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Abstract

The purpose of the paper is to derive Lagrange multiplier and Lagrange multi-

plier type specification and misspecification tests for vector smooth transition re-

gression models. We report results from simulation studies in which the size and

power properties of the proposed asymptotic tests in small samples are considered.

The results on simulating the size show that these tests generally suffer from pos-

itive size distortion. We find that both Wilks’s Λ and Rao’s F statistic, the latter

in particular, have satisfactory size properties and can generally be recommended

for empirical use. The local asymptotic power and finite sample power properties

of these tests are studied as well.
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1 Introduction

Rickard Sandberg and Dick van Dijk for many constructive remarks. Constructive

comments by two anonymous referees have considerably improved the presentation.

Responsibility for any errors or shortcomings in this work remains ours.

1 Introduction

Hypothesis testing is an essential part of building and evaluating nonlinear time series

models. Many nonlinear models such as the smooth transition regression or switching re-

gression model or their univariate counterparts nest a linear model and are not identified

if this linear model has generated the observations. This is why testing linearity is essen-

tial before fitting a nonlinear model. Evaluating any time series model before using it,

typically for forecasting, is important to ensure the relevance of the empirical results. In

this paper we consider testing a linear vector autoregressive (VAR) model against a non-

linear logistic vector smooth transition autoregressive (LVSTAR) or regression (LVSTR)

models. Furthermore, we derive various misspecification tests for estimated LVSTAR or

LVSTR models. They are needed for the strategy for building LVSTAR models devel-

oped and applied in Teräsvirta and Yang (2014). For a recent survey of Vector Threshold

Autoregressive (VTAR) and LVSTAR models, see Hubrich and Teräsvirta (2013).

Eitrheim and Teräsvirta (1996) constructed misspecification tests for univariate STAR

models. They included the test of no error autocorrelation, based on considerations in

Godfrey (1988, Section 4.4), a test of the hypothesis of no additional nonlinearity, and

a test against parameter nonconstancy. The last two tests contain the linearity test and

the parameter constancy test in the linear VAR model as special cases. They build on the

idea of circumventing the identification problem present in testing as in Saikkonen and

Luukkonen (1988) and Luukkonen et al. (1988). Camacho (2004) generalised the test of

no error autocorrelation to a bivariate STAR model.

In this paper we work further on linearity and misspecification tests in the LVSTR

framework. We allow the dimension of the model exceed two and, furthermore, do not

restrict the number of transitions to one. We focus on two cases. In the first one, the

LVSTR model only has one transition variable, that is, the same transition variable is

controlling nonlinearity in all equations. In the second case, the transition variable need

not be the same for all equations. In some applications, there may exist underlying theory

propositions determining these transition variables and thus justifying this type of test.

The asymptotic theory of our tests requires that the log-likelihood function is at least

twice continuously differentiable in a neighbourhood of the null hypothesis. Theoretically

this means that the tests are not valid for vector threshold autoregressive models such as

the model by Tsay (1998). In practice, our tests do have power even against threshold-
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2 The logistic vector smooth transition model

type alternatives, see Strikholm and Teräsvirta (2006) and Teräsvirta et al. (2010, Section

16.4) for a discussion of this in the univariate threshold autoregressive case.

The plan of the paper is as follows. The LVSTAR model introduced in Teräsvirta

and Yang (2014) is presented in Section 2. In Section 3 we consider linearity tests for

two separate cases. In the first one, a single transition variable controls regime changes

in all equations of the system. The second, somewhat more complicated, case is the

one in which each equation can have its own transition function and transition variable.

The misspecification tests for model evaluation are derived in Section 4. Small sample

properties of the LM and other tests are investigated by simulation and results reported

in Sections 5 and 6. Section 7 concludes. Some derivations can be found in the Appendix.

2 The logistic vector smooth transition model

The Logistic Vector Smooth Transition Regression (LVSTR) model with k lags is defined

as follows:

yt = (B′

1 +G1
tB

′

2 + ... +Gm−1
t B′

m)xt + εt = Ψ′

tB
′xt + εt (2.1)

where yt = (y1t, ..., ypt)
′ is a p× 1 column vector, xt = (y′

t−1, ...,y
′

t−k,d
′

t)
′ is a (kp+ q)× 1

vector in which dt is a q× 1 vector of a constant and q− 1 stationary strongly exogenous

variables. Furthermore, B1, ...,Bm are (kp + q) × p parameter matrices, Gi
t is a p × p

diagonal matrix of transition functions,

Gi
t = diag { g(s1t|γi1, ci1), ..., g(spt|γip, cip) } (2.2)

for i = 1, ..., m− 1, where s1t, ..., spt are stationary observable random variables, and

g(sjt|γij, cij) = (1 + exp{−γij (sjt − cij)})−1, γij > 0 (2.3)

for i = 1, ..., m−1 and j = 1, ..., p are logistic functions. In addition,Ψt = (Ip,G
1
t , ...,G

m−1
t )′

is an mp× p full rank matrix and B = (B1,B2, ...,Bm) is a (kp+ q)×mp matrix of pa-

rameters. The p× 1 error vectors εt are assumed independent and identically distributed

(iid) with mean zero and a positive definite covariance matrix Ω. When dt only contains

the intercept, the model (2.1) is the Logistic Vector Smooth Transition Autoregressive

(LVSTAR) model.

When s1t = s2t = ... = spt = st, γij → ∞, and dt is the intercept vector, one obtains

the vector threshold autoregressive (VTAR) model. In this model it is typically assumed

that cij = ci, j = 1, ..., p, for i = 1, ..., m− 1, so Gi
t = g(st|γi, ci)Ip. This gives the VTAR

model with m regimes in Tsay (1998). It is also possible to simplify the LVSTAR model

in the similar fashion, should the phenomenon to be modelled allow it.
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3 Testing linearity against LVSTAR models

3 Testing linearity against LVSTAR models

3.1 Testing when the equations have the same transition vari-

able

Testing linearity is a central part of building not only vector STAR models but many

other nonlinear models that nest a linear model as well. If the null hypothesis is not

rejected, one can proceed with a linear vector autoregressive model with straightforward

asymptotic theory and inference; see Lütkepohl (2006). Models such as the LVSTAR

model or VTAR model are not identified under linearity, which makes it necessary to test

linearity before fitting either one of these nonlinear models to data.

We begin by considering the case where m = 2, so the LVSTAR model (2.1) becomes

yt = B′

1xt +GtB
′

2xt + εt

=

k∑

j=1

B′

1jyt−j + µ1 +Gt(

k∑

j=1

B′

2jyt−j + µ2) + εt. (3.1)

where µ1 and µ2 are the intercept vectors. If each equation of (3.1) has a different tran-

sition variable, testing is often carried out equation by equation as in Camacho (2004),

but we shall consider this situation in detail in Section 3.2. We now focus on the case in

which the model has only a single transition variable, that is, s1t = s2t = ... = spt = st.

This contains the special case Gt = g(st|γ, c)Ip.
Due to lack of identification under linearity, the null hypothesis may be stated in

two ways. Either H0: B2 = 0, in which case γi and ci, i = 1, ..., p, in (3.1) are the

unidentified parameters, or H0: γi = 0, i = 1, ..., p. The latter case implies Gt ≡ (1/2)Ip,

so that B1 and B2 in B0 = B1 + (1/2)B2 and each ci are unidentified. In the former

case one can follow Hansen (1996), construct a statistic independent of the 2p nuisance

parameters and obtain its empirical null distribution by simulation or bootstrap. The last

step is necessary because the null distribution of this test statistic is generally unknown

even asymptotically. This method is computationally demanding, in particular when

p > 1 and when each equation has its own transition variable. It is therefore expected

to be feasible only if it is assumed that Gt = g(st|γ, c)I so that the number of nuisance

parameter is restricted to two.

