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Abstract

In this paper, we develop a fully nonparametric approach for the estimation of
the cumulative incidence function with Missing At Random right-censored competing
risks data. We obtain results on the pointwise asymptotic normality as well as the
uniform convergence rate of the proposed nonparametric estimator. A simulation study
that serves two purposes is provided. First, it illustrates in details how to implement
our proposed nonparametric estimator. Secondly, it facilitates a comparison of the
nonparametric estimator to a parametric counterpart based on the estimator of Lu
and Liang (2008). The simulation results are generally very encouraging.
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1 Introduction

Competing risks models are widely used in biostatistics, empirical health economics and

labor economics, for example, when analyzing data for onset of diseases, mortality due to

mutually exclusive causes of death or unemployment where each individual is faced with

competing exits (full-time employment, part-time employment). Hence, studying estimators

of the cumulative incidence function within this modelling framework is of great importance.

The goal of this paper is to derive asymptotic results for the nonparametric estimator of

the cumulative incidence function in cases where continuous covariates a¤ect the realiza-

tion of the failure time and the cause of failure is Missing At Random (MAR) for some

observations. The proposed nonparametric estimator is complementary to i) the developed

(semi)-parametric procedures with right-censored data and continuous explanatory covari-

ates (e.g., Andersen et al., 1993; Jeong and Fine, 2007; Scheike et al., 2008) and ii) the

suggested parametric methods for right-censored data where the cause of failure is some-

times missing (Lu and Liang, 2008). Finally, we compare our results on uniform convergence

rates with the results of Bordes and Gneyou (2011) who discuss the uniform convergence

rate for the nonparametric estimator with right-censored competing risks data.

2 The Nonparametric Estimator

For expositional convenience, we will focus on two risks, 1 and 2. Let Y be the (actual) failure

time and 
 2 f1; 2g be a failure type indicator. Let X 2 X �Rd be a vector of observed

covariates and denote by x its realization. De�ne for each risk j = 1; 2 and (t; x) 2 R+�X

the cumulative incidence function

Fj(tjx) := P(Y � t; 
 = jjx): (1)
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We introduce the cause-speci�c hazard rate

�j(t; x) := lim
t!0

P(t � Y < t+ dt; 
 = jjY � t; x)
t

: (2)

The cumulative cause-speci�c hazard rate is de�ned as follows: �j(t; x) :=
R t
0
�j(u; x)du.

Also, consider the overall hazard rate �(t; x) := �1(t; x) + �2(t; x), the corresponding cu-

mulative overall hazard rate �(t; x) :=
R t
0
�(u; x)du; and the survival function S(t � jx) :=

P(Y � tjx). By using (1) and (2) we get for j = 1; 2

Fj(tjx) =
Z t

0

S(u� jx)d�j(u; x); (3)

where

S(t� jx) =
Y
u<t

f1� d�(u; x)g : (4)

Denote by Z the censoring variable with Z ?? Y; 
 j X, where the symbol ?? implies inde-

pendence between the underlying random variables. Also, T := min(Y; Z); ~
 := 
1 fY � Zg.

We observe n independently and identically distributed copies (Ti; Xi; 1f~
i > 0g; Ri; Ri~
i; ),

where Ri is the missing indicator variable and the missing data mechanism satis�es the MAR

assumption (Rubin, 1976; Little and Rubin, 1987). The value of Ri equals 0 if Ti = Yi and

the cause of failure is not observed. On the other hand, the indicator variable Ri is equal

to 1 if Ti = Yi and the cause of failure is observed or if Ti = Zi: The MAR scheme that we

adopt is described as follows:

P(R = 1j~
; ~
 > 0; T; x) = P(R = 1j~
 > 0; x) =: �(x): (5)

The independence of the probability on T has as its consequence the predictability of all

integrands of the proposed estimator. We also assume that

R ?? T jX: (6)
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The latter is necessary in order to ensure that the underlying martingale processes are zero-

mean. In the above discussion we assume that the covariates are time-invariant. This setup

is adopted only for notational convenience as all the results in the sequel are true if X is

predictable.

We will study the two following estimators for the cumulative incidence function,

F̂Cj (tjx) =
Z t

0

ŜC(u� jx)d�̂Cj (u; x); j = 1; 2 (7)

and

F̂Lj (tjx) =
Z t

0

ŜL(u� jx)d�̂Lj (u; x); j = 1; 2; (8)

where the superscripts C and L refer to the type of smoothing with respect to vector x: In

particular, C is used for the local constant smoothing, whereas L is used for the local linear

smoothing.

Let ! = (!1; :::; !d) 2 Rd and Kh(!) = 1
hd

dY
p=1

K
�!p
h

�
; where K is a kernel with compact

support K and h = o(n). Introduce the quantity Lh;x(!) = Kh(!)�Kh(!)!T �D�1�c1
�c0�cT1 �D�1�c1

, with �c0 =

1
n

Pn
i=1Kh(x�Xi), �c1� = 1

n

Pn
i=1Kh(x�Xi)(x��Xi�), �d�� = 1

n

Pn
i=1Kh(x�Xi)(x��Xi�)(x��

Xi�), �c1 = (�c1�)d�=1, and �D = ( �d��)
d
�;k=1. The notations x� and Xi� refer to the ��th element

of the corresponding row vector. The quantity Kh(:) will be used for the construction of the

weights for the local constant estimator. On the other hand, the quantity Lh;x(:), which is

also commonly referred to as the equivalent kernel, will be used for the construction of the

weights for the local linear estimator.

