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Abstract

This paper examines the relationship between economic growth and car-

bon dioxide emissions in Italy considering the developments in a 150-year time

span. Using several statistical techniques, we find that GDP growth and car-

bon dioxide emissions are strongly interrelated, with a dramatic change of the

elasticity of pollutant emissions with respect to output. Our findings highlight

lack of structural change in the reduction of the carbon dioxide, suggesting the

difficulties for Italy to meet the emissions targets within the Europe 2020 strat-

egy.
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1 Introduction

Environmental awareness has become a central issue in the policy debate, and in

particular the transition towards a low-carbon economy has represented one of the

major economic challenges. In this context the realization of the Europe 2020 strat-

egy for sustainable economic growth relies on the use of sustainable energy sources,

having three main headline targets, that is (i) drastic cutting down of the carbon

dioxide (CO2) emissions, (ii) increasing the share of renewable energy sources in

final energy consumption, and (iii) increasing energy efficiency. This set of EU-level

goals have been translated into national objectives by each member state taking

into account country-specific economic circumstances. Over the last decades Italy

has made a unilateral commitment to reduce overall greenhouse gas emissions by

13% compared to 1990 levels, increase the share of renewable energy sources in final

energy consumption to 17% and cut energy consumption by 27.90 mtoe (mega tons

of oil equivalent) always with reference to 1990 levels.

In this paper we examine the relationship between economic growth and carbon

dioxide emissions in Italy for a period which goes from the unification, 1861, up to

2011. To this end we adopt the most recent statistical reconstruction of the GDP

series for the last 150 years.1 After a period of prolonged low growth, the Ital-

ian economy has recently found itself at the center of a deep economic crisis. By

adopting an intensive reform agenda which has promoted more competition, and

then economic growth, Italy was able to manage the recent financial crisis. How-

ever, further economic challenges are needed, facing further action to strengthen

its growth prospects, see, e.g. Annicchiarico, Di Dio, and Felici (2013); European

Council (2012). In this economic scene, the environmental policy debate has been

put aside and Italy has not yet clearly articulated its future energy strategies, even

though greenhouse gases (GHG) emissions are largely derived from energy-related
1The GDP series has been part of a study published on occasion of the recent celebrations of

the 150th anniversary of the unification of Italy; for more details, see Baffigi (2011); Vecchi (2011).
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activities (OECD, 2012). The recent economic events represent an opportunity for

Italy to restructure its economy looking at other alternative sources to satisfy its

energy needs. In particular, Italy has limited domestic energy resources with high

dependence on external energy supply, and so an energy import dependency of 83.8%

in 2010 against a EU-27 of 52.7%, see European Council (2012). Since 1990 final

energy consumption has been increasing steadily, with transport, households and

industry being the most energy-consuming sectors.2 Italian per capita CO2 emis-

sions are well below the EU-27 average. However, the energy intensity in Italy is

lower than the EU-27 average, but the carbon dioxide emissions are above the EU-27

mean level.3 In particular, the Italian oil and gas shares in primary energy supply

are above the European average, while hydroelectricity and other renewable sources

still play a minor role.4 Given this scenario, it appears clear the need for Italy to

start investing in a significant reduction of CO2 emissions as a priority, before im-

plementing new environmental policy interventions.5

With this analysis we contribute to the literature which studies the relationship

between carbon dioxide emissions and economic activity by using different but com-

plementary statistical approaches, having as a focus the investigation of the economic

trend and conditions of the Italian economy. Italy has been often analyzed within

a panel of countries (Galeotti, Lanza, and Pauli, 2006; Richmond and Kaufmann,
2In 2010, probably as a consequence of the strong slowdown of the economy, the households

sector consumed more energy than the industry sector (25.2% against 24.9%, while the transport
sector absorbed 33.6% of the total final energy consumption). See European Council (2012).

3In 2009 Italian carbon dioxide emissions per capita were equal to 7,200.8 kg /cap, while the
EU-27 level was 8,105 kg/cap; the Italian CO2 intensity was 2,549.9 kg CO2/toe , while the average
in the EU was equal to 2,381 kg CO2/toe. Always in 2010 energy intensity in Italy was 123.6
toe/MEUR ’05 (compared to 152.3 toe/MEUR ’05 of the EU-27 average). For more details see
European Commission (2012).

4In 2010 gross electricity generation in Italy is attributable to gases (52.1%), renewable sources
(26.6%), solid fuels (13.2%), petroleum products (7.2%). In EU-27, in the same year, gross elec-
tricity generation is imputable to nuclear (27.4%), solid fuels (24.7%), gases (23.6%), renewable
sources (20.9%), petroleum products (2.6%). In 2010 the energy gross inland consumption of Italy
by product is so distributed: petroleum products (40.2%), gases (38.8%), renewables (10.3%),
solid fuels (8.1%), waste (0.5%); in EU-27 energy gross inland consumption by product is due
to petroleum products (35.1%), gases (25.1%), solid fuels (15.9%), nuclear (13.4%), renewables
(9.8%), waste (0.6%). See European Commission (2012).

5For further details about energy policy in Italy, see International Energy Agency (2009).
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2006; Martínez-Zarzoso and Bengochea-Morancho, 2004; Dijkgraaf and Vollebergh,

2005, inter alia). However, a more precise investigation of the relationship between

economic growth and environment effects requires the study of the single coun-

try characteristics underlying the importance of the specific historical experience

(de Bruyn, van der Bergh, and Opschoor, 1998; Stern, 1998a,b; Dijkgraaf and Volle-

bergh, 2005). Moreover, many studies where Italy has been included rely on linear

cointegration techniques, while a nonlinear cointegration approach is recommended,

see Hong and Wagner (2008).

To disentangle the effects of economic growth on carbon dioxide and emissions we

adopt different approaches. Initially we study the time series properties testing

for stationarity, and the existence of unit roots along with a Cointegrated VAR

(CVAR or "restricted VAR") model by following the Juselius (2006) empirical ap-

proach. Subsequently, we consider a nonlinear representation of the same model by

investigating whether and when nonlinear behavior arise in our observed variables.

More specifically, we study whether Italy has shown any transition between regimes,

i.e. low emissions, high emissions, estimating a Smooth Transition Autoregressive

(STAR) model for a univariate scenario (Chan and Tong, 1986; Teräsvirta, 1994;

van Dijk, Teräsvirta, and Franses, 2002; Teräsvirta, Tjøstheim, and Granger, 2010).

