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Abstract

We characterize diversification in corporate credit using a new class of dynamic copula
models which can capture dynamic dependence and asymmetry in large samples of firms.
We also document important differences between credit spread and equity return depen-
dence dynamics. Modeling a decade of weekly CDS spreads for 215 firms, we find that
copula correlations are highly time-varying and persistent, and that they increase signif-
icantly in the financial crisis and have remained high since. Perhaps most importantly,
tail dependence of CDS spreads increase even more than copula correlations during the
crisis and remain high as well. The most important shocks to credit dependence occur
in August of 2007 and in August of 2011, but interestingly these dates are not associated
with significant changes to median credit spreads.
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1 Introduction

Characterizing the dependence between credit-risky securities is of great interest for portfolio

management and risk management, but not necessarily straightforward because multivariate

modeling is notoriously diffi cult for large cross-sections of securities. In existing work, com-

putationally straightforward techniques such as factor models or constant copulas are often

used to model correlations for large portfolios of credit-risky securities; alternatively, simple

rolling correlations or exponential smoothers are used.

We instead use multivariate econometric models for the purpose of modeling credit correla-

tion and dependence. We use genuinely dynamic copula techniques that can capture univariate

and multivariate deviations from normality, including multivariate asymmetries. We demon-

strate that by using recently proposed econometric innovations, it is possible to apply copula

models on a large scale that is essential for effective credit risk management. We perform

our empirical analysis using data on a large cross-section of credit risky securities, namely

5-year Credit Default Swap (CDS) contracts for 215 constituents of the first 18 series of the

CDX North American investment grade index. We use a long time series of weekly data for

the period January 1, 2001 to August 22, 2012. The 215 firms enter and leave the sample at

different time points, but this can easily be accommodated by the estimation methodology we

employ. We investigate the dependence between CDS spreads as well as the tail dependence.

We also analyze dependence in the underlying equity for comparison. Interestingly, the credit

and equity return dynamics differ in important aspects.

We document several important stylized facts, and substantial differences between credit

and equity dependence. Copula correlations in CDS spreads vary substantially over our sam-

ple, with a significant increase following the financial crisis in 2007. Equity correlations also

increase in the financial crisis, but somewhat later, and the increase is less significant and not

as persistent. Our estimates indicate fat tails in the univariate credit distributions, but also

multivariate non-normalities for CDS spreads. Multivariate asymmetries seem to be less im-

portant for credit than for equity returns, confirming the results from threshold correlations.

While equity volatility is more persistent than credit volatility, credit copula correlations are

more persistent than equity copula correlations. This greatly affects how major events such

as the Quant Meltdown, the Lehman bankruptcy, and the U.S. sovereign debt downgrade

affect subsequent dependence in credit and equity markets. Tail dependence for credit and

equity increases significantly during our sample, more so than copula correlations. Surpris-

ingly, the Lehman bankruptcy affects equity (tail) dependence more strongly than credit (tail)

dependence. The US sovereign downgrade in mid 2011 is an important credit event, but this

is more apparent when analyzing tail dependence, somewhat less so when analyzing copula

correlations.
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The increase in cross-sectional dependence is clearly important for the management of

portfolio credit risk. We use our estimates to compute time-varying diversification benefits

from selling credit protection. We find that the increase in cross-sectional dependence fol-

lowing the financial crisis has substantially reduced diversification benefits, similar to what

happened in equity markets. When computing diversification benefits, taking non-normality

into account is more important for credit than for equity. Our results also have implications

for the management of counterparty risk and the relative pricing of structured products such

as CDOs, with tranches that are affected differently by changes in correlation patterns.

There is no guidance from theory regarding the economic determinants of dependence

and tail dependence. We use a regression analysis to identify financial and macroeconomic

determinants of the time-series variation in the dependence measures. Both copula correlation

and tail dependence increase with the VIX, the overall level of credit spreads, and inflation, and

decrease with the level of interest rates. We also perform a regression analysis to investigate

if dependence and tail dependence are related to the cross-sectional and time-series variation

in credit spreads, and we find that this is the case, even after controlling for well-established

determinants of credit spreads at the firm level, such as equity volatility, interest rates, and

leverage.

We proceed in three steps. The two first steps are univariate. In the first, we remove the

short-run dynamics from the raw data by estimating firm-by-firm ARMA models on weekly

log-differences. In a second step, we estimate firm-by-firm variance dynamics on the residuals

from the first step. We use an asymmetric NGARCH model with an asymmetric standardized

t-distribution following Hansen (1994).1 Finally, in a third step we provide a multivariate

analysis using the copula implied by the skewed t-distribution in DeMarta and McNeil (2005).

Dynamic copula correlations are modeled based on the linear correlation techniques developed

by Engle (2002) and Tse and Tsui (2002).2 To alleviate the computational burden, we rely on

the composite likelihood technique of Engle, Shephard, and Sheppard (2008) and the moment

matching from Engle and Mezrich (1996). See Patton (2012) for a recent survey of copula

models.

The remainder of the paper is structured as follows. In Section 2 we briefly discuss CDS

markets and document stylized facts in our sample. We also discuss existing techniques for

modeling credit dependence. Section 3 reports the estimation results from the dynamic models

for expected credit spread and volatility that we apply. Section 4 introduces the dynamic

copula models and presents the estimation results as well as the key threshold dependence and

credit diversification dynamics. Section 5 contains a regression analysis of the determinants of

1Engle (1982) and Bollerslev (1986) developed the first ARCH and GARCH models. Bollerslev (1990) first
combined the GARCH model with a t-distribution.

2See Engle and Kroner (1995) for an early multivariate GARCH model and Engle and Kelly (2012) for a
simplified dynamic correlation model.
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the time-series variation in the dependence measures. Section 6 investigates if the estimated

dependence measures are related to cross-sectional and time-series variation in credit spreads

in our sample. Section 7 concludes.

2 CDS Markets, Models and Stylized Facts

We discuss CDSmarkets and stylized facts characterizing the sample of CDS data we use in our

empirical work. We also briefly discuss existing techniques for modeling default dependence.

2.1 CDS Markets

A CDS is essentially an insurance contract, where the insurance event is defined as default by

an underlying entity such as a corporation or a sovereign country. Which events constitute

default is a matter of some debate, but for the purpose of this paper it is not of great impor-

tance. The insurance buyer pays the insurance provider a fixed periodical amount, expressed

as a “spread”which is converted into dollar payments using the notional principal—the size of

the contract.3 In case of default, the insurance provider compensates the insurance buyer for

his loss.

