can see that Xg;i and Xh;j are independent. As-

sumption 3, together with additive separability of the indices (x0g�g, x
0
h�h, x

0
g�g and x

0
h�h),

ensures the smoothness of �M� (�;�) with respect to � and �. This can be veri�ed by check-

ing the smoothness of two components which constitute �M� (�;�), E[1fX 0
g;i�g � X 0

h;j�h;

Xg;ix �" Xh;jg] and E[1fX 0
g;i�g � X 0

h;j�h � �g � 1fX 0
g;i�g � X 0

h;j�h; Xg;ix �" Xh;jg]. We
can show the former is partially continuously di¤erentiability in (�g; �h), and the latter is so

in (�;�), whose proof is omitted for brevity. Another implication of Assumption 3 is that the

index variables Jg;i = X 0
g;i�0;g and Jh;j = ~X 0

h;j�0;h have their conditional probability densities

given Xg;i;�1 = x�1 and Xh;j;�1 = ~x�1, respectively, i.e., fJg jXg;�1 (sjx�1) and fJhjXh;�1(sj~x�1).
And these fJg jXg;�1 (sjx�1) and fJhjXh;�1 (~sj~x�1) satisfy the continuous di¤erentiability (in s
and ~s, respectively), as well as the uniform boundedness of themselves and their derivatives.

Assumption 4 guarantees the identi�cation of the quantile-based lower bound ��0 �see the

proof of Lemma 2.

Asymptotic distribution theorem: Given the above conditions, we can now state

our distribution result:

Theorem 1 Suppose that Assumptions 1, 2, 3 and 4 hold. Then,

p
n

 
�̂��0
�̂
� � ��0

!
d!
"

� (@=@�0) �L (�0) 0

(@=@�0) �M�
�
��0 ;�0

�
(@=@�) �M�

�
��0 ;�0

� #�1

�N
 
0;

"

L 
�

L;M

� 
�M

#!
: (D.3)

for each � 2 (0; 1), and for any (g; h) with g 6= h, where the forms of the asymptotic variance

components, 
L, 
�
L;M and 
�M , are given in the proof.
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This (D.3) allows us to obtain the asymptotic distribution of
p
n[�̂

� � ��0 ]. We note that
the derivative components of the limit distribution can be computed in a straightforward

manner: (@=@�0) �L (�0) is the derivative of the moment de�ned in (D.7) for the linear and

probit estimators; (@=@�0) �M�
�
��0 ;�0

�
and (@=@�) �M�

�
��0 ;�0

�
are computed based on the

moment (D.9), where we note that M�
n is not di¤erentiable but its limit �M� is so under

Assumption 3. (@=@�0) �L (�0) can be consistently estimated in a standard manner, while

derivatives of �M�
�
��0 ;�0

�
can be estimated by using a kernel-based method. Note that if

�0 is known, we have
p
n[�̂

� � ��0 ]
d! [(@=@�) �M�

�
��0 ;�0

�
]�1N

�
0;
�M

�
, and we can see that

the limit distribution in (D.3) allows us to evaluate estimation errors due to the preliminary

step of the estimation of �0.

The proof of Theorem 1: We�rst re-de�ne the �rst-step estimator �̂ = (�̂
0
g; �̂

0
h; �̂

0
g; �̂

0
h)
0

as a moment-based one. Let

RP
g;i(�g) := XP

g;i[Y
P
g;i � (XP

g;i)
0�g];

Sg;i(�g) := Xg;i

�
Dg;i�(X

0
g;i�g)

�(X 0
g;i�g)

�
(1�Dg;i)�(X

0
g;i�g)

1� �(X 0
g;i�g)

�
;

RP
h;j(�h) := XP

h;j[Y
P
h;j � (XP

h;j)
0�h];

Sh;j(�h) := Xh;j

"
Dh;j�(Xh;j�h)

�(X 0
h;j�h)

�
(1�Dh;j)�(X

0
h;j�h)

1� �(X 0
h;j�h)

#
;

(D.4)

where � and � are the density and distribution functions of the standard normal, respectively,

and we note that these four components are mutually independent (under Assumption 2).