With this target we use the multiple-regime STAR version introduced by Franses

and van Dijk (1999) (MR-STAR) to test if radical changes affect the data, estimating

the regimes transitions. The same problem is also considered in a multivariate con-

text, under the assumption that the regime switching is unobserved. For this latter

approach we adopt a simple Markov-Switching VAR (MS-VAR).6 For our analysis

we are interested to identify the phases of recession versus expansion for GDP, and

the high versus the low rates of emissions for CO2. Finally, to complete the investi-

gation, we test for the Environmental Kuznets Curve (EKC) hypothesis, according
6This family of time series models have been introduced in econometrics by Hamilton (1989),

in order to check if, and eventually when, the series under investigation can be described by two
different unobserved regimes.
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to which environmental degradation tends to increase as the economy develops, but

begins to decline at higher levels of income (Grossman and Krueger, 1993, 1995;

Stern, 1998a,b; Müller-Fürstenberger and Wagner, 2004; Selden and Song, 1994, in-

ter alia).

Our results suggest that real GDP and carbon dioxide emissions are strongly inter-

related, and the behavior of emission intensity defined as CO2 emissions to GDP

ratio is highly nonlinear. In particular, the CVAR analysis shows evidence of a com-

mon trend between real GDP and CO2, which changes direction, globally increasing

before 1975, and decreasing after that year. This could be probably due to the

energy efficiency policies implemented in the aftermath of the oil crises of the 1970s.

Consistently, the MR-STAR analysis suggests the presence of two structural shocks

in 1881-1891 decade and in the second half of the Seventies. The MS-VAR analysis

seems to be more sensitive to the non-structural shocks, as shown by the change in

regime after the post World Wars periods. In addition, according to this analysis

the post-1975 reverse trend in CO2 emissions seems less evident, resulting instead in

a non-structural shock, while the state of high growth/high pollution appears to be

permanent until the 2008 financial crisis. The results of the MS-VAR analysis would

then suggest that no structural change in the reduction of the CO2 emissions has

been implemented. Finally, our results on the EKC confirm that real GDP and car-

bon dioxide emissions are strongly interrelated and a sort of bell-shaped relationship

seems to be present. However, the predicted turning point is at a very high level

of per capita GDP. It may be due to the rigid structure of the standard quadratic

EKC which shows to be outperformed by the flexible structure allowed by a cubic

piecewise model.

The rest of the paper is organized as follows. In Section 2 we describe the dataset

and discuss the historical evolution of carbon dioxide emissions and GDP in Italy.

In Section 3 we study the properties of the time series by testing for unit roots and

stationarity. The results on cointegration, structural change and non-linearities are
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presented in Section 4, and in Section 5 we estimate a standard EKC model for

carbon dioxide emissions. The main conclusions of the analysis are summarized in

Section 6.

2 Data and Time Series Properties

To study the time evolution of the carbon dioxide emissions for Italy, we use annual

data on total fossil fuel CO2 emissions, real GDP and total population for the time

period 1861-2011. Data on carbon dioxide emissions, stemming from fossil-fuel burn-

ing and the manufacture of cement, are from the database of the Carbon Dioxide

Information and Analysis Center (CDIAC), provided by the Earth Sciences Division

of the Oak Ridge National Laboratory which provides full information on the CO2

emissions expressed in thousand metric tons of carbon.7 The current dataset covers

the period 1861-2009, while for the years 2010-2011 the CDIAC provides preliminary

estimates obtained by extrapolation.8

For the 1861-2011 data on GDP we apply the most recent statistics based on the

reconstruction of the national accounts, which is the result of a recent project coor-

dinated by the Bank of Italy in cooperation with ISTAT, and University of Rome

“Tor Vergata”, see Baffigi (2011); Vecchi (2011) for full details. Notice that the GDP

series is expressed in million of euros at 2005 constant prices, and from the same

sources we extract data on population.

In Figures 1-4 we plot the historical patterns of GDP, and carbon dioxide emissions

in Italy, for the period 1861-2011. More specifically, Figure 1 depicts the time series

of per capita GDP for the whole period and for the two sub-samples 1861-1913 and

1950-2011. In line with the neutrality policy declared by Italy at the beginning of

first global conflict (August 1914), the two sub-sample exclude the years 1914-1949

between the starting point of the World War I (WWI) and the years immediately
7The CDIACmaintains an extensive database on annual anthropogenic carbon dioxide emissions

from each country, see Boden, Marland, and Andres (2012).
8See http://cdiac.ornl.gov/trends/emis/meth_reg.html for details.
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after the World War II (WWII). During the 19th century the Italian economy was

characterized by the presence of a large agricultural sector, which only at the end of

the century gave way to an extensive industrialization. Indeed, although in Italy the

industrial revolution began in the 1840s, only late in the 1890s modern infrastruc-

tures had begun to be built (Maddison, 2001; Malanima and Zamagni, 2010). Only

at the end of the WWII following the economics reconstruction, Italy experienced

an unprecedented period of rapid economic growth which was known as “economic

miracle”. The growth of the industrial output in the years from 1950 and 1974 drove

a rise in per capita GDP to an average 5.3% per year, reaching a peak of 7.3% in

1961. In the early 70’s due to the first oil crisis, the pace of growth slowed down

causing a significant downturn of the Italian economy creating a wide economic dis-

parities which caused in 1975 a drop in per-capita GDP of 2.7%. In the second half

of the 1980s, the Italian economy was again prospering until the recession of the

earlier 1990s. Over the last two decades Italy has been experiencing a prolonged

period of slow growth with an average of 0.57% per annum. This poor performance,

mainly due to a slowdown in the productivity, has been exacerbated by the recent

crisis, see OECD (2012).

Figure 2 presents per capita carbon dioxide emissions for the whole sample and

plots the series for the two sub-samples 1861-1913 and 1950-2011. At earlier stages

of Italian economic development, we observe a slight increase in CO2 emissions, and

then two dramatic falls during the World Wars. From 1950 until the late 1970s, we

notice a continuous, or even accelerating, growth of per capita CO2 emissions. Im-

mediately after the second oil shock in 1979, the growth of per capita CO2 emissions

with per capita gross domestic product levels out, as it emerges clearly from Figure

2c. This could be the result of the Italian economy’s adjustment to the oil price

shocks. Actually, the early 1980s saw some radical changes in the organization of

Italian big industry with the introduction of automation and the dramatic reduction
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in the industrial work-force.9 The recession in the early 1990s reduced the emissions

slightly. From the second half of the 90’s onwards there has been a constant, but

slower, growth of carbon dioxide emissions amounting to around 2,228 kilos of car-

bon dioxide per capita in 2003. Since then we observe a decline up to 1,797 kilos of

carbon dioxide per capita in 2011. Of course this sharp fall in emissions could be

due to the recent crisis.

Figure 3 plots per capita carbon dioxide emissions against per-capita GDP, and as

expected the period as a whole is characterized by a strong positive correlation be-

tween the two series.