We adopt a different method, suggested in the univariate case by Saikkonen and

Luukkonen (1988) and Luukkonen et al. (1988). It leads to a computationally simple

test and standard asymptotic inference applies. Following these authors, we solve the

identification problem by approximating the logistic function g (st|γj, cj) with an nth
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3 Testing linearity against LVSTAR models

order Taylor approximation around γj = 0. We have

g(st|γj, cj) =
n∑

i=0

djis
i
t + rjt

where dj0 = 1/2, dji = γid̃ji, d̃ji 6= 0, i = 1, ..., n, and rjt is the remainder. Rewrite Gt in

(3.1) as follows:

Gt = diag{
n∑

i=0

d1is
i
t + r1t, ...,

n∑

i=0

dpis
i
t + rpt}

=

n∑

i=0

Dis
i
t +Rt (3.2)

where Di = diag(d1i, ..., dpi) and Rt = diag(r1t, ..., rpt). Inserting (3.2) into (3.1) yields

the following auxiliary model:

yt = B′

1xt + (
n∑

i=1

Dis
i
t +Rt)B

′

2xt + εt

= (B′

1 + (1/2)B′

2)xt +

n∑

i=1

DiB
′

2xts
i
t +RtB

′

2xt + εt

= B′

0xt +
n∑

i=1

Θ′

ixts
i
t + ε∗t (3.3)

where Θi = B2Di, i = 1, ..., n, and ε∗t = RtB
′

2xt+εt. The null hypothesis implies Di = 0,

i = 1, ..., n, and Rt = 0 in (3.2). Thus, the auxiliary VAR model (3.3) is linear and H0:

Θ1 = ... = Θn = 0. Moreover, when the null hypothesis holds, ε∗t = εt because then

Rt = 0. Since the Lagrange multiplier test only requires estimating the model under the

null hypothesis, the remainder that is present under the alternative does not affect the

asymptotic inference.

Denoting Y = (y1, ...,yT )
′, X = (x1, ...,xT )

′, E∗ = (ε∗1, ..., ε
∗

T )
′, Θ(n) = (Θ′

1, ...,Θ
′

n)
′,

and the T × np(kp+ q) matrix Zn = [x′

ts
i
t], (3.3) can be rewritten as

Y = XB0 + ZnΘ
(n) + E∗. (3.4)

The approximate log-likelihood function of the auxiliary model (3.4) with T observations

is, ignoring Rt,

LT (θ) = k − (T/2) log |Ω| − (1/2)

T∑

t=1

ε′tΩ
−1εt.

Setting s
(n)
t = (st, s

2
t , ..., s

n
t )

′, the error term εt equals

εt = yt −B′

0xt −
n∑

i=1

Θ′

ixts
i
t = yt −B′

0xt −Θ(n)′zt

where zt = (x′

tst,x
′

ts
2
t , ...,x

′

ts
n
t )

′ = (xt⊗s
(n)
t ). Let Zn = (z1, z2, ..., zT )

′ andX = (x1,x2, ...,xT )
′.

In order to derive an asymptotically valid test statistic we make the following assumptions:
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3 Testing linearity against LVSTAR models

Assumption 1. The linear null model yt = B′

0xt + εt is stationary.

Assumption 2. The elements of the error sequence {εt} are independent normal with

mean zero and a positive definite covariance matrix Ω.

Assumption 3. X′X and Z′

n(I−PX)Zn are positive definite matrices.

Assumption 2 strengthens the previous assumption that the errors are iid by adding

normality. Assumption 3 is a moment condition. For example, if the model is an LVSTAR

model and st = yi,t−d, d > 0, this implies that yt has a finite 2(n + 1)th moment.

The block of the score vector involving the parameters under test can be written as

follows:

∂ logL(θ̃)

∂Θ(n)
= − ∂

∂Θ(n)
(1/2)

T∑

t=1

ε′tΩ
−1εt =

∂

∂Θ(n)

T∑

t=1

z′tΘ
(n)Ω−1εt

=

T∑

t=1

ztε
′

tΩ
−1 = Z′

nEΩ
−1 (3.5)

see for example Lütkepohl (1996, p. 171). Evaluated under H0, (3.5) becomes

∂ logL(θ̃)

∂Θ(n)
|H0

=

T∑

t=1

ztε̃
′

tΩ̃
−1

= Z′

nẼΩ̃
−1

(3.6)

where Ẽ = (ε̃1, ε̃2, ..., ε̃T )
′, ε̃t = yt−B̃′

0xt, and Ω̃
−1

= {(1/T )∑T

t=1 ε̃tε̃
′

t}−1. The matrix B̃0

is the maximum likelihood estimator of B0 under the null hypothesis. From Assumptions

1 and 2 it follows that the vectorised score matrix is asymptotically normally distributed

with p × cd(Zn) degrees of freedom (cd(Zn) is the column dimension of Zn). See for

example Breusch and Pagan (1980). As the score is normal and Z′

n(I−PX)Zn is positive

definite, the vectorised LM test statistic

LMn = vec(Ẽ′Zn)
′{(Z′

n(I−PX)Zn)⊗ Ω̃}−1vec(Ẽ′Zn) (3.7)

where PX = X(X′X)−1X′, has an asymptotic χ2-distribution with p× cd(Zn) degrees of

freedom when the null hypothesis holds.

The statistic (3.7) can also be written as follows:

LMn = vec(Ẽ′Zn)
′{(Z′

n(I−PX)Zn)⊗ Ω̃}−1vec(Ẽ′Zn)

= vec(Ẽ′Zn)
′{(Z′

n(I−PX)Zn)
−1 ⊗ Ω̃

−1}vec(Ẽ′Zn)

= vec(Ẽ′Zn)
′vec{Ω̃−1

Ẽ′Zn(Z
′

n(I−PX)Zn)
−1}

= tr{Z′

nẼΩ̃
−1
Ẽ′Zn (Z

′

n(I−PX)Zn)
−1}

= tr{Ω̃−1
Ẽ′Zn[Z

′

n(I−PX)Zn]
−1Z′

nẼ}. (3.8)

Vectorisation and Kronecker products in (3.7) are avoided in (3.8). We have the following

result:
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3 Testing linearity against LVSTAR models

Theorem 1. Consider the model (3.1) and its approximation (3.4). Suppose that As-

sumptions 1–3 hold. The LM test statistic for testing the null hypothesis H0 : γj = 0,

j = 1, ..., p, in (3.1), or equivalently, H0 : Θ
(n) = 0 in (3.4), then equals

LMn = tr{Ω̃−1
Ẽ′Zn [Z

′

n(IT −PX)Zn]
−1

Z′

nẼ} (3.9)

where PX = X(X′X)−1X′. When the null hypothesis is valid, the LM statistic (3.9) has

an asymptotic χ2-distribution with np(kp+ 1) degrees of freedom.

The LM type statistic (3.9) can also be computed in three steps using the ’multivariate

TR2 form’ as follows:

1. Estimate the restricted model. Collect the residuals ε̃t from this model and form

the residual matrix Ẽ. Compute the matrix residual sum of squares Ẽ′Ẽ.

2. Regress Ẽ on X and Z. Form the residual matrix Ξ̃ and the matrix residual sum of

squares Ξ̃
′

Ξ̃.

3. Compute the test statistic

LMTR2 = T tr{(Ẽ′Ẽ)−1(Ẽ′Ẽ− Ξ̃
′

Ξ̃)}
= T (p− tr{(Ẽ′Ẽ)−1Ξ̃

′

Ξ̃}). (3.10)

The statistics (3.9) and (3.10) are asymptotically equivalent. The former one collapses

into the univariate LM-type linearity test statistic when p = 1 while the latter one is its

TR2-version. The test can also be applied to any subset of equations in the system, for

instance, to check whether some equations in the system are nonlinear with a common

transition variable while the rest are assumed linear.

The choice of the order of the Taylor expansion n may depend on the length of the

time series and the dimension of the model. A higher order will increase the column

dimension of Zn. But then, rejecting the null hypothesis may become easier, since a

higher order often increases the power of the test. On the other hand, a lower order, for

example n = 1, may in small samples lead to a test with better size properties, because

the null hypothesis consists of fewer parameters than when n > 1.

However, choosing n = 1 is not a good choice when st = yt−d,j for some 1 ≤ d ≤ k,

1 ≤ j ≤ p and only the intercept vector is varying nonlinearly with this transition variable.

Then, as Luukkonen et al. (1988) pointed out in the univariate case, the LM1 statistic has

only trivial power against this alternative. The problem is typically solved by choosing

n = 3 instead of n = 1, because in some situations n = 2 may still lead to a test that

lacks power.
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3 Testing linearity against LVSTAR models

The statistic (3.9) does have power against the VTAR model, although the asymptotic

theory ceases to apply when γj → ∞, j = 1, ..., p. In this case, the Hansen approach is

expected to be superior to the Taylor series approximation -based test because there is

just one nuisance parameter present under the null hypothesis. Simulations in Hansen

(1996) showed that the power loss when switching from the former test to the latter was

distinct but not overly large. Those simulations were conducted with univariate models.