First, we will describe the nonpamatetric estimator for the probability of having an

observation with a missing cause of failure. The estimator of this probability is needed for

the estimator of �j(t; x). De�ne �(x; ~
) := P(R = 1jx; ~
) = 1f~
 > 0g�(x) + 1f~
 = 0g.

That is, �(x; ~
) speci�es the probability of having an observation with a missing cause of

failure given the observed characteristics x and the value of the indicator ~
. This probability

is independent of the exact value of ~
 in case the latter is strictly positive (i.e., 1 or 2),

4



whereas it is equal to one if ~
 > 0 (i.e., the observation is censored). For the local constant

smoothing we have �̂C(x) =
Pn
i=1Kh(x�Xi)1f~
i>0gRiPn
i=1Kh(x�Xi)1f~
i>0g

, whereas for the local linear smoothing we

have �̂L(x) =
Pn
i=1 Lh;x(x�Xi)1f~
i>0gRiPn
i=1 Lh;x(x�Xi)1f~
i>0g

:

Next, we proceed with the description of the estimator for the function �j(t; x). For

this purpose, consider the counting process Nji(t) = 1 fTi � t; ~
i = j; Ri = 1g. This process

describes whether subject i has failed due to risk j in the time interval [0; t], and the cause of

failure is not missing. Moreover, consider the "at risk" predictable process Yi(t) = 1 fTi � tg,

which describes whether subject i has survived and has not been censored up to t�. Fur-

thermore, we will make use of the following weights for the local constant and local linear

smoothing:

wCi (x) =
Ri

�̂C(Xi; ~
i)
Kh(x�Xi)

. nX
i=1

Ri

�̂C(Xi; ~
i)
Kh(x�Xi);

wLi (x) =
Ri

�̂L(Xi; ~
i)
Lh;x(x�Xi)

. nX
i=1

Ri

�̂L(Xi; ~
i)
Lh;x(x�Xi):

Denote by H(tjx) the conditional survival function of the random variable T . The estimator

of the cumulative hazard rate �j(t; x) is given by

�̂�j (t; x) =
1

n

nX
i=1

Z t

0

w�i (x)

Ĥ�(u� jx)
dNji(u); (9)

where Ĥ�(t�jx) =
Pn

i=1w
�
i (x)1(Ti � t) for � = C;L. Note that we employ an inverse proba-

bility weighting (either local constant or local linear smoothing) scheme. A similar approach

is commonly used in the standard regression context for dealing with MAR observations (Hu

et al., 2010).

Finally, it remains to present the estimator for the survival function S(tjx). We introduce

the counting process �Ni(t) = 1 fTi � t; ~
i > 0g ; which speci�es whether subject i has failed

due to either risk 1 or risk 2 in the time interval [0; t]. Additionally, we will use the following

weights for the two di¤erent smoothing techniques:
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bCi (x) = Kh(x�Xi)
. nX
i=1

Kh(x�Xi);

bLi (x) = Lh;x(x�Xi)
. nX
i=1

Lh;x(x�Xi)

We have

�̂�(t; x) =
1

n

nX
i=1

Z t

0

b�i (x)
�H�(u� jx)

d �Ni(u);

where �H�(t� jx) =
Pn

i=1 b
�
i (x)1(Ti � t) for � = C;L. The estimator of S(t� jx) is given by

Ŝ�(t� jx) =
Y
u<t

n
1� d�̂�(u; x)

o
: (10)

Note that for the latter estimator, we adopt the conventional smoothing (either local constant

or local linear) techniques (i.e., without considering the missing cause of failure). The reason

that we do not need inverse probability weights for the estimation is that we always observe

variable Ti and the stochastic variable 1f~
i > 0g irrespective of whether we observe the cause

of failure.

3 Asymptotic results

We assume that the support of X is of the form X=
p=dO
p=1

[xlp; xup] �Rd, with xlp < xup for any

p = 1; :::; d:We also de�ne the internal region Xh :=
�
x 2 X :

�
x� h! : ! 2 Kd

	
� X

	
. For

x 2 Xh; let �(x) be some real positive number such that �(x) < sup ft 2 R+ : H(tjx) > 0g.

Finally,H(t; x) := H(tjx)f(x); where f(x) is the probability density function ofX; H(t; x; ~
 >

0) := H(t; xj~
 > 0)P(~
 > 0); H(t; x; ~
 = 0) := H(t; xj~
 = 0)P(~
 = 0) and jjKjj22 :=R
K2(u)du. We will employ the following assumptions to derive the asymptotic normality

of the proposed estimator. All the results are proved in the appendix.
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Assumption 1 The derivatives of �j(t; x) (j = 1; 2) and H(tjx) with respect to x are con-

tinuously di¤erentiable up to order 2 on the interior of [0; �(x)] for any x 2 Xh; and the

corresponding derivatives are uniformly bounded. Moreover, the probability density function,

f(x), is strictly positive on Xh:

Assumption 2 It holds that �(x) � � > 0 for any x 2 X .

Assumption 3 The univariate kernel, K, is (i) a continuous probability density function

with compact support K=[�Sk;Sk]; where 0 < Sk <1; and (ii) of order 2:

Assumption 4 For the bandwidth sequence it holds that nhd+4 = O(1).