Finally, Figure 4 reports the ratio between CO2 emissions and GDP, expressed as

CO2 metric tons per million of euros. The CO2/GDP ratio increases sharply from

1861, and then it falls during the World Wars. From 1950 until the earlier 1970s,

we observe a prolonged increase in the ratio, up to a level of 135 metric tons per

million of euros in 1973. Since then, the CO2/GDP ratio has declined persistently

up to a level of 76 CO2 metric tons per million of euros in 2011. The reduction was

mainly due to the increased efficiency in the use of energy sources, jointly with the

new energy policies implemented in the aftermath of the oil crises of the 1970s, to

which it followed a drop of the energy intensity in the manufacturing sector.

The observed historical pattern could reflect the existence of an inverted-U relation-

ship between carbon dioxide emissions and GDP for Italy, along the lines suggested

by the EKC literature. Moreover, inspection of the time series suggests the existence

of five significant structural breaks in the data more likely explained by the World

Wars, and the two oil shocks together with the recent crisis. In what follows we will

adopt several distinct, but complementary, approaches to study the relationship

between CO2 emissions and real GDP in Italy.
9In the period 1981-1983 Italy experienced economic stagnation. The large industry was facing

the repercussions of a second oil shock and the consequences of low profit margins due to the
wage-indexing mechanisms, which had been revised in the workers’ favour after the first oil shock
(see Zamagni (1993) for details).
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3 Univariate Properties of CO2 Emissions and Real

GDP in Italy

In the current section we test whether the time series of CO2 emissions and GDP are

driven by some trend, or whether the evolutions over time of these processes exhibit a

unit root behavior. We first test for stationarity and then apply a battery of unit root

tests studying the time series properties of emissions per capita, and GDP per capita

expressed in natural logarithms. An important caveat is in the entity of the WWII

shocks and the related statistical treatment. To detect the CO2 emissions change in

the trend of the last decade of the sample, we use the Doornik (2009) algorithm.10

However, the trivial result obtained, that is three outliers in the error distribution

in 1937, 1943 and 1946, suggests that a more deep investigation is needed. Due to

the size of the WWII shock to avoid any measurement error problem, instead of

dividing the whole sample in two sub-samples, we adopt an alternative approach by

smoothing the dimension of the outliers via Hodrick-Prescott filter. This approach

allows us to perform a statistically significant analysis without loosing any stylized

facts occurring in the sample. Furthermore, to avoid any biases deriving from the

quality of the data for the pre-war sample, we also present our results for the sub-

sample 1950-2011.

Table 1 presents the results of the applied stationarity and unit root tests for the

whole sample, carried out for various lag lengths. To test the stationarity assumption

we apply the Kwiatkowski, Phillips, Schmidt, and Shin (1992) (KPSS) test, which

has a null hypothesis of stationarity. The KPSS test is often used in conjunction

with standard unit root tests to investigate the possibility that a time series is
10This is a computer-based approach for the selection of the best statistical model. The logic

underlining this strategy is simple: first, it selects a general unrestricted model able to capture
all the essential features of the data, that is an autoregressive model augmented by several lagged
variables and dummies in order to capture the outlier observations. Then, it selects a value
representing the significance level for several diagnostic tests (among them the Chow test for
structural change). If the general unrestricted model does not pass these tests, it is reduced of one
of the covariates. The procedure is iterated until the model does not pass all the tests.
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fractionally integrated. From the results obtained we can reject the null hypothesis

of trend and level stationarity for both time series at a 1% level of significance.

We verify the hypothesis that our time series follow a unit-root process by using

three different tests. In particular, we analyze our time series data by applying as

first the augmented Dickey and Fuller (1979) test (ADF). Since the lag length affects

the power properties of the ADF test, we identify the right number of the lags to

be included in our model using both the Akaike (1974) Information Criterion (AIC)

and the Schwarz (1978)’s Bayesian Information Criterion (BIC). We fail to reject the

null hypothesis of unit root for both variables. To achieve an increase in power of the

standard ADF test, we also apply its variant test proposed by Elliott, Rothemberg,

and Stock (1996), the DF-GLS test, choosing lags according to the Ng and Perron

(2001) modified AIC (MAIC), the Schwarz’s criterion and sequential t method. With

reference to this latter test we fail to reject the null hypothesis of unit root for both

series. Finally, according to Phillips and Perron (1988) test results we fail to reject

the null hypothesis of unit root for per capita GDP, while for CO2 emissions we

reject the null when a trend term is included in the regression. Reapplication of

these tests to the first differences of each time series indicates that both variables

are stationary. Thus we can deduce that both time series are integrated of order

1.11

We now turn to the sub-sample 1950-2011. Results are reported in Table 2. Again,

according to the KPSS test, we can reject the null hypothesis of trend and level

stationarity for both time series. The results of the unit root tests instead are mixed

and depend on whether a trend is included or not. In particular, while for the DF-

GLS test we always fail to reject the null for both time series, for the ADF and the

Phillips-Perron tests we fail to reject the null when the trend is included.

As unit-root tests may produce wrong results when time series display structural

breaks, especially when a time series exhibits systemic shifts we may fail to reject
11Results are available from the authors upon request.
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the null of unit root even in the absence of nonstationarity. In order to test the

unit root hypothesis, taking into account the possibility of structural breaks in the

data, we perform the Zivot and Andrews (1992) test (Zandrews test) and the tests

proposed by Clemente, nés, and Reyes (1998). All results are reported in Tables 3

and 4. The Zandrews test allows us to examine for a single structural break in the

intercept and in the trend of the time series. The optimal lag length was selected

via a t-test. When taking into account the existence of different kinds of structural

breaks, we fail to reject the null hypothesis of unit root for both time series in both

samples. We notice that the shift in the intercept roughly corresponds to the season

of the Italian economic miracle around the 1950’s, while a structural change in trend

is found in 1919 and 2001 for per capita GDP and in 1967 and 1988 for per capita

CO2 emissions.

According to Clemente-Montañés-Reyes unit root tests we proceed considering two

alternative events within our time series: the “additive outlier” (CLEMAO) model

that captures a sudden change in the series, and the “innovation outlier” (CLEMIO)

model that allows a gradual shift in the mean of the series. For convenience, we

test for unit root allowing for the existence of one or two structural breaks, in turn.

According to the CLEMAO test results we fail to reject the null hypothesis of unit

root for both samples and both variables, with the exception of per capita CO2 in

the period 1950-2011, allowing for an additive outlier in 1962. We can conclude that

unit roots are present even when instantaneous structural breaks are accounted for.