3.2 Testing when the equations have different transition vari-

ables

We turn to the LVSTAR model in which every equation has its own stationary transition

variable sjt, j = 1, ..., p. As already mentioned, linearity testing is in that situation

often carried out equation by equation. However, an investigator may want to use a

joint test in order to control the overall significance level of the test(s). Besides, he may

want to make use of error correlations across the equations. It is therefore reasonable to

consider a joint linearity test of the model (3.1). Following Luukkonen et al. (1988) and

approximating each transition function in Gt by its first-order (for notational simplicity)

Taylor approximation yields

yt = B′

0xt + StΘ
′

1xt + ε∗t (3.11)

where St = diag(s1t, s2t, ..., spt) and ε∗t is defined as in (3.3). The null hypothesis to be

tested is Θ1 = 0 in (3.11). The block of the score vector containing the partial derivatives

of Θ1 and evaluated under H0 now has the form

∂ logL(θ̃)

∂Θ1
|H0

=

T∑

t=1

ztε̃
′

tΩ̃
−1
St. (3.12)

where ε̃t has been defined in (3.5). The LM statistic (3.7) can still be used for testing

Θ1 = 0. To see this, write

StΘ
′

1xt = vec(x′

tΘ1St) = (St ⊗ xt)
′vec(Θ1) = vec (vec(Θ1)

′(St ⊗ xt))

= (Ip ⊗ vec(Θ1))
′ vec (St ⊗ xt) = Θ̆

′

1vec (st ⊗ xt) (3.13)

where st = (s1t, s2t, ..., spt)
′ and Θ̆1 corresponds to the nonzero elements of vec (St ⊗ xt)

after eliminating the zeroes. The number of degrees of freedom must thus be equal to

the number of parameters in Θ̆1. The null hypothesis can be rewritten as H0: Θ̆1 = 0.

Using this reparameterisation, the corresponding block of the score matrix is (3.5) with

zt = vec (st ⊗ xt) .

An LM-type statistic based on (3.11) is obtained by replacing Zn in (3.8) by

Z = (vec∗(s1 ⊗ x1), vec
∗(s2 ⊗ x2), ..., vec

∗(sT ⊗ xT ))
′ . (3.14)
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4 Evaluation tests

The notation vec∗ implies that the operator removes duplicate variables from zt, so Z has

a full column rank. For example, if xt = yt−1 = (y1,t−1, ..., yp,t−1)
′ in (3.14), and the ith

equation has yi,t−1 as its transition variable, there exist p(p − 1)/2 pairs of variables of

type yi,t−1yj,t−1, i 6= j in zt = vec(st ⊗ xt). One has to be removed from each pair. The

degrees of freedom of the test statistic have to be adjusted accordingly, so in this example

there are p2(p + 1)/2 degrees of freedom. The test can also be carried out in stages as

discussed in the previous section.

Another way of performing a joint test is to sum up the individual asymptotically χ2-

distributed statistics and use the sum assuming that it is χ2-distributed. This assumption

only holds when the errors are not correlated. When they are correlated, the size of the

test may be adjusted by bootstrap but the problem is that the statistic is not pivotal.

Small sample properties of these two test statistics are studied by simulation in Sections

5 and 6.

4 Evaluation tests

4.1 Serial correlation in the error process

The evaluation stage of the LVSTARmodelling strategy designed and applied in Teräsvirta

and Yang (2014) makes use of misspecification tests of the estimated LVSTAR model. We

shall consider three such tests that are either LM or LM type tests. First, we extend the

LM test of no serial correlation of Eitrheim and Teräsvirta (1996) to the multivariate

case. Camacho (2004) considered this extension in the bivariate STR model. Assume the

p-dimensional m-regime nonlinear LVSTAR model (2.1) with stationary autocorrelated

errors:

yt = (B′

1 +G1
tB

′

2 + ...+Gm−1
t B′

m)xt + ut = Ψ′

tB
′xt + ut (4.1)

where

ut =

J∑

j=1

P′

jut−j + εt = P(L)ut + εt. (4.2)

In (4.2), each Pj is a p× p matrix, P(L) =
∑J

j=1P
′

jL
j , L is the lag operator, J is the lag

length, and εt ∼ iidN (0,Ω) is a p × 1 vector. Stationarity implies that the roots of the

polynomial |Ip −
∑J

j=1P
′

jz
j | lie outside the unit circle. The null hypothesis equals H0:

P1 = P2 = ... = PJ = 0 in (4.2).

Left-multiplying (4.1) by Ip −P(L) yields

yt = P(L)ut +Ψ′

tB
′xt + εt

= P′zt +Ψ′

tB
′xt + εt, (4.3)

9



4 Evaluation tests

see Godfrey (1988, Section 4.4), whereP =
[
P′

1 P′

2 ... P′

J

]
′

and zt =
[
u′

t−1 u′

t−2 ... u′

t−J

]
′

.

The log-likelihood of the model (4.1) is

logL = −((T − J)p/2) log 2π − ((T − J)/2) log |Ω|

−(1/2)
T∑

t=J+1

(yt −P′zt −Ψ′

tB
′xt)

′

Ω−1 (yt −P′zt −Ψ′

tB
′xt)

= −((T − J)p/2) log 2π − ((T − J)/2) log |Ω|

−(1/2)

T∑

t=J+1

(ut −P′zt)
′

Ω−1 (ut −P′zt) .

The LM test is based on the score evaluated under the null hypothesis:

∂ logL(θ̃)

∂P
=

T∑

t=J+1

[
z̃tũ

′

tΩ̃
−1
]
= Z̃′ŨΩ̃

−1
(4.4)

where Z̃′ =
[
z̃J+1 z̃J+2 ... z̃T

]
and Ũ′ =

[
ũJ+1 ũJ+2 ... ũT

]
, and z̃t, ũt and

Ω̃ are maximum likelihood estimators under the null hypothesis. Setting Ẽ = Ũ, Z̃ =[
z̃J+1 z̃J+2 ... z̃T

]
, where zt =

[
u′

t−1 u′

t−2 ... u′

t−J

]
′

and PK = K̃(K̃′K̃)−1K̃′

with

K̃ =
[
vec[∂(Ψ̃

′

J+1B̃
′xJ+1)/∂θ] vec[∂(Ψ̃

′

J+2B̃
′xJ+2)/∂θ] ... vec[∂(Ψ̃

′

T B̃
′xT )/∂θ]

]

(4.5)

We make the following assumptions:

Assumption 4. The LVSTAR model (4.1) is stationary and ergodic under H0: P1 =

P2 = ... = PJ = 0 such that its parameters can be estimated consistently by maximum

likelihood when the null hypothesis holds.

Assumption 5. K̃′K̃ and Z̃′(IT−J −PK)Z̃ are positive definite matrices.

Assumption 4 is a high-level assumption, as general asymptotic theory for maximum

likelihood estimators of stationary LVSTAR models does not yet exist. For a discussion

of stability (but not stationarity) results for a class of vector nonlinear models including

the LVSTAR model with Gt ≡ g(st|γ, c)Ip, see Saikkonen (2008).

With these assumptions and noting that Assumption 2 secures asymptotic normal-

ity of the score (4.4), we obtain a vectorised LM test statistic corresponding to (3.7).

Analogously to the derivations leading to (3.8) we can state the following result:

Theorem 2. Consider the model (4.1). Suppose that Assumptions 2, 4 and 5 hold. The

LM test statistic for testing the null hypothesis H0: P1 = P2 = ... = PJ = 0 equals

LM = tr{Ω̃−1
Ũ′Z̃[Z̃′(IT−J −PK)Z̃]

−1Z̃′Ũ}. (4.6)

When the null hypothesis is valid, the LM statistic (4.6) has an asymptotic χ2 distribution

with Jp2 degrees of freedom.
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The vectorised first-order partial derivatives of Ψ′

tB
′xt with respect to parameters in θ

can be found in Appendix A. The column dimension of K̃ is [(pk+q)m+2(m−1)]p2 which

grows very rapidly as a function of m and p. If either p or m or both are large compared to

T, inverting K̃′K̃ requires care. The matrix may be near-singular and the inversion slow.

