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Abstract

Relations between economic variables can often not be exploited for forecasting,
suggesting that predictors are weak in the sense that estimation uncertainty is larger
than bias from ignoring the relation. In this paper, we propose a novel bagging predictor
designed for such weak predictor variables. The predictor is based on an in-sample test
for predictive ability. Our predictor shrinks the OLS estimate not to zero, but towards
the null of the test which equates squared bias with estimation variance. We derive
the asymptotic distribution and show that the predictor can substantially lower the
MSE compared to standard t-test bagging. An asymptotic shrinkage representation for
the predictor is provided that simplifies computation of the estimator. Monte Carlo
simulations show that the predictor works well in small samples. In the empirical
application, we find that the new predictor works well for inflation forecasts.
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1 Introduction

A frequent finding in pseudo out-of-sample forecasting exercises is that including predictor

variables does not improve forecasting performance, even though the predictor variables are

significant in in-sample regressions. For example, there is a large literature on forecast failure

with economic predictor variables for forecasting inflation (see, e.g., Atkeson and Ohanian,

2001; Stock and Watson, 2009) and forecasting exchange rates (see, e.g, Meese and Rogoff,

1983; Cheung et al., 2005). Including predictor variables suggested by economic theory, or

selected by in-sample regressions, typically does not help to consistently out-perform simple

time series models across different sample splits and model specifications. Forecasting failure

can be attributed to estimation variance and parameter instability. In this paper, we focus

exclusively on the former. These two causes of forecast failure are, however, often interrelated

in practice. If we are unwilling to specify the nature of instability, it is common practice to

use a short rolling window for estimation to deal with parameter instability. While a short

estimation window can better adapt to changing parameters, it increases estimation variance

compared to using all data. In this sense, estimation variance can result from the attempt

to accommodate parameter instability, such that our results are relevant for both kinds of

forecast failure.

This paper is concerned with reducing estimation variance by bagging pre-test estimators

when predictor variables have weak forecasting power. Modeling weak predictors in the

framework of Clark and McCracken (2012) (CM henceforth) considers a non-vanishing bias-

variance trade-off. CM propose an in-sample test for predictive ability, i.e., a test of whether

bias reduction or estimation variance will prevail when including a predictor variable. Based

on this test, we propose a novel bagging estimator that is designed to work well for predictors

with non-zero coefficient of known sign. Under the null of the CM test, the parameter is

not equal to zero, but equal to a value for which squared bias from omitting the predictor
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variable is equal to estimation variance. In our bagging scheme, we set the parameter equal

to this value instead of zero whenever we fail to reject the null. For this, knowledge of the

coefficient’s sign is necessary. We derive the asymptotic distribution of the estimator and

show that for a wide range of parameter values, asymptotic mean-squared error is superior

to bagging a standard t-test. The improvements can be substantial and are not sensitive to

the choice of the critical value, which is a remaining tuning parameter. We obtain forecast

improvements if the data-generating parameter is small but non-zero. If the data-generating

parameter is indeed zero, however, our estimator has a large bias and is therefore imprecise.

Bootstrap aggregation, bagging, was proposed by Breiman (1996) as a method to improve

forecast accuracy by smoothing instabilities from modeling strategies that involve hard-

thresholding and pre-testing. With bagging, the modeling strategy is applied repeatedly

to bootstrap samples of the data, and the final prediction is obtained by averaging over

the predictions from the bootstrap samples. Bühlmann and Yu (2002) show theoretically

how bagging reduces variance of predictions and can thus lead to improved accuracy. Stock

and Watson (2012) derive a shrinkage representation for bagging a hard-threshold variable

selection based on the t-statistic. This representation shows that standard t-test bagging is

asymptotically equivalent to shrinking the unconstrained coefficient estimate to zero. The

degree of shrinkage depends on the value of the t-statistic.

Bagging is becoming a standard forecasting technique for economic and financial variables.

Inoue and Kilian (2008) consider different bagging strategies for forecasting US inflation

with many predictors, including bagging a factor model where factors are included if they

are significant in a preliminary regression. They find that forecasting performance is similar

to other forecasting methods, such as shrinkage methods and forecast combination. Rapach

and Strauss (2010) use bagging to forecast US unemployment changes with 30 predictors.

They apply bagging to a pre-test strategy that uses individual t-statistics to select variables,
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and find that this delivers very competitive forecasts compared to forecast combinations of

univariate benchmarks. Hillebrand and Medeiros (2010) apply bagging to lag selection for

heterogeneous autoregressive models of realized volatility, and they find that this method

leads to improvements in forecast accuracy.

Our method requires a sign restriction in order to impose the null. We focus on a single

predictor variable, because in this case, intuition and economic theory can be used to derive

sign restrictions. For models with multiple correlated predictors, sign restrictions are harder

to justify. In the literature, bagging has been applied for reducing variance from imposing

sign restrictions on parameters. A hard-threshold estimator with sign restriction sets the

estimate to zero if the sign restriction is violated. Gordon and Hall (2009) consider bagging

the hard-threshold estimator and show analytically that bagging can reduce variance. Sign

restrictions arise naturally in predicting the equity premium, see Campbell and Thompson

(2008) for a hard-threshold, and Pettenuzzo et al. (2013) for a Bayesian approach. Hille-

brand et al. (2013) analyze the bias-variance trade-off from bagging positive constraints on

coefficients and the equity premium forecast itself, and they find empirically that bagging

helps improving the forecasting performance.

The remainder of the paper is organized as follows. In Section 2, the bagging estimator for

weak predictors is presented and asymptotic properties are analyzed. Monte Carlo results

for small samples are presented in Section 3. In Section 4, the estimator is applied to Phillips

curve-based inflation forecasting. Concluding remarks are given in Section 5.

2 Bagging Predictors

Let y be the target variable we wish to forecast h-steps ahead, for example inflation. Let T

be the sample size. At time t, we forecast yt+h,T using the scalar variable xt,T as predictor
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and a model estimated on the available data. We model xt,T as a weak predictor that may

or may not improve forecasting accuracy,

yt+h,T = µ+ (T−1/2b)xt,T + ut+h,T , (1)

where µ is an intercept. We assume that the sign of b is known. Without loss of generality,

we assume that b is strictly positive, i.e., sign(b) = 1. Let βT = T−1/2b. We require that the

model (1) satisfies the following assumption.

Assumption 1 (Assumption 3 in Clark and McCracken (2012))

Let Ut,T = (xt,Tut+h,T ,x2
t,T ). (a) T−1∑[rT ]

t=1 Ut,TU
′
t−l,T ⇒ rΩl, where

Ωl = limT→∞ T
−1∑T

t=1 E[Ut,TUt−l,T ] for all l ≥ 0 and (b) ω11(l) = 0 for all l ≥ h, where

ω11(l) is the top-left element of Ωl. (c) supT≥1,s≤T E[|Us,T |2q] < ∞ for some q > 1. (d)

Ut,T − E[Ut,T ] is a zero mean triangular array satisfying Theorem 1 of de Jong (1997).

In (a) of Assumption 1 we require asymptotic mean square stationarity. In (b) we require

the errors ut+h to follow an MA(h − 1) process, which accounts for the overlapping nature

of errors when forecasting multiple steps ahead. Finite second moments are ensured by (c),

and (d) provides a central limit theorem (CLT).