Then, we let the (pseudo) true parameter �0 = (�
0
0;g;�

0
0;h; �

0
0;g; �

0
0;h)

0 as the solution to the

following moment equations:
�L (�) = 0; (D.5)

and de�ne �̂ as the solution to its sample counterpart:

L̂ (�) = 0: (D.6)

where �L (�) and L (�) are de�ned, corresponding to the linear and probit models, as follows:

�L (�) :=

0BBBB@
E[RP

g;i(�g)]

E[RP
h;j(�h)]

E [Sg;i(�g)]

E[Sh;j(�h)]

1CCCCA ; and Ln (�) :=

0BBBB@
N�1
g

PNg
i=1R

P
g;i(�g)

N�1
h

PNh
j=1R

P
h;j(�h)

n�1g
Png

i=1 Sg;i(�g)

n�1h
Pnh

j=1 Sh;j(�h)

1CCCCA : (D.7)

By this de�nition of �̂ as a moment-based estimator, the asymptotic distribution result

derived below is valid irrespective of the correct speci�cation of the linear and/or probit

models (in particular, the probit estimator (�̂g; �̂h) should be interpreted as a quasi maximum

likelihood estimator, whose asymptotic variance is given by a so-called sandwich form).
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Before deriving the asymptotic distribution result of �̂
�
, we provide two lemmas on the

consistency:

Lemma 1 Suppose that Assumptions 1, 2 and 3 hold. Then, �̂ is consistent, i.e., jj�̂ �
�0jj

P! 0 as n!1.

Proof. The consistency of �̂ follows from quite standard arguments for parametric estima-

tion, e.g., Section 2 of of Newey and McFadden (1994): the parameter space A is supposed

to be compact in Assumption 2; the identi�cation and the uniform convergence of Ln can

be veri�ed by using the invertibility and I.I.D. conditions in Assumption 2, the linear and

probit speci�cations, and the boundedness of relevant functions and variables.

Lemma 2 Suppose that Assumptions 1, 2, 3 and 4 hold. Then, �̂
�
is consistent, i.e., j�̂� �

��0 j
P! 0 as n!1.

Proof. We can verify the consistency of �̂
�
by using, e.g., Theorem 1 of CLK (2003). To check

the identi�cation of ��0 , recall that �
�
0 is de�ned as a parameter satisfying �M�

�
��0 ;�0

�
= 0.

Since we can write

E[1fX 0
g;i�g �X 0

h;j�h � �g � 1fXg;ix �" Xh;j; X
0
g;i�g � X 0

h;j�hg]

=

Z �

�1
E[1fXg;i �" Xh;j; X

0
g;i�g � X 0

h;j�hgjX 0
g;i�g �X 0

h;j�h = � ]f� (t) dt;

and this is strictly increasing in � by Assumption 4,
�
� : �M� (�;�0) = 0

	
consists of a sin-

gle point. Therefore, by the continuity of �M� (�;�0) (implied by Assumption 3), and the
compactness of the parameter space � (imposed in Assumption 2), the identi�cation condi-

tion of Theorem 1 is satis�ed. Given the identi�cation condition, the consistency of �̂, the

compactness of � , the continuity of the limit function �M� (�; �) (implied by Assumption 3),
the stochastic equicontinuity M�

n (veri�ed in Lemma 3), we can check all the conditions of

Theorem 1 of CLK, and the desired result follows.