De�ne for j = 1; 2;

g(t; x) =
S(tjx)
H(t; x)

; �j(t; u; x) = �
R t
u
S(�jx)�j(�; x)d�
H(u; x)

:

Additionally, for � = 1; 2; with � 6= j;

bCjA(t; x) =
1X
l=0

�2(K)h
2

(2� l)!l!

dX
p=1

Z t

0

@2�l�j(u; x)

@x2�lp

@lH(u; x)

@xlp

�
g(u; x) + �j(t; u; x)

�
du

bCjB(t; x) =
1X
l=0

�2(K)h
2

(2� l)!l!

dX
p=1

Z t

0

@2�l��(u; x)

@x2�lp

@lH(u; x)

@xlp
�j(t; u; x)du;

and

bLjA(t; x) =
�2(K)h

2

2

dX
p=1

Z t

0

@2�j(u; x)

@x2p
H(u; x)

�
g(u; x) + �j(t; u; x)

�
du;

bLjB(t; x) =
�2(K)h

2

2

dX
p=1

Z t

0

@2��(u; x)

@x2p
H(u; x)�j(t; u; x)du:
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Moreover,

vjA(t; x) = jjKjj22
Z t

0

�
1

�(x)
H(u; x; ~
 > 0) +H(u; x; ~
 = 0)

�
g2(u; x)�j(u; x)du;

vjB(t; x) = jjKjj22
Z t

0

H(u; x)�(u; x)�2j(t; u; x)du;

vjAB(t; x) = 2 jjKjj22
Z t

0

H(u; x)g(u; x)�j(t; u; x)�j(u; x)du;

&1(t; x) = jjKjj22
Z t

0

H(u; x) [g(u; x) + �1(t; u; x)] �2(t; u; x)�1(u; x)du;

&2(t; x) = jjKjj22
Z t

0

H(u; x) [g(u; x) + �2(t; u; x)] �1(t; u; x)�2(u; x)du:

Let D [0; �(x)] denote the space of cadlag functions endowed with the Skorohod topology.

Additionally, the symbol =) will imply weak convergence. We now state the main result of

the paper.

Theorem 1 Suppose that Assumptions 1-4 hold. Then, for each x 2 Xh; we have, as n!1

p
nhd

264 F̂ �1 (tjx)� F1(tjx)� b�1A(t; x)� b�1B(t; x)
F̂ �2 (tjx)� F2(tjx)� b�2A(t; x)� b�2B(t; x)

375 =) N (0; V (t; x))

over D [0; �(x)]2 ; where

V (t; x) =

264v1A(t; x) + v1B(t; x) + v1AB(t; x) &1(t; x) + &2(t; x)

&1(t; x) + &2(t; x) v2A(t; x) + v2B(t; x) + v2AB(t; x)

375
is a positive semide�nite matrix on [0; �(x)] for each x 2 Xh.

Theorem 1 is obtained by applying the martingale central theorem (Andersen et al., 1993;

Nielsen and Linton, 1995; Linton et al., 2011). To digest the above result, recall that

F̂ �j (tjx) =
Z t

0

Ŝ�(u� jx)d�̂�j (u; x):
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The bias and variance due to �̂�j (t; x) are captured by the terms b
�
jA(t; x) and vjA(t; x). On

the other hand, the bias and variance due to Ŝ�(t; x) are captured by the terms b�jB(t; x) and

vjB(t; x): Moreover, the term vjAB(t; x) refers to the covariance of the estimators �̂�j (t; x)

and Ŝ�(t; x). The next result gives the asympotic distribution in case the cause of failure is

observed for the uncensored observations.

Corollary 1 Suppose that Assumptions 1-4 hold, and �(x) = 1 for all x 2 Xh. Then, for

each x 2 Xh; we have, as n!1

p
nhd

264 F̂ �1 (tjx)� F1(tjx)� b�1A(t; x)� b�1B(t; x)
F̂ �2 (tjx)� F2(tjx)� b�2A(t; x)� b�2B(t; x)

375 =) N (0; �V (t; x))

over D [0; �(x)]2 ; where

�V (t; x) =

264 _vjA(t; x) + v1B(t; x) + v1AB(t; x) &1(t; x) + &2(t; x)

&1(t; x) + &2(t; x) _vjA + v2B(t; x) + v2AB(t; x)

375
with �vjA(t; x) = jjKjj22

R t
0
H(u; x)g2(u; x)�j(u; x)du.

In case there is no censoring, we have that S(tjx) = H(tjx) for each (t; x) 2 R+�X , and

we can show by using the Duhamel equation (Gill, 1994) that,

F̂Cj (tjx)� Fj(tjx) =
1Pn

i=1Kh(x�Xi)

nX
i=1

Z t

0

Kh(x�Xi)dNji(u)�
Z t

0

S(u� jx)�j(u; x)du

= [Vjj(t; x) + Vj�(t; x) + Bjj(t; x) + Bj�(t; x)] [1 + op(1)] ;

where the quantities Vjj(t; x);Vj�(t; x);Bjj(t; x);Bj�(t; x) are de�ned in the appendix by set-

ting �(Xi; ~
i) = 1. To derive the above equation, we also use the fact that infx2Xh
Pn

i=1Kh(x�

Xi)=n � �+ op(1) for large n; which is obtained by combining standard results in nonpara-

metric density estimation, see, e.g., Hansen (2008) and Assumption 1. Using arguments
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similar to the ones applied in the proof of Theorem 1, we get the distribution of Corollary

1. Finally, results about the rate of uniform convergence of F̂ �j (tjx) to F1(tjx) would be

interesting. In particular, let �n �
�
lnn
nhd

� 1
2 + h2; � � [0; � ] � Xh and replace Assumption 4,

which is concerned with the bandwidth, with the following Assumption

Assumption 4* For the bandwidth sequence it that holds lnn
nhd

= o(1).