A necessary condition for the test statistic to exist is T−J > (pk+q)m+2(m−1)]p2, which

in short and moderate samples is bound to restrict the dimension of the null hypothesis.

The test can also be performed using the TR2-form with a slight modification. Omis-

sion of the first J residuals causes positive size distortion because Ũ′K̃ = 0 only holds

when all T residuals are included in Ũ. Furthermore, sometimes a nonlinear estimation

algorithm may be terminated slightly too early such that Ũ and K̃ are not exactly or-

thogonal. To remedy the situation, Eitrheim and Teräsvirta (1996) suggested replacing

Ũ without the first J residuals by its orthogonal part to the space spanned by K̃, i.e.,

by Ṽ = (I − K̃(K̃′K̃)−1K̃′)Ũ. In the multivariate case, doing so leads to the following

procedure:

1. Estimate the LVSTAR model under the null hypothesis of no serial correlation.

Choose a lag length J of the serial correlation in residuals. Regress the residuals Ũ

on K̃ from t = J +1 to T . Collect the residuals Ṽ and compute the matrix residual

sum of squares Ṽ′Ṽ.

2. Regress Ṽ on (shortened; the first J observations are removed) K̃ and Z̃. Collect

the residuals Ξ̃, and form the matrix residual sum of squares Ξ̃
′

Ξ̃.

3. Compute the value of the test statistic (3.10).

It should be noted that in small and moderate samples the statistic (4.6) can be seriously

size distorted despite this adjustment. How to deal with this problem will be discussed

in Section 5.

This test is also valid when the estimated model is a VTAR model. The reason is

that the threshold parameter if m = 1, or parameters if m > 1, in these models are

estimated super consistently and can thus be assumed known in the tests. The test of

no error autocorrelation thus becomes analogous to the corresponding test in the linear

VAR model, see Strikholm and Teräsvirta (2006) for discussion.

4.2 Additive nonlinearity

We shall now consider the alternative hypothesis that after fitting a LVSTAR model,

there is still nonlinearity left unmodelled. Following Eitrheim and Teräsvirta (1996), it is

specified as another logistic smooth transition component that enters the model additively.

When the null hypothesis of no additive nonlinearity is rejected, there are at least two

11
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alternatives exist. First, one may accept the alternative and estimate a LVSTAR model

with two transitions. Since the reasons for a rejection usually remain unknown, it is

also possible to conclude that the model does not fit the data sufficiently well and either

respecify the whole model or switch to another family of models.

The model under the alternative is a p-dimensional additive LVSTAR model

yt = B′

1xt +G1
tB

′

2xt + ... +Gm−1
t B′

mxt + εt +Gm
t B

′

m+1xt + εt

= Ψ′

tB
′xt + εt +Gm

t B
′

m+1xt + εt (4.7)

where εt ∼ iidN (0,Ω). The null hypothesis γmj = 0, j = 1, ..., p, is tested against the

alternative that at least one γmj > 0. The null hypothesis implies that Gm
t = (1/2)Ip. If

s1t = ... = spt = st in Gm
t under the alternative, the identification problem is solved by

approximating Gm
t as in (3.2) so that it appears as in (3.3). The derivation of the LM

test statistic is the same as that in Section 3.1, except that

Ẽ = Y −XB̃0 − G̃1
t B̃

′

2xt − ...− G̃m−1
t B̃′

mxt (4.8)

where each of G̃1
t , ..., G̃

m−1
t is a function of the slope and location parameters estimated

under H0 and that PK = K̃(K̃′K̃)−1K̃′ where K̃ is defined as in (4.5) with J = 0. We

make the following assumption:

Assumption 6. K̃′K̃ and Z′

n(IT −PK)Zn are positive definite matrices.

Following the arguments used in deriving the test statistic (4.6), we can state the following

result:

Theorem 3. Consider the LVSTAR model (4.7). Suppose that Assumptions 2, 4 and 6

hold. The LM test statistic for testing the null hypothesis H0 : γmj = 0, j = 1, ..., p, or

Θ(n) = 0 as in (3.4) equals

LM = tr{Ω̃−1
Ẽ′Zn[Z

′

n(IT −PK)Zn]
−1Z′

nẼ} (4.9)

with Ẽ defined as in (4.8) and K̃ as in (4.5) with J = 0. When the null hypothesis is

valid, the LM statistic (4.9) has an asymptotic χ2 distribution with pn(kp+ 1) degrees of

freedom.

The test statistic is similar to the one in Section 3 except for the fact that X in the

definition of PX is replaced by K̃. If m = 1 in (4.7) (G0
t = Ip), the test becomes the

linearity test discussed in that section. The test can also be performed in the TR2-

form with the modification discussed in Section 4.1. When p = 1, it collapses into the

corresponding test in Eitrheim and Teräsvirta (1996).

12
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If the transition variables are not the same across equations, the test statistic (4.9)

is still valid with Z1 defined in (3.14). If the model is a VTAR model, the test collapses

into a linearity test. This is because, as noted in the previous section, the least squares

estimators of the threshold parameters are super consistent and can be assumed fixed in

performing the test. It can be regarded as a generalization of the corresponding test for

self-exciting TAR models (Tong, 1990) by Strikholm and Teräsvirta (2006).

The statistic (4.9) may also be viewed as a specification test. This is due to the fact

that in building LVSTAR models one must proceed ’bottom up’, the identification problem

being the reason for this. If a ’top down’ strategy is applied, specification may well begin

with a situation in which both the null model and the alternative are unidentified so that

the LM type test cannot be applied.

4.3 Parameter constancy

The LVSTAR model (as any standard VAR model) is estimated assuming that its pa-

rameters are constant over time. This assumption is testable. As in the univariate case,

considered in Eitrheim and Teräsvirta (1996), a useful alternative is that the parameters

change smoothly over time. In the alternative model the parameter change is charac-

terised using a logistic function. In this case, rescaled time τ = t/T is the transition

variable for all equations. Consider the following LVSTAR model:

yt = Ψ′

tB(τ)′xt + εt, (4.10)

where B(τ) = Ba + Bbλ(τ |γ, c). It is assumed that λ(τ |γ, c) can take one of the three

following forms:

λ1(τ |γ, c) = (1 + exp (−γ (τ − c)))−1 − 1/2 (4.11)

λ2(τ |γ, c) = (1 + exp(−γ(τ − c1)(τ − c2)))
−1 − 1/2 (4.12)

λ3(τ |γ, c) =

(
1 + exp

(
−γ

3∏

j=1

(τ − cj)

))−1

− 1/2. (4.13)

The null hypothesis of parameter constancy is λj(τ |γ, c) = 0, j = 1, 2, or 3. Function

(4.11) postulates a smooth monotonic parameter change and function (4.12) a nonmono-

tonic change that is symmetric around (c1+c2)/2. Function (4.13) describes an even more

flexible, generally nonmonotonic, parameter change, but monotonic change appears as a

special case when c1 = c2 = c3. When γ → ∞ in (4.11), the alternative becomes a single

structural break. When the same occurs in (4.12), one obtains a special case of a double

break if c1 6= c2, whereas (4.13) implies a triple break but only two extreme regimes if

c1 6= c2 6= c3.
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For notational simplicity, we only consider the function (4.11) here. The first order

Taylor expansion of (4.11) becomes

λ1(τ |γ, c) = (γ/4)(τ − c) + rt (4.14)

where rt is the remainder. The model (4.10) is approximated and reparameterised as

follows:

yt = Ψ′

tB
′

axt +Ψ′

tB
′

bxtτ + ε∗t (4.15)

where ε∗t also contains the remainder rt from the Taylor expansion (4.14). Note, however,

that under H0, ε
∗

t = εt. The new null hypothesis is

H0: Bb = 0. (4.16)

The Lagrange multiplier test is derived from the score evaluated under the null hypothesis

∂ logL(θ̃)

∂Bb

=
T∑

t=1

[
xtτ

(
yt − Ψ̃

′

tB̃
′

axt

)
′

Ω̃
−1
Ψ̃

′

t

]
,

where Ψ̃, B̃a, and Ω̃ are estimates under the null. Denote ε̃t = yt − Ψ̃
′

tB̃
′

axt, and

Ẽ = (ε̃1, ε̃2, ..., ε̃T )
′. Let

Z̃ =
[
vec(Ψ̃1 ⊗ x1(1/T ))

′ vec(Ψ̃2 ⊗ x2(2/T ))
′ ... vec(Ψ̃T ⊗ xT )

′

]
′

(4.17)

and

K̃ =
[
vec[(∂Ψ̃

′

1B̃
′

ax1/∂θ)]
′ vec[(∂Ψ̃

′

2B̃
′

ax2/∂θ)]
′ ... vec[(∂Ψ̃

′

T B̃
′

axT/∂θ)]
′

]
. (4.18)

Again, we denote PK = K̃(K̃′K̃)−1K̃′.