Now, de�ne the following objects:

M�
n (�;�) : =

1

ngnh

Xng

i=1

Xnh

j=1
 � (Xg;i; Xh;j; �;�)

=

Z Z
 � (x; ~x; �;�) dF̂h (~x) dF̂g (x) (D.8)

and
�M� (�;�) :=

Z Z
 � (x; ~x; �;�) dFh (~x) dFg (x) ; (D.9)

where

 � (x; ~x; �;�) :=
�
�� 1fx0�g � ~x0�h � �g

�
� 1 fx0�g � ~x0�h; x �" ~xg ;
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Fg and Fh are the conditional distribution functions of Xi, given Gi = g and h, respectively,

and F̂g and F̂h are their empirical distribution functions. This de�nition of M�
n coincides

with the one in Section 5. Recalling the de�nitions of �� (g; h), we write the (pseudo)

true parameter ��0 = ��0 (g; h) as the one satisfying �M�
�
��0 ;�0

�
= 0, and its estimator

�̂
�
= �̂

�
(g; h) as the one satisfying Mn(�̂

�
; �̂) = 0. Then, we can see the estimator (�̂0; �̂

�
)0

satis�es  
Ln (�̂)

Mn(�̂
�
; �̂)

!
= 0: (D.10)

By exploiting this expression as a solution to the simultaneous moment equations, we sub-

sequently derive the asymptotic distribution of the estimator, quantifying the e¤ect of the

preliminary estimation of �̂ on �̂
�
(c.f. Newey, 1984).

We now consider the asymptotic expansion of the LHS of (D.10). Ln (�̂) can be written

as

0 =
p
nLn (�̂) =

p
nLn (�0) + (@=@�

0)Ln (~�)
p
n [�̂��0] ;

where the di¤erentiability of Ln follows from its linear and probit speci�cations, and each

element of ~� is on the line segment connecting a corresponding component of �̂ to that of

�0. We note that the normalization factor is given by
p
n, which is justi�ed by Assumption

1 but requires adjustments in the asymptotic variance by some constants such as �c; cPg and

cg as we will see later. Given the results of Lemma 1, we have

(@=@�0)Ln (�0)
p
n [�̂��0] [1 + oP (1)] = �

p
nLn (�0) : (D.11)

To consider the expansion of Mn(�̂
�
; �̂), we introduce the following objects:

 �1 (x; �;�) : =

Z
 � (x; ~x; �;�) dFh (~x) ;  �2 (~x; �;�) :=

Z
 � (x; ~x; �;�) dFg (x) ;(D.12)

M�
1;n (�;�) : =

1

ng

Xng

j=1
 �1 (Xg;i; �;�) ; M�

2;n (�;�) :=
1

nh

Xnh

j=1
 �2 (Xh;j; �;�) ;(D.13)

where we note that  �1 and  
�
2 are sort of projections objects (analogous objects often appear

in considering U statistics). M�
1;n and M

�
2;n satisfy

E[M�
1;n (�;�)] = E[M�

2;n (�;�)] =
�M� (�;�) = 0 at (�;�) = (��0 ;�0):

We then obtain

0 =
p
n[M�

n (�̂
�
; �̂)� �M�(��0 ;�0)]

=
p
n[ �M�(�̂

�
; �̂)� �M�(��0 ;�0)]�

p
n[M�

n (�
�
0 ;�0)� �M�(��0 ;�0)]

+
p
n[M�

n (�̂
�
; �̂)� �M�(�̂

�
; �̂) +M�

n (�
�
0 ;�0)� �M�(��0 ;�0)]: (D.14)
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By the continuous di¤erentiability of �M�, the �rst term on the RHS can be further

expanded as
p
n[ �M�(�̂

�
; �̂)� �M�(��0 ;�0)]

= (@=@�) �M�(~�
�
; ~�)

p
n[�̂

� � ��0 ] + (@=@�
0) �M�(~�

�
; ~�)

p
n [�̂��0]

= (@=@�) �M�(��0 ;�0)
p
n[�̂

� � ��0 ] + (@=@�
0) �M�(��0 ;�0)

p
n [�̂��0]

+oP (1) ; (D.15)

where ~�
�
and ~� are on the line segment connecting �̂

�
to ��0 and �̂ to �0, respectively; and

the last equality follows from the continuity of the derivatives and the consistency of (�̂
�
; �̂).