The CDS market exploded in size between 2000 and 2007, standing at over 55 Trillion $US

in notional principal in late 2007, according to the Bank for International Settlements. While

the CDS market has subsequently been reduced to approximately 27 Trillion $US in notional

principal as of June 2012, market size seems to have stabilized over the last two years after

a sharp drop during the financial crisis. Also, the decline in CDS market size is much less

dramatic than the decline for more complex credit derivatives, in particular structured credit

products. This suggests that CDS markets have survived the financial crisis, highlighting the

importance of a market for single-name default insurance.

Reflecting the growth in market activity, in April 2009 the CDS markets underwent a

number of changes. First, the CDS contract has been changed to formalize the auction

mechanism for CDS following a credit event. Previously, participants in the CDS market had

to sign up for a separate protocol for each auction. Second, committees are now formed to

make binding determinations of whether credit and succession events have occurred as well

as the terms of any auction. Third, the effective date for all CDS contract has been changed

to current-day less 60 days for credit events and to current-day less 90 days for succession

events. Fourth, the North American single-name CDS contracts that we investigate in this

paper began trading with a fixed coupon of either 100 basis points or 500 basis points with

3Recent changes in the CDS market have made the upfront fee the pricing parameter. However, our data
source (Markit) provides us with the spreads.
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up-front payments exchanged. Finally, the buyer now has to make a full coupon payment on

the first payment date regardless of the date of the trade, and the seller of CDS protection

makes a accrual rebate payment to the protection buyer at the time of the trade. See Markit

(2009) for the details.

2.2 Credit Default Models

Measuring default dependence has always been a problem of interest in the credit risk litera-

ture. For instance, a bank that manages a portfolio of loans is interested in how the borrowers’

creditworthiness fluctuates with the business cycle. While the change in the probability of

default for an individual borrower is of interest, the most important question is how the busi-

ness cycle affects the value of the overall portfolio, and this depends on default dependence.

An investment company or hedge fund that invests in a portfolio of corporate bonds faces a

similar problem. Over the last decade, the measurement of default dependence has taken on

added significance because of the emergence of new portfolio and structured credit products,

and as a result new methods to measure correlation and dependence have been developed.

Different techniques are used to estimate default dependence. The oldest and most obvious

way to estimate default correlation is the use of historical default data. In order to reliably

estimate default probabilities and correlations, typically a large number of historical obser-

vations are needed which are not often available. See for instance deServigny and Renault

(2002).

The alternative to historical default data is the combination of a factor model with a model

that extracts default intensities or default probabilities. For each of these two tasks, different

models have proven especially useful.

For publicly traded corporates, a Merton (1974) type structural model is often used to

link equity returns or the prices of credit-risky securities to the underlying asset returns and

extract default probabilities.4 This approach is usually combined with a one-factor model for

the underlying equity return to model the default dependence in credit portfolios. Clearly

the reliability of the default dependence estimate is determined by the quality of the factor

model.

Alternatively, to model default intensities reduced-form or intensity-based models have be-

come very popular in the academic credit risk literature over the last decade.5 This approach

typically models the default intensity using a jump diffusion, and is also sometimes referred to

4The structural approach goes back to Merton (1974). See Black and Cox (1976), Leland (1994) and Leland
and Toft (1996) for extensions. See Zhou (2001) for a discussion of default correlation in the context of the
Merton model.

5See Jarrow and Turnbull (1995), Jarrow, Lando and Turnbull (1997), Duffee (1999), and Duffi e and
Singleton (1999) for early examples of the reduced form approach. See Lando (2004) and Duffi e and Singleton
(2003) for surveys.
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as the reduced-form approach. Within this class of models, there are different approaches to

modeling default dependence. One class of models, referred to as conditionally independent

models or doubly stochastic models, assumes that cross-firm default dependence associated

with observable factors determining conditional default probabilities is suffi cient for charac-

terizing the clustering in defaults. See Duffee (1999) for an example of this approach. Das,

Duffi e, Kapadia and Saita (2007) provide a test of this approach and find that this assumption

is violated. Other intensity-based models consider joint credit events that can cause multiple

issuers to default simultaneously, or they model contagion or learning effects, whereby default

of one entity affects the defaults of others. See for example Davis and Lo (2001) and Jarrow

and Yu (2001). Jorion and Zhang (2007) investigate contagion using CDS data.

This paper instead uses copula methods to model default dependence. See Joe (1997)

and Patton (2009a, 2009b, 2012) for excellent overviews of copula modeling. Copulas have

been used extensively for modeling default dependence, especially among practitioners and

for the purpose of CDO modeling. The advantage of the copula approach is its flexibility,

because the parameters characterizing the multivariate default distribution, and hence the

correlation between the default probabilities, can be modeled in a second stage, after the uni-

variate distributions have been calibrated. In many cases the copulas are also parsimoniously

parameterized and computationally straightforward, which facilitates calibration. Calibra-

tion of the correlation structure is mostly performed using CDO data. The simple one-factor

Gaussian copula is often used in the literature, but extensions to multiple factors (Hull and

White (2010)), stochastic recovery rates (Hull and White (2006)), and non-Gaussian copulas

provide a better fit.

In contrast to existing static approaches, in our analysis of default dependence the em-

phasis is on the modeling of dynamic dependence. Our approach also allows for multivariate

asymmetries.6 Several existing papers use copulas from the Archimedean family to capture

dependence asymmetries (see Patton (2004, 2006) and Xu and Li (2009)), but this approach

is diffi cult to generalize to higher dimensions, and our focus is on the analysis of a large port-

folio of underlying credits. To capture time variation in dependence, some existing papers use

regime switching models. See Chollete, Heinen, and Valdesogo (2009), Garcia and Tsafack

(2011), Hong, Tu, and Zhou (2007), and Okimoto (2008) for examples. We instead follow the

autoregressive approach of Christoffersen and Langlois (2013), Christoffersen, Errunza, Ja-

cobs, and Langlois (2012), and De Lira Salvatierra and Patton (2013). In independent work,

Oh and Patton (2013) also use an autoregressive approach to analyze dynamic dependence

for a large portfolio of underlying credits.

6Jondeau and Rockinger (2006) analyze dynamic dependence using symmetric copulas.
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2.3 CDS Data

One element of the success and resilience of CDS markets has been the creation of market

indexes consisting of CDSs, such as the CDX index in North America and the iTraxx index

in Europe. Using data from Markit, we consider 5-year CDS contracts on all firms included

in the first 18 series of the CDX North American investment grade index. We use the longest

possible sample available from Markit for all these firms, starting on January 1, 2001, and

ending on August 22, 2012. Many firms do not have CDS quotes available for every day of

this sample period. Fortunately, as pointed out by Patton (2006a), the dynamic multivariate

modeling approach we employ in our empirical work allows for individual series to begin (and

end) at different time points. We make full use of this and include a firm if it has at least one

year of consecutive weekly data points. The resulting list of 215 firms is provided in Table 1.