Then the following result emerges:

Theorem 2 Suppose Assumptions 1-3, and 4* hold. Then, for j = 1; 2 and � = C;L; we

have, as n!1

sup
(t;x)2�

���F̂ �j (tjx)� Fj(tjx)��� = Op (�n) :
The convergence rate is almost identical to the rate of Bordes and Gneyou (2011) who

study the uniform convergence rate just for right-censored competing risks data. In their

result, the variance term is of the same order whereas their bias term goes faster to zero as

it is of order h2d.

4 Simulation studies

In this section, the main focus will be on evaluating the performance of the proposed nonpara-

metric estimators of the cumulative incidence function Fj(tjx). The design of the numerical

study will be similar to Lu and Liang (2008), which makes benchmarking to a parametric

estimator of Fj(tjx) straightforward. The (cause-speci�c) hazards model generating fail-

ure time from the �rst course, Y1, is given by �1(tjx) = �1(t) + �
0x, where x = (x1; x2)

0;

� = (�1; �2)
0 = (1;�1)0 and the baseline hazard function is de�ned as �1(t) = 1:3. Fur-

thermore, x1 is assumed standard normally distributed, while x2 is following a binomial

distribution with a probability of success equal to 0:5. The (cause-speci�c) hazards model

generating failure time due to the second course, Y2, is speci�ed as �2(tjx) = exp(a + bt)

for (a; b) = (�1; 1): Censoring time Z is generated from a uniform distribution on (0; c): By
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choosing c = 3:6, the censoring level equals about 15 percent, and in this case 55 percent

of all failures are of type 1. The case c = 0:75 is also considered, and in this setting the

censoring level equals about 40 percent, while approximately 42 percent of all failures are

of type 1. The missing cause of failure indicator R is generated from a logistic distribution,

i.e., �(x) = exp(�2:5 + 
0x)=(1 + exp(�2:5 + 
0x)); where 
 = (2; 2)0: Consequently, about

44 percent of all failures have missing causes when the censoring level is 15 percent. When

the censoring level is about 40 percent, approximately 50 percent of the failures have missing

causes. We will report only the results based on the kernel-based estimator of the cumula-

tive incidence function. The results for the local constant smoother are similar.1 Within the

described simulations setup, the estimator given by equation (7) is computed numerically as

F̂Cj (tjx1; x2) =
nX
i=1

ŜC(Ti � jx1; x2)
wCi (x1; x2)1fTi � t; Ri~
i = jgPn

�=1w
C
� (x1; x2)1(T� � Ti)

; j = 1; 2; (11)

for

ŜC(t� jx1; x2) =
nY
i=1

(
1� bCi (x1; x2)Pn

�=1 1fT� � TigbC� (x1; x2)

)1fTi<t;~
i>0g
;

where Ti; Ri, ~
i and the functionals w
C
i (x1; x2); �̂

C(X1i; X2i; ~
i) and b
C
i (x1; x2) are de�ned as

in Section 1. In all of the computations involving smoothing, the product kernel for mixed

continuous and discrete data types, described in Li and Racine (2008), page 424, is ap-

plied. To the best of our knowledge, there is no existing theory currently available regarding

datadriven bandwidth selection procedures within our setup. Consequently, we have used

anm-fold cross validation approach similar to Nielsen and Linton (1995). Speci�cally, the se-

lected bandwidth is obtained as h = argminb
Pn

i=1

�
F̂Cj;�mi

(TijXi1; Xi2; b)� F̂Cj (TijXi1; Xi2; b)
�2
,

wheremi denotes a subset of observations (including observation i) randomly drawn from the

sample. F̂Cj;�mi
(TijXi1; Xi2; b) denotes the nonparametric estimator using bandwidth b and is

computed using all observations in the sample except observations included in subset mi. In

the simulations, mi contains 20 percent of the observations in the sample. The parametric

1The results for the estimator of the cumulative incidence function based on local constant smoothing is
available from the authors upon request.
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Figure 1: Nonparametric and parametric estimators of the cumulative incidence function
(CIF): Blue line represents the true CIF; red solid line represents the nonparametric CIF
estimator (the median of the estimator over the 499 runs and a sample size of 2000 observa-
tions); red dashed-dotted lines represent the 95 percent con�dence intervals associated with
the nonparametric CIF estimator; green solid line represents the parametric CIF estima-
tor (median over 499 runs and a sample size of 2000 observations), while the green dotted
lines are the 95 percent con�dence bands. The vertical lines in Panels c and d indicate the
censoring point (no observations in the sample exceeding this point).

benchmark estimator of the cumulative incidence function, denoted F̂ IPWj (tjx1; x2; b�IPW ); is
computed using the inverse probability weighted estimator suggested by Lu and Liang (2008).

In order to make the benchmark as e¢ cient as possible, the parametric data generating

process and the parametric inverse probability weighting scheme applied in the simulations

are always correctly speci�ed.