To investigate asymptotic behavior of the second and third terms on the RHS of (D.14),

we consider
�
��n (�;�)

	
(�;�)2��A, a stochastic process indexed by (�;�):

��n (�;�) :=
p
n[M�

n (�;�)� �M� (�;�)]: (D.16)

This
�
��n (�;�)

	
has the following desirable properties:

Lemma 3 Suppose that Assumptions 1, 2, and 3 hold. Then, (i) it holds that as n!1,

��n (�;�) =
p
n[M�

1;n (�;�)� �M� (�;�)] +
p
n[M�

2;n (�;�)� �M� (�;�)]

+OP (
p
(log n) =n); (D.17)

uniformly over (�;�) 2 �� � A. (ii) The stochastic process
�
��n (�;�)

	
(�;�)2���A is sto-

chastically equicontinuous with respect to the pseudo metric:

� ((�1;�1) ; (�2;�2)) : = f
R �� �1 (x; �1;�1)�  �1 (x; �2;�2)

��2 dFg (x)g1=2
+f
R �� �2 (~x; �1;�1)�  �2 (~x; �2;�2)

��2 dFh (~x)g1=2:
The proof of the lemma is provided below.

Remark 1 As we subsequently see, the �rst result of Lemma 3 immediately implies the
asymptotic normality of ��n

�
��0 ;�0

�
=
p
nM�

n

�
��0 ;�0

�
( �M�

�
��0 ;�0

�
= 0), since projections

objects M�
1;n

�
��0 ;�0

�
and M�

2;n (�;�) are independent and each of them is computed based on

a single summation, to which standard CLT results are applicable.

Using ��n in (D.16), we can write the third term on the RHS of (D.14) as
p
n[M�

n (�̂
�
; �̂)� �M�(�̂

�
; �̂) +M�

n (�
�
0 ;�0)� �M�(��0 ;�0)] = ��n(�̂

�
; �̂)� ��n(�

�
0 ;�0): (D.18)

For notational simplicity, write #̂ : = (�̂
�
; �̂) and #0 := (�

�
0 ;�0) for now. Then, given any

a; � > 0, there exists some b > 0 such that

lim supn!1 Pr[j��n(#̂)� ��n(#0)j > a]

� lim supn!1 Pr[j��n(#̂)� ��n(#0)j > a; �(#̂;#0) � b] + lim supn!1 Pr[�(#̂;#0) > b]

� lim supn!1 Pr[sup�(#̂;#0)<b j�
�
n(#̂)� ��n(#0)j > a] < �;
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where the second inequality use the consistency of #̂ = (�̂
�
; �̂) (Lemmas 1 and 2), the

continuity of � (implied by Assumption 3), and the continuous mapping (�(#̂;#0)
P! 0); and

the last inequality holds by (ii) of Lemma 3. Since a and � can be arbitrary, it holds that

j��n(�̂
�
; �̂)� ��n(�

�
0 ;�0)j = oP (1) : (D.19)

By (D.14), (D.15), and (D.18)-(D.19) with noting that �M�(��0 ;�0) = 0, we now obtain

(@=@�) �M�(��0 ;�0)
p
n[�̂

� � ��0 ] + (@=@�
0) �M�(��0 ;�0)

p
n [�̂��0] =

p
nM�

n (�
�
0 ;�0) + oP (1) :

(D.20)

Putting (D.11) and (D.20) together, we can obtain

p
n

 
�̂��0
�̂
� � ��0

!
=

"
� (@=@�0)Ln(�0) 0

(@=@�0) �M�(��0 ;�0) (@=@�) �M�(��0 ;�0)

#�1

�
p
n

 
Ln(�0)

M�
n (�

�
0 ;�0)

!
+ oP (1) : (D.21)

Now, by (D.17) with noting that �M�
�
��0 ;�0

�
= 0, we can see that

p
nM�

n (�
�
0 ;�0) =

p
nM�

1;n(�
�
0 ;�0) +

p
nM�

2;n(�
�
0 ;�0) + oP (1) : (D.22)