For a given sample of length T and a given forecast horizon h, we consider two forecast-

ing models, the unrestricted model (UR) that includes the predictor variable xt, and the

restricted model (RE) that contains only an intercept. Let µ̂RET and (µ̂URT , β̂T )′ be the OLS

parameter estimates from the restricted model and the unrestricted model, respectively. The

forecasts for yt+h from the unrestricted and restricted models are denoted

ŷURt+h,T = µ̂URT + β̂Txt,T , (2)
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and

ŷREt+h,T = µ̂RET , (3)

respectively.

In practice, we are often not certain whether to include the weak predictor xt in the forecast

model or not, i.e., whether RE or UR yields more accurate forecasts. In such a situation,

it is common to use a pre-test estimator. Typically, the t-statistic τ̂T = T 1/2β̂T σ̂
−1
∞,T is used

to decide whether or not to include the variable. Here, σ̂2
∞,T is a consistent estimator of

the asymptotic variance of β̂T , σ2
∞,T <∞. Let I(.) denote the indicator function that takes

value 1 if the argument is true and 0 otherwise. The one-sided pre-test estimator is

β̂PTT = β̂T I(τ̂T > c), (4)

for some critical value c, for example 1.64 for a one-sided test at the 5% level. We focus on

one-sided testing because we assume that the sign of β is known.

The hard-threshold indicator function involved in the pre-test estimator introduces estima-

tion uncertainty, and it is not well designed to improve forecasting performance. Bootstrap

aggregation (bagging) can be used to smooth the hard-threshold and thereby improve fore-

casting performance (see Bühlmann and Yu, 2002; Breiman, 1996). The bagging version of

the pre-test estimator is defined as

β̂BGT = 1
B

B∑
b=1

β̂∗b I(τ̂ ∗b > c), (5)

where β̂∗b and τ̂ ∗b are calculated from bootstrap samples, and B is the number of bootstrap

replications.

The bagging estimator and the underlying t-statistic pre-test estimator are based on a test
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for β = 0. We use the estimated value if this null hypothesis can be rejected at some pre-

specified significance level, e.g., 5%. However, this test does not directly address the actual

decision problem whether or not including xt improves the predictive accuracy for the given

sample size. Rather, it is a test for whether the coefficient is zero or not.

Clark and McCracken (2012) (CM henceforth) propose an asymptotic in-sample test for

predictive ability for weak predictors to address this problem. The null hypothesis is

H0,CM : lim
T→∞

TE[(yt+h,T − ŷREt+h,T )2] = lim
T→∞

TE[(yt+h,T − ŷURt+h,T )2], (6)

i.e, that the predictive accuracies of the restricted and the unrestricted model are asymptot-

ically equal as measured by mean-squared error.

Clark and McCracken (2012) show that for the data-generating process equal to model (1)

and under Assumption 1, the asymptotic distribution under the null (6) is:

τ̂T →d N (sign(b),1). (7)

As we have assumed sign(b) = 1, the distribution converges to a normal distribution with

mean and variance equal to 1. The asymptotic distribution is non-central, because under

the null the coefficient is not zero. The critical values are different than for the standard

significance test and depend on the sign of b. More importantly, the null hypothesis for the

CM test is not β = 0. Therefore, we cannot set β = 0 if the CM test does not reject equal

predictive ability of restricted and unrestricted model (RE and UR). Instead, in that case,

we require estimation variance for β̂T to be equal to squared bias for the restricted model,

such that the MSE for estimation of the coefficient of xt,T is the same for RE and UR. This
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can be achieved by setting the coefficient to

β0,CM =
√

var[β̂T ] =
√
T−1σ̂2

∞,T = T−1/2σ̂∞,T . (8)

Note that we utilized the sign restriction on b to identify the sign of β0,CM .

This results in the following pre-test estimator based on the CM test, which we call CMPT

(Clark-McCracken Pre-Test).

β̂CMPT
T = β̂T I(τ̂ > c) + T−1/2σ̂∞,T I(τ̂ ≤ c), (9)

where, in general, c is different from the c used in the standard pre-test estimator (4), because

the distributions of the test statistics differ.

The bagging version of the CMPT estimator (9) is

β̂CMBG
T = 1

B

B∑
b=1

[
β̂∗b I(τ̂ ∗b > c) + T−1/2σ̂∞,T I(τ̂ ∗b ≤ c)

]
. (10)

The first term in the sum is exactly the standard bagging estimator, except that the crit-

ical value c differs. The critical values for CMBG come from the normal distribution

N (sign(b),1), while critical values for standard bagging come from the standard normal

distribution. The second term in the sum of (10) stems from the cases where the null is

not rejected for bootstrap replication b. Note that we do not re-estimate the variance under

the null, σ̂2
∞,T , for every bootstrap sample. The main reason to apply bagging are hard-

thresholds, which are not involved in the estimation of σ̂2
∞,T , such that there is no obvious

reason for bagging the variance estimator.
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2.1 Asymptotic Distribution and Mean-Squared Error

We have proposed an estimator that is based on the CM test that better reflects our goal

of improving forecast accuracy. In this section, we derive the asymptotic properties of this

estimator to see if, and for which parameter configurations, this estimator indeed improves

the asymptotic mean-squared error (AMSE). The asymptotic distribution for bagging es-

timators has been analyzed for bagging t-tests by Bühlmann and Yu (2002), and for sign

restrictions by Gordon and Hall (2009).

Assumption 2 (Bühlmann and Yu (2002), A1)

T 1/2(β̂T − βT ) d−→ N (0,σ2
∞), (11)

sup
v∈R
|P∗[T 1/2(β̂∗T − β̂T ) ≤ v]− Φ(v/σ∞)| = op(1), (12)

where P∗ is the bootstrap probability measure.

In fact, in the triangular array considered here, the CLT in equation (11) follows from As-

sumption 1. We restate it explicitly to make clear that the asymptotic framework is identical

to Bühlmann and Yu (2002). The second part assumes that the bootstrap distribution con-

verges to the asymptotic distribution of the CLT. Under Assumption 1, with a local-to-zero

coefficient as in model (1), Bühlmann and Yu (2002) derive the asymptotic distribution for

two-sided versions of the pre-test and the bagging estimators. The one-sided versions con-

sidered in this paper follow immediately as special cases. Let φ(.) denote the pdf and Φ(.)

the cdf of a standard normal variable.

Proposition 1 (Special case of Bühlmann and Yu (2002), Proposition 2.2)
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Under Assumption 2 for model (1)

T 1/2σ̂−1
∞,T β̂

PT
T

d−→ (Z + b)I(Z + b > c), (13)

T 1/2σ̂−1
∞,T β̂

BG
T

d−→ (Z + b)Φ(Z + b− c) + φ(c− Z − b), (14)

where Z is a standard normal random variable.