The simulations are based on 499 runs with a sample size of n = 2000 observation under

each of the four settings which are considered in Figure 1, Panels a-d.2 In Panel a, the

CIF functions F̂C1 (jx1 = 0:5; x2 = 0) (red solid line), F̂ IPW (tjx1 = 0:5; x2 = 0; b�IPW )
(green solid line), and the corresponding 95 percent con�dence bands are depicted when

2All simulations are done in R, and the R-scripts are available upon request.
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the censoring level is 15 percent. The nonparametric CIF estimator performs quite well,

although it appears to be slightly upward biased for larger values of t. In comparison to the

parametric counterpart the nonparametric CIF estimators 95 percent con�dence bands are

also wider. The precision of the nonparametric estimator increases substantially in absolute

terms but also relatively compared to the parametric estimator when evaluated at x2 = 1;

as illustrated in Panel b. In the absence of any form of parametric misspeci�cation, this

�nding, in favor of the nonparametric CIF estimator, is somewhat surprising. Additional

parameter estimation uncertainty related to b�2;IPW might be one possible explanation for

the relatively poor precision of the parametric CIF estimator in Panel b. The scenarios in

Panels c and d are identical to Panels a and b, respectively, except that the censoring level

has now been raised to 40 percent. The increased level of censoring as well as the increased

level of failures with missing cause tend to decrease the precision of the parametric CIF

estimator, whereas the con�dence bands of the nonparametric CIF estimator remain almost

unchanged. However, in Panel d the upward bias in the nonparametric CIF estimator is

increasing but is still insigni�cant. Additional simulation results (not reported) suggest that

by a di¤erent choice of bandwidth the bias could have been reduced at the expense of wider

con�dence bands. It should be noted that the vertical lines in Panels c and d indicate the

censoring point and that there are no observations in the sample exceeding this point. This

explains why the nonparametric CIF estimator becomes "�at" after the censoring point.

5 Conclusion

Studying estimators of cumulative incidence functions is important as these quantities are

powerful tools for analyzing competing risks data which arise very often in di¤erent scienti�c

�elds such as demography, biostatistics, health economics and labor economics. This paper

proposes a nonparametric method for estimating, for each risk, the corresponding cumu-

lative incidence function in competing risks models, when continuous covariates a¤ect the

13



latent failure outcomes and the cause of failure is missing at random for some observations.

The pointwise asymptotic normality as well as uniform convergence rate of the proposed

estimators are derived. Existing estimation procedures, which account for covariates and

missing cause if failure, are either fully parametric or semiparametric. In contrast to these

estimation methods, the proposed estimator does not make any functional assumptions and

thus it is robust under any speci�cation of the underlying model. A simulation study shows

that the proposed nonparametric estimator performs quite well relatively to a parametric

benchmark.

14



Appendix 1

In this appendix a technical proof of Theorem 1 is provided. To obtain the asymptotic re-

sults, we need to introduce some extra notation. Consider the counting processes Noi(t) =

1 fTi � t; ~
i > 0; Ri = 0g ; which specify whether subject i has failed due to either risk 1 or

risk 2 in the time interval [0; t] and whether the cause of failure is missing. It is straightfor-

ward to see that �Ni(t) = N1i(t) +N2i(t) +Noi(t): For any t > 0; we have the �ltration

Ft = �(N1i(u); N2i(u); Noi(u); Xi; Ri; Yi(u) : 0 � u � t; 1 � i � n);

where the notation � speci�es the sigma algebra generated by the events within the paren-

thesis. For each j = 1; 2; the counting processes Nji(t) and Noi(t) have stochastic intensities

�j(t;Xi)RiYi(t) and �(t;Xi)(1�Ri)Yi(t); respectively. That is,

�j(t;Xi)RiYi(t)dt = E((Nji(t+ dt)�)�Nji(t)�jFt�);

�(t;Xi)(1�Ri)Yi(t)dt = E((Noi(t+ dt)�)�Noi(t)�jFt�);

whereNji(t)� = limu"tNji(u) andNoi(t)� = limu"tNoi(u). The stochastic intensities �j(t;Xi)RiYi(t)

and �(t;Xi)(1�Ri)Yi(t) are predictable with respect to Ft:

For each t > 0; j = 1; 2; and i = 1; :::; n; consider the Ft-measurable processes

Mji(t) = Nji(t)�
Z t

0

�j(u;Xi)RiYi(u)du; Moi(u) = Noi(t)�
Z t

0

�(u;Xi)(1�Ri)Yi(u)du:

Working analogously to the proof of Theorem 1 (page 311) of Shorack andWellner (2009), we

can show thatMji(t) andMoi(t) are zero-mean (by using (6) for this) local square integrable

martingales with respect to �ltration Ft:
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For � = 1; 2; with � 6= j; introduce the quantities

Vjj(t; x) =
1

n

nX
i=1

Z t

0

Kh(x�Xi)

�(Xi; ~
i)

�
g(u; x) + �(Xi; ~
i)�j(t; u; x)

�
dMji(u)

Vj�(t; x) =
1

n

nX
i=1

Z t

0

Kh(x�Xi)�j(t; u; x)dM�i(u)

Vjo(t; x) =
1

n

nX
i=1

Z t

0

Kh(x�Xi)�j(t; u; x)dMoi(u)

and

Bjj(t; x) =
1

n

nX
i=1

Z t

0

Kh(x�Xi)Yi(u)

�
g(u; x)

Ri
�(Xi; ~
i)

+ �j(t; u; x)

�
� [�j(u;Xi)� �j(u; x)] du;