By this expression, the CLT for I.I.D. sequences, the independence between M�
1;n(�

�
0 ;�0)(=

n�1g
Png

i=1  1 (Xg;i; �0;�0)) andM�
2 (�

�
0 ;�0)(= n�1h

Pnh
j=1  2 (Xh;j; �0;�0)), and Assumption 1,

we have
p
n[M�

n (�
�
0 ;�0)� �M�(��0 ;�0)]

d! N(0;
�M); (D.23)

where


�M := E[c�1g j �1(Xg;i; �
�
0 ;�0)j2 + c�1h j 

�
2(Xh;j; �

�
0 ;�0)j2]:

This form of 
�M is computed as the sum of variances of the "projection" components, which

is similar to asymptotic variances of U statistics, where adjustments by cg and ch are required

since the normalization factor is given by
p
n.

By the de�nition of Ln(�0) given in (D.7), the expression of
p
nM�

n (�
�
0 ;�0) in (D.22),

and the boundedness of relevant components, and the CLT for I.I.D. sequences with the aid

of the Cramér-Wold device, we can obtain the joint CLT result:

p
n

 
Ln(�0)

M�
n (�

�
0 ;�0)

!
d! N

 
0;

 

L 
�

L;M

� 
�M

!!
: (D.24)

where the variance components can be written as


L : = E
�
diag

��
�c=cPg

�
RP
0;g;i(R

P
0;g;i)

0;
�
�c=cPh

�
RP
0;h;j(R

P
0;h;j)

0; c�1g S0;g;iS
0
0;g;i; c

�1
h S0;h;jS

0
0;h;j

	�
;


�
L;M : = E

�
(00; c�1g  �1(Xg;i; �

�
0 ;�0)S

0
0;g;i; c

�1
h  �2(Xh;j; �

�
0 ;�0)S

0
0;h;j)

0� ;
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where diag fA;B; : : : g stands for a block-diagonal matrix with square matrices A;B; : : : as
block-diagonal elements; RP

0;g;i, R
P
0;h;j, S0;g;i and S0;h;j denoteR

P
g;i(�0;g), R

P
h;j(�0;h), Sg;i(�0;g)

and Sh;j(�0;h) (evaluated at the pseudo true values; de�ned in (D.4), respectively; 
L is a

4d-by-4d matrix; 
�
L;M is a 4d-by-1 matrix (0 is a 2d-by-1 vector of zeros); and 
�M is a

scalar. The block-diagonal form of 
L is due to the independence between past and current

cohorts� observations, and between g and h observations. Note again that coe¢ cients �c,

cPg , c
P
h , cg and ch (de�ned in Assumption 1) are required for adjusting the di¤erence in the

numbers of observations.

By the asymptotic expression (D.21) and the CLT result (D.24), we can obtain the desired

result (D.3) of the theorem.

Proof of Lemma 3: Look at the decomposition:

��n (�;�) =
p
n[M�

1;n (�;�)� �M� (�;�)] +
p
n[M�

2;n (�;�)� �M� (�;�)]

+
p
n[M�

n (�;�)�M�
1;n (�;�)�M�

2;n (�;�) +
�M� (�;�)]

= : J�n (�;�) + T �n (�;�) :

We below verify the uniform negligibility of T �n (�;�), i.e.,

jT �n (�;�) j = OP (
p
(log n) =n) uniformly over (�;�) 2 �� �A; (D.25)

and the stochastic equicontinuity of
�
J�n (�;�)

	
(�;�)2���A, a stochastic process indexed by

(�;�) 2 ���A(� R�R4d), with respect to the pseudo metric �, i.e., 8a; � > 0, 9b > 0 such
that

lim sup
n!1

Pr
�
sup(�1;�1);(�2;�2)2���A; �((�1;�1);(�2;�2))<b jJ

�
n (�;�)j > a

�
< �: (D.26)

Then, we can immediately see that the conclusion (i) of the theorem follows from (D.25),

and (ii) follows from (D.25) and (D.26).

