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Abstract

An estimator of the ex-post covariation of log-prices under asynchronicity and microstructure noise

is proposed. It uses the Cholesky factorization on the correlation matrix in order to exploit the

heterogeneity in trading intensity to estimate the different parameters sequentially with as many

observations as possible. The estimator is guaranteed positive semidefinite. Monte Carlo simulations

confirm good finite sample properties. In the application we forecast portfolio Value-at-Risk and

sector risk exposures for a portfolio of 52 stocks. We find that forecasts obtained from dynamic

models utilizing the proposed high-frequency estimator provide statistically and economically superior

forecasts to models using daily returns.

Keywords: Cholesky decomposition, Integrated covariance, Non-synchronous trading, Positive

semidefinite, Realized covariance.

JEL: C10, C58

1. Introduction

The availability of high-frequency data and a large variety of estimators harnessing their infor-

mation, has led to much greater understanding of the covariation between financial time series. The

estimation of covariance matrices is vital in many interesting and important financial, economic and

statistical applications. However, most of these do not only require the estimated matrix to be ac-

curate, but also positive semidefinite (PSD). Unfortunately, in search of the former, many proposed
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estimators have sacrificed the latter (e.g. Hayashi and Yoshida, 2005; Zhang, 2011; Lunde et al.,

2012).

Estimation of realized covariance at ultra high frequencies is made difficult by two empirical phe-

nomena which induce biases in the estimates. First, the presence of market micro-structure noise

(e.g. bid-ask bounce), and second, non-synchronous trading. Up until recently, lower frequency re-

turns, for instance every 20 minutes, were used to avoid these biases. Now, estimators that are robust

to both problems have been proposed, and the only limit to the frequency of data one faces is due to

the fact the observations have to be synchronized.

The multivariate realized kernel of Barndorff-Nielsen et al. (2011) uses refresh-time sampling to

synchronize data. Although this synchronization technique is quite efficient in terms of observations

retained, its problem is that the number of observations is always determined by the least frequently

traded asset. To diminish that effect, several papers try to make more efficient use of data by splitting

up estimation into subsets of the data. Hautsch et al. (2012) propose a method that applies the

multivariate kernel to separate groups of liquid and illiquid assets, and combines these estimates into

a full matrix. Aı̈t-Sahalia et al. (2010) synchronize pairs and use the so-called polarization result to

estimate the covariance bivariately, using univariate estimators. Lunde et al. (2012) use a class of

Composite estimators, which estimate the variances univariately, and use bivariate sampling to obtain

correlations. Fan et al. (2012) use both the polarization and pairwise refresh-time techniques. These

estimators increase efficiency by using more observations, but sacrifice positive semidefiniteness in the

process.

The contribution of this paper is a method that estimates each element sequentially, whilst ensur-

ing the final estimate to be positive semidefinite. Because our estimator of the Integrated Covariance

is based on the Cholesky decomposition, we denote it CholCov. By applying an orthogonal decom-

position to the covariance matrix we reduce the estimation from a d−dimensional matrix to a large

number of bivariate estimations on transformed series, and ensure a well-conditioned matrix. How-

ever, due to the necessary transformations, we cannot sample over just two series for each element,

but have to iteratively sample over an increasing set of series.

Each bivariate estimate on the transformed series can be done with any currently available or

future estimator, as long as it is robust to the biases induced by ultra high-frequency data. Suitable

candidate estimators include the sub-sampling estimator (Zhang, 2011; Boudt and Zhang, 2014), pre-

averaging estimator (Christensen et al., 2010), kernel estimator (Barndorff-Nielsen et al., 2011) and

likelihood based method (Aı̈t-Sahalia et al., 2010), as well as recent advances by Peluso et al. (2012)

and Shephard and Xiu (2013). In this paper we use the pre-averaging estimator.

In an extensive simulation study, we find our estimator performs at least as well as its main

competitors, and it offers significant improvements when estimating vast-dimensional matrices and/or

in scenarios with high heterogeneity in trading frequencies. Its performance is similar to the Composite

versions without resorting to an arbitrary rotation to make the estimate positive semidefinite.

For the empirical application, we use our estimator to forecast portfolio Value-at-Risk and to

estimate industry exposures for 52 assets. We apply recent advances in the literature on the dynamic

modeling Integrated Covariances on the CholCov, and compare the forecasting accuracy to those

obtained using dynamic specifications on daily returns only. We find that models utilizing the CholCov

in their estimation greatly improve both unconditional coverage and independence between Value-at-
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Risk violations, and that they lead to the most informative sector exposure forecasts amongst our

models considered.

The paper is structured as follows. In Section 2 we present the theoretical setup and outline the

decomposition. Section 3 first discusses practical issues in preparing the data for estimation, and

then presents the algorithm that delivers the estimate. In the next section we outline its general

asymptotic properties, which depend on the candidate estimator. We provide an example for the

pre-averaging estimator. Section 5 presents a summary of some extensive Monte Carlo simulations

designed to highlight the improvements due to more efficient data-sampling. Sections 6 and 7 provide

the empirical application on the forecasting of portfolio Value-at-Risk and the estimation of industry

exposures using the CholCov. Finally, Section 8 concludes. An accompanying webappendix presents

an alternative estimator, the PalCov, and additional simulation results.1

2. Theoretical setup

Our aim is to accurately estimate the Integrated Covariance (ICov) matrix of a d−dimensional

Brownian semimartingale process Y = (Y (1), . . . , Y (d))′. The measurement is complicated by the fact

that the component processes are observed at irregular and non-synchronous time points, and that

the price process of interest is observed with measurement error. The actual observed log-prices are

denoted X = (X(1), . . . , X(d))′. Let the set of all series be denoted D, with subsets d ⊆ D. Each

component process can be observed at different time points over the interval [0, T ]. For simplicity we

take T = 1 in this paper. The observation times for the k−th asset are denoted by 0 ≤ t
(k)
1 ≤ t

(k)
2 ≤

. . . ≤ t
(k)
N(k)

≤ 1. X is driven by the efficient log-price Y , a Brownian semimartingale defined on a

filtered probability space (Ω,F , (F0
t ), P 0):

Y (t) =

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s), (1)

where µ is a d×1 predictable locally bounded drift process, W is a d-dimensional vector of independent

Brownian motions and σ a d × d càdlàg process such that Σ(s) = σ(s)σ′(s) is the spot covariance

matrix of Y at time s.

At very high frequencies, microstructure noise leads to a departure from the Brownian semimartin-

gale. As a result we do not observe Y , but instead a process X defined as:

X
(d)
t = Y

(d)
t + ε

(d)
t , (2)

where ε
(d)
t is microstructure noise and Y

(d)
t is the d-th component of Y . In this paper, εt = (ε

(1)
t , ..., ε

(d)
t )′

is assumed to be an i.i.d. process independent of Y , satisfying

E(εt) = 0, E (εtε
′
t) = Ψ,

with Ψ a positive definite d× d matrix. Hansen and Lunde (2006) show that these assumptions can

be called to question at very high frequencies. They can be relaxed to allow for dependence on Y and

1The web-appendix is available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2383869.
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the asymptotic theory in this paper is still valid (see Christensen et al., 2010). The assumptions made

here are specific for the pre-averaging estimator, and others may be considered when using a different

candidate estimator.

Our parameter of interest is the integrated covariance over the unit interval:

ICov =

∫ 1

0

Σ(s)ds. (3)

Estimation of the off-diagonal elements of the ICov requires synchronization of the data. Two ap-

proaches are popular. One is to synchronize all observations jointly, but this has the disadvantage

of letting the resulting observation frequency be determined by the least liquid asset (e.g. Barndorff-

Nielsen et al., 2011). The second approach is to estimate the extra-diagonal elements of the ICov

separately using synchronized pairs of price processes, but the result is not ensured positive semidef-

inite (e.g. Lunde et al., 2012). We propose a third approach that uses a factorization of the spot

correlation matrix, combining the advantages of both methods.

2.1. Decomposition

For the estimation of the Integrated Covariance, it will reveal useful to decompose each spot

covariance matrix into a symmetric factorization of square matrices. Such a factorization is ensured

to be positive semidefinite. Additionally, we wish to separate volatilities from correlations and that

the parameters defining the spot correlation between k and l do not depend on the parameters defining

m and n (with m > k and n > l). The latter condition ensures that we can estimate the parameters

sequentially, which allows more efficient data usage. This is the case for the Cholesky decomposition,

but also for the factorization proposed by Palandri (2009). We will focus on the former, and the latter

is discussed in the web Appendix.

The Cholesky decomposition is also used in the volatility context in Chiriac and Voev (2011) and

Tsay (2010). Chiriac and Voev (2011) decompose the covariance matrix and use time series models

to forecast the elements. This way they ensure positive semidefiniteness of covariance forecasts. Tsay

(2010) uses the re-parametrization in a multivariate GARCH framework. The use of the Cholesky

decomposition is the only similarity with our work. Their methods and goals are different from ours.

We propose an ex-post covariance estimator, not a time-series volatility model.

First, we rewrite the spot covariance matrix by rewriting the spot covariances into the product

of spot volatilities and spot correlations as in Boudt et al. (2012). The spot correlation between

log-returns of assets k and l is defined as

ρk,l(s) =
Σk,l(s)√

Σk,k(s)Σl,l(s)
, (4)

where Σk,l(s) is element (k, l) of the spot covariance matrix Σ(s), implying

Σk,l(s) = σk(s)ρk,l(s)σl(s)

with σk(s) =
√

Σk,k(s). In multivariate notation, this leads to Σ(s) = D(s)R(s)D(s), where D(s) is
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a d× d diagonal matrix containing the spot volatilities and R(s) the d× d spot correlation matrix.

Second, the spot correlation matrix is split up using the well known Cholesky decomposition, i.e.

R(s) = H(s)G(s)H(s)
′
, (5)

where H(s) is a lower diagonal matrix with ones on the diagonal, and G(s) a diagonal matrix. More

specifically,

H(s) =


1 0 · · · 0

h21(s) 1 · · · 0
...

...
. . .

...

hd1(s) hd2(s) · · · 1

 G(s) =


g11(s) 0 · · · 0

0 g22(s) · · · 0
...

...
. . .

...

0 0 · · · gdd(s)

 .