Bj�(t; x) =
1

n

nX
i=1

Z t

0

�j(t; u; x)Kh(x�Xi)Yi(u) [��(u;Xi)� ��(u; x)] du:

Proof of Theorem 1. Similar to Linton et al. (2011), we will show the asymptotic

normality for the estimator F̂Cj (tjx). The asymptotic distribution for F̂Lj (tjx) can be derived

by following similar arguments. For ease of notation we skip the superscript C:

We write

F̂j(tjx)� Fj(tjx) =
Z t

0

Ŝ(u� jx)d
h
�̂j(u; x)� �j(u; x)

i
+

Z t

0

h
Ŝ(u� jx)� S(u� jx)

i
�j(u; x)du

=: �̂j(t; x) + 
̂j(t; x): (A-1)
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By property Mji(t) = Nji(t)�
R t
0
�j(u;Xi)Yi(u)Ridu, it follows that

�̂j(t; x) =
1

n

nX
i=1

Z t

0

Ŝ(u� jx) Ri
�̂(Xi; ~
i)

Kh(x�Xi)dMji(u)
1
n

Pn
i=1

Ri
�̂(Xi;~
i)

Kh(x�Xi)Yi(u)

+
1

n

nX
i=1

Z t

0

Ŝ(u� jx) Ri
�̂(Xi; ~
i)

Kh(x�Xi)Yi(u) [�j(u;Xi)� �j(u; x)]
1
n

Pn
i=1

Ri
�̂(Xi;~
i)

Kh(x�Xi)Yi(u)
du: (A-2)

Next, we work on 
̂j(t; x) by making use of the Duhamel equation (Gill, 1994) Ŝ(tjx) �

S(tjx) = �S(tjx)
R t
0
Ŝ(u�jx)
S(ujx) d

h
�̂(u; x)� �(u; x)

i
. By using the equalities �Ni(t) = N1i(t) +

N2i(t)+Noi(t); Mji(t) = Nji(t)�
R t
0
�j(u;Xi)RiYi(u)du andMoi(t) = Noi(t)�

R t
0
�(u;Xi)(1�

Ri)Yi(u)du; the Duhamel formula, and the fact that the mapping t 7! S(tjx) is continuous

for all x 2 Xh, as well as doing some algebra, we obtain


̂j(t; x) = �
1

n

nX
i=1

Z t

0

�Z t

u

S(�jx)�j(�; x)d�
�
Ŝ(u� jx)
S(ujx)

� Kh(x�Xi)
1
n

Pn
i=1Kh(x�Xi)Yi(u)

d(M1i(u) +M2i(u) +Moi(u))

� 1

n

nX
i=1

Z t

0

Ŝ(u� jx)
S(ujx)

Kh(x�Xi)Yi(u) [�(u;Xi)� �(u; x)]
1
n

Pn
i=1Kh(x�Xi)Yi(u)

�
�Z t

u

S(�jx)�j(�; x)d�
�
du: (A-3)

By continuity of the mapping t 7! S(tjx) and using uniform convergence results (Lecoutre

and Ould-Said, 1995), we obtain Ŝ(t�jx)
S(tjx) = 1 + op(1) uniformly over t 2 [0; �(x)] for each

x 2 Xh: Moreover, �̂(Xi; ~
i) = �(Xi; ~
i) + op(1) uniformly over = 1; :::; n (e.g., Hansen,

2008) with �(Xi; ~
i) to be bounded away from zero. Similarly, we can show pointwise in x;

supt2[0;�(x)]

��� 1nPn
i=1

Ri
�(Xi;~
i)

Kh(x�Xi)Yi(t)
��� = H(t; x)+op(1) by noting that E(Rij~
i; Xi; Ti) =

�(Xi; ~
i), and also supt2[0;�(x)]
�� 1
n

Pn
i=1Kh(x�Xi)Yi(t)

�� = H(t; x)+op(1), where we use con-
tinuity of the map t 7! H(t; x) for the two latter results.

Recall that �(t; x) = �1(t; x) + �2(t; x) for any (t; x) 2 R+ �Xh. Combining (A-1)-(A-3)
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and the previous uniform convergence results, we get

F̂j(tjx)� Fj(tjx) = [Vj1(t; x) + Vj�(t; x) + Voj(t; x) + Bjj(t; x) + Bj�(t; x)] [1 + op(1)] : (A-4)

for each t 2 [0; �(x)] and x 2 Xh: The expression is equivalent to

F̂j(tjx)� Fj(tjx) = fVj1(t; x) + Vj2(t; x) + Vjo(t; x) + EBjj(t; x) + EBj�(t; x)

+ [Bjj(t; x)� EBjj(t; x)] + [Bj�(t; x)� EBj�(t; x)]g [1 + op(1)] : (A-5)

To derive the asymptotic distribution of F̂j(tjx)� Fj(tjx), it su¢ ces to consider the term {

}. Application of the martingale central limit theorem (Andersen et al., 1993; Nielsen and

Linton, 1995; Linton et al., 2011) yields
p
nhdVj1(t; x) =) N (0; vjj(t; x));

p
nhdVj�(t; x) =)

N (0; vj�(t; x)); and
p
nhdVjo(t; x) =) N (0; vjo(t; x)); where

vjj(t; x) = p lim
n!1

"
hd

n

nX
i=1

Z t

0

K2h(x�Xi)

�2(Xi; ~
i)

�
g(u; x) + �(Xi; ~
i)�j(t; u; x)

�2
d < Mji > (u)