The proposition follows immediately from Bühlmann and Yu (2002). The asymptotic dis-

tributions depend on b and c. For the pre-test estimator, the indicator function enters the

asymptotic distribution. The distribution of the bagging estimator, on the other hand, con-

tains smooth functions of b and c. Bühlmann and Yu (2002) show how for certain values of

b and c, this reduces the variance of the estimator substantially. We adapt this proposition

to derive the asymptotic distributions of the estimators CMPT, equation (9), and CMBG,

equation (10).
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Proposition 2

Under Assumption 2 and model (1)

T 1/2σ̂−1
∞,T β̂

CMPT
T

d−→ (Z + b)I(Z + b > c) + I(Z + b ≤ c), (15)

and

T 1/2σ̂−1
∞,T β̂

CMBG
T

d−→ (Z + b)Φ(Z + b+ c) + φ(Z + b− c) + 1− Φ(Z + b− c), (16)

where Z is a standard normal variable.

The proof of the proposition is given in the appendix. The asymptotic distributions are

similar to those of the pre-test and bagging estimators (BG and PT), but involve extra

terms due to the different null hypothesis. For CMPT, the extra term is simply an indicator

function, and for CMBG it involves the standard normal cdf Φ(·).

Figures 1 and 2 show asymptotic mean-squared error, asymptotic bias, asymptotic squared

bias, and asymptotic variance of the pre-test and bagging estimators for test levels 5% and

1%, respectively. These quantities are functions of bσ−1
∞ , which we will refer to as bσ in the

following for simplicity. Note that critical values for the t-test and the CM-test differ. The

results for the two different levels are qualitatively identical. The effect of choosing a smaller

significance level is that the critical values increase, and the effects from pre-testing become

more pronounced. For the asymptotic mean-squared error (AMSE), we get the usual picture

for PT and PTBG (see Bühlmann and Yu, 2002). Bagging improves the AMSE compared

to pre-testing for a wide range of values of bσ, except at the extremes. CMBG compares

similarly to CMPT, but shifted towards the right compared to BG and PT. When looking

at any given value bσ, there are striking differences between the estimators based on the

CM-test and the ones based on the t-test. Both CMPT and CMBG do not perform well for
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bσ close to zero, but the AMSE decreases as bσ increases, before starting to slightly increase

again. For values of bσ from around 0.5 to 3, CMBG performs better than BG. For values

larger than 3 the estimators PT, BG, and CMBG perform similarly and get closer as bσ

increases. Thus, the region where CMBG does not perform well are values of bσ below 0.5.

The asymptotic biases for CMPT and CMBG are largest at bσ = 0. For all estimators, the

bias can be both positive or negative, depending on bσ. Bagging can reduce bias compared to

the corresponding pre-test estimation, in particular in the region where the pre-test estimator

has the largest bias. CMPT and CMBG have very low variance for bσ close to zero, because

the CM test almost never rejects for these parameters. However, as the null hypothesis is

not close to the true bσ in this region, CMPT and CMBG are very biased. As b increases

slightly, CMBG has the lowest asymptotic variance for bσ up to around 3.

Figures 1 and 2 about here.

The asymptotic results show that imposing a different null hypothesis dramatically changes

the characteristics of the estimators. The estimator based on the CM test is not intended to

work for bσ very close to zero. In this case, the standard pre-test estimator has much better

properties. For larger bσ, the CM-based estimators give substantially better forecasting

results. The results highlight that the estimator will be useful for relations that are not

expected to be zero, but too small to exploit with an unrestricted model.

2.2 Asymptotic Shrinkage Representation

Stock and Watson (2012) provide an asymptotic shrinkage representation of the BG estima-

tor. This representation is given by

β̂BGAT = β̂T
[
1− Φ(c− τ̂T ) + τ̂−1

T φ(c− τ̂T )
]

(17)

12



and Stock and Watson (2012, Theorem 2) show under general conditions that β̂BGT =

β̂BGAT + oP (1). This allows computation without bootstrap simulation. While bootstrapping

can improve test properties, bagging can improve forecasts even without actual resampling.

There is no reason to suspect that the estimator based on the asymptotic distribution will be

inferior to the standard bagging estimator. Therefore, we consider a version of the bagging

estimators that samples from the asymptotic, rather than the empirical, distribution of β̂T .

We can find closed form solutions for estimators that do not require bootstrap simulations.

Proposition 3 (Asymptotic Shrinkage representation)

Apply CMBG with the asymptotic distribution of β̂ under Assumption 2, then

β̂CMBGA
T = β̂T

[
1− Φ(c− τ̂T ) + τ̂−1

T φ(c− τ̂T ) + τ̂−1
T Φ(c− τ̂T )

]
(18)

The proof of the proposition is given in the appendix. The representation is very similar to

BGA in equation (17), with an extra term for the contribution for the CM null. Note that

we can express β̂CMBGA
T as the OLS estimator β̂T multiplied by a function that depends on

the data only through the t-statistic τ̂T , just like β̂BGAT .

Figure 3 about here.

Figure 3 plots BGA and CMBGA against the OLS estimate β̂. The vertical deviation from

the 45◦ line indicates the degree and direction of shrinkage applied by the estimator to the

OLS estimate β̂. This reveals the main difference between BGA and CMBGA. Rather than

shrinking towards zero, CMBGA shrinks towards σβ, which makes a substantial difference

for b close to 0. For larger β̂, the CMBGA, and thus CMBG, shrink more heavily downwards

than BGA.
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3 Monte Carlo Simulations

The asymptotic analysis suggests that our modified bagging estimator can yield significant

improvements in MSE for the estimation of β. This section uses Monte Carlo simulations to

investigate the performance for the prediction of yt+h,T using the estimators presented above

in small samples. In our linear model (1), lower MSE for estimation of β can be expected to

translate directly into lower MSE for prediction of yt+h,T .

For the Monte Carlo simulations, we generate data from the following model, which is

designed to resemble the empirical application of inflation forecasting:

yt+h,T = µ+ βTxt + ut+h

ut+h = εt+h + θ1εt+h−1 + · · ·+ θh−1εt+1

xt = φxt−1 + vt

εt ∼ N (0,σ2
ε )

vt ∼ N (0,σ2
v). (19)

We allow for serially correlated errors in the form of an MA(h-1) model. The choice of AR(1)

for xt is guided by the model for the monthly unemployment change series selected by AIC.

The predictor variable xt is a weak predictor with βT = T−1/2b. We consider values b ∈

{σ∞, 0, 1, 2, 4}. For b = σ∞, the asymptotic standard deviation of β̂, the performance of

restricted and unrestricted model are asymptotically identical. We consider the forecasting

methods discussed above. Table 1 presents an overview of all these methods.

Table 1 about here.

We are interested in the small-sample properties and consider sample sizes T ∈ {25, 50, 200}.

Furthermore, we set µ = 0.1 and φ = 0.66, which we take from the our empirical example,
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i.e., monthly changes in unemployment. Additionally, we consider φ = 0.9 to investigate

the behavior for more persistent processes. Finally, we consider the forecast horizons h = 1

and h = 6. The MA coefficients are set to θi = 0.4i−1 for 1 ≤ i ≤ h − 1, and 0 otherwise.

The critical values are taken from the respective asymptotic distribution of both tests for

significance levels 5% and 1%. We run 10,000 Monte Carlo simulations, and use 299 bootstrap

replications for bagging.

Columns 2 through 9 of Tables 2-5 show the MSE for the different estimators listed in Table

1. The last two columns show the rejection frequencies for the t-test and CM test. The MSE

is reported in excess of var[ut+h], which does not depend on the forecasting model, such that

the true model with known parameters will have MSE of zero.

