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Abstract

A Lagrange multiplier test for testing the parametric structure of a constant condi-
tional correlation generalized autoregressive conditional heteroskedasticity (CCC-GARCH)
model is proposed. The test is based on decomposing the CCC-GARCH model multiplica-
tively into two components, one of which represents the null model, whereas the other one
describes the misspeci�cation. A simulation study shows that the test has good �nite sam-
ple properties. We compare the test with other tests for misspeci�cation of multivariate
GARCH models. The test has high power against alternatives where the misspeci�cation
is in the GARCH parameters and is superior to other tests. The test is not greatly af-
fected by misspeci�cation in the conditional correlations and is therefore well suited for
considering misspeci�cation of GARCH equations.
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1 Introduction

Multiple GARCH models have become an important tool in forecasting volatility of portfolios.
There are several classes of multivariate GARCH models, beginning with the general Vector
GARCH model of Bollerslev, Engle & Wooldridge (1988). This model is even �too general�
in the sense that conditional covariance matrices generated by this model are positive de�nite
with probability less than one. Following this �rst attempt at joint modelling of conditional
variances and covariances using the GARCH approach, the main goal of econometricians has
been to develop models whose parametric structure would guarantee positive de�niteness of the
conditional covariance matrix. Two classes of such models have become quite popular. The
�rst one is the so-called BEKK-GARCH model discussed by Engle & Kroner (1995), and the
second one is the family of conditional correlation models. The basic model nested in the other
members of this family is the Constant Conditional Correlation GARCH (CCC-GARCH) model
by Bollerslev (1990). For information about these and other multivariate GARCH models, see
Bauwens, Laurent & Rombouts (2006) and Silvennoinen & Teräsvirta (2009b).
In this paper the focus is on conditional correlation GARCH models. While they are fre-

quently �tted to �nancial time series, testing the parametric structure of the GARCH equations
in them has not been very common. Our aim is to derive a portmanteau test for testing mis-
speci�cation of the GARCH structure of these models. The predecessor of our test is the
portmanteau test of Ling & Li (1997) who generalised the univariate test of Li & Mak (1994)
to a multivariate situation. Their test is not restricted to conditional correlation GARCH mod-
els, but by a suitable choice of the conditional covariance matrix it becomes a misspeci�cation
test of the GARCH equations in the CCC-GARCH model.
Nakatani & Teräsvirta (2009) derived a test of the CCC-GARCH model against the Ex-

tended CCC-GARCH model of Jeantheau (1998). In their Lagrange multiplier (LM-) test the
alternative to the GARCH equations is the model with GARCH equations that contains lags
of squared errors and conditional variances from other GARCH equations. Our aim is to derive
a general portmanteau test in the spirit of Ling & Li (1997) such that the alternative to the
GARCH equations is more general than in the test of Nakatani & Teräsvirta (2009). It is based
on decomposing the conditional variance equations in the CCC-GARCH model multiplicatively
into two components, one of which represents the null model, whereas the other one describes
the misspeci�cation. The inspiration comes from the univariate �no ARCH in GARCH�test in
Lundbergh & Teräsvirta (2002). This leads to a portmanteau test that is more general than
that of Ling & Li (1997).
A practical question in applying tests of the GARCH structure of the CCC-GARCH model

is whether these tests also have power against misspeci�cation of the correlation structure.
This will be investigated by simulation. There are also tests of the correlation structure of the
CCC-GARCH model. Tse (2000) derived a portmanteau-type test against the alternative that
the conditional correlations are not constant over time. Silvennoinen & Teräsvirta (2009a) con-
structed an LM test against the Smooth Transition Conditional Correlation GARCH (STCC-
GARCH) model. The question then is whether tests of constant conditional correlations in turn
have power against misspeci�cation in the GARCH equations. In this paper this problem is
investigated by simulating the test of Tse (2000). His test can be viewed as a portmanteau-type
test without a speci�c alternative to constant correlations.
It would be useful to test the adequacy of GARCH equations when the estimated model is

a time-varying conditional correlation model such as the DCC-GARCH model of Engle (2002),
the STCC-GARCH model, or the Markov-switching CC-GARCH model of Pelletier (2006).
The di¢ culty is, however, that asymptotic normality of the maximum likelihood estimators of
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the parameters of these models has not been rigorously proven. For an illuminating discussion,
see Engle & Kelly (2012). The corresponding proof exists for the CCC-GARCH model, see
Ling & McAleer (2003), which is why that model constitutes the null hypothesis for the test
derived in this paper.
The plan of the paper is as follows. In section 2 the CCC-GARCH process is de�ned and we

present the decomposition of the conditional variance equations which our test is based upon.
In section 3 we give the �rst and second order partial derivatives of the quasi-log-likelihood
function of the decomposed CCC-GARCH model. The LM test is derived in section 4 and
section 5 contains a bivariate illustration of the test. The �nite sample properties of the test
are studied by Monte Carlo simulations in section 6. Section 7 concludes. Mathematical proofs
can be found in the Appendix.