#

= p lim
n!1

"
hd

n

nX
i=1

Z t

0

K2h(x�Xi)

�2(Xi; ~
i)

�
g(u; x) + �(Xi; ~
i)�j(t; u; x)

�2
�j(u;Xi)RiYi(u)du

#

=
jjKjj22
�(x)

Z t

0

H(u; x; ~
 > 0)
�
g(u; x) + �(x)�j(t; u; x)

�2
�j(u; x)du

+ jjKjj22
Z t

0

H(u; x; ~
 = 0)
�
g(u; x) + �j(t; u; x)

�2
�j(u; x)du; (A-6)

vj�(t; x) = p lim
n!1

"
hd

n

nX
i=1

Z t

0

K2h(x�Xi)�
2
j(t; u; x)d < M�i > (u)

#

= p lim
n!1

"
hd

n

nX
i=1

Z t

0

K2h(x�Xi)�
2
j(t; u; x)��(u;Xi)RiYi(u)du

#

= jjKjj22 �(x)
Z t

0

H(u; x; ~
 > 0)�2j(t; u; x)��(u; x)du

+ jjKjj22
Z t

0

H(u; x; ~
 = 0)�2j(t; u; x)��(u; x)du; (A-7)
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and

vjo(t; x) = p lim
n!1

"
hd

n

nX
i=1

Z t

0

K2h(x�Xi)�
2
j(t; u; x)d < Moi > (u)

#

= p lim
n!1

"
hd

n

nX
i=1

Z t

0

K2h(x�Xi)�
2
j(t; u; x)�(u;Xi)(1�Ri)Yi(u)du

#

= jjKjj22 [1� �(x)]
Z t

0

H(u; x; ~
 > 0)�2j(t; u; x)�(u; x)du; (A-8)

where the equalities in (A-6), (A-7), and (A-8) follow by using the MAR property, the

fact that �(x; ~
) = 1f~
 > 0g�(x) + 1f~
 = 0g, the de�nition of Kh(x � Xi), the change

of variables, and the dominated convergence theorem. By construction, as soon as one

of the counting processes N1i(t); N2i(t); Noi(t) jumps, the other ones cannot jump. The

latter, combined with the equality �(t; x) = �1(t; x) + �2(t; x) and some algebra, implies
p
nhd [Vjj(t; x) + Vj�(t; x) + Vjo(t; x)] =) N (0; vjA(t; x) + vjB(t; x) + vjAB(t; x)): Next, we

proceed with the stable parts in a similar manner to the approach of Nielsen and Linton

(1995). Let ! = (!1; !2; :::; !d): It is easy to check that

EBjj(t; x) =
1X
l=0

�2(K)h
2

(2� l)!l!

dX
p=1

Z t

0

@2�l�j(u; x)

@x2�lp

@lH(u; x)

@xlp

�
g(u; x) + �j(t; u; x)

�
du+ o(h2);

(A-9)

EBj�(t; x) =
1X
l=0

�2(K)h
2

(2� l)!l!

dX
p=1

Z t

0

@2�l��(u; x)

@x2�lp

@lH(u; x)

@xlp
�j(t; u; x)du+ o(h

2); (A-10)

where the two above equations are obtained by using the MAR property, the de�nition

of Kh(x � Xi) and r�th Taylor series expansion with a Lagrange remainder for the dif-

ference �j(u; x � h!) � �j(u; x) (j = 1; 2) and the quantity H(u; x � h!); along with

the fact that the K is of order 2. Also, by working in a completely analogous way it is

straightforward to show that EB2j�(t; x) = O(nhd�2)�1 for � = j; �, which in turn gives

E(Bj�(t; x) � EBj�(t; x))2 = O(nhd�2)�1 = o(nhd)�1 and consequently, by Chebyshev�s in-

equality, jBj�(t; x)� EBj�(t; x)j = op(nhd)�
1
2 .
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Application of the martingale central limit theorem for the covariance terms yields

&11(t; x) := p lim
n!1

"
hd

n

nX
i=1

Z t

0

K2h(x�Xi)

�(Xi; ~
i)
[g(u; x) + �(Xi; ~
i)�1(t; u; x)]�2(t; u; x)d < M1i > (u)

#

= jjKjj22
Z t

0

H(u; x; 
 > 0)[g(u; x) + �(x)�1(t; u; x)]�2(t; u; x)�1(u; x)du

+ jjKjj22
Z t

0

H(u; x; 
 = 0)[g(u; x) + �1(t; u; x)]�2(t; u; x)�1(u; x)du; (A-11)

&22(t; x) := p lim
n!1

"
hd

n

nX
i=1

Z t

0

K2h(x�Xi)

�(Xi; ~
i)
[g(u; x) + �(Xi; ~
i)�2(t; u; x)]�1(t; u; x)d < M2i > (u)

#

= jjKjj22
Z t

0

H(u; x; 
 > 0)[g(u; x) + �(x)�2(t; u; x)]�1(t; u; x)�2(u; x)du

+ jjKjj22
Z t

0

H(u; x; 
 = 0)[g(u; x) + �2(t; u; x)]�1(t; u; x)�2(u; x)du; (A-12)

and

&o(t; x) := p lim
n!1

"
hd

n

nX
i=1

Z t

0

K2h(x�Xi)�1(t; u; x)�2(t; u; x)d < Moi > (u)

#

= jjKjj22 [1� �(x)]
Z t

0

H(u; x; 
 > 0)�1(t; u; x)�2(t; u; x)�(u; x)du; (A-13)

where we make use of the MAR property, the equality �(x; ~
) = 1f~
 > 0g�(x) + 1f~
 = 0g,

the de�nition of Kh(x�Xi), a change of variables, and the dominated convergence theorem.