For different values of bσ−1
∞ , we get the overall patterns expected from the asymptotic results

for all parameter configurations, sample sizes T , persistence parameters φ, and forecast

horizons h. For bσ−1
∞ = 0 the restricted model is correct. Forecast errors of the restricted

model stem only from mean estimation. The CM-based methods perform worst, as the

null hypothesis bσ−1
∞ = 1 is incorrect, and the CM-test rejects very infrequently. The null

of the t-test-based pre-test estimator is correct and is imposed whenever the test fails to

reject, which happens frequently under all parameter configurations. This allows PT and its

bagging version to achieve a lower MSE than the unrestricted model.

For bσ−1
∞ = 0.5, the predictor is still so weak that the unrestricted model always performs

best. The difference between using t-tests and CM-tests is not as large as it is for bσ−1
∞ = 0.

Setting bσ−1
∞ = 1 (or equivalently b = σ∞) imposes that the unrestricted and restricted

methods asymptotically have the same MSE for estimation of β. For T = 25, however, the

restricted model has substantially lower MSE than the unrestricted model for the prediction

of yt+h. The difference disappears as the sample size grows. The rejection frequency for the

CM-tests is fairly close to the nominal size for h = 1. For h = 6 the test is over-sized in
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small samples. Despite these small sample issues of the test, the CM-based estimators work

well when bσ−1
∞ = 1 even for T = 25 with φ = 0.66 in Tables 2 and 4. For φ = 0.9, shown in

Tables 3 and 5, CM-test and t-test-based estimators perform very similarly for T = 25.

For bσ−1
∞ = 2, the CM-based method is able to improve the MSE, even though the null

hypothesis is not precisely true. The magnitude of the improvement depends on the per-

sistence parameter φ, critical value, and sample size. For bσ−1
∞ = 4 the coefficient is large

enough such that the unrestricted model dominates. All other models except RE provide

very similar performance. Both CM and t-test reject very frequently, such that the different

null hypotheses are less important.

Our Monte Carlo simulations confirm that the asymptotic properties carry over to the small

sample behavior of the estimators and the resulting forecasts. The bagging version of the

CM-test can be expected to perform well when bias is not too small relative to the estimation

uncertainty, i.e., bσ−1
∞ is not close to zero. If bias is much smaller than estimation uncertainty,

then methods that shrink towards zero dominate. Our estimators will work well if the

predictors is weak but the coefficient is strictly bigger than zero.

Tables 2 through 5 about here.

4 Application to CPI Inflation Forecasting

Inflation is a key macroeconomic variable, measuring changes in consumer price levels.

Clearly, these price levels depend on the demand and supply for production and consumer

goods. Thus, one would expect them to be linked negatively to unemployment and positively

to industrial production. While economists and the media pay attention to such variables to

assess inflationary pressure, the variables do not help to forecast inflation more accurately

than univariate models. Cecchetti et al. (2000) find that using popular candidate variables as
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predictors fails to provide more accurate forecasts for US inflation, and that the relationship

between inflation and some of the predictors is of the opposite sign as one would expect.

Thus, they conclude that single predictor variables provide unreliable inflation forecasts.

Atkeson and Ohanian (2001) consider more complex autoregressive distributed-lags models

for inflation forecasting and conclude that none of the models outperforms a random walk

model. Stock and Watson (2007) argue that the relative performance of inflation forecasting

methods depends crucially on the time period considered. Not only does the relative per-

formance of forecasting methods change over time, but coefficients in the models are also

likely to be time-varying. Stock and Watson (2009) go so far as to call it the consensus

that including macroeconomic variables in models does not improve inflation forecasts over

univariate benchmarks that do not utilize information other than past inflation.

We denote inflation by

πht = ln(Pt+h/Pt). (20)

where Pt is the level of the US consumer price index (CPI, All Urban Consumers: All Items).

We specify our models in terms of changes in inflation and aim to forecast these changes for

different forecast horizons h. We define the change in inflation as ∆πht = h−1πht − π1
t−1, i.e,

the change of average inflation over the next h month compared to the most recent inflation

rate. The forecast models are the specified as

∆πht = µ+ βxt + εt+h, (21)

where xt is some predictor variable. For example, with a forecast horizon of 6 months (h = 6),

we forecast the change in average inflation over the next 6 months compared to the current

month’s inflation. Figure 4 shows the target variable ∆πht for different forecast horizons h.

Even at the longest forecast horizon of 12 months, where we are forecasting annual inflation,
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the series is not very persistent. The estimation methods used to determine the parameters

are the same as the ones used for the Monte Carlo simulations and are summarized in Table

1.

Figure 4 about here.

As predictor variables xt, we use unemployment changes (UNEMP) and growth in indus-

trial production (INDPRO). These transformation ensure that the predictors variables are

stationary. Both variables are seasonally adjusted. We use monthly data for the period

1:1948–7:2013 from the latest data vintage available from St. Louis Fed’s FRED1, on Au-

gust 21st, 2013.

For multiple-horizon forecasts, we choose a direct forecasting approach. Thus, the test

statistics and parameter estimates depend on the forecasting horizon and can differ. For all

forecast horizons, we use a short estimation window to allow for parameter instability. We

use estimation window lengths of 24 and 60 months, which are reasonable sample sizes as

we use only one predictor variable.

Bagging is conducted using a block bootstrap with block-length optimally chosen by the

method of Politis and White (2004), applying the correction of Patton et al. (2009). For

multiple-month forecasts (h > 1), we calculate standard errors using the method of Newey

and West (1987) to account for serial correlation.

In Table 6, we show the MSE results for the pseudo out-of-sample forecasting exercise. The

maximal out-of-sample period depends on the estimation window length m and the forecast

horizon h. For example, for m = 24 and h = 6 we forecast inflation over 3:1953–7:2013 (725

observations) and for m = 60 and h = 6 over 3:1956–7:2013 (689 observations).

Table 6 about here.
1URL: http://research.stlouisfed.org/fred2
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The first observation, in line with the existing literature on inflation forecasting, is that the

restricted model is very hard to beat. The unrestricted model never performs better for the

estimation window of 24, and for 60 it only performs better for the one-year ahead forecast

(h = 12). The relative performance of the forecasting methods depends on the forecast

horizon h. We apply the model confidence set of Hansen et al. (2011) to the resulting loss

series and indicate whether results are significant.

The forecasting performance shows that the CM-based bagging predictor can indeed improve

forecasting accuracy. Overall CMBGA and CMBG fare very well compared to standard

bagging, BG and BGA, and the unrestricted model. Compared to the restricted model,

which imposes a zero coefficient, we only improve for h = 12 significantly. The different

critical values have only a minor effect on the performance of the predictors.

The performance differences between the bootstrap and the asymptotic versions of the bag-

ging estimators are small. Thus, the asymptotic versions BGA and CMBGA offer computa-

tionally attractive alternatives to the bootstrap-based predictors BG and CMBG.

Figures 5 and 6 display the time series of coefficients from unrestricted estimation and

CMBGA for m = 24 and m = 60, respectively. For m = 24, the coefficients from unre-

stricted estimation are very volatile and frequently change sign for both predictor variables.

CMBGA imposes the sign restriction by construction and shrinks the coefficients heavily

towards the null hypothesis, which results in much less volatile coefficients. For m = 60, the

coefficients from unrestricted estimation are more stable, and sign changes of the coefficients

are less frequent. CMBGA again shrinks the coefficients substantially and imposes the sign

restriction.