For instance, omitting the time-dependence, for d = 3:

R = HGH ′ =

 g11 h21g11 h31g11

h21g11 h2
21g11 + g22 h21h31g11 + h32g22

h31g11 h21h31g11 + h32g22 h2
31g11 + h2

32g22 + g33

 . (6)

Hence, the elements in the H and G matrices are linked to the elements of R as follows

gkk = Rkk −
k−1∑
m=1

h2
k,mgmm (7)

hkl =
1

gkk

(
Rkl −

k−1∑
m=1

hkmhlmgmm

)
, (8)

for k > 1 with g11 = R11. The (k, l)-th element of the correlation matrix only depends on gmm and

hnp with m,n, p ≤ max(k, l). The elements can therefore be estimated sequentially.

3. Estimation

In order to apply the Cholesky decomposition in estimating the ICov, we first need to define how

the returns are computed and, since the procedure will be sequential, how the covariance matrix is

ordered. Subsection 3.1 reviews the concept of refresh time returns and Subsection 3.2 introduces

the liquidity criterion that we use to structure the covariance matrix. Based on these ingredients,

Subsection 3.3 defines the CholCov estimator.

3.1. Dealing with asynchronicity

In high-frequency data, assets are traded at irregular intervals and seldom simultaneously. More-

over, not all stocks are equally liquid, such that the number of fresh prices within a fixed time interval

may substantially differ across firms. One way to synchronize the data is by means of refresh-time

sampling, as proposed by Harris et al. (1995). It picks refresh-times at which all assets have traded at
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least once since the last refresh-time point. We use the notation of Hautsch et al. (2012) and define

refresh-time for t ∈ [0, 1] as follows. The first refresh-time occurs at τ1 = max(t
(1)
1 , . . . , t

(d)
1 ), and

subsequent refresh-times at τj+1 = argmin(t
(k)
k |t

(k)
k > τj ,∀k). The grid, denoted τ d , is a function of

the series over which they are sampled, with d ⊆ D. The grid’s number of observations is denoted

N d , while the individual series have size N (k). Finally, denote the durations as ∆d
j = τ d

j − τ d
j−1.

Throughout the paper, for clarity of notation, the superscript may be omitted if it is clear which grid

is being discussed, or in general statements concerning every grid.

As a result of the sampling scheme, N d ≤ minkN
(k), and may be a lot smaller depending on the

trading pattern and number of series under consideration. Hautsch et al. (2012) illustrate that the

percentage data loss can exceed 90% when the number of assets becomes large and arrival rates are

unequal. The sample size is clearly largely determined by the least liquid stock. Including a single

non-liquid stocks may therefore drastically reduce the estimation efficiency of all elements, including

those for which a lot of data is available.

This problem is circumvented by the composite estimation technique used in Lunde et al. (2012)

and Fan et al. (2012). The data loss is reduced, but at the expense of positive semidefiniteness, one

of the defining properties of a covariance matrix. Moreover, many applications, such as principal

components analysis and portfolio optimization, critically rely on it. Therefore the question arises

how to project the symmetric matrix onto the space of PSD matrices.

There exist many ways to transform the matrix to a PSD alternative. A general method called

shrinkage is proposed in Ledoit and Wolf (2003). In the Realized Covariance setting Barndorff-Nielsen

and Shephard (2004b) and Fan et al. (2012) set all negative eigenvalues in the spectral decomposition to

zero. Hautsch et al. (2012) impose more structure by employing eigenvalue cleaning, a random matrix

theory technique similar in intuition to shrinkage. While such eigenvalue cleaning may increase the

efficiency of the covariance matrix estimate, it still remains that for portfolio optimization purposes

the dependence of the optimized portfolio on the eigenvalue cleaning is highly undesirable. Schmelzer

and Hauser (2013) discuss the severe implications of a negative eigenvalue in the context of portfolio

optimization and point to the above mentioned strategies to get rid of them. They conclude, however

that, from their experience, a careful analysis of the estimation process itself adds far more value to

the trading strategy.

Here, we use the Cholesky decomposition to exploit the heterogeneity in trading intensities and

estimate the different parameters sequentially, using as much data as possible. The decomposition

holds for any PSD matrix, which is by definition true for the correlation matrix, and the recombined

results will also be PSD. However, ensuring positive semidefiniteness does come at a cost. We cannot

synchronize just pairs of data, but have to sample over a growing set of series. The first elements are

estimated by sampling over two series, but the last elements to be estimated require a common grid

on all series. To make optimal use of the data, it is therefore crucial to order the series in terms of

decreasing liquidity.

To illustrate, Figure 1 plots a simulated example of the number of observations used for each

element using the three different methods. We consider 20 assets, where each asset is slightly less

liquid than the last. The leftmost picture depicts a situation in which refresh-time sampling is applied

to all assets at once. The rightmost picture depicts pairwise sampling, the situation for the Composite

6



Figure 1: Number of observations available for each element in estimation of Σ, sampling over all series (left), sequential
sampling (middle) and pairwise sampling (right).
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Note: These graphs depict simulation based number of observations available for the estimation of
elements in a 20×20 covariance matrix for different sampling schemes. The sampling frequencies
follow independent poisson processes with parameter λ ranging uniformly from 10 and 15. For
more details, see Section 5. From left to right: Sampling over all series, sequential sampling and
pairwise sampling.

estimators of Lunde et al. (2012). The diagonal elements are estimated sampling over just the single

series, and therefore also depict the number of observations available for that asset. The off-diagonal

elements are estimated using bivariate sampling. The data-loss is therefore minimal. The middle

graph depicts sequential sampling, the technique used for our estimator. The diagonal elements are

estimated in the same fashion as for the Composite estimator, but we require sampling over more

series for the off-diagonal estimates. As such, the number of observations for all elements involving

the first asset coincide with those for pairwise sampling, while the observation count for the other

elements lies somewhere in between the two other sampling approaches.

3.2. Ranking stocks based on liquidity

In order to best utilize the sequential estimation, we propose to sort the series in terms of liquidity.

For the Regularization and Blocking (‘RnB’) estimator, Hautsch et al. (2012) sort series in terms of

liquidity solely based on the number of observations N (k). However, there are many scenarios where

this would not lead to a large number of observations when sampling over many series. Instead, we

propose the following new liquidity criterion:

0 ≤
N(k)∑
j=0

(
∆

(k)
j −

1

maxdN (d)

)2

< 1, (9)

which is not just based on the number of intraday returns available, but also the degree to which the

returns are spread out over the day. To achieve this we compare the time between trades, denoted ∆j ,

with an optimal grid, defined as the equidistant grid based on the maximum number of observations

available for any of the series. The series are ordered in increasing value of the liquidity criterion, such

that the first series is the most liquid. We call our method liquidity sorting, as opposed to observation

count sorting proposed in Hautsch et al. (2012).
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Figure 2: Distribution of log-differences in number of observations between liquidity and observation count sorting, as
a function of the number of series synchronized.
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Note: The graph shows the percentage gains in number of observations from using
liquidity sorting instead of observation count sorting on refresh-time samples over
an increasing number of series from 1 to 52.

To illustrate the effect of liquidity sorting compared to observation count sorting, we preview re-

sults of our empirical application where we apply sequential refresh-time sampling on 52 assets. Figure

2 shows the increase in number of observations based on liquidity sorting compared to sorting purely

on number of individual observations. The x-axis denotes the number of series that are synchronized.

The graph shows the distribution of the log-difference of the number of observations between the

two sampling techniques. As such the y-axis can be interpreted as percentage increases in number of

observations of liquidity sorting compared to observation count sorting.

It is clear that the liquidity criterion (9) offers a smoothing of observation count across the increased

set of series. Some observations are lost in the beginning of the sequential estimation, but this is at

a point where plenty of observations are available, and efficiency is not so much an issue. However,

starting from about seven series, the synchronized observation count for liquidity sorting is on average

higher by 2 to 3%. Additionally, the distribution is skewed towards higher gains than losses, with the

liquidity sorting offering observation increases of 10 to 15% in the 2.5% best cases, compared to losses

of around 5% in the worst 2.5% cases. Obviously, when all the series are synchronized, there is no

difference.
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3.3. The CholCov

This section presents our estimator of the Integrated Covariance, which achieves positive semidef-

initeness by means of the Cholesky decomposition. Recall that we assume log-prices to follow (1).

For ease of exposition, we first consider a simple scenario in which we observe equispaced returns on

a common grid, e.g. five minute returns, uncontaminated by microstructure noise, and with constant

volatility and correlation throughout the day. We then discuss the necessary adjustments to deal

with asynchronisity and microstructure noise, and finally allow for intraday patterns in volatility and

correlations.

No Asynchronisity and no Noise. First, as volatilities and correlations are assumed constant through-

out the day and we focus on one day, we will write D(s) as D in this subsection to simplify notation,

and use the same notation for matrices R, G, and H.

Recall we decompose the covariance matrix into volatilities and correlations, which are estimated

separately. The first step is to estimate the variances, which are then used to standardize the return

series on which we estimate the correlation matrix. Define the series of equispaced intra-day returns

r
(1)
tj , . . . , r

(d)
tj , where r

(k)
tj = X

(k)
tj − X

(k)
tj−1

. Under this scenario, the Integrated Variance (IV) of the

series can be estimated consistently by the Realized Variance (RV). The estimates lead to the diagonal

matrix D̂, whose (k, k)-th element σ̂k is
√
RV of asset k, with N , the number of intraday observations.

Define RV (f (k)) =
∑N
j=0

(
f

(k)
tj

)2

, the function that computes the RV based on the series f (k).

We standardize the returns to have unit Integrated Variance over the day. To achieve this, the

returns are pre-multiplied by D̂−1, which amounts to dividing all returns by the square root of RV.

The standardized log-returns are therefore

û
(k)
tj =

r
(k)
tj

σ̂k
. (10)

This ensures that the Integrated Variance of the series û
(k)
tj equals one in expectation. Even though

we are now technically dealing with the estimation of a correlation matrix, this is unlikely to be

exactly true in practice. We therefore do not impose this assumption during the estimation, but will

standardize afterwards.