When instead we consider the possibility of innovation outliers, we reject the null

for both variables. It is worth noting that when we conduct our analysis on the

sub-sample 1950-2011, the CLEMIO test find breaks during the economic miracle

and at the onset of the recent great recession that struck globally in 2008 and hit

Italy harder than expected, after a prolonged period of low growth.
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4 Cointegration, Structural Change and Non-Linearities

In this section we study the relationship between carbon dioxide emissions and

gross domestic product using different, but complementary, statistical approaches.

We start by assuming a "non-stratified" one sided scenario, where CO2 emissions

are created as a by-product of economic activity measured by GDP. Here we assume

that both of them have an auto-regressive (AR) structure. This stylized represen-

tation permits a better investigation of the peculiarities of the two observed series,

which should have same common dynamics. That is the two processes should be

cointegrated.

We start by considering the following simple representation of the economy at time

t:

CO2,t = φGDPt + εt (1)

where both expressed in log, and εt is an i.i.d error, indicating all the idiosyncratic

elements in the specification of the relationship and φ represents the parameter

capturing any effect that GDP may have on CO2 emissions. This representation

can be re-written in the following error correction form:

εt = CO2,t − φGDPt (2)

where [1, −φ] is the cointegrating vector and the linear combination of the two vari-

able assumed to be an I(0)-process. In particular, we expect to find some φ which is

positive so to have a theory-consistent dynamics. The presence of one cointegrating

relation may be deduced by the simple graph analysis conducted in Section 2. The

graphical analysis clearly shows that the long-run relation between carbon dioxide

emissions and gross domestic product in Italy has been changing over time, as result

of continuous technology innovation and higher energy efficiency.

Following the Juselius (2006) empirical approach, we study equation (2) estimating

a Cointegrated VAR (CVAR or "restricted VAR") model. In particular, after having
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performed some linearity tests on both variables, we focus on testing if any transition

between different regimes (i.e. low emissions, high emissions) are observed. If this

latter is the case, we apply a Multiple-Regime Smooth Transition Autoregressive

(MR-STAR) model for a univariate scenario for our estimation. The same analysis

is also considered in a multivariate context, but the switching regime is assumed

to be unobserved, and this is done by estimating a simple Markov-Switching VAR

(MS-VAR).The statistical methodologies adopted to investigate the relationship be-

tween carbon dioxide emissions and GDP are described in Appendix A. In what

follows we summarize the results of our statistical analysis. Both variables under

analysis are subject to logarithmic transformation in the CVAR analysis, while for

the nonlinear scenarios growth rates are used. The structural break in 1975 observed

in the graphical analysis (see Figures 1-4) has been modeled by a broken linear trend

in the CVAR starting from this year.

4.1 Linear Scenario: CVAR

In this section we report the cointegration analysis results. We adopt the Juselius

(2006) approach to macroeconomic modelling for its fully empirically-based nature.

The main findings can be summarized as follows. First, the analysis of the roots

of the companion matrix suggests the presence of one unit root in the bivariate

process, as shown in Table 5. Second, the Johansen’s Trace test is performed and

this rejects the hypothesis of r = 0, that is no cointegration is observed (see Table

6). The distribution of the Rank Test is approximated by simulating 2500 random

processes with length T = 400, and restricted linear trend with one break in 1975.

Given the above results we select r = 1 and introduce a linear trend in the cointe-

grating relation allowing for a break in 1975, to account for the self-evident change

in the levels of emissions. The estimated cointegrating relation is shown in Figure

5.

In Table 7 we report the estimation results of the restricted VAR model with one
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cointegrating relation and normalized eigenvector β. It shows the required signs in

both components of the long-run matrix (this happens independently on the normal-

ization which we settle for the emission variable). The cointegrating vector seems

very interesting for its loading sizes [1.000 -2.169]’. This also holds for the resulting

eigenvector. The resulting long-run matrix has also the expected signs where a 1%

increase in GDP is associated with a 0.062 marginal increase in the emissions growth

rate. The residual analysis confirms the normality of the residuals, the presence of

an ARCH effect and some skewness and kurtosis problems.

The same Table 7 reports the results of four diagnostic tests discussed in (Juselius,

2006, CH 10-11). The first one is a test on the null hypothesis of redundancy of the

variable from the original system of equations: if the model without the variable

assumed to be redundant performs better, the investigator will be allowed to reduce

the dimension of the VAR. In this case, when the VAR is augmented to include the

global trend and the 1975-trend, both variables are not significant. The second test

is a classical ADF test on each single equation of the system. We observe that for

both variables the null of stationarity can be rejected consistently with the findings

of the previous section. This result suggests the need to estimate a restricted model

able to capture a latent (stationary) trend. We test for omitted variables and for

no correlation of the independent variables with the error term (weak endogeneity).

The third third test shows that none of the two variables is significantly weakly

exogenous. This finding is consistent with the result of the exclusion test according

to which we need both equations in the system to capture the long-run dynamics.

Finally, the fourth test suggests that the null of endogeneity is rejected for both of

the variables. This means that none of the variables is permanently affected whether

a shock is produced on the system and it is not possible to detect which variable

"drives" the other.

These diagnostic checks on the estimated CVAR model and in particular the results

of the last two tests seem to suggest opposite conclusions. The bivariate nature of
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system and the by-product nature of the CO2 with respect to GDP explain in some

way the difficulty to distinguish between "pulling and pushing forces". This leads

us to stop the investigation via CVAR model in favor of different approaches.

4.2 Nonlinear Scenario: Linearity Tests

Before moving to the nonlinear models, in this section we perform some tests for

linearity on our studied variables. Table 8 provides the results of four different tests

for linearity. In the Tsay (1989) test the null of linearity is rejected if a delay of 1 year

is used in the output variable (2 in emissions), while the Luukkonen, Saikkonen, and

Teräsvirta (1988) test requires at least d = 2 in order to have evidence of nonlinearity.

In all cases one could not reject the null of linearity because all p-values are high.

We applied the Tsay rule for detecting the right parameter d by searching the one for

which the p-value is minimum. For d = 2 the p-value is relatively lower than in the

other cases, thus we selected SETAR(4; 2) and SETAR(1;2) models. The Hansen

(1996) test for the no-threshold effect confirms the previous findings for the output

series, while for the emissions it seems to be quite near to linearity (the p-value single

LM-statistics is always higher than 5%). However, the SETAR estimates shown in

Table 8 seem to leave no doubt to the fact that there is some change in the sample

mean.