Figures 5 and 6 about here.

Overall the proposed method works well for inflation forecasting, although the random walk
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benchmark, i.e., the restricted model, can only be beaten significantly at the one-year fore-

casting horizon. In line with previous literature, we find that inflation is hard to forecast

and the unpredictable component remains large compared to the part that is predictable

using either industrial production or unemployment. Even though our method improves the

accuracy of the forecast, the total gains for prediction of inflation are very modest.

5 Conclusion

Bootstrap aggregation (bagging) is typically applied to t-tests of whether coefficients are

significantly different from zero. In finite samples, a significantly non-zero coefficient is not

sufficient to guarantee that including the predictor improves forecast accuracy. Instead,

estimation variance has to be taken into account and weighed against bias from excluding

the predictor.

We propose a novel bagging estimator that is based on the in-sample test for predictive

ability of Clark and McCracken (2012), which addresses the bias-variance trade-off. We

show that this estimator performs well when bias and variance are of similar magnitude.

This is achieved by shrinking the coefficient towards an estimate of the estimation variance

rather than shrinking towards zero. In order to find this shrinkage target, the sign of the

coefficient has to be known. Thus, the method is appropriate for predictor variables for

which theory postulates the sign of the relation, as is often the case for economic variables.

The new bagging estimator is shown to have good asymptotic properties, dominating the

standard bagging estimator if bias and estimation variance are of similar magnitude. If,

however, the data-generating coefficient is very close to zero, such that the forecasting power

of the predictor is completely dominated by estimation uncertainty, the new estimator is

very biased.
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In this paper, we have been concerned with improving accuracy of a single predictor variable

when predictive power is diluted by estimation variance. Using single predictors for forecast-

ing is important, as many inflation predictors, for example, are considered individually (cf.

Cecchetti et al., 2000). Econometric forecasting models, however, typically include multiple

correlated predictor variables. In this context, our estimator could be applied to the individ-

ual predictor variables, just as standard bagging is applied in this context by, e.g., Inoue and

Kilian (2008). The drawbacks of applying our estimator in this context to each predictor is

that, first, it is harder to motivate sign restrictions on coefficients and, second, covariances

are ignored when assessing the estimation uncertainty. The second issue can be fixed by

using orthogonal factors instead of the original predictors, which makes it potentially even

harder to find credible sign restrictions. The extension to multivariate specifications is left

to future research.
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A Proofs

A.1 Proof of Proposition 2

The proof follows Bühlmann and Yu (2002), Proposition 2.2. We suppress the subscripts
T for the sample sizes in the proofs to reduce notational clutter. From Assumption 2 and
βT = T−1/2b, we get

T 1/2σ̂−1
∞ β̂

d−→ Z + b, Z ∼ N (0,1).

For β̂CMPT ,

T 1/2σ̂−1
∞ β̂CMPT = T 1/2σ̂−1

β β̂I(τ̂ > c) + T 1/2σ̂−1
β T−1/2σ̂∞I(τ̂ ≤ c)

= T 1/2σ̂−1
∞ β̂I(τ̂ > c) + I(τ̂ ≤ c).

Then by the continuous mapping theorem, because the right-hand side is continuous except
for a single point of measure zero,

T 1/2σ̂−1
∞ β̂CMPT d−→ (Z + b)I(Z + b > c) + I(Z + b ≤ c).

Next consider the bagged version

T 1/2σ̂−1
∞ β̂CMBG = 1

B

B∑
b=1

[
T 1/2σ̂−1

∞ β̂∗b I(τ̂ ∗b > c) + I(τ̂ ∗b ≤ c)
]
. (22)

From Assumption 2, part 2, we get

T 1/2(β̂∗b − β̂) d∗
−→ N (0,σ2

∞),

where d∗
−→ denotes converges in distribution w.r.t. the bootstrap measure P∗. That is,

T 1/2σ−1
∞ β̂

d−→ Z + b, Z ∼ N (0,1),
T 1/2σ−1

∞ β̂∗b
d∗
−→ W∼|Z N (Z + b,1),

where W∼|Z denotes the distribution of W conditional on Z. Then,

1
B

B∑
b=1

[
T 1/2σ̂−1

∞ β̂∗b I(τ̂ ∗b > c) + I(τ̂ ∗b ≤ c)
]
,

d∗
−→ EW [W I(W > c) + I(W ≤ c)|Z] ,
= EW [W |Z]− EW [W I(W ≤ c)|Z] + EW [I(W ≤ c)|Z] ,
= Z + b− EW [W I(W ≤ c)|Z] + Φ(c− Z − b).
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For x ∼ N (m,1), we have (Eqn. (6.3) in Bühlmann and Yu, 2002),

E[xI(x ≤ k)] = mΦ(k −m)− φ(k −m),

and thus

Z + b− EW [W I(W ≤ c)|Z] + Φ(c− Z − b),
= Z + b− (Z + b)Φ(c− Z − b) + φ(c− Z − b) + 1− Φ(Z + b− c),
= Z + b− (Z + b)(1− Φ(Z + b− c)) + φ(c− Z − b) + 1− Φ(Z + b− c),
= (Z + b)Φ(Z + b− c) + φ(Z + b− c) + 1− Φ(Z + b− c),

which completes the proof.

A.2 Proof of Proposition 3

Let βA ∼ N (β̂,T−1σ̂2
∞), the random variable sampled from the asymptotic distribution of

the OLS estimation with fixed β̂ and σ̂∞. Then, by the same arguments employed in the
proof of Proposition 2,

β̂BGA = E[βAI(T 1/2σ̂−1
∞ βA > c)]

= β̂ − E[βAI(T 1/2σ̂−1
∞ βA ≤ c)]

= β̂ − T−1/2σ̂∞E[T 1/2σ̂−1
∞ βAI(T 1/2σ̂−1

∞ βA ≤ c)]
= β̂ − β̂Φ(c− T 1/2σ̂−1

∞ β̂) + T−1/2σ̂∞φ(c− T 1/2σ̂−1
∞ β̂).

With τ̂ = T 1/2σ̂−1
∞ β̂ we get

β̂BGA = β̂ [1− Φ(c− τ̂)] + T−1/2σ̂∞φ(c− τ̂),
= β̂

[
1− Φ(c− τ̂) + τ̂−1φ(τ̂ − c)

]
.