Next, the gkk and hkl terms in the decomposition of the correlation matrix in (5) are estimated

sequentially. Each element requires only a subset of the data series. The sequential estimation follows

directly from the triangularity of H. To see this, omitting time subscripts for clarity, consider the

vector of standardized returns u, which, under the previously stated assumptions and provided returns

are sampled sufficiently frequently such that the drift can be ignored, is normally distributed around

zero with covariance matrix R = HGH ′. We can further define f = H−1u ∼ N(0, G). Since H

is triangular, we obtain that each component in the vector of standardized returns u = Hf , is an

explicit function of the components with a lower index. More precisely, f (1) = u(1) ∼ N(0, g11), and

for k = 2, ..., d,

u(k) = hk1f
(1) + hk2f

(2) + ...+ hk(k−1)f
(k−1) + f (k)

f (k) ∼ N(0, gkk).
(11)

Based on the sequence in (11), we can thus estimate the elements of H by the following algorithm of
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Ordinary Least Squares (OLS) regressions:

Step 1:

Set: f
(1)
tj = û

(1)
tj

Set: ĝ11 = RV (f (1))

Step 2:

Regress: û
(2)
tj = h21f

(1)
tj + η

(2)
tj

Set: f
(2)
tj = û

(2)
tj − ĥ21f

(1)
tj

Set: ĝ22 = RV (f (2))

Step 3:

Regress: û
(3)
tj = h31f

(1)
tj + h32f

(2)
tj + η

(3)
tj (12)

Set: f
(3)
tj = û

(3)
tj − ĥ31f

(1)
tj − ĥ32f

(2)
tj

Set: ĝ33 = RV (f (3))

...

Step d:

Regress: û
(d)
tj =

d−1∑
l=1

hdlf
(l)
tj + η

(d)
tj

Set: f
(d)
tj = û

(d)
tj −

d−1∑
l=1

ĥdlf
(l)
tj

Set: ĝdd = RV (f (d)).

Step 1 is merely an initialization of the sequential estimation. The aim of all other steps is to

determine an orthogonal projection of series u(k) on all previously orthogonalized series f (l), l =

1, ..., k− 1. To achieve this, as per the first equation in each step, we first regress u(k) on all previous

orthogonalized series f (l). The parameter estimates ĥkl are used in the second equation to compute

the next orthogonal projection of series u(k) on all previous factors, denoted by f (k). The process

ensures that f
(k)
tj ⊥⊥ f

(l)
tj for k 6= l. By going through the steps, we obtain the elements of H and G as

hkl = hkl and gkk = RV(f (k)).

In this equispaced, no noise scenario, Realized Variance is a consistent estimator of the Integrated

(Co)Variance and OLS on intraday returns leads to consistent estimates of the h elements. In this

case, the estimation of the CholCov is relatively straightforward and, as the Cholesky decomposition

is exact, identical to the standard Realized Covariance estimator (RCOV) studied in, amongst others,

Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004a). The estimation directly follows

the steps previously outlined. In step 1, g11 is obtained as the Realized Variance of f (1). In step 2,

we first obtain h21 as the OLS-coefficient from regressing û(2) on f (1). Then we apply the orthogonal

transformation, and estimate g22 as the RV of the projected series f (2). In step 3, the next two
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elements, h31 and h32 are OLS-coefficients from regressing û(3) on f (1) and f (2). The RV of the

orthogonal transformation is the g33 element. We repeat this step d times, until all elements of G an

H have been estimated.

The matrix Q̂ = ĤĜĤ ′ is guaranteed to be a symmetric positive semidefinite matrix, but to be

qualified as a correlation matrix, it needs to have ones on the diagonal. We considered two ways to

ensure this. First, as in Equation (2.5) of Pelletier (2006) we could impose the constraint

gii = 1−
i−1∑
k=1

h2
(i+1)kgkk,

such that the diagonal elements in (6) equal 1 by construction. In Pelletier (2006) this is part of

an iterative maximum likelihood estimation of the correlation matrix, whereby the joint optimization

of all elements ensures the accuracy of the estimates. However, in our case, there is no iteration

and simulations showed that the efficiency of resulting estimate is not satisfactory. This is because

the integrated variance of the standardized returns equals one just in expectation, and is unlikely

to exactly equal one in practise. The second approach, which we use in this paper, is to simply

standardize the matrix to unit diagonal, as in Engle (2002),

R̂ = diag(Q̂)−1/2Q̂diag(Q̂)−1/2.

This ultimately leads to the CholCov estimator for the daily integrated covariance matrix:

CholCov = D̂R̂D̂. (13)

With Asynchronisity and Noise. In practice, we observe tick-data which has to be synchronized and

has microstructure noise. To estimate under this scenario some adaptations have to be made, but the

general principle is the same. The problem of noise is easily solved by means of a robust estimator.

Asynchronisity could be solved by means of a common refresh-time grid on all series, but we exploit

the sequential nature of the regressions by sampling over an increasing number of series (sorted with

respect to the liquidity criterion (9)). This offers large benefits in terms of data usage, but it also

means that different grids are used for every single element.

Having multiple grids means that the standardized returns have to be recomputed on every

single grid, taking into account the time between successive observations. Consider a synchro-

nization that led to a time-grid τ , with N observations. Define the actual observations times as

τ
(k)
j+1 = argmax(t

(k)
k |t

(k)
k ≤ τj). Each return r

(k)
τj = X

(k)
τj −X

(k)
τj−1 has variance (τj − τj−1)σ2

k. To obtain

unit IV on the daily basis, we estimate the IV using some robust estimator, ÎV , and standardize the

returns using σ̂
(k)
τj = ÎV

(k)
. The standardized log-returns for the grid τ , are therefore

û(k)
τj =

√
1/N

(τ
(k)
j − τ (k)

j−1)

r
(k)
τj

σ̂
(k)
τj

. (14)

Note that for equispaced returns, (τ
(k)
j − τ (k)

j−1) = 1/N , the standardized return in (14) thus coincide

with those in (10). These series have to be recomputed on every grid we consider, as the different
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grids will have different refresh-times.

Now, in order to obtain consistent estimates in the presence of asynchronicity and noise, we esti-

mate the quantities, gkk and hkl, using robust realized variances and realized betas2, using estimators

such as the multivariate Kernel (Barndorff-Nielsen et al., 2011) and MRC (Christensen et al., 2010).

Using realized beta instead of OLS has the advantage that the minimum number of observations

needed for estimation is a lot lower. For OLS, the number of observations of fully synchronized data

needs to be greater than the dimension of the problem, a clear restriction for vast matrices. Realized

beta does not have this restriction. Additionally, it allows for optimal bandwidth selection of each

individual element.3

A drawback of realized beta is that it does not take into account dependence between regressors,

and hence the estimator is only consistent if the orthogonal transformations f (.) are indeed orthogonal.

If all betas are estimated on the same grid this condition holds by construction. However, as the grid

changes for every element, all the f (.) have to be recomputed on each new grid using preceding

estimates of beta. The betas orthogonalize the series on the grid they are estimated on, but are

unlikely to perfectly orthogonalize the same series on a different observation grid. To counter this

problem and to ensure consistency of the estimator, we achieve perfect orthogonality by re-estimating

preceding betas at every new grid. The realized beta obtained using the smallest set of series, the

first time it is estimated, is used as the final estimate in H. As it uses the smallest set, it will have

the most observations and is therefore the most efficient. The following algorithm summarizes the

procedure, and makes the link to the set of equations (12).

CholCov Estimation Algorithm.

1. First sort the series in terms of decreasing liquidity according to (9), such that series 1 is the

most liquid, and series d the least.

2. Step 1:

Apply refresh-time on a = {1} to obtain the grid τ a .

Estimate ĝ11 using an IV estimator on f
(1)
τ a
j

= û
(1)
τ a
j

.

3. Step 2:

Apply refresh-time on b = {1, 2} to obtain the grid τ b .

Estimate ĥb
21 as the realized beta between f

(1)

τ b
j

and û
(2)

τ b
j

. Set ĥ21 = ĥb
21.

Estimate ĝ22 using an IV estimator on f
(2)

τ b
j

= û
(2)

τ b
j

− ĥ21f
(1)

τ b
j

.

4. Step 3:

Apply refresh-time on c = {1, 3} to obtain the grid τ c .

Estimate ĥc
31 as the realized beta between f

(1)
τ c
j

and û
(3)
τ c
j

. Set ĥ31 = ĥc
31.

Apply refresh-time on d = {1, 2, 3} to obtain the grid τ d .

Re-estimate ĥd
21 at the new grid, such that the projections f

(1)

τ d
j

and f
(2)

τ d
j

are orthogonal.

2The realized beta is computed by estimating a 2 × 2 realized covariance matrix Σ̂. The realized beta is then
computed as ĥkl = Σ̂kl/Σ̂ll (Andersen et al., 2006).

3Note however that in the no asynchronisity, no noise case discussed previously, OLS and Realized Beta are equivalent.
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Estimate ĥd
32 as the realized beta between f

(2)

τ d
j

and û
(3)

τ d
j

. Set ĥ32 = ĥd
32.

Estimate ĝ33 using an IV estimator on f
(3)

τ d
j

= û
(3)

τ d
j

− ĥ32f
(2)

τ d
j

− ĥ31f
(1)

τ d
j

.

5. Step 4 to d:

Continue in the same fashion by sampling over 1, ..., k, l to estimate hlk using the smallest

possible set. Re-estimate the hnm with m < n ≤ k at every new grid to obtain orthogonal

projections. Estimate the gkk as the IV of projections based on the final estimates, ĥ.

This way we again obtain the estimates of D̂, Ĝ, Ĥ, and as such R̂, and one can simply compute the

CholCov as in (13).

3.4. Decomposition of the ICov assuming locally constant correlations

In this section we outline how one could allow for time-varying spot volatility and spot correlations.

To do so, we will assume locally constant correlations, whereas the volatility is allowed to be fully

time-varying. However, in the remainder of the paper, we use the implementation as discussed in the

previous section.

Consider the finest equispaced time grid ti, with δ = ti+1 − ti and i = 1, ..., Nt. The volatility

is allowed to be time-varying throughout the day. The correlation is assumed constant throughout

sub-periods of the day, but may change between those periods. Without loss of generality we assume

these periods to be of equal length, κδ. Then, ICov can be approximated as follows:

ICov ≈
Nt/κ∑
j=1

[∫ tκj

tκ(j−1)

D(s)R(tκ(j−1))D(s)ds

]
, (15)

where D(s) is the diagonal matrix whose kth element is the spot volatility of asset k and R(tκ(j−1)) is

the constant correlation matrix between tκ(j−1) and tκj . Equation (15) is a discretized version of (3)

and converges to ICov under some smoothness conditions when Nt →∞, κ→ 0, but with Nt/κ→∞.