We construct weekly data by using one day each week. We use Wednesdays, which is the

weekday that is least likely to be a holiday. We obtain equity data on the sample firms from

CRSP. Out of the 215 firms, 12 firms do not have at least a consecutive 52-week history of

equity prices, and those are dropped from the sample.7

An analysis of dependence can focus on CDS spreads or default intensities. In our empirical

work we focus on log-differences in CDS spreads because they are econometrically tractable.

For most models, the time series properties of default intensities are very similar. We verified

this for our sample by extracting default intensities at each point in time using an assump-

tion of constant default intensity. The conclusions from the dependence analysis on default

intensities were very similar to those on spreads, and we therefore do not report the results

here.

The solid black line in Panel A of Figure 1 plots the time series of the median CDS spread

across firms, and the dashed lines and grey areas represent the interquartile range and the

90% range respectively. To improve the presentation of the figure, the spreads for the 90%

range are listed on the right side vertical axis, while the left side axis refers to the median and

interquartile series. Panel B presents the median, interquartile range and 90% range for the

CDS spread volatility, which are all measured using the left-side scale.

Panels C and D of Figure 1 replicate Panels A and B using the equity data. The equity

price in Panel C is normalized at one for each firm at the start of the sample. The dotted

lines in Panels B and D, which use the right-hand scale, report the number of firms available

in the sample each week. Notice that we have more equity than credit data in the early part

of the sample.

7The twelve firms are: AT&T Mobility LLC, Bombardier Capital Inc., Bombardier Inc., Cingular Wireless
LLC, Capital One Bank USA National Association, Comcast Cable Communication LLC, General Motors
Acceptance Corp., Intelsat Limited, International Lease Finance Corp., National Rural Utilities Coop Financial
Corp., Residential Capital Corp., and Verizon Global Funding Corp.
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The vertical lines in Figure 1 denote eight major events during our sample period:

• The WorldCom bankruptcy. July 2002.

• The Ford and GM downgrades to junk. May 2005.

• The Delphi bankruptcy. October 8 2005.

• The Bear Stearns subprime funds collapse and quant meltdown. July/August 2007.
Henceforth referred to simply as the quant meltdown.

• The Bear Stearns bankruptcy. March 2008.

• The Lehman bankruptcy. September 2008.

• The stock market bottom and CDS Big Bang. March/April 2009. Henceforth referred

to simply as the stock market bottom.

• The U.S. sovereign debt downgrade. August 2011.

2.4 Stylized Facts

Figure 1 illustrates some important stylized facts regarding the trends in credit risk in our

sample period.

Panel A of Figure 1 indicates that the time series of the median CDS spread, the interquar-

tile range, and the 90% range reach their maximums during the peak of the financial crisis in

2008. Less dramatic turbulence is also evident during the dot-com bust in 2002 and the US

sovereign debt downgrade in 2011.

Panel D of Figure 1 indicates that the time series pattern for equity volatility is similar

to that for credit spreads. The relationship between credit spreads and equity volatility is of

course suggested by structural credit risk models such as Merton (1974). Panels A and D also

suggest that CDS spreads and equity volatility are highly persistent over time.

The interquartile and 90% ranges in the four panels of Figure 1 also contain valuable

insights into credit and equity dependence. The cross-sectional range of spreads is much

wider during the financial crisis compared to the pre-crisis years. This effect lingers on to

some extent in the post-crisis period. The high post-crisis range in spreads suggests that

investors may be able to at least partly diversify credit risk which is a key topic of interest for

us. We observe a similar increase in the cross-sectional range of spreads during the financial

crisis for equity volatility in Panel D, but in the post-crisis period the widening of the range is

less pronounced. For spread volatility in Panel B, the cross-sectional range widens during the

financial crisis, but not significantly more than during other crisis periods that barely show
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up in spread levels. Dynamics in credit spread levels and credit spread volatility thus seem to

differ substantially.

Figure 2 plots the median CDS spread in each industry as well as the 90% range within

the industry. The 215 firms in our sample are distributed along the following 10 GIC sectors:

Energy (12 firms), Materials (14), Industrials (25), Consumer Discretionary (64), Consumer

Staples (16), Health Care (13), Financials (34), Information Technology (15), Telecommuni-

cations Services (14), and Utilities (8). For ease of exposition in Figure 2 we do not report on

the utility sector with has only eight firms.

The impact of the financial crisis is obvious in Figure 2, but interestingly the crisis af-

fected different industries quite differently. The 90% range widens substantially following

the financial crisis for several industries. This is also true for the interquartile range (not

reported). However, in some industries the median is greatly affected but the 90% range

less, and vice versa. Of course some industries are more affected by the crisis overall. Some

industries, Telecommunication Services in particular, were affected as much or even more by

the 2001-2003 upheaval versus the 2007-2009 crisis.

When perusing time series plots of the 215 individual CDS names (not reported) the

magnitude of the firm-specific variation across the sample period is quite remarkable. This

should bode well for the potential diversification benefits of investors exposed to corporate

credit risk.

In Table 2 we report sample averages across firms for CDS spreads and equity prices. Panel

A of Table 2 shows the first four sample moments of weekly log-differences in CDS spreads

along with the IQR for each moment. We also report the Jarque-Bera tests for normality as

well as the first two autocorrelation coeffi cients. Note the strong evidence of non-normality as

well as some evidence of dynamics in the weekly returns. We will model both of these features

below.

In Panel B we report the median sample correlations between log-differences in spreads

and equity prices. On the diagonal we report the median and IQR across the correlations

between each firm and all other firms. On the off-diagonal we report the median and IQR of

the correlation between the CDS spreads and equity returns for the same firm. The relatively

high and robust negative correlation between weekly equity returns and weekly spreads is

expected. Note that the log-difference in spreads can be viewed as the return on buying credit

protection and thus reducing credit risk. The negative correlation between spreads and equity

returns is thus evidence of a positive correlation between the exposure to credit and equity

risk.

Below, we will work solely with the weekly log-differences in CDS spreads and stock prices.

For simplicity we will refer to them generically as returns and denote them by Rt.

In order to further explore the dependence across firms we compute threshold correlations,
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following Ang and Chen (2002) and Patton (2004) for example. We define the threshold

correlation ρ̄ij(x) with respect to deviations of standardized returns Ri and Rj from their

means as

ρ̄ij(x) =

{
Corr(Ri, Rj | Ri < x,Rj < x) when x < 0

Corr(Ri, Rj | Ri ≥ x,Rj ≥ x) when x ≥ 0,

where we use returns that are standardized by their sample mean and standard deviation,

and thus measure x in the number of standard deviations from the mean. The threshold

correlation reports the linear correlation between two assets for the subset of observations

lying in the bottom-left or top-right quadrant. In the case of the bivariate normal distribution

the threshold correlation approaches zero when the threshold, x, goes to plus or minus infinity.