We proceed along the same lines for β̂CMBGA:

β̂CMBGA = E[βAI(T 1/2σ̂−1
∞ βA > c) + T−1/2σ̂∞I(T 1/2σ̂−1

∞ βA ≤ c)]
= E[βAI(T 1/2σ̂−1

∞ β>c)] + E[T−1/2σ̂∗∞I(T 1/2σ̂−1
∞ βA ≤ c)]

= β̂BGA + T−1/2σ̂∞E[I(T 1/2σ̂−1
∞ βA ≤ c)]

= β̂BGA + T−1/2σ̂∞Φ(c− τ̂),

which gives the desired result:

β̂CMBGA = β̂
[
1− Φ(c− τ̂) + τ̂−1φ(c− τ̂)

]
+ T−1/2σ̂∞Φ(c− τ̂).
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Tables and Figures

Table 1: Forecasting methods for Monte Carlo and empirical application

Name Method Formula
RE Restricted Model ŷt+h = µ̂t,h
UR Unestricted Model ŷt+h = µ̂t,h + β̂t,hxt
PT Pre-Test t-test ŷt+h = µ̂t,h + I(τ̂ > c)β̂t,hxt
BG Bagging t-test ŷt+h = µ̂t,h + 1

B

∑B
b=1 β̂

∗
b I(τ̂∗b > c)xt

BGA Asymptotic BG ŷt+h = µ̂t,h + β̂t,h
[
1− Φ(c− τ̂) + τ̂−1φ(c− τ̂)

]
xt

CMPT Pre-Test CM-test ŷt+h = µ̂t,h +
(
β̂t,hI(τ̂ > c) + T−1/2σ̂∞I(τ̂ ≤ c)

)
xt

CMBG Bagging CM-test ŷt+h = µ̂t,h +
(

1
B

∑B
b=1 β̂

∗
b I(τ̂∗b > c) + T−1/2σ̂∞,βI(τ̂∗b ≤ c)

)
xt

CMBGA Asymptotic CMBG ŷt+h = µ̂t,h +
(
β̂t,h

[
1− Φ(c− τ̂) + τ̂−1φ(c− τ̂) + τ̂−1Φ(c− τ̂)

])
xt

Note: µ̂t,h and β̂t,h are the OLS estimates that depend on the forecast horizon.
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Table 2: Monte Carlo Results for φ = 0.66 and c0.95

MSE Rejection %

RE UR PT PTBG PTBGA CM CMBG CMBGA t-test CM-test
Panel 1: bσ−1

∞ = 0
h=1

T = 25 6.84 21.74 11.55 12.63 12.54 21.60 23.39 23.19 5.90 0.60
T = 50 4.69 9.41 6.19 6.42 6.41 10.07 10.70 10.69 4.95 0.70
T = 200 0.74 1.78 0.97 1.03 1.01 1.73 1.88 1.87 4.60 0.55

h=6
T = 25 19.43 42.22 28.92 30.66 29.81 39.33 42.17 41.16 14.00 6.10
T = 50 13.07 22.34 15.97 16.60 16.20 21.15 22.65 22.17 9.80 2.55
T = 200 2.60 4.60 3.10 3.34 3.22 4.84 5.18 5.07 5.85 1.00

Panel 2: bσ−1
∞ = 0.5

h=1
T = 25 9.36 20.96 15.72 13.95 13.73 15.64 17.50 17.28 13.20 2.70
T = 50 6.63 10.69 8.18 7.50 7.48 7.60 8.24 8.23 11.95 2.15
T = 200 0.45 1.35 0.89 0.68 0.67 0.63 0.81 0.80 13.85 1.90

h=6
T = 25 27.22 46.59 38.00 35.50 35.39 35.07 37.03 36.43 25.15 11.90
T = 50 13.82 21.23 17.03 16.26 15.82 16.12 17.59 16.93 20.00 6.75
T = 200 3.87 5.62 4.60 4.41 4.22 4.16 4.66 4.47 14.70 2.45

Panel 3: bσ−1
∞ = 1

h=1
T = 25 17.67 23.81 22.89 18.13 18.00 14.43 15.48 15.50 23.80 6.10
T = 50 9.30 10.07 10.71 8.48 8.42 6.80 7.18 7.17 24.40 4.85
T = 200 2.06 2.26 2.43 1.89 1.87 1.35 1.44 1.43 27.05 5.25

h=6
T = 25 44.20 46.14 45.87 39.96 40.41 36.61 36.49 36.24 42.60 23.40
T = 50 17.97 20.42 20.02 17.08 16.81 13.84 14.60 13.91 34.90 14.75
T = 200 4.85 4.80 5.28 4.36 4.22 3.47 3.77 3.55 26.40 7.10

Panel 4: bσ−1
∞ = 2

h=1
T = 25 48.44 23.89 32.83 24.03 23.81 20.79 17.56 17.57 53.75 21.35
T = 50 21.81 9.94 14.16 10.49 10.42 9.58 7.76 7.73 58.50 22.75
T = 200 4.87 1.83 2.76 2.03 2.01 1.97 1.47 1.47 63.30 25.80

h=6
T = 25 96.54 46.97 56.01 46.86 47.80 44.48 40.44 40.79 70.95 49.05
T = 50 46.09 21.85 27.92 22.41 22.79 21.54 19.01 18.89 66.25 38.45
T = 200 11.64 5.16 7.14 5.48 5.57 5.48 4.62 4.51 64.60 29.75

Panel 5: bσ−1
∞ = 4

h=1
T = 25 149.03 21.10 26.21 24.11 23.82 29.24 22.90 22.78 93.65 74.20
T = 50 74.98 9.74 11.08 10.76 10.65 12.84 10.92 10.83 96.55 83.70
T = 200 18.29 2.74 2.84 2.90 2.90 3.30 3.05 3.04 98.80 90.15

h=6
T = 25 302.49 40.50 44.53 42.16 42.87 51.46 42.16 45.52 96.95 87.95
T = 50 147.60 21.55 22.86 22.23 22.68 25.83 22.42 23.12 98.30 89.15
T = 200 34.15 4.31 4.57 4.45 4.64 5.59 4.49 4.83 98.40 87.50

Notes: MSE calculated in excess of var[ut], and multiplied by 100.
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Table 3: Monte Carlo Results for φ = 0.9 and c0.95

MSE Rejection %

RE UR PT PTBG PTBGA CM CMBG CMBGA t-test CM-test
Panel 1: bσ−1

∞ = 0
h=1

T = 25 6.82 39.64 22.50 23.47 23.49 40.09 43.48 43.14 6.98 0.80
T = 50 3.60 13.89 7.72 8.07 8.03 13.36 14.46 14.38 5.64 0.74
T = 200 0.91 2.20 1.31 1.36 1.36 2.26 2.43 2.43 5.46 0.44

h=6
T = 25 21.89 84.13 55.36 57.93 56.25 78.06 83.07 81.65 15.20 6.45
T = 50 13.49 35.24 23.79 25.76 24.68 34.48 37.33 36.31 9.50 3.00
T = 200 3.24 6.39 4.09 4.50 4.27 6.46 7.06 6.85 5.90 0.62

Panel 2: bσ−1
∞ = 0.5

h=1
T = 25 12.17 41.66 27.36 26.12 25.94 32.45 36.03 35.62 10.64 1.62
T = 50 5.35 13.74 9.70 8.84 8.77 9.95 11.07 11.03 10.86 1.58
T = 200 1.40 2.47 1.87 1.69 1.68 1.73 1.90 1.90 11.98 1.84

h=6
T = 25 24.19 77.86 56.40 53.55 52.63 58.47 62.08 61.08 23.90 11.25
T = 50 15.02 34.25 25.23 24.92 23.84 25.05 28.46 27.17 18.80 6.65
T = 200 3.66 5.99 4.77 4.60 4.28 4.48 5.20 4.87 14.02 2.50