In practise we are dealing with a refresh-time grid. We assume the spot correlation to be constant

over a fixed number, κ, of refresh-times. τD is the refresh-time grid using all series under consideration,

with ND observations. κ is defined on this grid such that the spot correlation is constant for the κ

observations at times τD
κ(j−1), ..., τ

D
κj for j = 1, ..., ND/κ. In the remainder of this section the sample

is partitioned into ND/κ sub-samples based on transaction times τD
κj , regardless of what transaction

grid the sample has. The number of observation within a subsample will generally be larger than

κ. When ND → ∞, the length of the constant correlation windows converges to zero and does not

depend on the inter-arrival times of observations.

The time-varying spot volatilities, D(s) can be estimated using any integrated variance estimator

on the returns. Kristensen (2010) obtains the spot volatilities by estimating the Integrated Variance

in local windows using kernels. An alternative would be to explicitly estimate the intraday periodicity

(see e.g. Boudt et al., 2011; Bos et al., 2012).

The correlations are estimated using the same algorithm as before, but on just the observations

within the window τκ(j−1) and τκj . This ultimately leads to the CholCov estimator for the daily
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integrated covariance matrix:

CholCov =

ND/κ∑
j=1

 ∑
τD
κ(j−1)

≤s≤τD
κj

[
D̂(s)R̂(τD

κ(j−1))D̂(s)
]

(τD
κj − τD

κ(j−1))

 . (16)

Finally, the question remains how to determine κ and γ practice. Determining their values is a

typical bias, variance trade-off. Higher values will reduce variance but increase bias if the correlation or

variance is not constant throughout the window. The value should be chosen as high as possible to use

as many observations for any one estimate as possible. One way to determine the values is to take the

approach adopted in Boudt et al. (2012) by testing for equal correlation or variance between windows.

Previous research suggests that patterns in the correlations are highly persistent and intraday patterns

are often negligible (Tang, 1995). Volatility however shows clear intraday patterns (Andersen et al.,

2007), suggesting the window length for volatilities should be a lot shorter than for correlations, or

that returns should be pre-filtered by a periodicity filter.

4. Properties

The CholCov possesses a combination of the most attractive properties of realized covariance

estimators. First, it is positive semidefinite and invertible by construction. Each element in the

sum of (16) is PSD by virtue of the Cholesky decomposition, and the sum of PSD matrices is PSD.

Invertibility is shown by e.g. Miller (1981).

Second, the CholCov offers great flexibility. We can use any estimator to compute the realized

variances and betas. It adopts the robustness properties of whatever estimator one uses. For instance,

we can use the Modulated Realized Variance and Covariance to compute ĝkk and ĥkl respectively,

and obtain robustness against noise, asynchronicity and serial dependence in noise. In principle, one

could use any combination of estimators, even within one estimation. One could use pre-averaging

techniques to estimate the variances, and kernel-based methods to estimate the realized betas.

Next to robustness, the CholCov also adopts asymptotic properties related to the estimators used.

First, under some smoothness conditions on the spot covariance, consistency follows directly from

consistency of the estimators used for the gkk and hlk elements. As long as we only use estimators that

are consistent, all estimates are individually consistent, and hence the combined estimator is consistent.

To ensure convergence, it is sufficient to require the spot covariance process to be (Riemann) integrable.

4.1. Asymptotic Distribution

We discuss the asymptotic distribution of the estimates in Ĝ and Ĥ. The consistency is not

affected by the sequential estimation, but the asymptotic variance (avar) may be larger. We only

consider the distribution of the estimates conditional on no estimation error in previous estimates. In

practice, a more accurate estimate may be obtained by bootstrap methods (see e.g. Hounyo et al.,

2013). However, as the estimators used are consistent, there is no systematic bias. We conjecture that

asymptotic theory for noise-robust estimators may therefore still hold as the impact of previous stage

estimation error can me modeled as noise. Lastly, we only consider the distribution of the estimates
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in one window of constant correlation. As there is no overlap between blocks, and the blocks are

independent, the avar for the entire day is the period length-weighted sum of the avar matrices.

All elements are estimated on transformed series. The transformation obviously affects the stochas-

tic process, but it remains within the class of Brownian semimartingales. The asymptotic variance

of every possible estimator depends on the volatility matrix process, so we need to keep track of

the volatility process through the transformations. All transformed series are linear combinations of

original series. Hence, the volatility process is always of the form

D−1(s)Aσ(s)dW (s) = σ∗(s)dW (s),

with σ∗(s) = D−1(s)Aσ(s), and therefore Σ∗ = σ∗(s)(σ∗(s))′. Matrix A contains the weights for the

linear transformation. For instance, when d = 3, and we are interested in the avar of h32 we need the

volatility process of the series r(3) and s(2), such that

A =

 1 0 0

−h21 1 0

0 0 1

 .
The asymptotic theory of the g and h elements follows directly from the theory of whichever estimator

we use. In Appendix C we report for completeness these results when the pre-averaging estimator,

as detailed in Appendix B, is used. Ideally, one would like the distribution of the final correlation

estimates, which depend on different gkk and hkl. A central limit theorem would require to derive

their joint distribution, but this is not available because they are computed on different, partially

overlapping data sets.

5. Monte Carlo simulation

In the previous section some of the CholCov’s theoretical and asymptotic properties were discussed.

In this simulation study we investigate its properties on realistic samples in a small bivariate setting

and a larger problem of dimension 20. We want to focus on the use of the Cholesky decomposition

to ensure positive semidefiniteness. As such we only use pre-averaging estimators, and compare our

sequential estimation with full and (PSD-corrected) pairwise estimation. We consider the CholCov,

as well as the MRC and Composite MRC. The web Appendix reports simulations which show similar

results for the equivalent Kernel-based estimators.

5.1. Setup

As in Barndorff-Nielsen et al. (2011), we generate hypothetical prices, with Y (k)(s) the associated

log-price of asset k, from the log-price diffusion given by

dY
(k)
t = µ(k)ds+ dV

(k)
t + dF

(k)
t

dV
(k)
t = ρ(k) σ

(k)
t dB

(k)
t

dF
(k)
t =

√
1− (ρ(k))2σ

(k)
t dWt,
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with k = 1, . . . , d. All B(k) as well as W are independent Brownian motions. F (k) denotes the common

factor, scaled by
√

1− ρ2 to determine its strength.

Each Y (k) is a diffusive SV model with drift µ(k). Their random spot volatility are given by σ(k) =

exp(β
(k)
0 +β

(i)
1 %(k)), with d%(k) = α(k)%(k)dt+dB(k). The correlation between the changes in Y (k) and

Y (l) is constant and equals
√

1− (ρ(k))2
√

1− (ρ(l))2.

We calibrate the parameters (µ, β0, β1, α, ρ) at (0.03, −5/16, 1/8, −1/40, −0.3) as in Barndorff-

Nielsen et al. (2011). The stationary distribution of % is utilized to restart the process each day at

%(0) ∼ N(0, (−2(β)2/α)−1). The parameter choice ensures that E
(∫ 1

0
σ(k)2(u)du

)
= 1. The fact that

ρ is set equal for all i leads to an equicorrelation structure with common correlation coefficient 0.91.

Microstructure noise is added to the return log-prices as X(k) = Y (k) + ε(k) with

ε(k) | σ,X iid∼ N(0, ω2) with ω2 = ξ2

√√√√N−1

N∑
j=1

σ(k)4(j/N).

Hence, the variance of the noise increases with the variance of the underlying process, in line with

evidence from Bandi and Russell (2006).

Finally, independent Poisson processes are used to extract irregular, non-synchronous data from

the complete high-frequency dataset. Each Poisson process is governed by a parameter λ(k), resulting

in on average one observation every λ(k) seconds for series k. On average, the series are observed

23, 400/λ(k) times.

For each of the estimators, the bias and RMSE for variance and covariance elements are computed

separately. The bias and RMSE, for a given element (k, l) of the matrix, Σ̂k,l are defined as

Biask,l = Σ̂k,l − Σk,l and RMSEk,l =

√
(Σ̂k,l − Σk,l)2. (17)

We report the averages of the above two statistics over S = 1000 replications. For the large dimensional

case (i.e. d = 20), we consider average bias and RMSE over multiple elements. Additionally, to get one

general measure of accuracy, the average of the Frobenius distances is reported. For any d-dimensional

matrix, the Frobenius distance is defined as

Frobenius Distance =
∑

1≤k,l≤d

(Σ̂k,l − Σk,l)
2. (18)

5.2. Simulation Results

Simulation I. In the first simulation we consider only two assets, to determine a base level of per-

formance. As a benchmark, we consider the Modulated Realized Covariance (MRC) of Christensen

et al. (2010). For details of its implementation, see Appendix B. The estimates in the CholCov are

similarly based on pre-averaging methods. We report the bias and RMSE with respect to the ICov

for both estimators in Table 1, separating results for each individual element in the different panels.

For each of the three noise-to-signal ratios ξ2, we present the results using different Poisson process

parameters λ, governing the liquidity of the stocks.

First consider the variances in Panel C, for the most liquid stock, and Panel D for the less liquid

stock. In the CholCov, they are estimated univariately, and thus utilize all observations. For the MRC,
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they are the result of the multivariate estimation on the common grid. The variance estimates thus

differ in the number of observations used, and the optimized individual bandwidth for the CholCov.

These differences are evident in the results. The CholCov variance estimates typically have lower

or similar bias as the MRC variance estimates. Not surprisingly, for the two CholCov variances, the

estimate for the liquid stock has much lower bias and RMSE than that of the illiquid series. The

bias of the MRC estimates is somewhere in between the bias of the two CholCov variances, but it has

much higher RMSE across the board. The MRC performs poorly in the highest noise case, where its

bias and RMSE are much higher than the CholCov’s.

The covariance element is reported in Panel A. Here the table shows that the CholCov has slightly

higher bias, but again, much lower RMSE. For both estimators, the bias of the covariance is in the

same direction as the variances, suggesting the bias will be diminished for the correlations, reported

in Panel B. Indeed, the correlations are generally close to their true value, and are estimated quite

precisely with low RMSE. The only case that stands out is again the high noise case for the MRC.

Here the bias in the variances is of larger magnitude then the bias in the covariance, and as such there

is a relatively large downward bias in the correlations.

Overall, the simulation suggests that in the 2× 2 case our estimator has very similar performance

to the MRC. Using the same class of estimators, the CholCov generally has slightly higher bias, but

much lower RMSE.