4.3 Nonlinear Scenario: MR-STAR

The estimated MR-STAR models for our GDP are defined below (where the values

in brackets are the standard errors):
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GDPt = −0.0020
[0.0100]

+ 0.1917
[0.1065]

GDPt−1 −0.3259
[0.2154]

GDPt−20.6274
[0.1835]

GDPt−3 −0.1168
[0.1853]

GDPt−4

+ (0.0093
[0.0133]

−0.3747
[0.2045]

GDPt−11.0940
[0.4035]

GDPt−2 −0.7707
[0.2411]

GDPt−3 + 0.1854
[0.2289]

GDPt−4)

×G(GDPt−3; 20.000
[49.817]

;−0.0378
[0.1864]

)

− (0.0860
[0.0274]

−0.7310
[0.3079]

GDPt−1 + 0.2004
[0.4885]

GDPt−2 + 0.5471
[0.2046]

GDPt−3 + 0.1238
[0.1852]

GDPt−4)

×G(GDPt−3; 20.003
[20.8127]

; 1.2670
[0.0628]

)

(3)

CO2,t = 0.0941
[0.0342]

+ 0.1952
[0.1463]

CO2,t−1

+ (−0.0692
[0.0381]

− 0.2630
[0.1906]

CO2,t−1)×G(CO2,t−3; 20.002
[49.9697]

;−0.3165
[0.1382]

)

+ (0.0862
[0.0413]

− 0.6477
[0.2496]

CO2,t−1)×G(CO2,t−3; 20.003
[51.9176]

; 1.0566
[0.01533]

)

(4)

In this analysis we include the emission intensity, defined as the natural log of

the ratio CO2/GDP, labeled EI. The estimated MR-STAR model for the emission

intensity is defined as

EIt = −0.0162
[0.0237]

+ 0.1348
[0.1463]

EIt−1

+ (0.0613
[0.0298]

+ 0.0558
[0.1825]

EIt−1)×G(EIt−3; 20.001
[40.8913]

;−0.1473
[0.1382]

)

+ (−0.0363
[0.0383]

−0.5932
[0.1299]

EIt−1)×G(EIt−3; 20.002
[73.3032]

; 1.0770
[0.1894]

),

(5)

where in brackets we report the standard errors. Figure 6 shows the two estimated

transition functions for the three variables. In all sub-plot, the first panel describes

the G function versus the transition variable st. This enables us to visualize the

path of the transition of the variable from state 0 (low emissions) to state 1 (high

emissions), measured by the steep parameter γ. The second panel shows the same
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function versus time, allowing us to visualize the duration of each regime change

expressed in number of years, and when such change has occurred. The transitions

are clearly identified by the two structural shocks happened in 1881-1891 decade,

and during the second half of the Seventies12. The first transition seems to be

more persistent than the second one, in particular for the emissions, where the new

regime is reached only at the end of WWI. It is worth noticing that the WWII is

not considered as the beginning of a new regime. This result is consistent with what

observed in the Italian history.

4.4 Nonlinear Scenario: MS-VAR

In this subsection we move to a multivariate scenario by allowing for an unobserved

change in the regime of the system from state 0 (high GDP growth, high CO2

growth) to state 1 (low GDP growth, low CO2 growth).

The coefficients of the selected VAR(1) reported in Table 9 show a preponderance

of the state 0, especially for CO2 emissions. In particular, there is an evident

asymmetry of the duration with respect the two states (28 years vs. 19 years on

average). Figure 7 reports the estimated conditional means and standard deviations

and the estimated state of the VAR process for each equations. With respect to

the MR-STAR model, the MS-VAR model is more sensitive to the non-structural

shocks, as shown by the change in regime after the post WWI and WWII periods.

It is important to notice that the post-1975 reversed trend in CO2 emissions is now

more problematic to justify. State 0 appears to be more persistent since the mid

’50s, with just a break occurring during the last years of the Seventies. As a matter

of fact, it seems that the state of high growth/high pollution is permanent until the

Great Recession in 2008.
12On the contrasting interpretations of the economic events of 1880s, see Fenoaltea (2011) who

remarks that two major external developments affected the Italian economy in that decade: (i) a
strong increase in the supply of foreign capital, along with (ii) a sharp fall in the price of imported
grain.

17



5 Testing the EKC for Italy

In this section we test for the existence of a systematic relationship between pollu-

tion and economic growth, commonly referred to as Environmental Kuznets Curve

(EKC). According to the EKC hypothesis, environmental degradation tends to in-

crease as the economy develops, but begins to decline at higher levels of income. The

existence of a systematic a bell-shaped relationship between pollutant and income

is still an open issue and the results of the empirical literature are controversial.13

Aware of the limits of this approach we test the EKC hypothesis adopting two

strategies. First we estimate a standard polynomial relationship between per capita

carbon dioxide emissions and per capita GDP for Italy. Then we replace the poly-

nomial specification with a flexible non-linear model of per capita GDP. We model

the polynomial relationship between carbon dioxide emissions and gross domestic

product, as follows:

CO2,t = γ0 + γ1GDPt + γ2GDP
2
t + εt, (6)

where εt denotes the error term and, as before, all variables are expressed in per

capita terms and converted in natural logarithms. The turning point income, where

pollutant emissions reach the peak is given by τ = e−γ1/2γ2 . The parameters γ1 and

γ2 are long-term elasticities of carbon dioxide per capita emissions with respect to

per capita real GDP, and squared per capita real GDP, respectively. An inverted-U

relationship between GDP and CO2 requires that γ1 > 0 and γ2 < 0.

We estimate the EKC model (6) for the whole sample, 1861-2011, and for the subset

1950-2011, using GLS in order to consider possible serial correlation. In the presence

of autocorrelated disturbances the standard errors estimated by OLS are likely to be

too small. Results are reported in Table 10. The estimated coefficients of the linear

term and of the quadratic term are highly significant, and exhibit the theoretically
13For reviews of the EKC literature see e.g. Stern (1998a,b); Millimet, List, and Stengos (2003);

de Bruyn and Heintz (1999); Dinda (2004) inter alia.
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expected sign.

Test results show the presence of serially correlated residuals and of heteroskedastic-

ity. According to the results of the Ramsey’s RESET test, there is functional form

misspecification. In general, we notice that the statistical quality of the estimation,

in terms of measures of goodness of fit, is much better for the second sub-period

1950-2011 than for the whole sample. In the quadratic specification the turning

points for CO2 emissions are estimated to occur at a per capita real GDP value of

34, 720 and 74, 078 Euros, respectively. It should be noticed that in 2011 the per

capita GDP of Italy was about 23, 514 Euros. With this regard, our estimates about

the chances for Italy to curb carbon dioxide emissions are very pessimistic. Figure

8 plots the fitted values of the quadratic model over the period 1861-2011, while

Figure 9 plots the residuals. We now turn to the results of the flexible non-linear

model. In particular we consider a restricted cubic spline model, where per capita

carbon dioxide emissions are modeled as a restricted cubic spline function of per

capita GDP for the whole sample. Restricted cubic splines are such that: (i) below

the first and above the last knot the function should be linear; (ii) within each inter-

val the function should be cubic; (iii) at each knot the function should be continuous

and smooth with continuous first and second derivatives. Figure 10 plots the fitted

values of the cubic spline model together with the observed data. To check the

adequateness of the fitted spline we also compare the residuals of the spline model

with those obtained with the quadratic model. See Figure 11. Clearly, the second

specification appears to be more adequate in representing the behaviour of carbon

dioxide emissions with respect to GDP, confirming that the more flexible structure

allowed by the cubic piecewise model outperforms the rigid structure imposed by

the standard quadratic model.
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6 Conclusions

Environmental awareness has become a central issue in the policy debate. Given the

heavy reliance of Italy on fossil fuels, the reduction of carbon dioxide emissions for

the accomplishment of the Europe 2020 strategy remains a serious environmental

and policy challenge.