Panel 3: bσ−1
∞ = 1

h=1
T = 25 17.49 37.97 30.36 25.42 25.43 23.88 26.93 26.92 17.24 3.36
T = 50 8.18 12.51 11.21 8.77 8.68 7.18 8.13 8.07 20.36 3.76
T = 200 2.07 2.37 2.36 1.83 1.82 1.31 1.42 1.41 23.86 4.24

h=6
T = 25 43.83 84.33 70.23 63.89 63.15 68.45 70.06 70.60 35.15 18.00
T = 50 24.15 30.77 28.57 24.50 23.59 21.09 23.42 22.05 31.65 12.90
T = 200 5.71 6.25 6.52 5.46 5.17 4.22 4.78 4.36 27.00 7.38

Panel 4: bσ−1
∞ = 2

h=1
T = 25 52.56 39.39 46.45 34.30 34.30 26.47 26.01 26.06 38.94 12.62
T = 50 24.42 14.11 18.03 13.28 13.16 10.53 9.51 9.45 47.92 16.88
T = 200 5.57 2.47 3.51 2.60 2.58 2.42 1.94 1.93 59.18 23.00

h=6
T = 25 128.12 82.76 91.29 73.93 74.94 65.95 63.16 62.30 58.20 37.95
T = 50 59.63 30.62 38.18 29.77 29.92 26.82 24.87 24.02 58.40 32.85
T = 200 13.22 5.93 8.41 6.17 6.22 5.74 4.98 4.70 59.84 27.30

Panel 5: bσ−1
∞ = 4

h=1
T = 25 175.35 39.32 56.76 43.18 42.70 44.32 33.49 33.57 76.24 47.18
T = 50 83.22 13.60 18.01 15.59 15.38 18.25 13.91 13.79 88.14 64.32
T = 200 17.05 2.08 2.43 2.37 2.35 2.93 2.39 2.37 96.22 81.52

h=6
T = 25 404.67 72.41 89.23 74.60 76.49 79.20 68.59 69.56 88.25 72.60
T = 50 205.15 33.91 41.26 35.47 36.85 41.92 33.88 35.09 92.05 75.40
T = 200 44.01 6.15 6.91 6.34 6.74 8.38 6.28 6.85 96.78 81.46

Notes: MSE calculated in excess of var[ut], and multiplied by 100.
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Table 4: Monte Carlo Results for φ = 0.66 and c0.99

MSE Rejection %

RE UR PT PTBG PTBGA CM CMBG CMBGA t-test CM-test
Panel 1: bσ−1

∞ = 0
h=1

T = 25 7.26 21.02 10.54 11.06 10.91 21.38 22.26 21.98 1.42 0.16
T = 50 2.93 8.09 3.67 3.88 3.86 8.12 8.48 8.42 1.20 0.04
T = 200 0.63 1.67 0.74 0.78 0.78 1.71 1.76 1.76 1.04 0.10

h=6
T = 25 18.45 42.04 26.89 27.70 26.98 37.10 39.17 37.99 8.15 3.45
T = 50 10.35 21.45 12.85 13.90 13.24 19.93 20.95 20.23 3.95 1.45
T = 200 3.39 5.39 3.62 3.83 3.69 5.52 5.73 5.62 1.56 0.30

Panel 2: bσ−1
∞ = 0.5

h=1
T = 25 11.02 21.62 14.24 13.30 13.21 15.37 16.26 16.03 3.74 0.72
T = 50 5.62 10.08 6.73 6.29 6.25 6.66 7.06 7.02 3.62 0.36
T = 200 1.42 2.26 1.62 1.48 1.48 1.49 1.57 1.57 3.06 0.26

h=6
T = 25 21.72 42.23 32.86 30.26 30.34 30.34 31.96 31.05 16.95 7.65
T = 50 10.73 18.75 13.89 13.21 12.76 13.12 14.29 13.48 8.90 3.10
T = 200 2.84 4.46 3.22 3.13 2.94 3.01 3.35 3.15 4.42 0.60

Panel 3: bσ−1
∞ = 1

h=1
T = 25 17.39 22.84 20.74 16.60 16.57 12.09 12.92 12.71 9.08 1.54
T = 50 8.18 9.41 9.42 7.33 7.34 4.94 5.24 5.22 9.96 1.34
T = 200 1.75 1.89 2.04 1.51 1.49 0.88 0.95 0.94 9.46 0.94

h=6
T = 25 41.53 45.77 45.05 38.09 39.21 33.44 33.88 33.13 28.55 14.70
T = 50 20.87 22.21 22.59 19.34 19.22 15.60 16.46 15.50 17.80 7.60
T = 200 4.52 4.81 4.98 4.17 4.02 2.97 3.29 3.03 9.88 1.98

Panel 4: bσ−1
∞ = 2

h=1
T = 25 47.77 23.19 38.34 26.24 26.28 19.64 16.40 16.56 33.86 10.12
T = 50 20.74 9.30 16.73 11.02 10.98 8.37 6.61 6.65 33.70 9.18
T = 200 5.27 2.15 4.22 2.79 2.76 2.36 1.81 1.80 37.70 10.20

h=6
T = 25 84.60 40.83 57.31 42.06 44.63 39.57 34.09 34.60 52.35 32.35
T = 50 48.41 22.29 34.13 24.36 25.91 23.47 19.73 20.04 50.10 26.25
T = 200 11.17 4.88 8.70 5.77 6.05 5.30 4.36 4.25 41.00 13.84

Panel 5: bσ−1
∞ = 4

h=1
T = 25 148.82 22.75 40.96 31.12 30.87 40.47 27.96 28.23 80.40 53.04
T = 50 71.20 9.13 14.79 12.52 12.37 18.16 12.44 12.46 88.04 62.20
T = 200 17.51 2.31 3.05 2.92 2.90 4.40 3.20 3.18 93.68 70.42

h=6
T = 25 345.55 49.56 64.55 54.44 57.74 67.39 54.12 57.22 93.55 81.45
T = 50 154.77 20.70 29.62 23.07 25.63 32.96 23.24 26.19 92.10 75.20
T = 200 37.91 4.95 6.22 5.36 5.95 8.45 5.59 6.52 95.06 76.14

Notes: MSE calculated in excess of var[ut], and multiplied by 100.
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Table 5: Monte Carlo Results for φ = 0.9 and c0.99

MSE Rejection %

RE UR PT PTBG PTBGA CM CMBG CMBGA t-test CM-test
Panel 1: bσ−1

∞ = 0
h=1

T = 25 7.70 40.13 20.26 21.18 20.98 40.48 42.39 41.94 1.28 0.08
T = 50 3.76 13.34 6.46 6.74 6.69 13.41 13.90 13.83 1.10 0.08
T = 200 0.93 2.30 1.15 1.19 1.19 2.23 2.31 2.30 0.96 0.04

h=6
T = 25 21.81 81.10 48.04 50.87 48.61 106.76 110.36 108.59 5.62 2.00
T = 50 10.76 32.52 18.37 19.82 18.55 32.27 34.25 33.05 3.78 1.02
T = 200 2.04 5.17 2.56 2.92 2.64 5.09 5.46 5.25 1.66 0.18