Simulation II. The main advantages of the CholCov should be achieved in larger dimensional matrices

with heterogeneity in trading intensity. To illustrate, here we simulate d = 20 series with λ =

{5, 5, . . . , 5, 120}.4 The first nineteen series are observed on average every five seconds, and the last

series once every two minutes. The MRC on the full dataset will generally use less than 23, 400/120

observations, even though for the vast majority of the series more data is available. Our estimators

will use the high observation frequency of the liquid series for all elements but those involving the last

series.

We consider the MRC as well as its Composite counterpart, denoted cMRC. For the Composite

estimator, as in Lunde et al. (2012), we first estimate the variances, D, using the univariate version

of the estimator, after which realized correlations, R, are estimated on pairs of data. Similar to the

CholCov, these estimators not only have the advantage of better data-sampling, but also optimal

bandwidth selection for each element. The resulting estimate of the covariance matrix, DRD, will not

necessarily be PSD, so any possible negative eigenvalues are set to zero as in Barndorff-Nielsen and

Shephard (2004b). Their performance is compared in terms of the three aforementioned criteria. For

the bias and RMSE the results are split up by reporting the averages of those elements involving the

illiquid stock, and those that do not separately.

Table 2 reports the results of the simulation. Panel A reports general statistics for the full matrix.

The CholCov and MRC estimators are both PSD by construction, and there is a large difference in

average Frobenius Distance (FD) with respect to the ICOV, with the MRC’s value being about five

times as high. The pairwise estimator, cMRC, has a FD that is in line with the CholCov, but slightly

4Unreported simulations show similar, if less pronounced, conclusions with λ = 5 for all assets and λ =
{2, 4, . . . , 38, 40}.
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Table 1: Results Simulation I

CholCov MRC CholCov MRC
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: Integrated Covariance Panel B: Integrated Correlation

ξ2 = 0.000
λ = (3, 6) -0.010 0.086 0.004 0.149 -0.009 0.021 -0.001 0.020
λ = (5, 10) -0.013 0.097 0.008 0.165 -0.010 0.023 -0.001 0.023
λ = (10, 20) -0.017 0.114 0.010 0.190 -0.012 0.027 -0.002 0.026
λ = (30, 60) -0.033 0.149 0.019 0.244 -0.014 0.035 -0.005 0.034
λ = (60, 120) -0.049 0.182 0.039 0.287 -0.016 0.042 -0.007 0.038
ξ2 = 0.001
λ = (3, 6) -0.010 0.087 0.004 0.150 -0.010 0.022 -0.003 0.021
λ = (5, 10) -0.014 0.099 0.005 0.165 -0.011 0.024 -0.003 0.023
λ = (10, 20) -0.019 0.115 0.010 0.192 -0.012 0.028 -0.005 0.027
λ = (30, 60) -0.033 0.149 0.022 0.242 -0.015 0.037 -0.008 0.034
λ = (60, 120) -0.052 0.182 0.035 0.284 -0.017 0.046 -0.012 0.041
ξ2 = 0.010
λ = (3, 6) -0.015 0.095 0.005 0.151 -0.013 0.032 -0.023 0.029
λ = (5, 10) -0.019 0.107 0.005 0.165 -0.017 0.035 -0.026 0.032
λ = (10, 20) -0.023 0.125 0.008 0.191 -0.017 0.041 -0.031 0.038
λ = (30, 60) -0.033 0.165 0.024 0.246 -0.016 0.057 -0.041 0.051
λ = (60, 120) -0.049 0.194 0.032 0.286 -0.021 0.075 -0.050 0.061

Panel C: Integrated Variance 1 Panel D: Integrated Variance 2

ξ2 = 0.000
λ = (3, 6) -0.002 0.077 0.005 0.159 -0.006 0.091 0.002 0.155
λ = (5, 10) -0.005 0.086 0.010 0.177 -0.009 0.102 0.006 0.171
λ = (10, 20) -0.009 0.103 0.013 0.204 -0.011 0.122 0.008 0.197
λ = (30, 60) -0.018 0.137 0.026 0.263 -0.035 0.161 0.017 0.248
λ = (60, 120) -0.030 0.169 0.049 0.309 -0.058 0.199 0.039 0.296
ξ2 = 0.001
λ = (3, 6) -0.003 0.078 0.007 0.160 -0.005 0.092 0.005 0.156
λ = (5, 10) -0.005 0.088 0.009 0.176 -0.009 0.104 0.006 0.171
λ = (10, 20) -0.009 0.103 0.016 0.205 -0.015 0.125 0.011 0.198
λ = (30, 60) -0.019 0.136 0.031 0.260 -0.034 0.165 0.025 0.250
λ = (60, 120) -0.032 0.171 0.048 0.308 -0.059 0.198 0.040 0.291
ξ2 = 0.010
λ = (3, 6) -0.004 0.086 0.029 0.162 -0.008 0.100 0.025 0.158
λ = (5, 10) -0.003 0.097 0.034 0.177 -0.010 0.116 0.029 0.173
λ = (10, 20) -0.009 0.113 0.041 0.207 -0.015 0.135 0.033 0.199
λ = (30, 60) -0.014 0.152 0.069 0.269 -0.031 0.183 0.060 0.253
λ = (60, 120) -0.028 0.182 0.083 0.314 -0.045 0.215 0.078 0.298

Note: Simulation results of the multivariate factor diffusion with d = 2. The different pan-
els report average Bias and RMSE over 1000 simulations for the individual elements of the
covariance matrix.

lower in the low noise situations. Moreover, the estimate is often non-PSD. Its corrected alternative,

denoted PSD cMRC, has similar Frobenius distance.

The variance estimates for the CholCov and cMRC are identical, so the difference in the correlation

matrix, is of particular interest. The FD between the estimated and the true correlation matrix shows

a slightly different picture than that of the covariance matrix. Where the PSD-corrected cMRC’s FD

had uniformly lower values, for the covariance matrix, the CholCov has lower FD in the presence of

noise for the correlations. The difference becomes very large for ξ2 = 0.010 where the cMRC’s FD is

50% larger.

Panel B reports more details on the individual elements. First consider the MRC. As everything is

estimated on a common grid, there is no real difference in the bias and RMSE for each of the elements

between the liquid and illiquid stocks. Compared to the other estimators, even if the bias is sometimes

similar, the RMSE is large for all elements, explaining the large FD.

The CholCov and cMRC are much more accurate. The only problem occurs in the variance
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Table 2: Results Simulation II

Panel A CholCov MRC cMRC PSD cMRC

Frobenius Distance Covariance
ξ2 = 0.000 5.855 30.932 5.162 5.161
ξ2 = 0.001 5.663 31.555 5.227 5.224
ξ2 = 0.010 5.819 32.809 5.846 5.808
Frobenius Distance Correlation
ξ2 = 0.000 0.179 0.620 0.168 0.170
ξ2 = 0.001 0.166 0.667 0.179 0.181
ξ2 = 0.010 0.206 0.843 0.293 0.304
Panel B: Fraction PSD
ξ2 = 0.000 1.000 1.000 0.377 1.000
ξ2 = 0.001 1.000 1.000 0.199 1.000
ξ2 = 0.010 1.000 1.000 0.000 1.000

Panel B
CholCov MRC cMRC PSD cMRC

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Covariance Liquid
ξ2 = 0.000 -0.002 0.086 0.026 0.230 -0.001 0.090 -0.001 0.090
ξ2 = 0.001 -0.002 0.088 0.029 0.233 -0.001 0.091 -0.001 0.091
ξ2 = 0.010 -0.003 0.092 0.035 0.247 -0.003 0.098 -0.003 0.098
Covariance Illiquid
ξ2 = 0.000 -0.035 0.138 0.025 0.226 -0.035 0.143 -0.035 0.143
ξ2 = 0.001 -0.037 0.136 0.029 0.230 -0.034 0.145 -0.034 0.144
ξ2 = 0.010 -0.040 0.144 0.034 0.241 -0.034 0.157 -0.034 0.154
Correlation Liquid
ξ2 = 0.000 -0.001 0.018 -0.004 0.037 0.000 0.017 -0.001 0.017
ξ2 = 0.001 -0.001 0.018 -0.004 0.039 -0.001 0.018 -0.001 0.018
ξ2 = 0.010 -0.001 0.021 -0.008 0.060 -0.002 0.026 -0.007 0.026
Correlation Illiquid
ξ2 = 0.000 -0.016 0.031 -0.004 0.035 -0.004 0.035 -0.006 0.034
ξ2 = 0.001 -0.001 0.029 -0.004 0.036 -0.004 0.036 -0.008 0.035
ξ2 = 0.010 0.001 0.031 -0.007 0.056 -0.007 0.056 -0.032 0.053
Variance Liquid
ξ2 = 0.000 -0.001 0.097 0.029 0.249 -0.001 0.097 -0.001 0.097
ξ2 = 0.001 -0.001 0.098 0.033 0.253 -0.001 0.098 -0.001 0.098
ξ2 = 0.010 -0.002 0.109 0.046 0.275 -0.002 0.109 0.004 0.109
Variance Illiquid
ξ2 = 0.000 -0.058 0.199 0.026 0.227 -0.058 0.199 -0.055 0.198
ξ2 = 0.001 -0.055 0.204 0.033 0.232 -0.055 0.204 -0.049 0.202
ξ2 = 0.010 -0.048 0.216 0.042 0.245 -0.048 0.216 -0.009 0.207

Note: Simulation results of the multivariate factor diffusion with d = 20 with λ = 5, 5, . . . , 5, 120. Panel
A reports statistics for the full matrix. Panel B reports the average bias and RMSE of the covariance,
correlation and variances, displayed separately for those elements involving the illiquid asset and those
that do not.

estimate of the illiquid series, which is common both estimators. This transfers to a bias in the

covariances involving the illiquid assets, but the correlation is estimated accurately. On average, the

CholCov estimates the correlations with the least bias and the lowest RMSE, amongst the estimators

considered.

The simulation demonstrates that in a large dimensional setting, the sequential estimation of

the integrated correlation utilizing the Cholesky decomposition offers vast improvements over full-

dimensional estimation, and slight improvements in the Frobenius Distance over pairwise estimation.