2 Model

Consider the following stochastic model of a random vector yt:

yt = EfytjFt�1g+ "t

where yt = (y1t; : : : ; ymt)
0 is an m � 1 vector and Ft�1 contains the conditioning information

available at t� 1: The m-dimensional error term "t is decomposed as follows:

"t = Dtzt (1)

where
Dt = diag(h

1=2
1t ; : : : ; h

1=2
mt ) (2)

is a diagonal matrix of conditional standard deviations of the elements of "t: In what follows
we assume EfytjFt�1g = 0 for simplicity and that hit follows a GARCH(1,1) process

hit = �i0 + �i1"
2
i;t�1 + �i1hi;t�1; (3)

where �i1 and �i1 are nonnegative, i = 1; : : : ;m. Furthermore, zt � IID(0;P); where P =
�
�ij
�

is a positive de�nite correlation matrix, i.e., �ii = 1, i = 1; : : : ;m:
Equation (3) may be generalised to contain asymmetric or higher-order terms. From (1) we

have

zt = (z1t; : : : ; zmt)
0 = D�1

t "t = ("1th
�1=2
1t ; : : : ; "mth

�1=2
mt )

0 (4)

and equations (1) with (4) de�ne a CCC-GARCH model. The model can be written as

ht = a0 +A1"
(2)
t�1 +B1ht�1; (5)

where "(2)t = ("21t; : : : ; "
2
mt)

0, ht = (h1t; : : : ; hmt)
0 and a0 = (�10; : : : ; �m0)

0 are (m � 1) vectors
and A1 and B1 are diagonal (m�m) parameter matrices with positive diagonal elements �i1
and �i1, i = 1; : : : ;m, respectively.
In order to construct a misspeci�cation test for the CCC-GARCH model (1), we assume

that zt = Gtut; where

Gt = diag(g
1=2
1t ; : : : ; g

1=2
mt ) (6)
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with

git = 1 +
rX
j=1

� ijz
2
i;t�j; (7)

and ut = (u1t; : : : ; umt)
0 = ("1th

�1=2
1t g

�1=2
1t ; : : : ; "mth

�1=2
mt g

�1=2
mt )0 � IID(0;P): Then (1) can be

written as follows:
"t = DtGtut (8)

and (8) can be regarded as an �ARCH nested in GARCH�model. For the univariate case, see
Lundbergh & Teräsvirta (2002) and for another de�nition of git, in which git is a deterministic
positive-valued function, see Amado & Teräsvirta (2013).
Let � = (� 01;...,�

0
m)

0 be an mr � 1 matrix where �i = (� i1; :::; � ir)0; i = 1; :::;m; is an r � 1
vector. Our misspeci�cation test consists of testing

H0 : � = 0 or Gt � I (9)

in the model (7). Thus under H0; f"tg follows a CCC-GARCH model, and the alternative
implies that there is dynamic structure unaccounted for in this model, because none of the
sequences fzi;tg is a sequence of independent random variables.

3 The log-likelihood function and its partial derivatives

3.1 The log-likelihood function

First, we introduce some notation. Let 0m be an m � 1 null vector, 0mn an mn � 1 null
vector, 1m an m�1 vector of ones, Im an m�m identity matrix, and diag(a) a diagonal matrix
whose diagonal elements are the elements of vector a. In order to derive the Lagrange Multiplier
statistic for testing the null hypothesis (9), we need the log-likelihood function of the model and
its �rst two partial derivatives. Under the null hypothesis, we assume that f"tg is a sequence
of vector white noise with E"t = 0m and the conditional covariance matrix �t = DtPDt.
Let ! = (!01; :::;!

0
m)

0 be a 3m-dimensional vector where !i = (�i0; �i1; �i1)
0; i = 1; :::;m;

and � = vecl(P) =(�12; :::; �1m; �23; :::; �2m; :::; �m�1;m)
0 be an m(m � 1)=2-dimensional vector:

Furthermore, let � = (� 01; :::; �
0
m)

0 be an mr-dimensional vector such that �i = (� i1; :::; � ir)
0; i =

1; :::;m, is an r� 1 vector, and �nally, set � = (!0;�0; � 0)0: Thus, the quasi-log-likelihood of the
CCC-GARCH model for observation t takes the form of the Gaussian log-likelihood:

lt(�) = �(1=2)
mX
i=1

lnhit � (1=2)
mX
i=1

ln git � (1=2) ln jPj � (1=2)u0tP�1ut

= � ln jDtj � ln jGtj � (1=2) ln jPj � (1=2)u0tP�1ut: (10)

Maximising

LT (�) =
XT

t=1
lt(�)

with respect to � yields the quasi maximum likelihood estimator (QMLE) �̂.
To ensure asymptotic normality of the QMLE, we make the following assumptions:

Assumption 1 (Stationarity). Roots of det(Im �A1x�B1x) lie outside the unit circle.
Assumption 2. The parameter space � is a compact subspace of Euclidean space; the matrix
P is a �nite and positive de�nite symmetric matrix, with the elements on the main diagonal
being 1 and the largest absolute eigenvalue of the matrix P having a positive lower bound over
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�; each �i1 and �i1 is nonnegative, i = 1; :::;m; and each element of f�i0; i = 1; :::;mg has
positive lower and upper bounds over �. Furthermore, if �i1 > 0; then �i1 > 0; i = 1; :::;m:
Assumption 3 (Identi�ability). The formulation at the true parameter value �0 of the CCC-
GARCH-model is minimal.
Assumption 4. Ej"6itj <1; i = 1; :::;m:
Under Assumption 1 the CCC-GARCH(1,1) model has a unique weakly stationary solution.

Furthermore the model is also strictly stationary and ergodic (see Jeantheau (1998) and Ling
& McAleer (2003)).
Jeantheau (1998) shows that under Assumption 3 the model is identi�able. De�ne B(L) =

Im �B1L and A(L) = A1L where L is the lag operator. Su¢ cient conditions for Assumption 3
to hold are:

� det(A(L)) 6= 0 and det(B(L)) 6= 0.