To show (D.25) and (D.26), observe that components of ��n (�; �) are computed based on

 � (x; ~x; �;�) =
�
�� 1fx0�g � ~x0�h � �g

�
� 1 fx0�g � ~x0�hg1 fx �" ~xg : (D.27)

We can think of

F� :=
�
 �(x; ~x; �; �) j (�; �) 2 �� �A

	
as a set of functions: (x; ~x) (2 Xg�Xh � R2d�R2d)!  �(2 R) indexed by (�; �) 2 ���A.
We derive an upper bound of the uniform covering number of this F�. To this end,

look at the following two sets of functions: F�
1 := f� � 1fx0�g � ~x0�h � �g j (�;�g;�h) 2

R� R2d�R2dg and F2 := f1fx0�g � ~x0�h � 0g j (�g; �h) 2 R2d�R2dg. By Theorem 9.2,
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Lemma 9.8, (iv)-(v) of Lemma 9.9, and (i) of Lemma 9.12 of Kosorok (2008), the Lr uniform

covering numbers of F�
1 and F2 are given by

supQN(2";F�
1 ; Lr (Q)) � �1"�r(4d+1) and supQN(";F2; Lr (Q)) � �2"�r(4d+1); (D.28)

for " 2 (0; 1), where the supremum is taken over all probability measures on R2d�R2d; and
�1;�2 (> 0) are some constants independent of Q (i.e., F�

1 and F2 are VC classes). By the
inclusion relation F� � ff1 � f2jf1 2 F�

1 ; f2 2 F2g, as well as by Lemma 2.14 of Pakes and
Pollard (1989), the L1 uniform covering number of F� satis�es

supQN(2";F�; L1 (Q)) � A"�V ; (D.29)

for some constants A; V 2 (0;1) which are independent of Q (i.e., F�
1 and F2 are Euclidean,

and thus F� are so). By this bound of the uniform covering number, we can construct a

collections of balls to cover F�, fFkg�k=1 (for each Q) such that any element of F� is included

in at least one of the balls, each Fk has its center  k with
R
j �  kj dQ � 2" for any  2 Fk

and with � � A"�V . The center  k is not necessarily contained in F� (see, e.g., page 18 of

Kosorok, 2008), but we can pick some ~ k 2 Fk \ F� such that for any  2 Fk,R
j � ~ kjdQ � 4"; (D.30)

for each k (the existence of such ~ k follows from the fact that Fk is a ball with radius 2").
Now, construct four of such collections of balls, fF q

kg
�q
k=1 (q = 1; : : : ; 4), corresponding to

four probability measures Q = F̂g � F̂h, F̂g � Fh, Fg � F̂h and Fg � Fh, respectively, and let
~ 
q

k be an element of F
q
k \ F� with

R
j � ~ kjdQ � 4" for any  2 F

q
k , where �q � A"�V for

each q.

Given the four coverings fF q
kg (q = 1; : : : ; 4), we now show the uniform negligibility of

T �n (�;�). Look at the decomposition:

sup
(�;�)2���A

jT �n (�;�) j

=
p
n sup
(�;�)2���A

���R R  � (x; ~x; �;�) [dF̂gdF̂h � dF̂gdFh � dFgdF̂h � dFgdFh]
���

�
p
n
h
maxk2f1;:::;�1g sup 2F1k

R R
j � ~ 1;kjdF̂gdF̂h +maxk2f1;:::;�2g sup 2F2k

R R
j � ~ 2;kjdF̂gdFh

maxk2f1;:::;�3g sup 2F3k

R R
j � ~ 3;kjdFgdF̂h +maxk2f1;:::;�4g sup 2F4k

R R
j � ~ 4;kjdFgdFh

i
+
p
nmaxq2f1;2;3;4g; k2f1;:::;�qg

���R R ~ q;k[dF̂gdF̂h � dF̂gdFh � dFgdF̂h � dFgdFh]
��� : (D.31)