However, the CholCov is PSD by construction, whereas the Composite estimator needs a rotation to

become PSD.
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6. Empirical Illustration I: Value-at-Risk forecasting

We expect our estimator to be especially useful in realistic large-scale portfolio applications that

often require the estimator to be positive semidefinite and invertible. In our application we consider

the forecasting of portfolio Value-at-Risk (VaR). When computing a portfolio VaR one has the option

to either model the portfolio univariately or multivariately. For the univariate approach one uses the

weights to compute portfolio returns and estimate its VaR based on the single series. Alternatively,

one could estimate and model the full covariance matrix, and determine the portfolio VaR based on

the multivariate setting. This has advantages for several reasons. First one can immediately calculate

risk estimates for many different portfolios. Additionally, it has the advantage that it can be used for

dynamic portfolio allocation, such as for instance a minimum variance portfolio. Finally, and most

importantly, the dynamics of each of the volatility and correlation components are modeled separately.

Santos et al. (2013) argue that for large dimensions, the information due to the multivariate modeling

outweighs the additional uncertainty of estimating many parameters, and leads to better forecasts.

As such, here we take the latter approach and study the efficiency gains of using intraday data for

VaR forecast accuracy. We compare forecasts from models estimated on daily returns with estimates

based on intradaily techniques, i.e. dynamic models applied to CholCov estimates. We also consider the

RCOV estimated on 5 minute previous-tick returns as a base case for using high-frequency estimators.

Giot and Laurent (2004) and Brownlees and Gallo (2010) make the comparison between daily and

high-frequency measures in a univariate setting. We are unaware of any paper comparing daily and

intradaily models in the multivariate Value-at-Risk setting. For simplicity, in this application, we

consider just two types of portfolios, equally- and value-weighted.

6.1. Data

We analyze the portfolio risk for a total of 52 of the largest U.S. financial institutions.5 We obtain

trade data from January 2007 till December 2012 for a total of 1499 observation days. We clean the

data using the step-by-step cleaning procedure of Barndorff-Nielsen et al. (2009). This entails the

following rules: (P1) Delete all entries with a time-stamp outside the 9:30-16:00 exchange opening

hours. (P2) Delete all entries with zero or negative price. (P3) Retain entries originating from a single

exchange. For 43 firms this is NYSE, for the remaining 9 this is NASDAQ. (T1) Delete all corrected

trades, where CORR 6= 0. (T2) Delete observations with an abnormal sale condition, i.e. COND has

a letter other than ‘E’ or ‘F’. (T3) Multiple transactions at the same time stamp are combined into a

single observation at the median price. (T4*) Delete an observation when the price deviated by more

than 10 mean absolute deviations from a rolling centered median of 50 observations.

Throughout the analysis we use open-to-close returns obtained from the TAQ data. We use open-

to-close as our ICov estimators do not take into account the overnight return. If we were to include

overnight returns, gains in estimation accuracy would be more difficult to distinguish, as the overnight

return is relatively dominant.

5The Tickers are: ACAS, AET, AFL, AIG, AIZ, ALL, AMP, AXP, BAC, BBT, BEN, BK, BLK, BRKB, CB, CBG,
CINF, CMA, COF, CVH, EV, FITB, FNF, GNW, GS, HBAN, HIG, HNT, ICE, JNS, KEY, MET, MTB, NTRS, NYX,
PFG, PGR, PNC, PRU, RF, SEIC, SNV, STI, STT, TMK, TROW, UNH, UNM, USB, WFC, WU, ZION.
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Figure 3: Frequency plot of the daily number of observations after refresh-time synchronization of the 52 data series.
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The weights for the value-weighted portfolio are proportional to firms’ market capitalization, de-

termined by the shares outstanding (from CRSP) times the closing price of the stock.

The estimation problem is moderately large with 52 firms and synchronization of the data will

greatly reduce the total number of observations. In Figure 3 we plot the frequencies of number of

observations after refresh-time synchronization of all the series. The least amount of observations is

6 while the most is 624. The median is 161. There are 11 days where the number of observations is

smaller than the dimension of the problem. This invalidates the use of the traditional full-dimension

estimators like the MRC and MKernel, which are no longer invertible. Second, our application, like

many applications involving covariance estimates, requires the estimate to be positive semidefinite,

invalidating the composite estimation technique. As such, the only estimator that is guaranteed to be

positive semidefinite - without an arbitrary correction - and uses efficient sampling is ours.

6.2. Methodology

Our aim is to forecast portfolio Value-at-Risk. For a given d−dimensional vector of weights wt,

we compute the portfolio VaR over the open-to-close horizon on day t as follows:

V aRqt = w′tµt|t−1 + zq

√
w′tHt|t−1wt, (19)

where µt|t−1 is the vector conditional means and Ht|t−1 the conditional covariance matrix. Under the

assumption of conditional normality, zq is the q quantile of the standard normal distribution. The

conditional normality assumption is hard to justify for single stocks, but the dynamic quantile test

that we will perform does not reject it in our portfolio setting.

We consider the Value-at-Risk of both long and short positions, setting q = {0.01, 0.025, 0.05, 0.95, 0.975, 0.99}.
Long positions consider the left tail of the distribution, whereas for short positions the right tail is

important. The Value-at-Risk is for long positions when q < 0.5 and for short positions when q > 0.5.

The conditional mean is forecasted using AR(p) models, where the optimal lag order is individually

determined by means of the Schwarz Information Criterion.
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The CholCov and RCOV are ex-post measures, while for estimating the VaR we need a covariance

forecast. As such we need a dynamic model to forecast the ICov. We consider two types of models. In

the first we impose the same dynamics on all elements, leading to a Scalar-BEKK type specification,

like the HEAVY model of Noureldin et al. (2012). In the second model that we consider, we allow

for separate dynamics for the individual volatilities and correlations, like in the cRDCC of Bauwens

et al. (2012). The performance of these two modeling strategies is compared with their counterparts

using only daily returns, i.e. the Scalar-BEKK (Engle and Kroner, 1995) and cDCC (Aielli, 2013),

respectively.

Before presenting the results, let us first detail the different estimation methods. The Scalar-BEKK

/ HEAVY models with dependence parameters α and β take the form of

Ht|t−1 = (1− α− β)Ω + αVt−1 + βHt−1|t−2, (20)

where for the Scalar-BEKK Vt = εtε
′
t, with εt corresponding to the vector of demeaned returns, and

for the HEAVY model Vt = Σ̂t, the ICov estimate based on intraday data. To reduce the number

of parameters to be estimated, we apply covariance targeting, where Ω is the unconditional variance-

covariance matrix of daily returns for the Scalar-BEKK and the average CholCov/RCOV for the

HEAVY model. The HEAVY model additionally has a correction term, to match the unconditional

variance of the model to that of daily returns. We implement the version of Equation (11) in Noureldin

et al. (2012).

The cDCC models take the following form:

Ht|t−1 = Dt|t−1Rt|t−1Dt|t−1

Rt|t−1 = diag(Qt|t−1)−1/2Qt|t−1diag(Qt|t−1)−1/2

Qt|t−1 = (1− α− β)Q̄+ αP ∗t|t−1 + βQt−1|t−2,

(21)

where P ∗t = diag(Qt|t−1)1/2D−1
t|t−1VtD

−1
t|t−1diag(Qt|t−1)1/2, Vt is defined as above, i.e. Vt = εtε

′
t for the

cDCC and Vt = Σ̂t for the cRDCC. Note that to reduce the number of parameters to be estimated, we

do correlation targeting, by replacing Q̄ by the mean of P ∗t . Both cDCC models can be estimated in

two steps, where first univariate models are fitted to estimate the volatilities Dt, which are then used

to estimate the conditional correlation Rt. We have to specify the univariate models. There is ample

evidence (e.g. Andersen et al., 2003) for the presence of long memory in realized variances, and the

separation of volatilities and correlations allows us to model them as such. We use ARFIMA(1, d, 0)

models on the natural logarithm of the estimated variances. By modeling the natural logarithm of the

variances, we ensure positive out-of-sample forecasts.6 For a fair comparison we model the volatilities

in the cDCC on daily returns using a long memory model as well, i.e. a FIGARCH(1, d, 1).

The Scalar-BEKK and cDCC are estimated using a Composite Gaussian Likelihood, while the

HEAVY and cRDCC models are estimated using a Composite Wishart Likelihood, all on contiguous

pairs. Composite likelihood techniques for large-dimensional ARCH-type models were developed in

Engle et al. (2008). They facilitate estimation, and reduce bias in parameter estimates present in

6We adjust for the bias caused by the transformation as in Giot and Laurent (2004).
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large-dimensional problems. We assume Gaussian innovations for the computation of the VaR for all

models.

To obtain the forecasts, we estimate all the models on an increasing window of observations,

making one-step-ahead forecasts for the 1000 last days, re-estimating the parameters daily.

We test the out-of-sample performance of the VaR estimates in two ways. The first method is the

dynamic quantile test of Engle and Manganelli (2004). They define a Hit variable associated with the

ex-post observation of a VaR violation at time t:

Hitt(q) =

1− q if w′rt < V aRqt|t−1

−q otherwise .
(22)

Similarly, Hitt(1−q) = 1−q if w′rt > V aR1−q
t|t−1. We run the regressionsHitt(q) = δ+

∑K
k=1 βkHitt−k(q)+

εt and test the joint hypothesis H0 : δ = β1 = ... = βk = 0, ∀k = 1, ...,K. VaR violations are un-

correlated over time if the β are 0, whereas the unconditional coverage is correct if δ = 0. Denote

by Ψ = (δ, β1, ..., βK)′ the vector of parameters of the model and by X the matrix of explanatory

variables of the regression. The test statistic is

Ψ̂′X ′XΨ̂

q(1− q)
, (23)

and follows a χ2-distribution with K + 1 degrees of freedom under the null of correct specification.

Second, as in Chen and Gerlach (2013), we measure performance by means of a loss function and the

Model Confidence Set of Hansen et al. (2011). They suggest the following loss function applicable to

quantile forecasts, which is the criterion function minimized in quantile regressions:

LF qt = (V aRqt|t−1 − w
′rt)Hitt(q). (24)

The forecasts lead to series of the loss function for each model and each quantile. The Model Confidence

Set (MCS) allows statistical comparison of the competing models by comparing their respective loss

series. It uses a block-bootstrap to obtain the distribution of the mean loss and eliminates models

based on the maximum of pairwise t-statistics, automatically controlling the familywise error. Models

are removed from the set until the final model set includes the best models with 90% confidence.7

6.3. Results

Table 3 reports the results of the Dynamic Quantile Test. The first three columns depict the

results for the long-positions, and the last three columns show the results for the short positions. The

top panel reports the p-values for the Equal Weighted (EW) portfolio and the bottom panel shows the

results for the Value Weighted (VW) portfolio. Each panel contains successively the results for the

two models using daily returns, Scalar-BEKK and cDCC, and the two models utilizing the CholCov,

HEAVY and cRDCC. We give the results for K = 1 and K = 2, but they are qualitatively similar for

larger K. The results are available upon request.