Panels A and C of Figure 3 report the median and IQR of the bivariate threshold correla-

tions computed across all possible pairs of firms. Panel A shows that the CDS spread threshold

correlations are high and almost symmetric. The equity threshold correlations in Panel C are

also high but show some evidence of asymmetry: Large downward moves are more highly

correlated than large upward moves. Panels A and C in Figure 3 show strong evidence of

multivariate non-normality. This is evidenced by the large deviations of the solid line (empir-

ics) from the dashed lines (normal distribution). Adequately capturing these non-normalities

motivates the non-normal copula approach below.

3 Dynamic Models of Credit Spreads

Our dynamic model development proceeds in three steps. In the first step, we model the mean

dynamics on the univariate time series of each CDS spread and stock return. In the second

step, we model the variance dynamics and the distribution of the time-series residual for each

firm. In the third step, we develop dynamic copula models for CDS and equity returns using

all the firms in our sample. The first two steps are covered in this section and the third in the

subsequent section.

3.1 Mean Dynamics

The log-differencing on the raw data is partly done to remove long memory in the data.

However, the weekly data we analyze contain short-run dynamics as well. In order to obtain

white-noise innovations required for consistent modeling of correlation dynamics, we fit uni-

variate ARMA-NGARCH models to the weekly log-differenced time series. We first fit each

of the possible ARMA specifications with AR and MA orders up to two. The ARMA order

for each time series is then chosen using the finite sample corrected Akaike criterion.

To be specific, in a first step, we use Gaussian quasi-maximum likelihood (QMLE) to
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estimate the following nine possible models nested within the ARMA(2, 2) model on the

weekly log-differences in CDS spreads and equity prices for each firm

Rt = µ+ φ1Rt−1 + φ2Rt−2 + θ1εt−1 + θ2εt−2 + εt (3.1)

where εt is assumed to be uncorrelated with Rs for s < t. The conditional mean for Rt

constructed at the end of week t− 1 is then simply

µt = µ+ φ1Rt−1 + φ2Rt−2 + θ1εt−1 + θ2εt−2

3.2 Variance Dynamics

In a second step we fit the Engle and Ng (1993) NGARCH(1, 1) model to the ARMA filtered

residuals εt

εt = σtzt

σ2
t = (1− α− β)σ2 + α (εt−1 − γσt−1)2 + βσ2

t−1 (3.2)

zt ∼ i.i.d. ast(z;λ, ν)

where we constrain ω > 0, α > 0, β > 0, and α + β < 1 which ensure that the conditional

variance is positive on every day. The unconditional variance, σ2, is set to the sample variance

of εt. The i.i.d. return residuals, zt, are assumed to follow the asymmetric standardized t

distribution from Hansen (1994) which we denote ast(z;λ, ν). The skewness and kurtosis

of the distribution are nonlinear functions of the parameters λ and ν. When λ = 0 the

symmetric standardized t distribution is obtained. When λ = 0 and 1/ν = 0, we get the

normal distribution. The corresponding cumulative return probabilities are now given by

ηt ≡ Prt−1 (R < Rt) = σ−1
t

∫ σ−1t (Rt−µt)

−∞
ast(z;λ, ν)dz. (3.3)

Note that the individual return-residual distributions are constant through time but the in-

dividual return distributions do vary through time because the return mean and variance are

dynamic.

Using time series observations on εt, the parameters α, β, γ, λ and ν are estimated using

a likelihood function based on (3.2) and ast(z;λ, ν). For each firm we again estimate two sets

of parameters, one based on spreads and one based on equity returns.
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3.3 Estimates of Mean and Variance Dynamics

Panel A of Table 3 reports for credit spreads and equity the percentage of firms for which

each of the nine estimated ARMA(p, q) models were favored by the Akaike criterion. The

percentages are quite similar across the nine possible models. The ARMA(2, 2) is the single-

most selected model, suggesting that perhaps higher lags should be considered. Panel A also

shows the median and interquartile range across firms of each ARMA coeffi cient estimate.

The parameter values vary considerably across firms. The Ljung-Box test on the zt residuals

show that the test do not reject the null that the residuals are serially uncorrelated 99% of the

time for CDS spreads, and 90% of the time for equity returns. This suggests that the ARMA

models are able to adequately capture conditional mean dynamics across firms and markets.

Panel B in Table 3 shows the median and interquartile range across firms for each of the

three NGARCH parameters as well as the two parameters in the asymmetric t distribution.

Weekly volatility persistence, defined by (α (1 + γ2) + β), is fairly tightly distributed around

the median values of 0.950 for CDS spreads and 0.980 for equity returns. Volatility is clearly

highly persistent in both spreads and equity returns. The γ parameter captures the asym-

metric volatility response to positive and negative return residuals. For equities, the median

γ value is 1.230 and the interquartile range is entirely positive. For CDS spreads the γ is neg-

ative and smaller in magnitude. Recall that the CDS spreads capture the returns to buying

credit protection.

The Ljung-Box test of serial correlation in the z2
t shows that the NGARCH model is able

to adequately capture variance dynamics. Equity returns, which have the highest volatility

persistence, have 13% of NGARCH models rejected by Ljung-Box at the 5% level, which is

clearly not drastically above the size of the test.

The ν parameter has medians of 3.72 (CDS spreads) and 6.56 (equity returns), indicating

fat tails in the conditional distribution. The asymmetry parameter, λ, is generally negative

for equities and positive for CDS spreads and roughly equal in magnitude for the two. Recall

again that the CDS spreads capture the returns to buying credit protection.

As discussed above, panel B of Figure 1 shows the time paths for the median, the in-

terquartile range, and the 90% range for the CDS spread volatility. The differences between

the path of CDS volatility in Panel B and the path of equity volatility in Panel D are inter-

esting. While the time paths of the medians are clearly moving together, the median path for

the CDS spread volatility contains many more sharp peaks. This is also the case for the path

of the 90% range.

Note that the relationship between equity volatility and CDS spreads has been extensively

studied because of the Merton (1974) model. The relation between equity returns and equity

volatility has also been extensively analyzed in the empirical literature. Panel C of Figure
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1 confirms that equity returns are negatively related to equity volatilities in Panel D. This

stylized fact is usually referred to as the leverage effect, and it leads to negative skewness in the

return distribution. However, little is known about the relation between CDS spread volatility

and spreads. Visual inspection of Panels A and B suggests a positive relation. However, Panel

B indicates that while most of the spikes in CDS spread volatility match the spikes in spread

levels in Panel A, this is not always the case. Note for example that one of the highest peaks

in CDS spread volatility occur at the time of the quant meltdown in August 2007, which

coincides with only a minor uptick in spreads in Figure 1. We analyze this relation in more

detail in the empirical work below.