By simple algebra, we have &1(t; x) + &2(t; x) = &11(t; x) + &22(t; x) + &o(t; x).
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Appendix 2

In this appendix a technical proof of Theorem 2 is provided. We restrict our attention to

the local constant estimator. Similar algebraic calculations can be carried out for the local

linear estimator and therefore we will skip this part. To keep the notation simple, we omit

the superscript C.

Recall that

�̂j(t; x) =
1

n

nX
i=1

Z t

0

wi(x)

Ĥ (u� jx)
dNji(u); j = 1; 2

De�ne F~
=j(t; x) = F~
=j(tjx)f(x), where F~
=j(tjx) = P(T � t; ~
 = jjx). Moreover,

F̂~
=j(t; x) =
1

n

nX
i=1

Ri
�̂(Xi; ~
i)

Kh(x�Xi)Nji(t) (A-14)

and

Ĥ(t�; x) = 1

n

nX
i=1

Ri
�̂(Xi; ~
i)

Kh(x�Xi)Yi(t); (A-15)

It is then easy to see (by making use of the de�nition for the weights wi(x)) that

�̂j(t; x) =

Z t

0

dF̂~
=j(u; x)

Ĥ (u�; x)

The following lemma deals with the uniform convergence rates of F̂~
=j(t; x) and Ĥ(t�; x).

Lemma 1 Suppose Assumptions 1-3, and 4* hold. Then, it holds for j = 1; 2; as n!1,

sup
(t;x)2�

���F̂~
=j(t; x)� F~
=j(t; x)��� = Op(�n)
and

sup
(t;x)2�

���Ĥ(t�; x)�H(t�; x)��� = Op(�n):
Proof. Let �n �

�
lnn
nhd

� 1
2 + h: By Hansen (2008), �̂(Xi) � �(Xi) = Op(�n) uniformly in

i = 1; :::; n; if Xi 2 Xh; and �̂(Xi)� �(Xi) = Op(�n) uniformly in i = 1; :::; n; if Xi 2 XnXh.
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Consequently,

F̂~
=j(t; x) =
1

n

nX
i=1

Ri
�(Xi; ~
i)

Kh(x�Xi)Nji(t) [1 +Op(�n)1fXi 2 Xhg+Op(�n)1fXi 2 XnXhg]

uniformly over �. Given that 1fXi 2 Xhg = Op(1) and 1fXi 2 XnXhg = Op(h), we have

uniformly over �

F̂~
=j(t; x) =
1

n

nX
i=1

Ri
�(Xi; ~
i)

Kh(x�Xi)Nji(t) [1 +Op(�n)] : (A-16)

Using results developed by Lecoutre and Ould-Said (1995) (proof Theorem 2) we can deduce

that
1

n

nX
i=1

Ri
�(Xi; ~
i)

Kh(x�Xi)Nji(t) = F~
=j(t; x) +Op(�n): (A-17)

Combining (A-16) and (A-17), it follows uniformly over �

F̂~
=j(t; x) = F~
=j(t; x) +Op(�n):

The proof of the second statement of the Lemma is similar to the above procedure and

thus omitted.

To prove the main result, we need also the following result.

Lemma 2 Suppose Assumptions 1-3, and 4* hold. Then, it holds for j = 1; 2; as n!1,

sup
(t;x)2�

����̂j(t; x)� �j(t; x)��� = Op(�n):
Proof. Using similar arguments as in the proof of Theorem 1 of Lecoutre and Ould-Said

(1995) and employing Lemma 1, we can obtain the desired result.

Now we proceed with the proof of Theorem 2.
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Proof of Theorem 2. Clearly,

F̂j(tjx)� Fj(tjx) =
Z t

0

Ŝ(u� jx)d
h
�̂j(u; x)� �j(u; x)

i
+

Z t

0

h
Ŝ(u� jx)� S(u� jx)

i
�j(u; x)du

=: �̂j(t; x) + 
̂j(t; x); (A-18)

Triangle inequality entails

sup
(t;x)2�

���F̂j(tjx)� Fj(tjx)��� � sup
(t;x)2�

����̂j(t; x)���+ sup
(t;x)2�

���
̂j(t; x)��� : (A-19)

Partial integration, triangle inequality and use of Lemma 2 yields for the �rst term

sup
(t;x)2�

����̂j(t; x)��� � sup
(t;x)2�

����̂j(t; x)� �j(t; x)��� sup
(t;x)2�

���Ŝ(t� jx)���
+ sup
(t;x)2�

����̂j(t; x)� �j(t; x)��� sup
(t;x)2�

����Z t

0

dŜ(u� jx)
���� = Op(�n); (A-20)

as sup(t;x)2�
���Ŝ(t� jx)��� = Op(1) (Lecoutre and Ould-Said, 1995). Regarding the second term,

it is straightforward to check that

sup
(t;x)2�

���
̂j(t; x)��� � sup
(t;x)2�

���Ŝ(t� jx)� S(t� jx)��� sup
(t;x)2�

j�j(t; x)j = Op(�n), (A-21)

where we apply Theorem 2 of Lecoutre and Ould-Said (1995). Combining (A-19)-(A-21)

completes the proof.
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