We make the following assumption:

Assumption 7. K̃′K̃ and Z̃′(IT −PK)Z̃ are positive definite matrices.

Arguments analogous to ones in Sections 4.1 and 4.2 lead to the following result:

Theorem 4. Consider the model in (4.10) with λ1(τ |γ, c). Suppose that Assumptions 2,

4 and 7 hold. The LM test statistic for testing the null hypothesis H0 : λ1(τ) = 0 in (4.16)

equals

LM = tr{Ω̃−1
Ẽ′Z̃[Z̃′(IT −PK)Z̃]

−1Z̃′Ẽ}. (4.19)

When the null hypothesis is valid, the LM statistic (4.19) has an asymptotic χ2 distribution

with mp2(kp+ 1) degrees of freedom.

The test can also be performed using the multiplicative TR2-form in Section 3 by

replacing X by K̃ and Zn by Z̃. The empirical size distortion problem due to the non-

orthogonality between Ẽ and K̃ can be alleviated as discussed in Section 4.1.
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1. Estimate the LVSTAR model under the null hypothesis of constant parameters over

time. Regress the residuals Ẽ on K̃. Collect the residuals Ṽ, and compute the

matrix residual sum of squares Ṽ′Ṽ.

2. Run the auxiliary regression of Ṽ on (K̃, Z̃). Collect the residuals Ξ̃, and the matrix

residual sum of squares Ξ̃
′

Ξ̃.

3. Compute the test statistic (3.10).

This test can also be applied to subsets, which does not only mean subsets of equa-

tions or even single equations. It is often useful to focus on certain types of coefficients.

For example, in a single equation it may be useful to test the constancy of the intercepts

or other linear or nonlinear parameters separately, see Teräsvirta (1998) for discussion.

This helps the modeller to locate possible weaknesses in the specification of the estimated

model. This is particularly useful when the joint test rejects parameter constancy. More-

over, when the conditional mean (4.10) is linear, the test collapses into the corresponding

parameter constancy test in a linear VAR model, see He et al. (2009).

5 Size simulations

5.1 The problem

A recurring problem in testing vector models is that the standard LM or LM type tests

can be strongly oversized when the null hypothesis contains a large number of parameters

and when at the same time the time series are not very long. Bartlett and Bartlett-type

corrections have been used as a remedy to this problem. The idea is to rescale the degrees

of freedom of the test and apply an F -statistic, see Laitinen (1978) and Meisner (1979).

The Monte Carlo results of Bera et al. (1981) showed that the Laitinen-Meisner correction

is likely to overcorrect the size.

We simulate both the LM test and its rescaled F -variant. The other two tests consid-

ered are Wilks’s lambda and Rao’s F -test, Rao (1951; 1965, Section 8c.5). The former is

based on Wilks’s Λ-distribution, see for example Anderson (2003, Section 8.3), while the

latter is a function of Wilks’s lambda. In Appendix B it is shown that Wilks’s lambda is

applicable in our testing situation and how the test is carried out in our framework.

5.2 P-value plot and p-value discrepancy plot

As already noted, the LM or LM-type test statistic has the advantage that estimation

of the alternative model is avoided. In reporting results, we make use of the graphical
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methods by Davidson and MacKinnon (1998). These authors suggested p-value and p-

value discrepancy plots for the purpose. Consider a Monte Carlo experiment in which N

realizations of some test statistic S are generated using a data-generating process (DGP)

that is a special case of the null hypothesis (size experiments), or of the alternative

(power experiments). Let pj = p(Sj) denote the p-value of the jth realization Sj, j =

1, ..., N . Both of the p-value and the p-value discrepancy plot are based on the empirical

distribution function (EDF) of the p-values of the test statistic

F̂ (xi) =
1

N

N∑

j=1

I(pj ≤ xi) (5.1)

where I(pj ≤ xi) is an indicator function, xi ∈ (0, xmax). In this work xmax = 0.2 and the

set of M values of xi is

{xi}Mi=1 = {0.001, 0.002, ..., 0.010, 0.015, ..., 0.195, 0.200}

where M = 68.

The p-value discrepancy plot is a scatterplot of F̂ (xi)− xi against xi, whereas the p-

value plot is a scatterplot of F̂ (xi) against xi. The former one is used in size experiments

to describe the deviation of the empirical distribution from the nominal one, and the

latter one in power simulations. For cases in which N, the number of replications, is not

large, Davidson and MacKinnon (1998) suggested to smoothen the graphs. This will not

be necessary here, as N = 5000 in our experiments.

We have to consider the randomness in the p-value discrepancy plot caused by a finite

N . Davidson and MacKinnon (1998) employed the Kolmogorov-Smirnov (KS) statistic

for the purpose. This statistic tends to be rather conservative, however, and we use a 95%

two-sided confidence band assuming that the nominal distribution of the test statistic is

normal. Under this assumption, for each j = 1, ..., N the value of the indicator function

I(pj ≤ xi) is a realization of a Bernoulli distributed random variable with parameter xi.

The distribution of the p-value discrepancy F̂ (xi)− xi is thus approximated by a normal

distribution with zero mean and variance N−1xi(1− xi).

5.3 Linearity tests I: same transition variable for all equations

In order to study the finite sample size behaviour of our linearity tests we conduct a set

of Monte Carlo experiments in which 5000 realizations of the four aforementioned test

statistics are generated using DGPs that are special cases of the general null hypothesis

Θ(n) = 0 in (3.4). More specifically, the DGP consists of p equations

yi,t =

k∑

j=1

ρiyi,t−j + εi,t, i = 1, ..., p (5.2)
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where ρ = 0.4 and Ω = I. The six designs to be considered are as follows:

Design 1: p = 2, k = 1 and T = 30;

Design 2: p = 2, k = 1 and T = 100;

Design 3: p = 2, k = 2 and T = 30;

Design 4: p = 2, k = 5 and T = 30;

Design 5: p = 5, k = 1 and T = 50;

Design 6: p = 10, k = 1 and T = 50.

The p-value discrepancy plots for Designs 1 and 2 appear in Figure 1. Both designs

are bivariate, and k = 1. The only difference between them is the sample size T . As for

Design 1, both the LM test and the rescaled LM test, denoted by F in all graphs, are

size-distorted. The former one over-rejects, whereas the latter under-rejects. This agrees

with previous results in the literature. The empirical size of Wilks’s Λ is very close to

that of Rao’s F -test, and neither is size-distorted. When T = 100, the LM test has an

acceptable empirical size, whereas the rescaled LM test still under-rejects. This finding

agrees with the Monte Carlo results of Bera et al. (1981) on the behaviour of the latter

test in univariate models.

The p-value discrepancy plots for Designs 3 and 4 can be found in Figure 2. Both

designs are bivariate and T = 30. The lag lengths equal two and five. The lag length has

a strong impact on results. While the rescaled test and the LM test behave badly in both

cases, Rao’s F -test is the only one that still has no size distortion when k = 5. Wilks’s

Λ, a good performer in the first three designs, is now rather strongly oversized.

In Designs 5 and 6 the main object of interest is p, the dimension of the VAR model.

Again, while the behaviour of Wilks’s Λ is acceptable for p = 5, the test over-rejects when

p = 10. The empirical size of Rao’s F -test is practically unaffected by the change in the

lag length from five to ten. Our conclusion is that of the tests inspected one should prefer

Rao’s F -test to the alternatives. This accords with the results in Edgerton and Shukur

(1999) who considered testing for error autocorrelation in linear VAR models. In Shukur

and Edgerton (2002) the test under scrutiny was the functional form specification test,

RESET, by Ramsey (1969), and the conclusion was similar.