Finally, note that the volatility patterns in spreads in Panel B of Figure 1 are somewhat

different from the volatility in equity in Panel D. An obvious example is May 2005, around

the time of the Ford and GM downgrade, when equity volatility in Panel D does not spike up,

but median CDS spread volatility sharply increases.

Figure 4 plots the median and 90% range of the weekly NGARCH dynamic in CDS spreads

for the nine industries from Figure 2. Spread volatility clearly does not seem to be a simply

deterministic function of the spreads themselves. The variation of spread volatility across

firms is quite dramatic. The differences between the 90% range for industry volatility in

Figure 4 and the range for the spreads in Figure 2 is also striking. The high level of CDS

spread volatility in the financial crisis is apparent, but the 90% range is relatively constant

over the sample, unlike the 90% level for the spreads in Figure 2. The interquartile range and

90% spreads for the CDS spread volatility computed using all firms in Panel B of Figure 1 are

consistent with this observation.

Panel A of Table 4 contains descriptive statistics of the ARMA-NGARCH model residuals.

Skewness and kurtosis is still present after standardizing by the NGARCHmodel. As expected,

the residual correlations between CDS spreads and equity prices are not materially different

from the raw return correlations in Panel C of Table 2.

Finally, Panels B and D of Figure 3 plot the median and IQR threshold correlations on

the weekly ARMA-NGARCH residuals. Comparing with the threshold correlations on raw

returns in Panels A and C, we see that the median threshold correlations in residuals are

often lower, but still higher than the bivariate Gaussian distribution (dashed lines) would

suggest. Overall Figure 3 indicates that the ARMA-NGARCH models by removing univariate

non-normality from the data are also able to remove some of the multivariate non-normality

from the data. Modeling the remaining multivariate non-normality is the task to which we

now turn.
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4 Dynamic Dependence and Diversification

In this section we first introduce the copula functions that we apply to credit spreads and stock

returns. We then discuss the dynamic copula correlation estimates, and report on model-based

measures of threshold dependence. Finally, we compute measures of conditional diversification

benefits for credit and equity portfolios.

4.1 Dynamic Copula Functions

From Patton (2006b), who builds on Sklar (1959), we can decompose the conditional multi-

variate density function of a vector of returns for N firms, ft (Rt), into a conditional copula

density function, ct, and the product of the conditional marginal distributions fi,t (Ri,t) as

follows

ft (Rt) = ct (F1,t (R1,t) , F2,t (R2,t) , ..., FN,t (RN,t))
N∏
i=1

fi,t (Ri,t)

= ct
(
η1,t, η2,t, ..., ηN,t

) N∏
i=1

fi,t (Ri,t) , (4.1)

where Rt is now a vector of N returns at time t, fi,t is the density and Fi,t is the cumulative

distribution function of Ri,t.

Following Christoffersen, Errunza, Jacobs, and Langlois (2012), and Christoffersen and

Langlois (2013) we allow for dependence across the return residuals using the copula implied

by the skewed t distribution discussed in Demarta and McNeil (2005). The skewed t copula

cumulative distribution function, Ct, for N firms can be written as

Ct(η1,t, η2,t, ..., ηN,t; Ψ, λC , νC,t) = tΨ,λC ,νC,t(t
−1
λC ,νC,t

(η1,t), t
−1
λC ,νC,t

(η2,t), ..., t
−1
λC ,νC,t

(ηN,t)), (4.2)

where λC is a copula asymmetry parameter, νC,t is a time-varying copula degree of free-

dom parameter, tΨ,λC ,νC,t is the multivariate skewed t density with correlation matrix Ψ, and

t−1
λC ,νC,t

is the inverse cumulative distribution function of the corresponding univariate skewed

t distribution.

Note that the copula correlation matrix Ψ is defined using the correlation of the copula

residuals z∗i,t ≡ t−1
λC ,νC,t

(ηi,t) and not of the return residuals zi,t. If the marginal distribution in

(3.3) is close to the copula tλC ,νC,t distribution, then z
∗
t will be close to zt.

We now build on the linear correlation techniques developed by Engle (2002) and Tse and

Tsui (2002) to model dynamic copula correlations. We use the copula residuals z∗i,t ≡ t−1
λ,ν(ηi,t)

as the model’s building block instead of the return residuals zi,t. In the case of non-normal
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copulas, the fractiles do not have zero mean and unit variance, and we therefore standardize

the z∗i before proceeding.

The copula correlation dynamic is driven by

Γt = (1− βC − αC)Ω + βCΓt−1 + αC z̄
∗
t−1z̄

∗>
t−1 (4.3)

where βC and αC are scalars, and z̄
∗
t is an N -dimensional vector with typical element z̄

∗
i,t =

z∗i,t
√

Γii,t. The conditional copula correlations are defined via the normalization

Ψij,t = Γij,t/
√

Γii,tΓjj,t.

To allow for general patterns in tail dependence, we allow for slowly-moving trends in the

degrees of freedom. Following Engle and Rangel (2008), who model the trend in volatility, we

define the degree of freedom at time t, νC,t, using an exponential quadratic spline

νC,t = νC + δC,0 exp

(
δC,1t+

k∑
j=1

δC,j+1 max(t− tj−1, 0)2

)
(4.4)

where νC is the lower bound for the degrees of freedom, which is equal to four for the skewed

t copula, δC,0, ..., δC,k+1 are scalar parameters to be estimated, and {t0 = 0, t1, ..., tk = T}
denotes a partition of the sample in k segments of equal length. The exponential form ensures

that the degrees of freedom are positive and above their lower bound at all times. The k

different segments allows us to capture periods of positive and negative trends in the degrees

of freedom. Note that we model degree-of-freedom dynamics using splines and not lagged

returns, because—unlike for variance and correlation—it is not obvious what the functional

form of the lagged return should be when updating the degree-of-freedom process.

In the next section we investigate the time-variation in both correlations and tail depen-

dence. Whereas correlation at time t is driven by the dynamic in Equation (4.3), tail depen-

dence is determined by both the time-varying correlation and the degrees of freedom. Hence,

our model allows for changes in tail dependence that are separate from those in correlation.

Below we refer to the model using (4.2) and (4.3) as the Dynamic Asymmetric Copula

(DAC) model. The special case where λC = 0 we denote by the Dynamic Symmetric Copula

(DSC). In this case the lower bound for the degree of freedom is νC = 2. When we additionally

impose 1/νC = 0 we obtain the Dynamic Normal Copula (DNC).