In this paper we have analyzed the relationship between income growth and carbon

dioxide emissions for Italy, in a historical perspective. Using several different sta-

tistical techniques, our results suggest that the CO2 emission trajectory is closely

related to the income time path, and that the behavior of emission intensity and

of the main two series are highly nonlinear. There seems to be a common trend

between real GDP and CO2, which however changes direction in the middle of the

Seventies, suggesting a possible slowdown in the emission intensity, probably due

to the energy efficiency policies implemented in the aftermath of the oil crises of

the 1970s. Consistently, according to the MR-STAR analysis, a structural shock

may have occurred in the same period, marking a slowdown in the growth rate of

carbon dioxide emissions. However, the MS-VAR suggests that the state of high

growth/high pollution seems to be permanent until the recent recession. In addi-

tion, the EKC analysis shows the existence of a bell-shaped relationship between

income and the pollutant, but according to the estimates, the predicted turning

point turns out to be pessimistically high.

Overall, our results do not seem to unambiguously show a structural slowdown of

carbon dioxide emissions in recent years, that is why we argue that meeting the cli-

mate change and energy sustainability goals of the Europe 2020 strategy represents

a very challenging task calling for a radical policy shift.
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A Statistical Models

A.1 CVAR

For what concerns the cointegration analysis of the relationship between Italian
output and emissions, we use a VAR(p) to model relations (1) or (2):

yt = Π1yt−1 + · · ·+ Πpyt−p + ΦDt + εt t = 1, . . . , T, εt ∼ Np(0,Ω) (7)

The Error Correction Model of model (7) is14

∆yt = Γ
(1)
1 ∆yt−1 + Γ

(1)
2 ∆yt−2 + · · ·+ Γ

(1)
p−1∆yt−p−1 + Πyt−1 + ΦDt + εt (8)

where: Γ
(1)
1 = −(Π2 +Π3 + ...+Πp), Γ

(1)
2 = −(Π3 + · · ·+Πp) and Π = −(I−Π1−

Π2 − · · · − Πp) are the short-run matrices and the long-run matrix, respectively
where the integer (1) indicates the lag placement of ECM. Notice that Π = αβ′

is the reduced rank long-run matrix, with α and β are p × r matrices, r ≤ p,
ΦDt = µ0 + µ1t are the unrestricted components (i.e. allowed to enter into the
cointegrating relation) of deterministic trend and yt = [CO2,t, GDPt]

′ . Equation
(7) is the CVAR model in Error Correction Form under I(1) hypothesis15.

A.2 MR-STAR

To model for the change in the Italian economic structure during the 150 years of our
sample we use the MR-STAR model. We consider the general additive non-linear
model as follows:

yt = φ′zt + θ′zt

M∑
m=1

G(γ, c, st) + εt (9)

where yt is the dependent variable, zt = (1, y1, . . . , yt−p)
′, φ = (φ0, φ1, . . . , φp)

′,
θ = (θ0, θ1, . . . , θp)

′ are parameter vectors, and εt ∼ i.i.d.(0, σ2). The transition
function G(γ, c, st) is a continuous function in the transition variable st, where the
parameter vector γ = (γ1, . . . , γm, . . . γM) controls the velocity of the M transitions
with c = (c1, . . . , cm, . . . cM) assumed as a vector of transition parameters. For what
follows we suppose that the transition variable coincides with a lagged value of the
endogenous variable yt with lag denoted by delay d > 0.
One of the main used functions for G(·) is the (first order) logistic function:

G(γ, c, st) =

(
1 + exp

{
−γM

K∏
k=1

(st − cm)

})−1

, γ > 0, (10)

where γm > 0 and c1 < · · · < cm < · · · < cM are identifying restrictions. Equa-
tions (10) and (9) define the first-order (Multiple-Regime) Logistic STAR (MR-
LSTAR1) model. The most common choices is to set alternatively K = 1, whether
the parameters φ+ θG(γ, c, st) change monotonically as a function of st from φ to

14See (Juselius, 2006, Section 4.2.2).
15For further details, see Johansen (1991)
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φ+ θ, and K = 2, in case the parameters φ + θG(γ, c, st) change symmetrically
around the mid-point (c1 + c2)/2, where the logistic function attains its minimum,
minGG(·) ∈ [0, 1/2], that is:

minGG(·) =

{
0 if γ →∞
1/2 if c1 = c2 and γ <∞

If γm = 0 the transition function will be G(γm, c, st) ≡ 1/2, so that model (9) will
nest a linear model. When γm → ∞ the model (9) nests a SETAR model (Tong
(1983)):

yt =
r+1∑
j=1

(
φ′jyt

)
I
(
yt−d ≤ cj

)
+

r+1∑
j=1

(
φ′jyt

)
I
(
yt−d > cj

)
+ εjt (11)

where φ,yt are defined as before, st is a continuous switching random variable,
c0, c1, . . . , cr+1 are threshold parameters, c0 = −∞, cr+1 = +∞, εjt ∼ i.i.d.(0, σ2

j ),
j = 1, . . . , r. The multiple regime hypothesis is investigated via LM test, and the
most likely number of regimes can be obtained by iteration.

A.3 MS-VAR

The MR-STAR model assumes that transition between regimes is observed. This
assumption can be removed by using a Markov Chain structure in the transition
between the same (multiple) regimes. To this scope we use a Markov-Switching
VAR model 16, having the p-th order autoregression for the K-dimensional time
series vector yt = (y1t, . . . , yKt), t = 1, . . . , T ,

yt = µ0 + Π1(st)yt−1 + · · ·+ Πp(st)yt−p + ut, (12)

where Π is defined as in the subsection A.1 with no interest for theα and β partition,
ut ∼ IID(0,Σ) and y0, . . . , y1−p are fixed, st ∈ (1, . . . ,M) is the unobservable
regime variable representing the probability of being in a different state of the world,
which is governed by a discrete time, a discrete state, and a irreducible ergodic M
state Markov process with the transition probabilities matrix defines as:

P =


p11 p12 . . . p1M

p21 p22 . . . p2M
...