The �rst term on the RHS is bounded by
p
n� 4� 4" = 16

p
n". Letting " =

p
(log n) =n,

the �rst term on the RHS of (D.31) = O(
p
(log n) =n): (D.32)
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To consider a probability bound of the second term, we use the following exponential in-

equality: for any a > 0,

Pr
h���R R ~ q;k[dF̂gdF̂h � dF̂gdFh � dFgdF̂h � dFgdFh]

��� > a
i
� 2 expf�a2=[ �C=n2 + 8a=3]g;

(D.33)

uniformly over q and k, for some constant �C(> 0; independent of q and k), whose proof is

provided below. Then, given " =
p
(log n) =n, we have

Pr
h
maxq2f1;2;3;4g; k2f1;:::;�qg

���R R ~ q;k[dF̂gdF̂h � dF̂gdFh � dFgdF̂h � dFgdFh]
��� > a

i
�

X
1�q�4; 1�k��q

Pr
h���R R ~ q;k[dF̂gdF̂h � dF̂gdFh � dFgdF̂h � dFgdFh]

��� > a
i

� 4A"�V � 2 exp
�
� a2

�C=n2 + 8a=3

�
� 8A [(log n) =n]�V=2 exp

�
� �a2 (log n)
�C + 8�a� o (1)

�
! 0;

where we have set a = �a
p
(log n) =n2 for a constant �a > 0 in the last line, and the convergence

takes place for any �a large enough as n!1. This means that

maxq2f1;2;3;4g; k2f1;:::;�qg

���R R ~ q;k[dF̂gdF̂h � dF̂gdFh � dFgdF̂h � dFgdFh]
���

= OP (
p
(log n) =n2) (D.34)

By (D.31), (D.32) and (D.34), we now obtain (D.25).

We next verify the stochastic equicontinuity of fJ�n (�;�)g. Note that we can write

p
n[M�

1;n (�;�)� �M� (�;�)] =
p
n

Z
 �1(x; �;�)d[F̂g � Fg];

and the uniform covering number of
�
 �1 (x; �;�)

	
(�;�)2���A satis�es

supQ1 N(2"; f 
�
1 (x; �;�)g(�;�)2���A; L1 (Q1)) � A"�V ; (D.35)

where the supremum is taken over any probability measures on R2d, and A; V are constants

given in (D.29). This (D.35) can be checked by setting dQ = dQ1 � dFh in (D.29), since

 �1 (x; �;�) =
R
 � (x; ~x; �;�) dFh (~x). Given this bound (D.35), the I.I.D. condition (As-

sumption 2), and the uniform boundedness of  �1 , by Andrews (1994, Theorem 1), we can

check that the stochastic process f
p
n
�
M�
1;n (�;�)� �M� (�;�)

�
g(�;�)2���A is stochastically

equicontinuous (SE) with respect to the pseudo metric

�1 ((�1;�1) ; (�2;�2)) := f
R
j �1 (x; �;�)�  �1 (x; �;�) j2dFg (x)g1=2:

In the same way, we can also check that f
p
n
�
M�
2;n (�;�)� �M� (�;�)

�
g(�;�)2���A is also SE

with respect to

�2 ((�1;�1) ; (�2;�2)) := f
R
j �2 (~x; �;�)�  �2 (~x; �;�) j2dFh (~x)g1=2:
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From these, we can also see that
p
nf
�
M�

n (�;�)�M�
1;n (�;�)�M�

2;n (�;�) +
�M� (�;�)

�
g(�;�)2���A

is SE with respect to the pseudo metric � = �1 + �2, i.e., we now have obtained (D.26). It

remains to show (D.33).