It is interesting to see whether the order of the Taylor expansion affects the empirical

size of the best performing Rao’s F -test. We report the p-value discrepancy plots of this

test for Design 5 in Figure 4 with orders from one to four. The empirical size of the

test remains rather stable when the order is increased. Further increases would of course

ultimately lead to the lack of degrees of freedom and make the test unavailable.

Yet another way of correcting the size of the LM type test would be to obtain the

critical values of the statistic by simulation. Since this automatically corrects the size, we
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do not report any results of this procedure. In Teräsvirta and Yang (2014), the authors

make the correction using the wild bootstrap, proposed originally by Wu (1986), because

the errors in their applications are likely to contain conditional heteroskedasticity. This

is a valid procedure if the appropriate conditions, see Gonçalves and Kilian (2004), are

satisfied when the null hypothesis holds.

5.4 Linearity tests II: different transition variable for each equa-

tion

As already discussed, it is customary to test linearity equation by equation when each

equation of the alternative LVSTAR model has a different transition variable. In Section

3.2 we have derived a joint test for the purpose. Yet another alternative, assuming that

the errors of the null model are multivariate normal, would be to use the sum of the

individual χ2-statistics as the test statistic. This test, called the ’sum test’ is, however,

valid only if the errors are not correlated. In this section we simulate both the ’sum test’

and the joint test without correcting the size.

The null model is the following five-dimensional stationary first-order VAR model:

yt = B′

1yt−1 + εt

where

B′

1=




0.7 −0.2 0.2 −0.2 0.2

0.2 0.7 −0.2 0.2 −0.2

−0.2 0.2 0.7 −0.2 0.2

−0.2 0.2 −0.2 0.7 0.2

0.2 −0.2 0.2 −0.2 0.7




(5.3)

and the error correlation matrix is either an identity matrix, or

cov(εt) =




1 2/
√
5
√
3/5

√
2/5 1/

√
5

1
√
3/2 1/

√
2 1/2

1
√
2/3 1/

√
3

1 1/
√
2

1




. (5.4)

The transition variable of the ith equation is assumed yi,t−1, i = 1, ..., 5, so St =

diag(y1,t−1, ..., yp,t−1) in (3.11). We generate 10000 replications from the null model at

different sample sizes. We include the individual tests for each equation and their sum.

The joint test is computed both from (3.10) using (3.14) and in stages. The results for

the case where the covariance matrix is an identity matrix can be found in Table 1. The

sum of the five asymptotically χ2-distributed statistics with five degrees of freedom each
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has an asymptotic χ2-distribution with 25 degrees of freedom. Due to the large number

of degrees of freedom the ’sum test’ is oversized at smallest sample sizes but has a correct

size for T ≥ 250. The joint test is more oversized as its asymptotic null distribution has

75 degrees of freedom, so it takes longer for the empirical size to get close to the nominal

one. Unlike the ’sum test’ it does not make use of the fact that the errors are independent.

We also carried out the joint test in stages, and the results were identical to the ones in

the ’Joint’ column of Table 1.

- insert Table 1 about here -

The results for the case where the error correlation matrix is (5.4) appear in Table 2.

The sum statistic and the joint test are equally oversized for T = 100, but increasing the

sample size reveals, as expected, that the former will over-reject even asymptotically due

to ignoring the error correlations. Comparing the results in this table to the ones in Table

1 shows that the empirical size of the joint test is not affected by cross-correlated errors.

- insert Table 2 about here -

5.5 Misspecification tests

The basic DGP is a stable p-dimensional single transition LVSTAR model (3.1) with k lags

such that B1j = 0.4jIp, B2j = −(0.2j)Ip, andGt = diag(g(y1,t−1|γ1, c1), ..., g(yp,t−1|γp, cp)),
so each equation has its own transition variable. The slope and the location parameters

are γj = cj = 1, j = 1, ..., p, and Ω = Ip. For each of the 5000 realizations, an LVSTAR

model is estimated and a residual matrix computed. The values of the test statistic and

the corresponding p-values are computed using the TR2 form as in Section 4.

We consider the size distortion of the four tests. The performance of the misspec-

ification tests depends on how accurate the parameter estimates are. Since LVSTAR

models are estimated numerically, relatively large time series are required for reasonable

estimation accuracy, and we choose T = 200 and T = 500.

P -value discrepancy plots of the test of no serial correlation appear in Figure 5. As

can be expected, the LM test over-rejects, whereas the rescaled test under-rejects. The

empirical size of Wilks’s Λ test is very close to that of Rao’s F -test, and neither test is

size-distorted. With the increase of sample size from T = 200 to T = 500, the performance

of both the LM test and the rescaled test improves but the improvement is not very large.

Figure 6 shows the p-value discrepancy plots for test of no additive nonlinearity. Both

Wilks’s Λ and Rao’s F -test have a satisfactory empirical size. The rescaled test performs

better than the LM test and shows no size distortion for T = 500. The corresponding

plots for the test of parameter constancy can be found in Figure 7. For T = 200, Wilks’s
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Λ is slightly oversized, while Rao’s F -test shows hardly any size distortion. The rescaled

test and the LM test perform even worse.

Computing the three misspecification tests requires constructing the matrices Z and

K. In small samples their column dimensions affect the empirical size of the correspond-

ing test statistic. In the three tests, K has the same column dimension, whereas those of

Z are different. Choosing a large lag length J for testing serial correlation slows down the

convergence of the standard LM test statistic to its limiting distribution. The column di-

mension of the matrix Z of the parameter constancy test is the squared size of a Kronecker

product, and the test thus has the least favourable small sample performance. Differences

in size properties between the tests can be explained by different column dimensions of

Z. However, Rao’s F -test and the Wilks’s Λ test are performing well throughout.

6 Power simulations

6.1 Each equation has the same transition variable

In order to study power properties of our linearity tests, we consider the two main testing

situations. First, each equation has the same transition variable and second, each equation

has a different transition variable. We compare the power performance of the joint test

with its univariate counterpart and the ’sum test’ with and without error correlations.

For comparison we also include results on testing each equation individually.

In the first situation, our model is a five-dimensional first-order LVSTAR model (3.1)

in which the parameter matrix B′

1 is defined by (5.3), B′

1 +B′

2 = 0.8I5, Gt = g(st|γ, c)I5,
and the single transition function is

g(st|γ, c) = (1 + exp{−γ(st − 0.5)})−1.

The transition variable is generated by an exogenous first-order AR process st = 0.95st−1+

ε
(s)
t , where ε

(s)
t is standard normal. The slope parameter γ of the transition function equals

0.5 when the errors are uncorrelated and 0.25 when the correlation matrix is (5.4). The

location parameter c = 0.5 in both cases and N = 10000. Since we are interested in power

we size-correct the joint test by using Rao’s F statistic.

Table 3 contains the results for uncorrelated errors. The ’sum test’ has higher power

than Rao’s F -test when T ≤ 100. The individual tests have weaker power than the joint

test, the test for the fifth equation being an exception. The joint test, as may be expected,

is preferable to the individual ones.

- insert Table 3 about here -
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Table 4 contains the results for correlated errors. In this case, the ’sum test’ is size

distorted. Nevertheless, its power is not comparable to that of Rao’s F test. This test

now has a clear edge over the ’sum test’ even if the latter is not size corrected. The

decrease in power of individual tests when moving from T = 50 to T = 100 is due to the

fact that the the asymptotic χ2-statistics are oversized for T = 50. In small samples, a

standard F test could be preferred to the asymptotic one.

- insert Table 4 about here -

6.2 Local asymptotic power of the test in a special case

In order to consider the local asymptotic power of our linearity test (B) we choose a

special case with n = 1, so H0: Θ1 = B2D1 = 0. For simplicity, assume that under H1

the parameters of the transition function are γi = γ̃/
√
T , and ci = c, i = 1, .., p, where

γ̃ > 0. Since

g(st|γ̃/
√
T , c) = 1/2 + (4

√
T )−1(st − c)γ̃ + rjt (6.1)

this implies, ignoring rjt = O(T−1), that H1: Θ1 = B2D1 = γ̃(4
√
T )−1B2D̃1, where D̃1 =

diag(d̃11, ..., d̃p1) with d̃i1 6= 0, i = 1, .., p. Assuming as before that the errors are normal,

we have

vec(Ẽ′) ∼ N (γ̃(4
√
T )−1vec(D̃1B

′

2), IT ⊗Ω).