� A(L) and B(L) are left coprime.

� A(L) or B(L) is column reduced.

A(L) and B(L) are left coprime if any of the greatest common left divisors, D, of A(L) and
B(L) are unimodular. D is unimodular if det(D) is not equal to zero and if it is independent
of the lag operator L. Furthermore, the polynomial matrix A(L) or B(L) is column reduced if
det(A1) 6= 0 or det(B1) 6= 0; respectively. See Jeantheau (1998) for details and proof.
Assumptions 2 and 4 are crucial for the proof of asymptotic normality of the QMLE, see

Ling & McAleer (2003).

3.2 The score and the information matrix of the log-likelihood func-
tion

In this section we de�ne the �rst and second partial derivatives of (10). Let qt(�) =@lT (�)=@�
be the score vector for observation t, and let

�q(�) = (1=T )
XT

t=1
qt(�) = (1=T )q(�) (11)

be the average score. We use the notation q(�̂) for the score evaluated at at � = �̂: The
3m+m(m� 1)=2+mr-dimensional score vector for the observation t of (10) has the following
form

qt(�) = (
@lt(�)

@!0
;
@lt(�)

@�0
;
@lt(�)

@� 0
)0

where, see Nakatani & Teräsvirta (2009),

@lt(�)

@!
= �rDtvec

�
D�1
t � 1

2
D�1
t G

�1
t "t"

0
tG

�1
t M

�1
t � 1

2
M�1

t G
�1
t "t"

0
tG

�1
t D

�1
t

�
(12)

and
@lt(�)

@�
= �1

2
rPvec

�
P�1 �P�1D�1

t G
�1
t "t"

0
tG

�1
t D

�1
t P

�1� (13)

withMt = DtPDt, Ht = GtMtGt, rDt = @vec(Dt)
0=@! and rP = @vec(P)0=@�.

The following lemma gives the �rst-order partial derivative of the log-likelihood function
with respect to �.
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Lemma 1 The bottom block of the score vector has the following form:

@lt(�)

@�
= �rGtvec

�
G�1
t � 1

2
H�1
t "t"

0
tG

�1
t � 1

2
G�1
t "t"

0
tH

�1
t

�
(14)

where rGt = @vec(Gt)
0=@�. Under H0;

@lt(�)

@�
= �rGtvec(I�

1

2
M�1

t "t"
0
t �

1

2
"t"

0
tM

�1
t ):

Proof. See the Appendix.

From (12), (13) and Lemma 1 it follows that under the null hypothesis, the average score
vector has the form

�q(�) jH0 =
1

T

TX
t=1

�
@lt(�)

@!0
;
@lt(�)

@�0
;
@lt(�)

@� 0

�0

=
1

T

TX
t=1

24 rDtvec(D
�1
t � 1

2
D�1
t "t"

0
tM

�1
t � 1

2
M�1

t "t"
0
tD

�1
t )

�rPvec(P�1 �P�1D�1
t "t"

0
tD

�1
t P

�1)
�rGtvec(I� 1

2
M�1

t "t"
0
t � 1

2
"t"

0
tM

�1
t )

35 : (15)

The population information matrix is

I(�0) = (1=T )E(q(�0)q(�0)0) = Eqt(�0)qt(�0)0 (16)

where �0 is the true parameter. The negative of the expected Hessian evaluated at �0 equals

J (�0) = �(1=T )E
TX
t=1

@2lt(�)

@�@�0
j�=�0 : (17)

The Hessian for observation t has the form

Ht(�) =
@2lt(�)

@�@�0
=

24 H11t(�) H12t(�) H13t(�)
H21t(�) H22t(�) H23t(�)
H31t(�) H32t(�) H33t(�)

35 =
26666664
@2lt(�)

@!0@!

@2lt(�)

@�0@!

@2lt(�)

@� 0@!
@2lt(�)

@!0@�

@2lt(�)

@�0@�

@2lt(�)

@� 0@�
@2lt(�)

@!0@�

@2lt(�)

@�0@�

@2lt(�)

@� 0@�

37777775 (18)

where the expression for the upper left-hand 2�2 block can be found in Nakatani & Teräsvirta
(2009). The information matrix for observation t under the null hypothesis is given by

J (�0) = �E[Ht(�)]j�=�0 =

24 J11 J12 J13
J012 J22 J23
J
0
13 J

0
23 J33

35 (19)

where J11,J12 and J22 are de�ned in Nakatani & Teräsvirta (2009). The following lemma gives
the remaining second partial derivatives H31t(�); H32t(�) and H33t(�) of the log-likelihood
function (10).
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Lemma 2 The second partial derivatives H31t(�); H32t(�) and H33t(�) of the log-likelihood
function (10) are as follows:

@2l(�)

@!0@�
= �1

2

@vec(Gt)
0

@�
(Dtutu

0
tP

�1D�1
t 
G�1

t D
�1
t +Dtutu

0
t 
G�1

t M
�1
t

+G�1
t M

�1
t 
Dtutu

0
t +G

�1
t D

�1
t 
Dtutu

0
tP

�1D�1
t )
@vec(Dt)

@!0
(20)

@2l(�)

@�0@�
= �1

2

@vec(Gt)
0

@�

�
Dtutu

0
tP

�1 
G�1
t D

�1
t P

�1

+G�1
t D

�1
t P

�1 
Dtutu
0
tP

�1	 @vec(P)
@�0

(21)

and

@2l(�)