Following Engle, Shephard and Sheppard (2008), we estimate the copula parameters αC ,
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βC , λC , and νC using the composite likelihood (CL) function defined by

CL(αC , βC , λC , νC) =
T∑
t=1

N∑
i=1

∑
j>i

ln ct(ηi,t, ηj,t;αC , βC , λC , νC), (4.5)

where ct is the copula density from (4.1). Note that the CL function is built from the bivariate

likelihoods so that the inversion of large-scale correlation matrices is avoided. In a sample as

large as ours, relying on the composite likelihood approach is imperative. The unconditional

correlations are estimated by unconditional moment matching (See Engle and Mezrich, 1996)

Ω̂i,j =
1

T

T∑
t=1

z̄∗i,tz̄
∗
j,t (4.6)

which is another crucial element in the feasible estimation of large-scale dynamic models.

As discussed above, the estimation of dynamic dependence models using long time series

and large cross-sections is computationally intensive. In our case, estimating the dynamic

copula models for 215 firms in possible only because we implement unconditional moment

matching and the composite likelihood approach. An additional advantage of the composite

likelihood approach is that we can use the longest time span available for each firm-pair when

estimating the model parameters, thus making the best possible use of a cross-section of CDS

time series of unequal length.

4.2 Copula Correlation and Tail Dependence Estimates

Panel B of Table 4 contains the Dynamic Asymmetric Copula (DAC) parameter estimates

and composite likelihoods from fitting a single model to the 215 firms in our sample. We

again present separate results for models estimated on the weekly residuals in CDS spread and

equity log-differences. The copula correlation persistence is higher for CDS spreads (0.984) and

considerably lower at 0.944 in the case of equity prices. Comparing with volatility persistence

in Table 3, it is interesting to note that equities have relatively higher volatility persistence and

lower correlation persistence when compared with credit spreads. This finding demonstrates

the importance of modeling separate dynamics for volatility and correlation.

Panel C in Table 4 reports the parameter estimates for the Dynamic Symmetric Copula

model where λC = 0 and Panel D reports on the Dynamic Normal Copula where we also

impose 1/νC,t = 0. While we do not have asymptotic distribution results available for testing

differences in composite likelihoods, the results suggest that the improvements in fit are largest

when going from the normal copula in Panel D to the symmetric t copula in Panel C. When

going from the symmetric t copula in Panel C to the asymmetric t copula in Panel B, the
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improvement in fit seems to be largest for equities. This result matches the patterns in the

threshold correlations in Figures 4 which show the strongest degree of bivariate asymmetry

for equities.

We estimate a model with a simple time trend for the degrees of freedom. The estimates in

the third and fourth columns of Panel B indicate that degrees of freedom have been trending

down for both CDS and equity. In unreported results, we allow for more complex shapes in

degrees of freedom by increasing the number of splines in Equation (4.4), and find that the

decreasing time trend is robust.

Figure 5 plots the median, IQR, and 90% range of the DAC copula correlations for CDS

spreads and stock returns. The level of the CDS spread correlation is higher than that of equity

correlation throughout the sample. Credit correlations in Panel A show a pronounced and

persistent uptick in 2007 around the time of the Quant Meltdown, and a pronounced but less

persistent uptick in mid 2011 following the US sovereign downgrade. The equity correlations in

Panel B show less persistent upticks in late 2008 following the Lehman bankruptcy, and again

in mid 2011 following the US sovereign downgrade. The differences in persistence following

these major events are of course related to the differences in copula correlation persistence

between credit and equity mentioned earlier.

Figure 6 plots the median, IQR, and 90% range of the DAC copula tail dependence for

CDS spreads and stock returns. For equity we plot lower tail dependence, because it is

economically the most interesting of the two tails. This corresponds to upper tail dependence

for CDS spreads. Several very interesting conclusions obtain. First, equity and credit tail

dependence increase much more over the sample than copula correlations in Figure 5. Second,

similar to the pattern in correlations in Figure 5, CDS tail dependence increases earlier than

equity tail dependence. Third, in the first part of the sample equity tail dependence is higher

than credit tail dependence, but this changes in the second part of the sample. Fourth, the

impact of credit events on tail dependence is sometimes more dramatic than their impact

on correlations. The most obvious example is the US sovereign downgrade in mid 2011,

which shifts credit tail dependence up significantly for the remainder of the sample, whereas

in Figure 5 the correlations revert back quicker to the earlier levels. These findings have

important implications for portfolio diversification.

In Figure 7 we plot the median DAC correlation of CDS spreads and equity returns for

the nine industries in Figure 2. Figure 8 does the same for the tail dependence of credit and

equity. While the uptick in credit correlation during 2007 is evident for most industries and

firms, the variation across industries and firms is large. The time paths of credit and equity

(tail) dependence are clearly different and are fairly similar across industries.
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4.3 Conditional Diversification Benefits

Consider an equal-weighted portfolio of the constituents of the on-the-run CDX investment

grade index in any given week. We want to assess the diversification benefits of the portfolio

using the dynamic, non-normal copula model developed above. As in Christoffersen, Errunza,

Jacobs and Langlois (2012), we define the conditional diversification benefit by

CDBt(p) ≡
ESt (p)− ESt(p)
ESt(p)− ESt(p)

, (4.7)

where ESt(p) denotes the expected shortfall with probability threshold p of the portfolio

at hand, ESt(p) denotes the average of the ES across firms, which is an upper bound on

the portfolio ES, and ESt(p) is the portfolio V aR, which is a lower bound on the portfolio

ES. The CDBt(p) measure takes values on the [0, 1] interval, and is increasing in the level

of diversification benefit. Note that by construction CDB does not depend on the level of

expected returns. Expected shortfall is additive in the conditional mean which thus cancels

out in the numerator and denominator in (4.7).

The CDB measure depends on the threshold probability p. Below we consider p = 5% and

p = 50%. The CDB measure is not available in closed form for our dynamic copula model

and so we compute it using Monte Carlo simulations. We also report on a volatility-based

measure which is defined by

V olCDBt = 1−
√
1>Σt1

1>σt
, (4.8)

where 1 denotes a vector of ones, and where Σt denotes the usual matrix of linear correlations

computed in our case via simulation from the DAC model. One can show that under con-

ditional normality, V olCDBt will coincide with CDBt(50%) so that the difference between

these two measures indicates the degree of non-normality from a diversification perspective.

The solid black line in Figure 9 shows the CDB(5%) measure for an equal-weighted port-

folio selling credit protection as well as for an equal-weighted portfolio of equity returns. Note

that we have included the VIX index from CBOE in grey on the right-hand axis for reference.

First consider Panel A: Diversification benefits for CDS have declined from above 70% at the

end of 2003 to below 50% at the end of our sample. The majority of the decline took place

during the mid 2007 to mid 2008 period and was relatively gradual. Panel B shows that the

decline in diversification benefits in equity markets has been smaller in magnitude, from just

over 70% in 2007 to just above 60% at the end of our sample. The majority of the decline

in equity market diversification benefits took place from early 2007 to early 2009 and it was

relatively gradual as well.

It is interesting to note that the majority of the decline in diversification benefits in credit

18



markets took place well before the peak in the VIX. The credit market CDB actually increased

a bit during late 2008 and early 2009 when the equity market turmoil was most intense.