Under H1, vec(Ẽ
′) deviates locally from the null vector, and the test statistic has the form

LM = vec(Ẽ′ZT )
′

(
(Z′

T (I−PX)Z)⊗ Ω̃
)
−1

vec(Ẽ′ZT )

= γ̃2(16T )−1vec(D̃1B
′

2ZT )
′

(
(Z′

T (I−PX)ZT )⊗ Ω̃
)
−1

vec(D̃1B
′

2ZT )

= (γ̃2/16)vec(T−1D̃1B
′

2ZT )
′

(
T−1 (Z′

T (I−PX)ZT )⊗ Ω̃
)
−1

vec(T−1D̃1B
′

2ZT ).

(6.2)

The notation ZT implies that the intercept in ZT is a function of T as (6.1) contains the

asymptotically vanishing term −(4
√
T )−1cγ̃ of order zero. The asymptotic distribution

of (6.2) is a noncentral χ2-distribution with np(kp + 1) degrees of freedom and the non-

centrality parameter (γ̃2/16)m′(M⊗Ω)−1m, where m = vec(plimT→∞ T−1D̃1B
′

2ZT ) and

M = plimT→∞ T−1 (Z′

T (I−PX)ZT ) . Locally, other things equal, the asymptotic power

of the test is an increasing function of the slope parameter γ̃ but also depends on the

parameter matrix B2.
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6 Power simulations

6.3 Each equation has a different transition variable

In these simulations the model is still a five-dimensional first-order LVSTAR model (3.1).

We employ the same setup as in Section 6.1 except that

Gt = diag {g(y1,t−1|γ, c), ..., g(y5,t−1|γ, c)}

and the transition functions are

g(yi,t−1|γ, c) = (1 + exp{−γ(yi,t−1 − 0.5)})−1

for i = 1, ..., 5. This implies St = diag(y1,t−1, ..., y5,t−1) in the auxiliary VAR equation

(3.11). The errors are either independent standard normal or correlated with the covari-

ance matrix (5.4). In the former case, γ = 0.5, in the latter, γ = 0.25. The results, based

on N = 10000, appear in Table 5 for the uncorrelated and in Table 6 for the correlated

errors. As in Section 5.4, the power of the individual tests, that of their sum, and the

power of the joint test are reported. The ’sum test’ is not size-corrected. The estimated

bias of the test in this simulation can be deduced from Table 2.

- insert Table 5 about here -

- insert Table 6 about here -

The results for the model with uncorrelated errors can be found in Table 5. The

decrease in the power from T = 50 to T = 100 is again explained by the fact that the

tests are somewhat size distorted at the smallest sample size. The same seed is used in

both size and power simulations, so Tables 1 and 5 are fully comparable. It appears that

even Rao’s F -test is slightly size distorted for T = 50 but less than its χ2-counterpart

(results not reported). The empirical powers of these two tests are identical when T ≥ 250.

Table 5 shows that the gain in power from knowing that the errors are uncorrelated only

becomes evident for T ≥ 250.

Table 6 contains the results for the case when the error correlation matrix is (5.4).

They indicate that the joint test is vastly superior to the ’sum test’ despite the fact that

the latter is not size corrected. The conclusion is that it is an advantage to test all

equations jointly, especially if it cannot assumed that the errors are uncorrelated. The

only problem is that in some applications the number of degrees of freedom may not be

sufficient for carrying out the joint test. In that case, testing linearity of each equation

individually is the remaining possibility. The ’sum test’ is inconsistent whenever the errors

are correlated.
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7 Concluding remarks

In this paper, we propose LM and LM type linearity and misspecification tests for the

LVSTR framework. We allow the dimension of the model to exceed two and, furthermore,

do not restrict the number of transitions to one. We consider both the case in which the

LVSTAR model only has a single transition variable, and the case in which every equation

has its own (known) transition variable.

We extend three misspecification tests for univariate STAR models to the vector case.

These are the test of no serial error correlation, the test of no additive nonlinearity and

the parameter constancy test. They are either LM or LM type tests. The first one of these

has already been considered in the bivariate case by Camacho (2004). We generalize the

univariate misspecification tests in Eitrheim and Teräsvirta (1996) to multivariate joint

tests. These tests should form an important part of the toolbox of practitioners building

LVSTAR models. Many of them may also be used in building VTAR models.

Small-sample properties of the tests are of interest because they are affected by the

dimension of the model. We find that the standard LM tests are severely size-distorted

when the dimension of the system increases. Wilks’s Λ statistic and Rao’s F statistic that

have satisfying size properties, the latter in particular, are recommended for empirical use.

Nevertheless, the size of the LM test can be corrected by an appropriate bootstrapped

version, although this has not been explicitly considered in this work. The power exper-

iments demonstrate that the joint test is more powerful in finite sample if the errors are

correlated than any other alternative.
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A The first-order partial derivatives of Ψ′
tB

′xt

The vectorised first order derivative of Ψ′

tB
′xt with respect to parameters θ can be easily

found in both univariate and multivariate cases, see Eitrheim and Teräsvirta (1996). The

set of parameters θ consists of B, Ω, Γ and C, where B = [bij ], Γ = [γij] and C = [cij ].

For parameter B = [bij ], we have

∂Ψ′

tB
′xt

∂bij
= Ψ′

tH
′

ijxt (A.1)

where Hij = [hkl] is a matrix in which hij = 1 and hkl = 0 for k 6= i and l 6= j. Vector

(A.1) is the directional derivative of the vector Ψ′

tB
′xt with respect to the unit length

matrix Hij.

For the parameter matrices Γ = [γij] and C = [cij], letting δij = γij, cij, we have

∂Ψ′

tB
′xt

∂δij
= ( 0p , ... ,

∂Gi
t

∂δij
, ... 0p )B′xt =

∂Gi
t

∂δij
B′

i+1xt (A.2)

for i = 1, ..., m− 1, where

∂Gi
t

∂δij
= diag{ 0 , ... ,

∂gijt
∂δij

, ... , 0 } (A.3)

25



B Linearity test statistic with improved size

for j = 1, ..., p. When δij = γij,

∂gijt
∂γij

= (gijt )
2 exp{−γij(st − cij)}(st − cij) = (st − cij) g

ij
t (1− gijt ) (A.4)

and when δij = cij,

∂gijt
∂cij

= −(gijt )
2 exp{−γij(st − cij)}γij = −γij g

ij
t (1− gijt ). (A.5)

Finally,
∂Ψ′

tB
′xt

∂Ω
= 0. (A.6)

The dimension of the first-order derivative of Ψ′

tB
′xt with respect to θ is p× [(kp+q)mp+

2(m− 1)p].

B Linearity test statistic with improved size

Bartlett and Bartlett-type corrections have been widely used as a possible remedy to

size problems in LM-type tests. The Laitinen-Meisner correction consists of a degrees of

freedom rescaling of the form (pT −K)/(G× pT ), where p and T are as before, K is the

number of parameters, and G the number of restrictions, see Laitinen (1978) and Meisner

(1979). The F -type LM test statistic, or rescaled LM test statistic, can be computed as

follows

F =
(pT −K)

G× pT
LM. (B.1)

The rescaled test statistic is assumed to follow an F (G, pT − K) distribution. In the

following, it will be called the rescaled LM test. The Monte Carlo results of Bera et al.

(1981) show that the Laitinen-Meisner correction is likely to overcorrect the size.

We consider an improvement based on the so-called Wilks’s Λ-distribution, and we

call it Wilks’s statistic or Wilks’s Λ. Before introducing it we state the following result:

Theorem 5. Let RSSj, j = 0, 1, be the p × p residual sum of squares matrix from

the restricted regression (j = 0) and the auxiliary regression (j = 1). Furthermore, let

W1 = RSS0 −RSS1, and W2 = RSS1. Under the null hypothesis of linearity, W1 and

W2 are two independent Wishart distributed random matrices:

W1 ∼ Wp

(
Ω, cd(Z)

)
W2 ∼ Wp

(
Ω, T − cd(X)− cd(Z)

)
(B.2)

where cd(A) is the column dimension of the matrix A.