@� 0@�
= �

��
(vec(G�1

t )
0 
 I)

�
� 1
2

�
vec(G�1

t M
�1
t Dtutu

0
tDt)

0 
 I
�

�1
2

�
vec(G�1

t M
�1
t Dtutu

0
tDt)

0 
 I
�� @2vec(Gt)

0

@� 0@�

+
1

2

@vec(Gt)
0

@�

�
2(G�1

t 
G�1
t )�Dtutu

0
tDt 
H�1

t �G�1
t 
G�1

t M
�1
t Dtutu

0
tDt

�Dtutu
0
tDtM

�1
t G

�1
t 
G�1

t �G�1
t 
Dtutu

0
tDtM

�1
t G

�1
t

�G�1
t M

�1
t Dtutu

0
tDt 
G�1

t �H�1
t 
Dtutu

0
tDt

	 @vec(Gt)

@� 0
: (22)

Taking conditional expectations noting that Eutu0t = P and setting Gt = I in (20)-(22) yields

J13t =
1

2
rDt

�
I
D�1

t +PDt 
M�1
t +M�1

t 
PDt +D
�1
t 
 I

	
rG0

t (23)

J23t =
1

2
rP

�
Dt 
P�1D�1

t +P�1D�1
t 
Dt

	
rG0

t (24)

J33t =
1

2
rGt

�
2(I
 I) +Mt 
M�1

t +M�1
t 
Mt

	
rG0

t: (25)

Proof. See the Appendix.

4 The LM test statistic

When Assumptions 1-4 hold the asymptotic null distribution of the maximum likelihood esti-
mator �̂ is given by

p
T (�̂ � �0)

D�! N (0;J �1(�0)I(�0)J �1(�0))

see Ling & McAleer (2003). If zt � iidN (0;P), the information matrix I(�0) = �J (�0) and
the asymptotic covariance matrix reduces to I�1(�0). Ling & McAleer (2003) show that I(�0)
and J (�0) can be consistently estimated by

I(�̂) = 1
T

TX
t=1

qt(b�)qt(b�)0 (26)
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and

J (�̂) = � 1
T

TX
t=1

@l2t (
b�)

@�@�0
(27)

respectively. See also Nakatani & Teräsvirta (2009).
Let e�= [~!0; ~�0; � 0]0 be the QML estimator of �0 under the null hypothesis. The average score

evaluated at e� equals
�q(e�) = (�q!(e�)0; �q�(e�)0; �q�(e�))0 = (03m;0m(m�1)=2; �q�(e�)0)0 (28)

where

�q�(e�) = � 1
T

TX
t=1

(rGtvec(I�
1

2
M�1

t "t"
0
t �

1

2
"t"

0
tM

�1
t )) (29)

is the relevant (nonzero) block in the LM test statistic: The corresponding block of the infor-
mation matrix in (19) evaluated at e� under the null equals

J (e�)(�;�) = ~J33 � � ~J013 ~J023
� � ~J11 ~J12

~J012 ~J22

��1 � ~J13
~J23

�
: (30)

We now state our main result:

Theorem 1 (the LM test statistic) Assume that zt � iid(0;P) and that Assumptions 1-4 hold.
Under H0: � = 0 or Gt = I, the LM statistic

LM� = T�q�(e�)I(e�)�1(�;�)(e�)�q�(e�) (31)

where e� is a consistent estimator of �0 under H0 and I(e�) is a plug-in estimator of I(�0); has
an asymptotic �2 distribution with mr degrees of freedom. If I(�0) = �J (�0); then I(e�)�1(�;�)
in (31) may be replaced by J (e�)�1(�;�):
If Dt = diag(�01; :::; �0m); LM� becomes a test of no conditional heteroskedasticity against

CCC-ARCH. This test statistic is a special case of the constant error covariance matrix test
derived by Eklund & Teräsvirta (2007).

5 Bivariate illustration

In this section we discuss the bivariate case, m = 2. Then ! = (!01;!
0
2)
0, where ! =

(�i0; �i1; �i1)
0 for i = 1; 2; � = (� 01; �

0
2)
0; and

hit = �i0 + �i1"
2
i;t�1 + �i1hi;t�1; i = 1; 2:

The block of the score vector corresponding to the parameter � in Lemma 1 becomes

eq�(e�) = � 1
T

TX
t=1

24 ev011t �1� 1
(1��2)h1th2t

�
"21th2t � �"1t"2t

p
h1th2tev022t �1� 1

(1��2)h1th2t

�
"22th1t � �"1t"2t

p
h1th2t

35
where ev0ijt = @pgit=@�j = (1=2)ez(2)jt estimated under H0 and ez(2)jt = (ez2jt�1; :::; ez2jt�r)0 for i; j =
1; 2, and � is the conditional correlation between "1t and "2t:
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The block of the maximum likelihood estimated information matrix corresponding to � in
Theorem 1 equals

J (e�)(�;�) = ~J33 � � ~J013 ~J023
�
2r�7

�
~J11 ~J12
~J
0
12

~J22

��1
7�7

�
~J13
~J23

�
7�2r

where

�
~J11 ~J12
~J
0
12

~J22

�
=
1

4T

TX
t=1

2664
�
1 + 1

1��2

� ek11tek011t � �2

1��2
ek11tek022t � 2�

1��2
ek11t

� �2

1��2
ek22tek011t �

1 + 1
1��2

� ek22tek022t � 2�
1��2

ek22t
� 2�
1��2

ek011t � 2�
1��2

ek022t 4(1+�2)
(1��2)2

3775 (32)