In Figure 10 we plot the CDB(50%) and V olCDB measures for CDS spreads in Panel A

and for equities in Panel B. Comparing Figures 9 and 10 (note the scales are different) we

see that the dynamic patterns are broadly similar, which is not surprising. Panel A suggests

that non-normality plays a large role in a well-diversified credit portfolio, and that relying

on V olCDB would exaggerate the benefits from credit diversification. Comparing Panels A

and B, the differences between the CDB(50%) and V olCDB are a bit larger for the credit

portfolio than for the equity portfolio.

5 Economic Drivers of Dependence and Diversification?

In an effort to better understand the various measures of dependence discussed in this paper,

we consider regressions of the median dependence measures on various determinants. We

investigate the impact of a given set of determinants on the median copula correlation and

tail correlation.

Our focus is on median dependence because we attempt to explain the time-variation in

these measures. The cross-sectional variation in dependence is also of interest, but we leave

this topic for future work. This decision is motivated by space constraints, but also by the

fact that there is no acknowledged theory on the determinants of these dependence measures.

In the absence of explanatory variables suggested by theory, we consider obvious economy-

wide measures of risk in equity and default insurance markets, risk-free (government) term

structures, and a number of macro variables which are reasonable additional metrics of the

state of the economy. More precisely we use the following regressors:

• The log of the CDX North American investment grade index level is used to proxy for
the overall level of risk in credit markets.

• The log of the VIX index represents equity market risk.

• The term structure is captured by a level variable, the 3-month US Constant Maturity

Treasury (CMT), and a slope variable, the 10 year CMT index minus the 3-month CMT.

• The difference between the interest rate on interbank loans and on short-term govern-

ment debt, or TED spread.8

8The TED spread is an indicator of liquidity in fixed income markets. The funding liquidity variable in
Fontaine and Garcia (2012) provides an alternative liquidity indicator, but is not available at the weekly
frequency.
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• The log of crude oil price as measured by the West Texas Intermediate Cushing Crude
Oil Spot Price.

• The breakeven inflation level implied by Treasury Inflation Protected Securities. Unlike
standard inflation measures, this series is available at the weekly frequency.

• The ADS business condition index from the Federal Reserve Bank of Philadelphia.

Table 5 presents the regression results. Panels A, B, and C use median correlations, median

tail dependence, and diversification benefits, respectively as the dependent variables. For the

CDX, VIX, term structure variables, and TED, we present univariate regressions as well as

a multivariate regressions. We also present a multivariate regression including all variables.

All regressors are lagged one week and all results are obtained using OLS with Newey-West

standard errors using T 1/4 = 5 lags, where T is sample size.

Consider first the determinants of copula correlations in Panel A. As expected the lagged

median correlation is highly significant and just below one. In the univariate regressions, the

higher the level of risk in the credit market, as measured by the CDX index, the higher the

CDS-based correlations. The higher the level of risk in the equity markets, as measured by the

VIX, the greater the CDS-based correlations. In the multivariate regression, the estimated

coeffi cient on VIX is significant but the coeffi cient on CDX is not.

Now consider the regressions for median tail dependence in Panel B. The most important

question is if the signs on the economic determinants are different from Panel A, because the

time series for tail dependence in Figure 6 is significantly different from the time series for

copula correlations in Figure 5. Indeed, important differences emerge when comparing Panel

B and Panel A. Perhaps most importantly, the interest rate level and the yield curve slope

are significant and negative in Panel B. Note that the estimate on the short rate and the yield

curve slope are very similar suggesting that the long rate is most important. The log of the

oil price is significant as well.

Panel C of Table 5 runs regressions of the conditional diversification benefit on the eco-

nomic variables. Because diversification benefits go down when dependence goes up we expect

opposite signs on the parameter estimates in Panel C compared with Panels A and B. This is

indeed the case: The coeffi cient on VIX is now negative, the interest rate level enters with a

positive coeffi cient, and the crude oil price parameter is negative.

Note that while that lag dependent variable is high in the multivariate regressions in Table

5, it is much lower than in the univariate regressions. This suggest that the economic variables

contain non-trivial information for credit dependence dynamics.

The TED spread, the business condition index, and the breakeven inflation series are not

significant in any of the panels. Their effects are subsumed by the lagged dependent variable.
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When the lagged dependence measure is not included on the right-hand-side (not reported)

then the business condition and breakeven inflation series are sometimes significant.

Overall the regression results can be summarized as follows: when risk is high in equity

and credit markets, when oil prices are high, and when interest rates are low, dependence

measures tend to be high, thus impeding diversification benefits. It may prove interesting to

extend these time-series results by incorporating firm-specific variables that help explain the

cross-section of credit correlations, but we keep this for future work.

6 Economic Drivers of Credit Spreads?

We now present the results of a very different regression analysis, where the left-hand-side

variable is not a dependence measure but rather the CDS spread itself. There is an important

distinction between this analysis and the one in Section 5 above. While to the best of our

knowledge there is no established economic theory on the determinants of credit dependence,

the determinants of credit spreads have been extensively studied by theoretical models. Most

notably, following the analysis of Merton (1974), structural models of credit risk have estab-

lished volatility, interest rates, and leverage as prime candidates to explain credit spreads.

Partly based on these theories, there is an extensive empirical literature regarding the

determinants of credit spreads, both using bond data and CDS data. This literature provides

some support for structural models of credit risk, and has also documented other macro-

economic and firm-specific determinants of credit risk. See Collin-Dufresne, Goldstein, and

Martin (2001), Campbell and Taksler (2003), Cremers, Driessen, Maenhout, and Weinbaum

(2008), Ericsson, Jacobs, and Oviedo (2009), and Bai and Wu (2013) for existing evidence.

The existing literature and the ongoing debate on the determinants of credit risk spreads

motivate our empirical approach as well as our selection of regressors. First, existing the-

ory specifies some firm-specific determinants of credit spreads and therefore it is important

to specify regressions using firm-specific measures of credit spreads, and not median credit

spreads as in Section 5. Second, when testing the ability of new variables to explain credit

spreads, it is important to investigate if their explanatory power is robust to the presence of

variables suggested by theory in the regression.

We want to investigate if our dependence measures can help explain credit spreads. We

therefore present results for univariate regressions of credit spreads on copula correlations

and tail dependence, but we also present results for multivariate regressions where these

dependence measures are added to equity volatility, term structure variables, and leverage,

the determinants of credit risk according to the Merton (1974) model. Several studies have

specifically questioned the ability of regressors suggested by theory to explain time-series

variation in spreads (see Collin-Dufresne, Goldstein, and Martin (2001)), so we present the
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results of cross-sectional as well as time-series regressions.