The proof is omitted.
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Matrix Z in (B.2) corresponds to Zn in (3.9) and Ω is the covariance matrix of errors

under H0. It is worth stressing that, in the special case p = 1, the two independent Wishart

variables W1 and W2 become scalars and χ2-distributed, which implies an F -test.

Wilks’s Λ-distribution is defined as follows:

Definition 1. When A ∼ Wp(Σ, m) and B ∼ Wp(Σ, n) are independent, Σ is a p × p

positive definite matrix, m ≥ p,

Λ = |A|/|A+B| = |Ip +A−1B|−1 ∼ L(p,m, n) (B.3)

has a Wilks’s Λ-distribution with parameters p, m, and n.

The above definition is a variant of Definition 3.7.1 in Mardia et al. (1979). Anderson

(2003, Section 8.3) and Mardia et al. (1979) contain a detailed discussion of the Wilks’s

Λ distribution. The distribution is invariant under changes in the covariance matrix Σ.

Wilks’s Λ statistic has the following form:

Λ = |W2|/|W2 +W1| = |RSS1|/|RSS0|. (B.4)

It follows Wilks’s Λ-distribution L( p, T − cd(X)− cd(Z), cd(Z) ) under linearity. If T is

large, we may use Bartlett’s approximation

λ =
(1
2
(p+ cd(Z) + 1) + cd(X)− T

)
log Λ ∼ χ2

cd(Z)p (B.5)

see Bartlett (1954) and Anderson (2003, Section 8.3). The value of the test statistic can

be computed by performing steps 1 and 2 outlined in the algorithm in Section 3 but

computing the value of the test statistic defined in (B.4) and (B.5) instead of step 3.

C Tables and figures
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T Test

1 2 3 4 5 Sum Joint

50 0.058 0.061 0.070 0.077 0.069 0.096 0.186

100 0.050 0.049 0.055 0.063 0.062 0.067 0.116

250 0.050 0.048 0.049 0.058 0.055 0.053 0.074

500 0.048 0.049 0.052 0.054 0.053 0.053 0.059

1000 0.051 0.053 0.054 0.051 0.050 0.052 0.053

Table 1: p-values of the LM-type linearity test at various sample sizes for individual

equations 1-5, the sum of the χ2-statistics (’Sum’) and the joint statistic (3.10) (’Joint’).

Same transition variable for each equation. Uncorrelated errors. The nominal significance

level equals 0.05.

T Test

1 2 3 4 5 Sum Joint

50 0.068 0.055 0.058 0.069 0.070 0.149 0.183

100 0.047 0.045 0.050 0.059 0.053 0.104 0.110

250 0.042 0.046 0.042 0.052 0.051 0.095 0.073

500 0.049 0.046 0.046 0.050 0.047 0.093 0.058

1000 0.045 0.051 0.045 0.053 0.049 0.095 0.056

Table 2: p-values of the LM-type linearity test at various sample sizes for individual

equations 1-5, the sum of the χ2-statistics (’Sum’), and the joint statistic (3.10) (’Joint’).

Same transition variable for each equation. Correlated errors. The nominal significance

level equals 0.05.

T Test

1 2 3 4 5 Sum Joint

50 0.107 0.109 0.118 0.121 0.363 0.356 0.140

100 0.084 0.099 0.128 0.153 0.771 0.646 0.551

250 0.080 0.130 0.218 0.314 0.998 0.990 0.989

500 0.091 0.239 0.442 0.643 1.000 1.000 1.000

1000 0.120 0.470 0.792 0.941 1.000 1.000 1.000

Table 3: Power of the LM-type linearity test at various sample sizes for individual equa-

tions 1-5, the sum of the statistics (’Sum’), and the joint Rao’s F statistic (’Joint’). AR(1)

exogenous transition variable. Uncorrelated errors. The nominal significance level equals

0.05.
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T Test

1 2 3 4 5 Sum Joint

50 0.107 0.108 0.112 0.110 0.134 0.271 0.160

100 0.080 0.090 0.102 0.096 0.218 0.255 0.631

250 0.068 0.104 0.107 0.182 0.587 0.461 0.995

500 0.074 0.157 0.160 0.179 0.922 0.845 1.000

1000 0.084 0.278 0.314 0.341 0.999 0.999 1.000

Table 4: Power of the LM-type linearity test at various sample sizes for individual equa-

tions 1-5, the sum of the statistics (’Sum’), and the joint Rao’s F statistic (’Joint’). AR(1)

exogenous transition variable. Correlated errors. The nominal significance level equals

0.05.

T Test

1 2 3 4 5 Sum Joint

50 0.063 0.066 0.076 0.088 0.083 0.122 0.142

100 0.054 0.058 0.073 0.111 0.099 0.128 0.149

250 0.060 0.078 0.119 0.227 0.188 0.280 0.206

500 0.080 0.132 0.233 0.463 0.388 0.635 0.403

1000 0.123 0.245 0.470 0.815 0.730 0.966 0.801

Table 5: Power of the LM-type linearity test at various sample sizes for individual equa-

tions 1-5 , the sum of the statistics (’Sum’) and the joint Rao’s F statistic (’Joint’). The

data-generating process is a first-order LVSTAR model with uncorrelated errors. Each

equation has its own transition variable. The nominal significance level equals 0.05.

T Test

1 2 3 4 5 Sum Joint

50 0.071 0.067 0.065 0.072 0.103 0.174 0.198

100 0.052 0.071 0.055 0.078 0.129 0.156 0.282

250 0.054 0.149 0.056 0.128 0.299 0.290 0.684

500 0.084 0.336 0.076 0.237 0.603 0.613 0.979

1000 0.137 0.669 0.115 0.496 0.924 0.970 1.000

Table 6: Power of the LM-type linearity test at various sample sizes for individual equa-

tions 1- 5, the sum of the statistics (’Sum’), and the joint Rao’s F statistic (’Joint’).

The data-generating process is a first-order LVSTAR model with correlated errors. Each

equation has its own transition variable. The nominal significance level equals 0.05.
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Figure 1: Size discrepancy plots for Design 1(top, p = 2, k = 1 and T = 30) and Design 2 (bottom,

p = 2, k = 1 and T = 100). The dotted lines represent the upper 95% confidence bound (top), zero line

(middle) and the lower 95% confidence bound (bottom).
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Figure 2: Size discrepancy plots for Design 3 (top, p = 2, k = 2 and T = 30) and Design 4 (bottom,

p = 2, k = 5 and T = 30). The dotted lines represent the upper 95% confidence bound (top), zero line

(middle) and the lower 95% confidence bound (bottom).

0.00 0.05 0.10 0.15 0.20

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

Nominal size

Si
ze

 d
is

cr
ep

an
cy

LM
F
Wilks
Rao

0.00 0.05 0.10 0.15 0.20

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

Nominal size

Si
ze

 d
is

cr
ep

an
cy

LM
F
Wilks
Rao

31



C Tables and figures

Figure 3: Size discrepancy plots for Design 5 (top, p = 5, k = 1 and T = 50) and Design 6 (bottom,

p = 10, k = 1 and T = 50). The dotted lines represent the upper 95% confidence bound (top), zero line

(middle) and the lower 95% confidence bound (bottom).
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Figure 4: Size discrepancy plot for Design 5 (p = 5, k = 1 and T = 50) with Taylor expansion orders

from one to four. Rao’s F test. The dotted lines represent the upper 95% confidence bound (top), zero

line (middle) and the lower 95% confidence bound (bottom).
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Figure 5: Size discrepancy plots for tests of no serial correlation: p = 2, k = 2 and T = 200 (Top);

T = 500 (Bottom). The dotted lines represent the upper 95% confidence bound (top), zero line (middle)

and the lower 95% confidence bound (bottom).
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Figure 6: Size discrepancy plots for tests of no additive nonlinearity: p = 2, k = 2 and T = 200 (Top);

T = 500 (Bottom). The dotted lines represent the upper 95% confidence bound (top), zero line (middle)

and the lower 95% confidence bound (bottom).
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Figure 7: Size discrepancy plots for tests of parameter constancy: p = 2, k = 2 and T = 200 (Top);

T = 500 (Bottom). The dotted lines represent the upper 95% confidence bound (top), zero line (middle)

and the lower 95% confidence bound (bottom).
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