�
~J13
~J23

�
=
1

2T

TX
t=1

2664
�
1 + 1

1��2

� ek11tev0011t � �2

1��2
ek011tev0022t

� �2

1��2
ek22tev0011t �

1 + 1
1��2

� ek22tev0022t
� 2�
1��2 ev011t � 2�

1��2 ev022t
3775 (33)

and

~J33 =
1

T

TX
t=1

24 �1 + 1
1��2

� ev011tev0011t � �2

1��2 ev011tev0022t
� �2

1��2 ev022tev0011t �
1 + 1

1��2

� ev022tev0022t
35 :

In (32) and (33) ekijt = eh�1it @ehit=@!j estimated under H0, where @ehit=@!j = exjt+e�ii@ehit�1=@!j,
and exjt = (1; "2jt�1;ehjt�1)0 for i; j = 1; 2. Furthermore ehit is hit estimated under H0. Following
the suggestion by Fiorentini, Calzolari & Panattoni (1996), we use the following initial values
for the recursions:

exj0 = (1; 1
T

TX
t=1

"2jt;
1

T

TX
t=1

"2jt)
0

and @ehi0=@!j = 0:
Under H0; the LM test statistic (31) has an asymptotic �2 distribution with 2r degrees of

freedom.

6 A portmanteau test and a comparison

Ling & Li (1997) introduced a portmanteau test for testing the adequacy of the multivariate
GARCH(p; q) model. They de�ned "t = V

1=2
t zt;where Vt is the conditional covariance matrix

of "t and fztg �iid(0; Im);where Im is a m � m identity matrix instead of a positive de�nite
correlation matrix P in our model and m is the dimension of "t = ("1t; :::; "mt)0. Let

Rj = E("
0
tV

�1
t "t �m)("0t�jV�1

t�j"t�j �m); j = 0; 1; :::; r

be the jth autocovariance of "0tV
�1
t "t; and set R = (R1=R0; :::; Rr=R0)

0. The null hypothesis
to be tested is R = 0: The corresponding consistent estimators are

~Rj =
1

T

TX
t=j+1

(e"0t eV�1
t e"t �m)(e"0t�j eV�1

t�je"t�j �m); j = 0; 1; :::; r
9



and eR = ( ~R1= eR0; :::; ~Rr= eR0)0:Under the standard regularity conditions, including eR0 p! � <1;
Ling & Li (1997) showed that under the null hypothesis,

p
T eR d!N (0;
):

It then follows that the portmanteau test statistic

Q(r) = T eR0 e
�1 eR (34)

where e
 is a plug-in estimator of 
; has an asymptotic �2(r)-distribution under R = 0.
In order to better understand the di¤erence between our test and that of Ling and Li, we

shall show that the latter is also an LM test. To this end, de�ne Rj using "t = Dtzt and
V�1
t = D�1

t P
�1D�1

t ; which gives "
0
tV

�1
t "t = z

0
tP

�1zt: Then

Rj
R0

=
E(z0tP

�1zt �m)(z0t�jP�1zt�j �m)
E(z0tP

�1zt �m)2
:

The null hypothesis is unchanged: R = 0:
Consider the following building-block of the Ling and Li statistic

p
T eR = pT ( eR1eR0 ; :::;

eRreR0 )0
where eRjeR0 = (1=T )

PT
t=j+1(ez0teP�1ezt �m)(ez0t�j eP�1ezt�j �m)
(1=T )

PT
t=1(ez0teP�1ezt �m)2 :

When zt � iid(0;P), one obtains

(1=T )
TX
t=1

(ez0teP�1ezt �m)2 p! E(z0tP
�1zt �m)2 = �:

When zt � iidN (0;P); � = 2m:
Now consider the following one-dimensional linear combination of lags of z0tP

�1zt:

g�t = 1 +
rX
j=1

��j
z0t�jP

�1zt�j �m
�

(35)

and de�ne G�
t = g�t Im. We argue that the LM test for testing the null hypothesis is �� =

(��1; :::; �
�
r)
0 = 0 in (35) is asymptotically equivalent to Ling and Li�s test adapted to the CCC-

GARCH framework.
To show this, de�ne

rG�
t =

@vec(G�
t )
0

@��
=
1

�
(z0t�1P

�1zt�1; :::; z
0
t�rP

�1zt�r)
0vec(I)0 =

wt�1
�
vec(I)0

10



where wt�1 = (z
0
t�1P

�1zt�1; :::; z
0
t�rP

�1zt�r)
0. The average score vector evaluated at H0 equals

q�(e��) = � 1

�T

TX
t=r+1

ewt�1vec(I)0vec(I� (1=2)eD�1
t
eP�1eztez0t eDt

�(1=2)eDteztez0teP�1 eD�1
t )

=
1

�T

TX
t=r+1

ewt�1(ez0teP�1ezt �m)
=

1

�T

TX
t=r+1

(ewt�1 �m�)(ez0teP�1ezt �m) + m��T
TX

t=r+1

(ez0teP�1ezt �m)
= eR� +

m�

�T

TX
t=r+1

(ez0teP�1ezt �m)
where eR� = (1=2m)( eR1; :::; eRr)0 and � = (1; :::; 1)0: It follows that q�(e��)�eR� p! 0; because

(1=T )
PT

t=r+1(ez0teP�1ezt �m) p! 0 as T !1: This implies that
p
Tq�(

e��) and pT eR� have the
same asymptotic distribution.
Next notice that eR� � eR p! 0, because (1=T )