Proof of (D.33): Let

�� (i; j; �;�) =  � (Xg;i; Xh;j; �;�)�
R
 � (Xg;i; ~x; �;�) dFh (~x)

�
R
 � (x;Xh;j; �;�) dFg (x) + �M (�;�) ;

where we note that �M (�;�) =
R R

 � (x; ~x; �;�) dFg (x) dFh (~x),
���� (i; j; �;�)�� � 8 by the

form of  � (given in (D.27)), and
�
�� (i; j; �;�)

	
independent over i and j. Then, we can

writeR R
 [dF̂gdF̂h � dF̂gdFh � dFgdF̂h � dFgdFh] = (1=ngnh)

Png
i=1

Pnh
j=1 �

� (i; j; �;�) ; (D.36)

for a generic element of  2 F�, with some (�;�).

To obtain (D.33), we �rst compute the L2-moment bound of (D.36). For notational

simplicity, we here write � (i; j) = �� (i; j; �;�), suppressing the dependence on �, � and �.

Then, we have

E
h
j (1=ngnh)

Png
i=1

Pnh
j=1 �

� (i; j; �;�) j2
i

= (1=ngnh)
2E
hPng

i=1

Pnh
j=1

Png
k=1

Pnh
l=1 � (i; j) � (k; l)

i
= (1=ngnh)

2
nPng

i=1

Pnh
j=1E

�
j� (i; j)j2

�
+
PPP

1�i�ng ; 1�j;l�nh; j 6=lE [� (i; j) � (i; l)]

+
PPP

1�i;k�ng ; i6=k; 1�j�nh E [� (i; j) � (k; j)]

+
PPPP

1�i;k�ng ; i6=k; 1�j;l�nh; j 6=lE [� (i; j) � (k; l)]
o

= (1=ngnh)
2Png

i=1

Pnh
j=1E[j� (i; j)j

2]; (D.37)

where the last equality holds since

E [� (i; j) � (i; l)] = 0 for j 6= l; E [� (i; j) � (k; j)] = 0 for i 6= k; (D.38)

E [� (i; j) � (k; l)] = 0 for i 6= k and j 6= l: (D.39)

We can easily check (D.39) by the independence of � (i; j) and � (k; l): E [� (i; j) � (k; l)] =

E [� (i; j)]E [� (k; l)] = 0. The two equalities in (D.38) follow from almost the same argu-

ment, and we here check only the former:

E [� (i; j) � (i; l)]

= E
��
[ �(Xg;i; Xh;j; �; �)�

R
 �(Xg;i; ~x; �;�)dFh (~x)]� [

R
 �(x;Xh;j; �; �)dFg (x)� �M (�;�)]

	
�
�
[ �(Xg;i; Xh;l; �; �)�

R
 �(Xg;i; ~x; �;�)dFh (~x)]� [

R
 �(x;Xh;l; �; �)dFg (x)� �M (�;�)]

	�
= 0;
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which holds by the mean-zero property of four components in parenthesis and the indepen-

dence between Xg;i, Xh;j and Xh;l. For each �, � (i; j) = �� (i; j; �;�) � 8 uniformly over

(�;�), and therefore E[j� (i; j)j2] = E[
���� (i; j; �;�)��2] � 64 uniformly. Now, by (D.37) and

Assumption 1, we have

sup(�;�)2R�R4d E
h
j (1=ngnh)

Png
i=1

Pnh
j=1 �

� (i; j; �;�) j2
i
� 64=ngnh � �C=n2;

for some constant �C > 0.

Given this moment bound, we now apply the Bernstein inequality for independent and

bounded sequences (e.g., Lemma 2.2.9 of van der Vaart and Wellner, 1996), and obtain

Pr
h���(1=ngnh)Png

i=1

Pnh
j=1 �

� (i; j; �;�)
��� > a

i
� 2 expf�a2=[ �C=n2 + 8a=3]g;

where the inequality holds uniformly over (�;�) 2 R�R4d (since �C is independent of (�;�)),
leading to the desired result (D.33). Now, the proof of Lemma 3 is completed.
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