7The MCS is carried out using the MulCom package for Ox, using 10,000 resamples and a bootstrap block-length of
2.
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First consider the models on daily returns, the Scalar-BEKK and cDCC. The empirical results

given in both panels tell the same story. The models using just daily returns are not flexible enough

to accurately forecast the VaR. The Scalar-BEKK’s unconditional coverage is rejected in many cases,

and the rejection across the board shows that the violations are also dependent. The cDCC does

perform a lot better, taking into account possible long-memory in volatility, but fails to model the left

tail of the distribution adequately, with the p-values for the null hypothesis of the different versions

of the test often smaller than 0.05, when q = 1% or q = 2.5%. We have considered alternative

specifications, not reported for brevity, which included leverage effects, but these were also rejected.

It is unclear whether the rejection is due to model misspecification or non-normal returns. As such

we also estimated the model using the more flexible multivariate Student distribution. Again, this did

not lead to significant improvements.

By increasing the information set to include intraday data, we can estimate the models on RCOV

and CholCov. The HEAVY model on RCOV offers some slight improvements over the daily Scalar-

BEKK. However, the model is still almost uniformly rejected. The model on CholCov offers some

more significant improvements. However, the short memory HEAVY model is still rejected by the

data. For the CholCov, based on K = 1 the returns might be conditionally Gaussian, but rejection

for K = 2 shows misspecification. This suggests we need more lags, and as such we have considered

a HEAVY(2,2) model, which is rejected by the data in a similar manner.

The cRDCC with ARFIMA dynamics on the variances takes into account the long-memory prop-

erties of Realized Variance. The model on RCOV has similar performance to the cDCC on daily

returns, with rejections in the left tail. However, the flexibility of the model, combined with the

accurate CholCov estimates, allows it to capture both the unconditional coverage and pass the test

for independence of violations, with only a single rejection at the 5 percent level for the 1% VaR at

K = 2.

To see the economic significance of using liquidity sorting instead of observation count sorting,

Table 3 also reports the results using the CholCov based on observation count sorting along with the

empirically best model, the ARFIMA cRDCC. The resulting VaR forecasts are inferior. For the Value

Weighted portfolio, rejections are similar to the liquidity sorting based forecasts, but for the Equal

Weighted portfolio there are again problems in the left tail, with rejections for the two most extreme

quantiles.

Second we consider the evaluation of the loss function on VaR forecasts. Table 4 shows which

models are part of the 90% Model Confidence Set for each VaR quantile and for both portfolios.

The cRDCC model on CholCov is always in the MCS for both portfolios. Nearer the centre of the

distribution, the cDCC on daily returns and cRDCC on RCOV are also included in the MCS. For

the right tail of the return distribution, the CholCov using observation count sorting are part of the

MCS. In general, the Scalar-BEKK / HEAVY -type models are rejected here as well.

The results suggest that, for diversified portfolios like the ones considered here, accurate VaR

forecasts can be obtained under the assumption of conditional normality, by utilizing the information

content of high-frequency data, an efficient PSD estimate of the covariance and an appropriate dynamic

model.

24



Table 3: Dynamic Quantile Test P-Values

K\q 1.0% 2.5% 5.0% 95.0% 97.5% 99.0%

Equal Weighted

Scalar-BEKK 1 0.018 0.000 0.011 0.001 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000

cDCC 1 0.029 0.015 0.335 0.499 0.754 0.950
2 0.022 0.034 0.227 0.566 0.779 0.976

HEAVY-RCOV 1 0.000 0.001 0.102 0.198 0.016 0.000
2 0.000 0.003 0.152 0.000 0.000 0.000

cRDCC-RCOV 1 0.028 0.270 0.764 0.902 0.591 0.042
2 0.022 0.219 0.548 0.012 0.002 0.078

HEAVY-CholCov 1 0.385 0.204 0.557 0.262 0.800 0.042
2 0.000 0.007 0.015 0.000 0.000 0.011

cRDCC-CholCov 1 0.010 0.008 0.272 0.777 0.899 0.746
Observation Count Sorting 2 0.002 0.014 0.210 0.213 0.944 0.856

cRDCC-CholCov 1 0.746 0.719 0.531 0.688 0.413 0.797
Liquidity Sorting 2 0.078 0.831 0.240 0.414 0.547 0.918

Value Weighted

Scalar-BEKK 1 0.000 0.000 0.002 0.011 0.006 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000

cDCC 1 0.130 0.030 0.133 0.506 0.667 0.236
2 0.055 0.057 0.246 0.712 0.735 0.354

HEAVY-RCOV 1 0.887 0.014 0.002 0.000 0.000 0.000
2 0.060 0.028 0.004 0.000 0.000 0.000

cRDCC-RCOV 1 0.065 0.041 0.914 0.674 0.474 0.036
2 0.000 0.076 0.954 0.174 0.003 0.068

HEAVY-CholCov 1 0.565 0.021 0.283 0.380 0.838 0.385
2 0.000 0.003 0.189 0.000 0.000 0.085

cRDCC-CholCov 1 0.385 0.193 0.135 0.788 0.719 0.887
Observation Count Sorting 2 0.000 0.214 0.253 0.253 0.831 0.944

cRDCC-CholCov 1 0.950 0.675 0.900 0.946 0.667 0.625
Liquidity Sorting 2 0.039 0.315 0.920 0.387 0.735 0.809

Note: P-Values of the Dynamic Quantile Test for the Equal Weighted and Value Weighted
portfolio Value-at-Risks. The Scalar-BEKK and cDCC are estimated on daily returns, while
the last two models are estimated using the proposed CholCov estimate for the Integrated
Covariance.
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Table 4: Loss function MCS results

q 1.0% 2.5% 5.0% 95.0% 97.5% 99%

Equal Weighted
Scalar-BEKK
cDCC X X X
HEAVY-RCOV
cRDCC-RCOV X X X
HEAVY-CholCov X X
cRDCC-CholCov Observation Count Sorting X X X
cRDCC-CholCov Liquidity Sorting X X X X X X

Value Weighted
Scalar-BEKK
cDCC X X
HEAVY-RCOV
cRDCC-RCOV X X
HEAVY-CholCov X
cRDCC-CholCov Observation Count Sorting X X
cRDCC-CholCov Liquidity Sorting X X X X X X

Note: The table shows the models included in the 90% Model Confidence set for the different
VaR forecast quantiles and the two portfolios, based on the loss function (24).

7. Empirical Illustration II: Forecasting betas

A further application in which we expect the CholCov to be of practical relevance is the forecasting

of dynamic exposures to observed risk factors, which we will refer to as betas. As in the previous

section, this requires an accurate and positive semidefinite estimator of the covariance matrix. We

estimate the exposures of the 52 financial institutions in our previous exercise to ten sector Exchange

Traded Funds (ETFs), being SPY, XLB, XLE, XLF, XLI, XLK, XLP, XLU, XLV, XLY. Our sample

for the ETFs only runs until April 30th 2012, for a total of 1336 observations.

We compare the betas produced by one-step-ahead forecasts of the cDCC-type models for CholCov,

RCOV and daily returns. As our sample is slightly reduced, we now consider the last 800 observations

our out-of-sample window. The betas are obtained by forecasting the 11-dimensional covariance

matrix, of the 10 ETFs and the individual financial institution. We then obtain the 10-dimensional

beta vector as

β̂k,t|t−1 = Σ̂kE,t|t−1Σ̂−1
EE,t|t−1,

where the covariance matrix is partitioned into the firm k and the ten ETFs E:

Σt|t−1 =

[
Σkk,t|t−1 ΣEk,t|t−1

ΣkE,t|t−1 ΣEE,t|t−1

]
.

We use a regression-based comparison that was proposed by Engle (2012). As such, we then define

the variables

Zk,t|t−1 = β̂′k,t|t−1ETFt,

where ETFt is the vector of realized sector returns. We consider three different estimators of β̂k,
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based on the CholCov, RCOV and daily return, leading to three different auxiliary variables, denoted

ZCholCovk,t|t−1 , ZRCOVk,t|t−1, and ZDCCk,t|t−1. We then estimate the following model by OLS:

rk,t = α+ δCholCovk ZCholCovk,t|t−1 + δRCOVk ZRCOVk,t|t−1 + δDCCk ZDCCk,t|t−1 + ηk,t, (25)

for each k = 1, ..., 52. A perfect specification for the β-vector would lead to a δ coefficient equal to

one, while the other coefficients would be zero. Engle (2012) do an in-sample comparison of a static

beta with a DCC beta, and Hansen et al. (2013) add the Realized Beta GARCH to the analysis and

perform an out-of-sample analysis.

We can test which model is ’superior’ by testing the following three null hypotheses:

HCholCov : δCholCovk = 1, δRCOVk = δDCCk = 0

HRCOV : δRCOVk = 1, δCholCovk = δDCCk = 0

HDCC : δDCCk = 1, δCholCovk = δRCOVk = 0,

taking into account heteroskedasticity by using White (1980) standard errors. Additionally, we wish

to identify the benefits of using the CholCov over the RCOV. To test this, we consider the regression

(25) but without ZDCCk,t|t−1, and test the hypotheses:

H ′CholCov : δCholCovk = 1, δRCOVk = 0

H ′RCOV : δRCOVk = 1, δCholCovk = 0

Second, we compare the betas in terms of a beta hedging tracking exercise. We compute the time

series
(
rk,t − ZCholCovk,t|t−1

)
,
(
rk,t − ZRCOVk,t|t−1

)
and

(
rk,t − ZDCCk,t|t−1

)
for each asset k, and seek the series

with the smallest sample variance by means of the Model Confidence Set of Hansen et al. (2011).