PT
t=1(ez0teP�1ezt �m)2 p! �:

p
T eR� and

p
T eR

then have the same asymptotic distribution, so
p
Tq�(e��) and pT eR have the same asymptotic

distribution. Furthermore, Tq�(e��)
�1
� q�(

e��); where 
� is the asymptotic covariance matrix
of
p
Tq�(

e��); and T eR
�1 eR have the same asymptotic distribution. We conclude that if mis-
speci�cation of the GARCH equations is characterised by the lags of z0tP

�1zt and assumed to
be exactly the same for all m equations, the resulting LM-test is asymptotically equivalent to
the test of Ling and Li (1997).
Our test may therefore viewed as one in which we relax the restrictions inherent in Ling

and Li�s test by letting the assumed misspeci�cation vary from one equation to the next. It
can also be seen as a multivariate extension of Lundbergh and Teräsvirta�s (2002) LM test
of no remaining ARCH in GARCH. They proved their test is asymptotically equivalent to
the portmanteau test by Li & Mak (1994). When m = 1; our LM test and Ling and Li�s
portmanteau test collapse into the Lundbergh & Teräsvirta (2002) and the Li & Mak (1994)
test, respectively. If m = 1 and the conditional variance is constant, Ling and Li�s test reduces
to the one by McLeod & Li (1983) and ours to the no ARCH test of Engle (1982).

7 A simulation study

We study the size and power properties of the test statistic LM� by simulation. The power
of LM� is considered in situations in which the GARCH equations are misspeci�ed and in
situations in which the alternative is a model with time-varying correlations. Our test is
constructed for situations in which the GARCH equations may be misspeci�ed. Nevertheless,
it is interesting to know whether it may also reveal misspeci�cation in the conditional correlation
structure. We compare the power of the test to the power of the portmanteau test of Ling &
Li (1997) and the LM-test of constant conditional correlations of Tse (2000).
Tse & Tsui (1999) study the power of Ling & Li�s test in testing the adequacy of a multi-

variate model for conditional heteroskedasticity. They �nd that the test has low power in most
cases where the conditional correlation structure of the true model di¤ers from the estimated
one.
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The LM test of constant conditional correlations by Tse (2000), denoted LMC following
the original article, is based on assuming time-varying correlations, de�ned as

�ijt = �ij + �ij"i;t�1"j;t�1; 1 � i < j � m;

where �ij are additional parameters under the alternative hypothesis. The null hypothesis is
H0: �ij = 0 for 1 � i < j � m, and the test statistic is given by

LMC = �0T
eS(eS0eS)�1eS0�T

where �T is a T �1 vector of ones, eS is the T �m matrix of partial derivatives @lt=@�
0 evaluated

under H0 and � is the vector of parameters in the model under the alternative hypothesis.
Under H0; LMC has an asymptotic �2-distribution with m(m� 1)=2 degrees of freedom.

7.1 Size

The size of LM� is simulated for �ve di¤erent CCC-GARCH(1; 1) models at sample sizes T =
1000; 2500; 5000 and 10000 and dimensions m = 2 and 5. The nominal size of the tests is 5%.
The data are generated from the �ve bivariate CCC-GARCH(1; 1) models used in Nakatani &
Teräsvirta (2009). DGP 1 has moderate persistence in volatility, while DGPs 2 and 3 represent
models with high persistence and DGPs 4 and 5 models with low persistence in volatility. The
correlation is low (� = 0:3) in DGPs 1, 3 and 5 and high (� = 0:9) in DGPs 2 and 4. All
simulations have been performed in R (R Core Team (2013)) using the ccgarch package by
Nakatani (2013).
We simulate both two- and �ve-dimensional models. When simulating the latter models

the DGPs are extensions of the former models. For example, in the two-dimensional case
DGP 1 A = diag(0:1; 0:2) on the main diagonal, whereas in the �ve-dimensional model A =
diag(0:1; 0:2; 0:1; 0:2; 0:1). The �ve-dimensional conditional correlation matrices are of the form

P =

266664
1 � �2 �3 �4

� 1 � �2 �3

�2 � 1 � �2

�3 �2 � 1 �
�4 �3 �2 � 1

377775 ; (36)

which is selected simply because it depends on a single parameter. There is no statistical theory
behind this choice.
Table 1 summarises the results for m = 2. The test has a reasonable size already when

T = 1000. The only exception is DGP 5 with T = 1000 and r = 4. Table 2 contains the results
for m = 5. The test has good size properties even in this case.

7.2 Power

We begin by considering the power of the test when a CCC-GARCH(1; 1) model is �tted to the
data while the data are generated by a CCC-ARCH(2) or a CCC-GARCH(2; 1) process. We con-
tinue by studying the situation in which a CCC-GARCH(1; 1) model is �tted to the data, but the
true process is an MGARCH process with time-varying conditional correlations. We consider
cases where the correlations follow the Dynamic Conditional Correlation (DCC) GARCHmodel
of Engle (2002), the Smooth Transition Conditional Correlation (STCC) GARCH model of Sil-
vennoinen & Teräsvirta (2009a) and the Baba-Engle-Kraft-Kroner (BEKK) GARCH model,
de�ned in Engle & Kroner (1995).

12



Table 1: Empirical size of the LM test for testing the adequacy of the estimated CCC-GARCH
model when m = 2. and r = 1; 4. The nominal signi�cance level is 0:05.