... . . . ...
pM1 pM2 . . . pMM

 (13)

where pij the probability of switching from state i to state j, that is

pij = Pr(st+1 = j|st = i),
M∑
j=1

pij = 1 ∀i, j ∈ {1, . . . ,M} (14)

16See also Krozlig (1997).
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Denoting A(L) = IK−Π1L−. . . ,−ΠpL
p as the (K×K) dimensional lag polynomial,

we assume that there are no roots on or inside the unit circle |Π(z)| 6= 0 for |z| ≤ 1
where L is the lag operator, so that yt−j = Ljyt. If a normal distribution of the
error is assumed, ut ∼ NID(0,Σ(st)), equation (12) is known as the intercept form
of a stable Markov Switching Gaussian VAR(p) model.

B Tables and Graphs

Table 1: Unit Root and Stationarity Tests for Per Capita GDP and CO2 Emissions, 1861-
2011

Per Capita GDP Per Capita CO2

no trend with trend no trend with trend
KPSS 14∗∗∗ 3.21∗∗∗ 13.9∗∗∗ 0.76∗∗∗

ADF 0.946(1) −1.677(1) −1.896(2) −2.493(2)
1.385(0) −1.634(0) −1.896(2) −2.493(2)

DF-GLS
1.145(3) −1.175(3) 1.653(1) −0.986(1)
−0.523(12) −1.175(3) 1.301(2) −1.198(2)
−0.523(12) −1.952(12) 1.301(2) −1.198(2)

Phillips-Perron 0.544 −1.725 −2.080 −3.349∗∗

NOTES: Variables in natural logs. Lags reported in parentheses. A single asterisk, *, indicates
significance at 10% level, a double asterisk, **, at 5% level and a triple asterisk, ***, at 1%.
For the ADF the first row reports the statistic with the lag selected using the AIC, the second
using the BIC. For the DF-GLS lags selected using the Schwarz’s information criterion, the Ng-
Perron modified Akaike information criterion (MAIC) and the Ng-Perron sequential t method,
respectively.
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Table 2: Unit Root and Stationarity Tests for Per Capita GDP and CO2Emissions, 1950-
2011

Per Capita GDP Per Capita CO2

no trend with trend no trend with trend
KPSS 5.81∗∗∗ 1.44∗∗∗ 4.65∗∗∗ 1.37∗∗∗

ADF −7.541∗∗∗(0) 0.127(0) −3.950∗∗∗(2) −1.936(0)
−7.541∗∗∗(0) 0.127(0) −7.498∗∗∗(0) −1.936(0)

DF-GLS
−1.005(6) 0.249(0) −0.115(2) −0.700(2)
−1.005(6) −1.033(6) −0.115(2) −0.700(2)
−1.556(10) −1.424(10) −0.881(6) −1.334(6)

Phillips-Perron −6.886∗∗∗ 0.220 −6.052∗∗∗ −1.818

Notes: Variables in natural logs. Lags reported in parentheses. A single asterisk, *, indicates
significance at 10% level, a double asterisk, **, at 5% level and a triple asterisk, ***, at 1%.
For the ADF the first row reports the statistic with the lag selected using the AIC, the second
using the BIC. For the DF-GLS lags selected using the Schwarz’s information criterion, the Ng-
Perron modified Akaike information criterion (MAIC) and the Ng-Perron sequential t method,
respectively.

Table 3: Unit Root Tests with Structural Breaks for Per Capita GDP and CO2 Emissions,
1861-2011

Per Capita GDP Per Capita CO2

test statistics Year test statistics Year
Zandrews (break in intercept) −4.538(3) 1947 −3.123(2) 1959
Zandrews (break in trend) −2.287(3) 1919 −2.809(2) 1988
CLEMAO1 −2.791 1964 −1.888 1947
CLEMAO2 −1.891 1954, 1975 −3.561 1891, 1957
CLEMIO1 −6.705∗∗ 1945 −4.550∗∗ 1944
CLEMIO2 −5.490∗∗ 1898, 1945 −5.490∗∗ 1941, 1944

NOTES: Variables in natural logs. Lags reported in parentheses. For the Zandrews statistics lags
selected via t test. A single asterisk, *, indicates significance at 10% level, a double asterisk, **,
at 5% level and a triple asterisk, ***, at 1%.
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Table 4: Unit Root Tests with Structural Breaks for Per Capita GDP and CO2 Emissions,
1950-2011

Per Capita GDP Per Capita CO2

test statistics Year test statistics Year
Zandrews (break in intercept) 0.997(0) 1959 −3.966(1) 1960
Zandrews (break in trend) −1.087(0) 2001 −3.517(1) 1967
CLEMAO1 −2.675 1973 −3.603∗ 1962
CLEMAO2 −3.223 1969, 1989 −4.031 1963, 1973
CLEMIO1 −7.342∗∗ 1957 −8.764∗∗ 1958
CLEMIO2 −7.362∗∗ 1957, 2008 −8743∗∗ 1958, 2007

NOTES: Variables in natural logs. Lags reported in parentheses. For the Zandrews statistics lags
selected via t test. A single asterisk, *, indicates significance at 10% level, a double asterisk, **,
at 5% level and a triple asterisk, ***, at 1%.

Table 5: The Roots of Companion Matrix

Real Imaginary Modulus Argument

Root 1 1.000 0.000 1.000 0.000
Root 2 0.975 0.000 0.975 0.000
Root 3 0.278 0.608 0.668 1.143
Root 4 0.278 −0.608 0.668 −1.143
Root 5 −0.564 −0.341 0.659 −2.599
Root 6 −0.564 0.341 0.659 2.599
Root 7 −0.312 0.518 0.604 2.113
Root 8 −0.312 −0.518 0.604 −2.113
Root 9 0.514 −0.229 0.562 −0.420
Root 10 0.514 0.229 0.562 0.420

NOTE: software used: CATS for RATS

Table 6: The Simulated Trace Test Distribution

Simulated Trace Test Distribution
p-r r Eig.Value Trace P-Value

2 0 0.273 55.990 0.000
1 1 0.063 9.470 0.353

Quantiles of the Simulated Distribution
p-r r Mean S.E. 50% 75% 80% 85% 90% 95%

2 0 20.551 5.786 19.939 23.971 25.253 26.450 27.973 31.019
1 1 8.565 3.826 7.875 10.474 11.324 12.338 13.654 15.662

NOTE: software used: CATS for RATS
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Table 7: The Estimated CVAR

Normalized β′

CO2 GDP T(1975) TREND
1.000
[NA]

−2.169
[−2.607]

−0.078
[−2.619]

−0.044
[3.431]

α

DCO2 −0.029
[−3.060]