Panel 2: bσ−1
∞ = 0.5

h=1
T = 25 12.23 40.64 22.78 21.74 21.49 30.68 32.76 32.24 3.00 0.26
T = 50 6.25 14.07 9.09 8.60 8.58 10.67 11.27 11.19 3.46 0.46
T = 200 1.22 2.26 1.48 1.34 1.34 1.39 1.49 1.48 3.48 0.24

h=6
T = 25 32.00 80.32 54.94 53.58 51.93 61.73 67.38 63.71 14.35 7.50
T = 50 16.48 35.75 25.92 25.07 23.81 27.35 29.73 28.22 11.10 3.35
T = 200 3.49 5.95 4.23 4.21 3.86 4.04 4.58 4.22 4.58 0.64

Panel 3: bσ−1
∞ = 1

h=1
T = 25 17.16 39.57 27.37 24.15 24.13 24.46 26.54 26.08 5.86 0.84
T = 50 9.25 13.95 11.92 9.85 9.84 7.70 8.30 8.24 7.88 0.94
T = 200 1.86 2.14 2.19 1.67 1.66 1.07 1.14 1.13 7.90 0.88

h=6
T = 25 54.06 82.65 69.21 61.55 60.74 72.97 73.95 73.73 18.10 8.26
T = 50 23.57 32.24 28.70 24.88 23.95 19.93 22.05 20.35 14.76 4.86
T = 200 5.52 6.48 6.27 5.49 5.15 3.80 4.43 3.92 10.82 1.98

Panel 4: bσ−1
∞ = 2

h=1
T = 25 46.31 36.34 43.88 31.21 31.50 21.13 20.94 20.74 17.50 4.28
T = 50 23.56 13.75 20.90 14.05 14.03 8.79 7.97 7.96 24.50 6.28
T = 200 5.31 2.26 4.28 2.79 2.76 2.16 1.72 1.71 33.78 8.60

h=6
T = 25 127.54 81.29 100.74 75.29 77.74 64.03 58.88 59.03 39.90 21.04
T = 50 59.66 33.76 47.63 34.44 35.36 28.31 25.72 25.16 34.58 15.44
T = 200 14.60 6.58 11.28 7.47 7.87 6.66 5.71 5.48 37.94 12.38

Panel 5: bσ−1
∞ = 4

h=1
T = 25 173.15 36.79 73.40 48.12 48.62 49.19 33.34 34.30 57.28 29.28
T = 50 80.02 13.95 27.18 19.35 19.18 22.39 15.46 15.48 71.10 42.02
T = 200 17.42 2.14 3.57 2.98 2.96 4.42 3.03 3.00 87.96 62.18

h=6
T = 25 420.58 82.77 133.75 94.18 102.51 105.78 82.30 87.08 76.10 58.90
T = 50 206.64 31.99 56.46 36.95 42.37 48.94 34.13 37.89 80.70 60.90
T = 200 43.69 5.67 9.06 6.31 7.53 10.86 6.23 7.65 88.52 64.06

Notes: MSE calculated in excess of var[ut], and multiplied by 100.
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Table 6: Out-of-sample inflation forecasting: MSE relative to restricted model.

Panel 1: m = 24
c0.99 c0.95

h = 1 3 6 12 1 3 6 12
RE 1* 1* 1* 1 1* 1* 1* 1

INDPRO
UR 1.095 1.116 1.072 1.142 1.095 1.116 1.072 1.142
PT 1.050 1.050 0.994* 0.995 1.046 1.076 1.005* 1.020
BGA 1.032 1.060 1.004 1.018 1.048 1.067 1.018 1.049
BG 1.036 1.057 1.009 1.015 1.053 1.067 1.025 1.045
CM 1.079 1.075 1.038 1.009 1.117 1.079 1.042 1.020
CMBGA 1.018 1.041* 0.993* 0.986 1.033 1.052 1.000* 1.005
CMBG 1.023 1.038* 0.999* 0.991 1.037 1.050 1.004* 1.008

UNEMP
UR 1.059 1.092 1.080 1.066 1.059 1.092 1.080 1.066
PT 1.004* 0.994* 1.007 0.973* 1.010* 1.042 1.020* 1.020
BGA 1.006 1.015* 1.008 0.980 1.019 1.035 1.026 0.991*
BG 1.006 1.025* 1.012 0.980 1.020 1.043 1.027 0.989*
CM 1.025 1.043 1.007* 0.981* 1.044 1.044* 1.015* 0.983*
CMBGA 0.991* 0.999* 0.988* 0.965* 1.001* 1.010* 0.999* 0.973*
CMBG 0.991* 1.011* 0.992* 0.967* 1.000* 1.021* 1.003* 0.973*

Panel 2: m = 60
c0.99 c0.95

h = 1 3 6 12 1 3 6 12
RE 1* 1* 1* 1 1* 1* 1* 1

INDPRO
UR 1.019 1.057 1.024 1.021 1.019 1.057 1.024 1.021
PT 1.001* 1.003* 1.002* 1.000 0.998* 1.005* 1.005* 0.999*
BGA 0.999* 1.014 1.000* 0.995* 1.002* 1.026 1.004* 0.997*
BG 0.999* 1.021 1.000* 0.995* 1.003* 1.032 1.004* 0.998*
CM 1.025 1.026 1.025 1.011 1.025 1.030 1.025 1.012
CMBGA 0.999* 1.003* 0.999* 0.995 1.000* 1.009* 1.000* 0.995*
CMBG 1.000* 1.010 0.999* 0.993* 1.000* 1.016* 0.999* 0.994*

UNEMP
UR 1.022 1.042 1.044 1.018 1.022 1.042 1.044 1.018
PT 0.998* 1.004* 1.012* 1.006 1.000* 1.022 1.043 1.003
BGA 1.000* 1.009 1.019 0.997 1.004 1.021 1.031 1.002
BG 1.001* 1.014 1.029 0.995* 1.005 1.025 1.037 1.000
CM 1.005 1.018 1.003* 0.997* 1.005* 1.022* 1.005* 1.001*
CMBGA 0.996* 1.000* 1.002* 0.991* 0.998* 1.006* 1.011* 0.994*
CMBG 0.997* 1.003* 1.009* 0.988* 0.999* 1.009* 1.021 0.992*

Notes: An asterisk (*) indicates that the model is included in 95% model confidence set (MCS). The MCS
are computed for all methods with same m, c, and h, i.e., for every column in each panel. Thus, each MCS

is computed for 15 models.
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Figure 1: Comparison of asymptotic mean-squared error (AMSE), asymptotic bias (Abias), asymp-
totic square bias (Abias square), and asymptotic variance (Avar) as a function of bσ−1

∞ for 5%
significance level .
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Figure 2: Comparison of asymptotic mean-squared error (AMSE), asymptotic bias (Abias), asymp-
totic square bias (Abias square), and asymptotic variance (Avar) as a function of bσ−1

∞ for 1%
significance level .
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Figure 3: Shrinkage of slope parameter for σβ = 0.2 and 5% level. Dotted line is 45◦ line.
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Figure 4: Time series of target variable ∆πht at the different forecasting horizons h.
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Figure 5: Recursive coefficients for UR and CMBGA in forecast regressions of inflation changes
on (a) unemployment changes and (b) industrial production growth. Forecast horizon h = 12 and
significance level 1%. Estimation window length m = 24.
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Figure 6: Recursive coefficients for UR and CMBGA in forecast regressions of inflation changes
on (a) unemployment changes and (b) industrial production growth. Forecast horizon h = 12 and
significance level 1%. Estimation window length m = 60.
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