T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5
r = 1

1000 0:045 0:050 0:043 0:052 0:047
2500 0:050 0:049 0:048 0:051 0:049
5000 0:052 0:049 0:051 0:052 0:047
10000 0:050 0:047 0:051 0:051 0:051

r = 4
1000 0:049 0:051 0:052 0:051 0:082
2500 0:048 0:052 0:048 0:051 0:050
5000 0:048 0:050 0:049 0:053 0:047
10000 0:052 0:052 0:053 0:052 0:049

Note: The number of replications equals 10000.

Table 2: Empirical size of the LM test for testing the adequacy of the estimated CCC-GARCH
model when m = 5 and r = 1; 4. The nominal signi�cance level is 0:05.

T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5
r = 1

1000 0:047 0:055 0:046 0:050 0:047
2500 0:049 0:052 0:040 0:045 0:051
5000 0:051 0:050 0:047 0:053 0:045
10000 0:049 0:052 0:048 0:051 0:043

r = 4
1000 0:045 0:054 0:052 0:061 0:115
2500 0:052 0:058 0:050 0:050 0:052
5000 0:051 0:058 0:048 0:053 0:043
10000 0:053 0:055 0:055 0:049 0:047

Note: The number of replications equals 5000.

All simulations are again performed in R. As the empirical size of the our statistic is very
close to the nominal 5% size and the simulations require plenty of CPU time we have used the
asymptotic null distribution in calculating the power. All estimates of the power of the test
statistics are rejection rates under the alternative.
Three di¤erent parametrisations are considered for the CCC-GARCH, one for the DCC-

and the STCC-GARCH process and two for the BEKK-GARCH processes. The parameters of
these models appear in Table 3.
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Table 4 presents the results when m = 2. In DGPs 1-3 the constant conditional correlation
matrix

P =

�
1 �
� 1

�
;

with � = 0:3 (DGP 1a-3a) and � = 0:9 (DGP 1b-3b). The power of LM� is higher than the
power of Q(r) or LMC in all six cases. In addition Q(r) outperforms LMC in most cases.
Q(r) has good power for DGP 3 and in large samples also for DGPs 1 and 2. LMC has rather
low if any power at all sample sizes when � = 0:3. For LM� and LMC there is an increase
in power when the correlation changes from 0:3 to 0:9, while the power of Q(r) in that case
slightly decreases. In particular, when the conditional correlation is large, also LMC which
is not designed to detect misspeci�cation in GARCH equations, can have considerable power
when the time series are su¢ ciently long.
In the DCC-GARCH model (DGPs 4-5) the conditional correlation is generated by the

following process:
Qt = (1� a� b)P+ azt�1z0t�1 + bQt�1;

where a and b are the DCC-parameters and P is now the unconditional correlation matrix
P = f�ijg. Furthermore, to produce valid correlation matrices Qt is rescaled as follows:

Pt = (I�Qt)
�1=2Qt(I�Qt)

�1=2;

where � is the Hadamard product. The values for the DCC-parameters are

DGP 4 : a = 0:09; b = 0:9 and

DGP 5 : a = 0:05; b = 0:9:

In DGP 4 the persistence in the conditional correlation is very high, i.e. the conditional
correlation can deviate substantially from its mean for long periods, whereas in DGP 5 the
attraction towards the mean is stronger than in DGP 4. We consider two values for the
unconditional correlation: � = 0:3 (DGP 4a and 5a) and � = 0:9 (DGP 4b and 5b). From
Table 4 we can see that the power of LM� more or less equals its size for all four DGPs at all
sample sizes. This is noteworthy as it suggests that the LM test also works as a misspeci�cation
test when the null model is a DCC- and not a CCC-GARCH model. Note, however, that the
asymptotic null distribution of LM� is derived under the assumption that the null model is a
CCC-GARCH one, so the fact that the null model contains additional parameters is ignored
when the test is applied to a DCC-GARCH model.
Interestingly, the power of Q(r) considerably increases when the correlation increases from

0:3 to 0:9. It can be quite high when the persistence of the correlation is high as in DGP 4. As
may be expected, LMC is the best performer, displaying strong power against both DGPs at
all sample sizes.
In the STCC-GARCHmodel (DGPs 6-8) the time-varying correlations are de�ned as follows:

Pt = (1�Gt)P(1) +GtP(2);

where Pt �uctuates between two positive de�nite correlation matrices P(1) and P(2) according
to a transition function Gt which takes values between 0 and 1 depending on a continuous
transition variable st. In our simulations Gt is a logistic function:

Gt(c; ; st) =
�
1 + e�(st�c)

��1
;  > 0 (37)
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where  is the speed and c the location of transition. In DGPs 6 and 7, st = "1;t�1 in (37)
whereas in DGP 8, the transition variable st follows a �rst-order autoregressive process whose
innovation is "1;t�1:

st = 0:99st�1 + "1;t�1:

In this case, the transition variable is quite persistent. The di¤erence between DGP 6 and DGP
7 is that in the former the transition is fairly smooth,  = 5; whereas it is rapid in the latter
as  = 100: In both DGPs, c = 3; which means that Pt on average stays closer to P(1) than
P(2): In DGP 8,  = 5 and c = 0; so the transition is smooth and due to persistent fstg the
correlations change slowly over time.
In all these DGPs the two correlation matrices are

P(1) =

�
1 0:3
0:3 1

�
; P(2) =

�
1 0:9
0:9 1

�
:

Again, LMC has the highest power of the three tests, but contrary to the DCC-GARCH
alternative, LM� also has power against DGPs 6 and 7 where st = "1;t�1. It has very little
power against DGP 8. It seems that if the correlation �uctuates su¢ ciently slowly, LM� does
not respond such time-variation. The performance of Q(1) lies between that of LMC and LM� :
This test has power against all three DGPs but the power is clearly weaker than that of LMC;
in small samples in particular.
Finally we consider two diagonal BEKK-GARCH alternatives, where the model of the con-

ditional covariances is given by

Ht = CC
0 +A0

1"t�1"
0
t�1A1 +B

0
1Ht�1B1:

Tse & Tsui (1999) found that Q(1) has low power against a diagonal BEKK-GARCH model.
The model they use is DGP 10 in our study. The results in Table 4 show that, as in the case
of DCC-GARCH, LM� only has trivial power against the BEKK-GARCH models considered.
Q(1) has some power against the simplest diagonal BEKK-GARCH alternative (DGP 10) but
trivial power against DGP 9. As can be expected, LMC has the highest power of the three
tests.
The power of the tests is also simulated form = 5. The results reported in Table 5 are similar

to the ones obtained when m = 2. The LM� test has in general higher power when m = 5 and
the di¤erence in power between the tests in favor of LM� is even larger than in the bivariate
case. The portmanteau test has slightly less power when m = 5 than when m = 2 when the
alternative is a CCC-GARCH(2; 1) process. When the alternative is an STCC-GARCH model,
the power of LM� marginally increases with the dimension of the model.
The test results seem to suggest following guidelines as to what to do in practice after

estimating a CCC-GARCH model. First carry out the three tests. If both LM� and Q(r) reject
the null hypothesis of no ARCH in GARCH whereas LMC does not or does so only weakly,
conclude that at least some of the GARCH equations have to be respeci�ed. If all tests strongly
reject, no conclusions can be drawn at this stage. If LMC rejects the null hypothesis of constant
correlations whereas LM� does not, tentatively assume that the correlations are not constant
and �t a suitable multivariate GARCH model such as DCC-GARCH or BEKK-GARCH to the
data. If both tests reject but LMC provides the strongest rejection, consider again giving up the
assumption of constant conditional correlations but also consider the STCC-GARCH model as
an alternative. If all three tests reject very strongly, reconsidering both the GARCH equations
and the CCC-assumption could be useful. Note, however, that these guidelines are based on a
rather limited number of simulation designs and are rather tentative. Finally, if one has reason
to suspect spillover e¤ects, these tests can be completed by the GARCH misspeci�cation test
in Nakatani and Teräsvirta (2009).
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8 Conclusion

We derive an LM test for testing the adequacy of a �tted CCC-GARCH model. Monte Carlo
simulations show that the test has good size properties. The test has reasonable power when
the GARCH equations are misspeci�ed, and the power of the test increases with the dimension
of the model.
In comparison with other tests, our test has higher power than the portmanteau test of

Ling & Li (1997) when the GARCH equations are misspeci�ed. On the other hand, the test
is not greatly a¤ected by misspeci�cation in the conditional correlations, the special case of
an STCC-GARCH alternative being an exception. Therefore it is well suited for considering
misspeci�cation of GARCH equations. Furthermore, we �nd that the LMC test for time-
varying correlations of Tse (2000), while having very low power when the misspeci�cation
is in the conditional covariances, performs remarkably well when the conditional correlation
structure is misspeci�ed. The portmanteau test of Ling & Li (1997) has some power against
misspeci�cation in both the GARCH equations and in the conditional correlations structure,
but is in both cases outperformed by either our test or the test of Tse (2000). It therefore seems
a good idea to perform the two latter tests or perhaps all three and, based on the outcomes,
decide how to proceed from there.

Appendix

The matrix derivations are based on results in Lütkepohl (1996), see also Nakatani & Teräsvirta
(2009).

Proof of Lemma 1
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Proof of Lemma 2

The second partial derivatives of the log-likelihood function w.r.t. �, the Hessian, are given by:
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Next consider

@2l(�)

@�0@�
= � @

@�0

�
@vec(Gt)

0

@�
vec(G�1

t )

�
+
1

2

@

@�0

�
@vec(Gt)

0

@�
vec(G�1

t D
�1
t P

�1D�1
t G

�1
t "t"tG

�1
t )

�
+
1

2

@

@�0

�
@vec(Gt)

0

@�
vec(G�1

t "t"tG
�1
t D

�1
t P

�1D�1
t G

�1
t )

�
= B1 +B2 +B3: (45)

First, B1 = 0: Second,

B2 =
1

2

�
@vec(Gt)

0

@�

@vec(G�1
t D

�1
t P

�1D�1
t G

�1
t "t"

0
tG

�1
t )

@vec(P�1)0
@vec(P�1)

@vec(P)0
@vec(P)

@�0

�
= �1

2

@vec(Gt)
0

@�

�
G�1
t "t"

0
tG

�1
t D

�1
t 
G�1

t D
�1
t

�
(P�1 
P�1)@vec(P)

@�0

= �1
2

@vec(Gt)
0

@�

�
G�1
t "t"

0
tG

�1
t D

�1
t P

�1 
G�1
t D

�1
t P

�1� @vec(P)
@�0

(46)

and, �nally,

B3 = �
1

2

@vec(Gt)
0

@�

�
G�1
t D

�1
t P

�1 
G�1
t "t"

0
tG

�1
t D

�1
t P

�1� @vec(P)
@�0

: (47)

Inserting (46) and (47) into (45) and setting B1 = 0 gives
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Inserting (49), (50) and (51) into (48) results in
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