DGDP 0.010
[3.856]

Π

CO2 GDP T(1975) TREND
DCO2 −0.029

[−3.060]
0.062
[3.060]

0.002
[3.060]

0.001
[−3.060]

DGDP 0.010
[3.856]

−0.022
[−3.856]

−0.001
[−3.856]

0.000
[3.856]

Log-likelihood = 844.704

Tests for autocorrelation(a) Normality Test(b) ARCH effects(a)

Ljung-Box(36): χ2(126) 164.403
[0.012]

56.094
[0.000]

LM(1): χ2(4) 1.237
[0.872]

LM(1): χ2(9) 58.879
[0.000]

LM(2): χ2(4) 6.583
[0.160]

LM(2): χ2(18) 66.738
[0.000]

Descriptive Statistics

Mean Std. Dev. Skewness Kurtosis

DCO2 0.000 0.114 -1.145 9.992
DGDP 0.000 0.032 -0.368 6.386

Maximum Minimum ARCH(5) Normality

DCO2 0.388 -0.628 11.564
[0.041]

59.275
[0.000]

DGDP 0.142 -0.112 36.418
[0.000]

41.705
[0.000]

R2

DCO2 0.192
DGDP 0.246

Diagnostic Tests(c)

TEST STATISTIC CO2 GDP T(1975) TREND

Exclusion LR(ν1) 3.811
[0.051]

5.122
[0.024]

4.940
[0.026]

6.680
[0.010]

Stationarity LR(ν2) 5.122
[0.024]

3.811
[0.051]

Weak Exogeneity LR(ν1) 7.414
[0.006]

11.525
[0.001]

Unit vector in α LR(ν3) 11.525
[0.001]

7.414
[0.006]

NOTES: Effective sample: 1866-2011 (146 obs.); No. observations - no. variables: 132; selected
no. lags in VAR: 5; (a) Number of degree-of-freedom in parenthesis, p-values in squared brackets;
(b) Distributed as χ2(4), p-values in squared brackets; (c) All tests are distributed as χ2(νi), i=1,
. . . , 3, ν1 = rm, m restrictions on each rank r, ν2 = r−nb, with r rank restriction and nb number
of known cointegrating vectors, ν3 = p − r, with p rank restriction and nb number of known
cointegrating vectors; Software used: RATS
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Table 9: MS-VAR: Estimates

Feature Value

Final Log-likelihood: 464.5412
No. of estimated parameters: 18

No. of Observations: 150
No. of VAR lags (according to BIC): 1
Expected Duration for Regime 0 28.11
Expected Duration for Regime 1 18.76

Parameter (SE in brakets) Eq. 1 Eq. 2

S0 S1 S0 S1

Const 0.02
[0.01]

0.01
[0.03]

0.01
[0.00]

0.00
[0.01]

DCO2 1.08
[0.28]

−0.53
[0.00]

0.74
[0.07]

−0.11
[0.15]

DGDP −0.01
[0.09]

0.02
[0.14]

0.00
[0.03]

0.01
[0.04]

Transition Matrix (p-value in brakets)

Final State Probability Pi|1 Pi|2
P1|j 0.96

[<0.001]
0.05

[<0.001]

P2|j 0.04
[<0.001]

0.95
[<0.001]

NOTE: Software used: MatLab 2009b
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Table 10: Environmental Kuznets Curve for Italian CO2 Emissions, 1861-1959

1861-2011 1950-2011

Linear Quadratic Linear Quadratic

constant 2.7074
(0.3449)

∗∗∗ 1.7114
(0.3957)

∗∗∗ 3.4041
(0.4420)

∗∗∗ 2.1001
(0.5285)

∗∗∗

GDPt 1.6411
(0.1647)

∗∗∗ 3.3920
(0.5224)

∗∗∗ 1.3699
(0.1108)

∗∗∗ 2.7985∗∗∗
(0.4669)

GDP 2
t −0.4781∗∗∗

(0.1378)
−0.3250∗∗∗

(0.1012)

DW1975
ρ 0.9531 0.8988 0.9957 0.9875
turning point τ NA 34, 720 NA 74, 078
obs. 151 151 62 62
F statistic 24.32∗∗∗ 57.77∗∗∗ 237.64∗∗∗ 289.96∗∗∗

Adj. R2 0.13 0.43 0.89 0.90
AIC −175.121 −162.0127 −236.5118 −243.6991
BIC −169.0865 −152.9608 −232.2576 −237.3177
log-likelihood 89.5605 84.0064 120.2559 124.8496
RESET 8.03∗∗∗ 4.46∗∗∗ 5.25∗∗∗ 5.17∗∗∗

BP 15.85∗∗∗ 27.57∗∗∗ 32.74∗∗∗ 27.56∗∗∗

BG(1) 5.330∗∗ 6.564∗∗∗ 6.977∗∗ 6.849∗∗∗

ARCH(1) 5.538∗∗ 4.331∗∗ 3.720∗∗ 4.941∗∗

DW 2.29 2.34 2.35 2.35

NOTES: Variables in natural logs. The regressions are estimated by GLS based on the Prais-
Winsten transformation. Standard errors are in parentheses. A single asterisk, *, indicates signif-
icance at 10% level, a double asterisk, **, at 5% level and a triple asterisk, ***, at 1%; ρ is the
estimated autocorrelation parameter; obs. denotes the number of observations; NA: not applicable
because the coefficients are not significant in the quadratic specification and the relationship ap-
pears to be increasing. AIC is the Akaike information criterion value; BIC is Schwarz’s Bayesian
information criterion; the RESET is the Ramsey specification test for omitted variables; BP is
the Breusch-Pagan test for heteroskedasticity; BG is the Breusch-Godfrey LM test for the pres-
ence of first order autocorrelation; ARCH(1) is the Engle’s LM test for autoregressive conditional
heteroskedasticity of order 1; D-W is the Durbin-Watson d statistic to test for first-order serial
correlation.
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Figure 1: Per Capita GDP in Italy, 1861-2003 (Thousands of 2005 Euros Per Capita)
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Figure 2: Per Capita CO2 Emissions in Italy, 1861-2003 (Kilos Per Capita)
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Figure 3: Per Capita CO2 Emissions and Per Capita GDP in Italy, 1861-2003
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Figure 4: CO2/GDP Ratio in Italy, 1861-2003 (Metric Tons per Million of Euros)
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Figure 5: The Estimated Cointegrating Vector
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Figure 6: Estimated Transition Functions from MRSTAR model
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Figure 7: MS-VAR Results
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Figure 8: Fitted Quadratic Model
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Figure 9: Quadratic Model Residuals
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Figure 10: Fitted Cubic Spline
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Figure 11: Cubic Spline Model Residuals
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