The results are reported in Table 5. The first two panels show the results from the regression

based test, whereas Panel C shows the beta hedging exercise. Panel A shows descriptive statistics of

the cross-sectional variation of the estimated δ coefficients across the 52 assets. The beta stemming

from the CholCov estimates has the highest weight on average and cannot be rejected as the ’superior’

model in over 40 percent of the assets. It almost completely encompasses the explanatory power of

beta forecasts based on the RCOV, which obtains very low loadings and is always rejected. The model

based on daily returns has slightly higher loadings, but is also almost always rejected.

In the direct comparison between the CholCov and RCOV forecasts, the CholCov provides superior

results, and cannot be rejected in almost 60 percent of the cases.

The beta hedging exercise provides the same conclusion. We obtain Model Confidence Sets, which

contain the set of models with the smallest tracking error with a probability of no less than 90%. The

CholCov tracking portfolios are never rejected, and the DCC based portfolios are in slightly over 40%

of the sets.

8. Conclusions

We propose an ex-post estimator of the integrated covariance that uses the Cholesky decomposition

to obtain an estimate that is ensured positive semidefinite. The elements are estimated sequentially, on

an increasing set of series. As such, the estimator uses many more observations than the traditional

multivariate estimators, but fewer than pairwise estimators. The Cholcov is flexible and can use
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Table 5: Beta Comparisons

Panel A: Summary of parameter estimates
Full Model Excluding DCC Single series

δCholCovi δRCOVi δDCCi δCholCovi δRCOVi δCholCovi δRCOVi δDCCi

Mean 0.724 0.064 0.258 0.922 0.122 0.976 0.995 1.017
Stdev. 0.199 0.142 0.230 0.131 0.151 0.103 0.325 0.086

5% 0.461 -0.178 -0.083 0.702 -0.102 0.841 0.394 0.880
Median 0.713 0.077 0.268 0.912 0.138 0.957 0.997 1.018
95% 1.061 0.293 0.637 1.115 0.368 1.117 1.457 1.137

Panel B: Rejection Frequencies
HCholCov : 0.577 HRCOV : 1.000 HDCC : 0.962 H ′CholCov : 0.404 H ′RCOV : 1.000

Panel C: Frequency in Model Confidence Set
CholCov: 1.000 RCOV: 0.038 DCC: 0.442

Note: Comparison of the betas obtained from CholCov and RCOV cRDCC forecasts, and cDCC
forecasts based on daily returns. Panel A presents descriptive statistics of the estimated coeffi-
cients of regression (25). Panel B shows the rejection frequencies for the hypothesis outlined in
the text and Panel C reports the frequency that each of the models are included in the MCS in
the beta hedging exercise.

any other estimator for the intermediate calculations, adopting both their robustness and asymptotic

properties. Simulations confirm this and show that the resulting estimates are accurate.

In an empirical application we use the CholCov in a portfolio setting which requires the covariance

matrix estimate to be Positive Semidefinite. The problem is moderately large, involving over 50

stocks. Using an appropriate dynamic model, which allows for long memory in the variances, we

forecast portfolio Value-at-Risk and are unable to reject the model, using standard normal quantiles.

This in contrast to models based on daily returns and dynamic models on the CholCov not allowing

for long memory, which are rejected by the data.

As a second application we forecast conditional betas with respect to ten sector ETFs. We evaluate

them using a regression-based comparison and a beta hedging tracking exercise. We find that the

forecasts based on the CholCov provide the best results in terms of both evaluation criteria, compared

to forecasts based on RCOV and daily returns.
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Appendix A. Notation

Indices i, j are used for time. k, l,m, n are used for the d different assets.
Refresh time

Number of assets d
Set of assets D
Calender time grid (e.g. seconds) ti
Refresh-time grid on series d ⊆ D τ d

i

Number of observations refresh sample N d

Number of refresh-times of constant correlation κ
Decompositions

Spot covariance matrix Σ(s)

Spot volatility σk(s) = Σ
1/2
k,k (s)

Spot correlation ρk,l(s)
Diagonal matrix with spot volatility D(s)
Spot correlation matrix R(s)
Lower diagonal matrix Cholesky H(s) with elements hk,l
Diagonal matrix Cholesky G(s) with elements gk,l

Series
Price observations Xτj

Returns r
(1)
τj , ..., r

(d)
τj

Cholesky projections f
(1)
τj , ..., f

(d)
τj

Devolatized returns û
(1)
τj , ..., û

(d)
τj

Appendix B. Implementation Details

Pre-Averaged Estimators. The building block of pre-averaged estimators are the pre-averaged returns
defined as

r̄(k)
τj =

kN−1∑
h=1

g

(
h

kN

)
r(k)
τj+h

.

The function g : [0, 1] → R is continuous, piecewise continuously differentiable with a piecewise

Lipschitz derivative g′ with g(0) = g(1) = 0 satisfying
∫ 1

0
g2(s)ds > 0. Define the following functions

30



and numbers associated with g:

φ1(s) =

∫ 1

s

g′(u)g′(u− s)du,

φ2(s) =

∫ 1

s

g(u)g(u− s)du,

ψ1 = φ1(0), ψ2 = φ2(0),

Φ11 =

∫ 1

0

φ2
1(s)ds, Φ12 =

∫ 1

0

φ1(s)φ2(s)ds, Φ22 =

∫ 1

0

φ2
2(s)ds.

The functions φ1 and φ2 are assumed 0 outside the interval [0,1]. Finite sample estimators of these
quantities are available in Christensen et al. (2010) and will be denoted with a superscript kN . Fol-
lowing Hautsch and Podolskij (2013); Christensen et al. (2010) we use g(x) = min(x, 1− x).

kN is a sequence of integers satisfying kN = bθuN1/2c. We use θu = 0.8 for the univariate estimator
during our entire paper based on simulations and recommendations in Hautsch and Podolskij (2013).
The pre-averaged returns are simply a weighted average over the returns in a local window. This
averaging diminishes the influence of the noise. The order of the window size kN is chosen to lead to
optimal convergence rates. The pre-averaging estimator is then simply the analogue of the Realized
Variance but based on pre-averaged returns and an additional term to remove bias due to noise, which
we denote Modulated Realized Variance (MRV):

MRV =
N−1/2

θψkN2

N−kN+1∑
i=0

(r̄τi)
2 − ψkN1 N−1

2θ2ψkN2

N∑
i=0

r2
τi . (B.1)

The multivariate counterpart is very similar and was proposed in Christensen et al. (2010). The
estimator is called the Modulated Realized Covariance (MRC) and is defined as

MRC =
N

N − kN + 2

1

ψkN2 kN

N−kN+1∑
i=0

r̄i · r̄′i −
ψkN1

θ2ψkN2

Ψ̂, (B.2)

where r̄i = (r̄(1) r̄(2) · · · r̄(d)) denotes the matrix of all pre-averaged return series and Ψ̂N = 1
2N

∑N
i=1 rτi(rτi)

′.
The second term is a bias correction to make it consistent. However, due to this correction the estima-
tor is not ensured PSD. An alternative is to slightly enlarge de bandwidth such that kN = bθmN1/2+δc.
δ = 0.1 results in a consistent estimate without the bias correction and a PSD estimate, in which case:

MRCδ =
N

N − kN + 2

1

ψkN2 kN

N−kN+1∑
i=0

r̄τi · r̄′τi .

In this paper we use θm = 1.0 for the multivariate version and slightly increase the bandwidth with
δ = 0.1 to get a consistent estimator. For the CholCov we use the normal bandwidth and apply the
bias correction.

Appendix C. CholCov asymptotics using pre-averaging estimators

The Modulated Realized Variance (MRV), defined in Appendix B, is essentially a realized variance
on pre-averaged returns, with a number of bias corrections. As our estimate gkk is exactly this
estimator on transformed series, its asymptotic distribution follows directly from that of the MRV.

Proposition 1 Under assumptions H and K in Jacod et al. (2009), the estimates of gkk conditional
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on no estimation error in previous estimates converge stably in law as

N1/4 (ĝkk − gkk)
ds→ N(0,Γ),

where Γ = 4
ψ2

2

(
φ22θσ

∗4 + 2φ12
σ∗2Ψ∗

θ + φ11
Ψ∗2

θ3

)
, Ψ∗ is the variance of the noise process of the trans-

formed series and ds denotes stable convergence in distribution.
Proof: see Theorem 3.1 in Jacod et al. (2009).

Similarly, the hlk estimates follow the distribution of the realized beta based on the multivariate
pre-averaging estimator, the Modulated Realized Covariance (MRC).

Proposition 2 Assume that E
(
|εj |8

)
< ∞ for all j = 1, ..., d. Define ∇ = Σ̂−1

kk

(
1,−ĥlk

)
, where

Σ̂kk is the kk−th element of the MRC estimate. As N →∞ the distribution of hlk conditional on all
previous estimates is as follows

N1/4
(
ĥlk − hlk

)
d→MN

(
0,∇Γ̄∇′

)
, (C.1)

with

Γ̄ =

[
âvar

∗
(k−1)d+l,(k−1)d+l âvar

∗
(k−1)d+l,(k−1)d+k

• âvar
∗
(k−1)d+k,(k−1)d+k

]
, (C.2)

where

avarMRC =
2

ψ2
2

(
Φ22θ

∫ 1

0

Λ(s)ds+
Φ12

θ

∫ 1

0

Θ(s)ds+
Φ11

θ3
Υ

)
. (C.3)

Λ,Θ and Υ are d× d× d× d arrays with elements

Λs = {Σkk′(s)Σll′(s) + Σkl′(s)Σlk′(s)}k,k′l,l,l′=1,...,d

Θs = {Σkk′(s)Φll′ + Σkl′(s)Φkl′ + Σk′l(s)Φkl′ + Σll′(s)Φkk′}k,k′,l,l′=1,...,d

Υ = {Ψkk′Ψll′ + Ψkl′Ψlk′}k,k′,l,l′=1,...,d .

avar∗ is as in Equation (C.3), but with Σ = Σ∗ and Ψ = Ψ∗.
Proof: see Theorem 6 in Christensen et al. (2010).

Feasible versions of the asymptotic distributions are discussed at length in Jacod et al. (2009) and
Christensen et al. (2010). When estimating the feasible versions, one does not have to worry about the
transformations of the data, and the resulting Σ∗ and Ψ∗. Indeed, the feasible asymptotic variance
of the different parameters can be estimated directly by computing them using the transformed series
as input. Note that different versions are available, dependent on the bandwidth choice. The results
presented here are based on the slightly larger bandwidth used in this paper.
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