The results are presented in Table 6. We present the results of time-series regressions in

Panel A and for cross-sectional regressions in Panel B. In Panel A we run firm-by-firm time-

series regressions and we report the average point estimates and statistical significance based

on the estimated time-series coeffi cients. In Panel B we run regressions for each cross-section

and compute the standard errors of the estimated coeffi cients. Note that Panel B does not

contain results for the term structure variables because they do not vary cross—sectionally.

A first important conclusion is that the results support the theory underlying structural

credit risk models. Credit spreads increase with leverage and equity volatility. These findings

are consistent with the existing empirical literature.

We are interested in whether the CDS risk measures in our analysis, credit correlation and

tail dependence, help explain credit spreads. We also analyze the impact of CDS volatility

on credit spreads. In regressions (ii), (iii), and (iv), we see that CDS volatility, correlation,

and tail dependence are positively related to credit spreads in time-series regressions. In the

cross-sectional regressions, the relationship is insignificant. When we include other variables

in regressions (vi) and (vii), the relationship between CDS spreads and CDS volatility, CDS

correlation and tail dependence is still significantly positive in the time-series regressions and

it is still not significant in the cross-sectional regressions.

We conclude that the CDS volatility, correlation and tail dependence measures that we

have constructed using the dynamic copula model are important drivers of the time series

dynamics in credit spreads.

7 Conclusion

This paper documents cross-sectional dependence in CDS spreads, and compares it with de-

pendence in equity returns. Our results are largely complementary to existing correlation and

dependence estimates, which are typically based on historical default rates or factor models of

equity returns, and to existing intensity-based studies, which characterize observable macro

variables that induce realistic correlation patterns in default probabilities (see Duffee (1999)

and Duffi e, Saita and Wang (2007)). Importantly, we use econometric techniques that allow

us to estimate a model with multivariate asymmetries and time-varying dependence using a

long time series and a large cross-section of CDS spreads.

We document six important stylized facts. First, copula correlations in CDS spreads

vary substantially over our sample, with a significant increase following the financial crisis in

2007. Equity correlations also increase in the financial crisis, but somewhat later, and the

increase is less significant and not as persistent. Second, our estimates indicate fat tails in

the univariate distributions, but also multivariate non-normalities. Multivariate asymmetries
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seem to be less important for credit than they are for equities. Third, credit dependence is

more persistent than equity persistence, and this greatly affects how major events such as

the Quant Meltdown, the Lehman bankruptcy, and the U.S. sovereign debt downgrade affect

subsequent dependence in credit and equity markets. Fourth, tail dependence increases more

significantly over the sample than copula correlations. Fifth, economic variables explain a

significant part of the time-series variation in dependence and tail dependence. Sixth, the

dependence and tail dependence measures are related to the time-series variation in credit

spreads, even after accounting for other well-known firm-level determinants of spreads.

These stylized facts, and the increase in cross-sectional dependence in particular, have

important implications for the management of portfolio credit risk. We illustrate these impli-

cations by computing the diversification benefits from selling credit protection. The increase

in cross-sectional dependence following the financial crisis has reduced diversification benefits,

not unlike what happened in equity markets. When computing diversification benefits, taking

non-normalities into account is more important for credit than for equity.

Several other important implications of our results deserve further study. First, given

the richness and complexity of the equity and credit dependence, it may prove interesting

to explore the implications for the pricing of structured products. In particular it would

be interesting to investigate if the CDO pricing model suggested by the estimated dynamics

removes some of the observed correlation smile in CDO tranches. See Berd, Engle, and

Voronov (2007) for an example of such an approach. Second, our estimates can be used to

manage a portfolio of counterparty risks. Third, our approach can be used to integrate credit

and equity dependence dynamics in a single portfolio exercise that allows for diversification

across asset classes. Finally, a possible extension is to investigate alternative measures of

credit portfolio risk (Vasicek 1987, 1991, 2002).
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Figure 1: Quantiles of CDS and Equity Levels and Conditional Volatility
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Notes to Figure: We plot quantiles for CDS spreads, equity prices, and their GARCH volatil-

ities across the 215 firms listed in Table 1. In each panel, the black line reports the median

across firms for each week, the dashed lines report the interquartile range, and the gray area

reports the 90% range. In Panels A and C, the 90% ranges are reported on the right axis.

In Panels B and D, the dotted line, reported on the right axis, shows the number of firms

available each week. The vertical lines indicate major events during the sample period.
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Figure 2: Quantiles of CDS Spreads within Nine Industries
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Notes to Figure: We report the median (black line) and 90% range (gray area) of CDS spreads

across firms within each of the ten GIC sectors except utilities.
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Figure 3: Threshold Correlations for Weekly Log-Differences and ARMA-NGARCH

Residuals: CDS Spreads and Equity Returns
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Notes to Figure: For each pair of firms we compute threshold correlations on a grid of thresh-

olds defined using the standard deviation from the mean for each firm (horizontal axis). The

solid lines show the median threshold correlations across firm pairs, the gray areas mark the

interquartile ranges and the dashed lines show the threshold correlations from a bivariate

Gaussian distribution with correlation equal to the average for all pairs of firms.
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Figure 4: Quantiles of CDS Conditional Volatility within Nine Industries
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Notes to Figure: We report the median (black line) and 90% range (gray area) of CDS spread

GARCH volatility for firms within each of the ten GIC sectors except utilities. The number

in parentheses in each title indicates the number of firms available for each industry.
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Figure 5: Quantiles of Copula Correlations:

CDS Spreads and Equity Returns

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

0.2

0.4

0.6

0.8
Panel A: CDS Spread Correlation

Co
rre

la
tio

n

Median correlation
Interquartile range
90% Range

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

0.2

0.4

0.6

0.8
Panel B: Equity Correlation

Co
rre

la
tio

n

Notes to Figure: Using all pairs of firms we report the median (black line), interquartile range

(dashed lines), and 90% range (gray area) of the weekly dynamic copula correlations from the

DAC model.
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Figure 6: Quantiles of Tail Dependence:

CDS Spreads and Equity Returns
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Notes to Figure: Using all pairs of firms we report the median (black line), interquartile range

(dashed lines), and 90% range (gray area) of the weekly dynamic tail dependence from the

DAC model.
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Figure 7: Median Copula Correlations within Nine Industries:

CDS Spreads and Equity Returns
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Notes to Figure: We report the median dynamic copula correlation across firms within each

of the ten GIC sectors except utilities. The black line reports on CDS and the gray line on

equity.
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Figure 8: Median Tail Dependence within Nine Industries:

CDS Spreads and Equity Returns
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Notes to Figure: We report the median dynamic tail dependence across firms within each

of the ten GIC sectors except utilities. The black line reports on CDS and the gray line on

equity.
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Figure 9: Conditional Diversification Benefits.

Credit and Equity Portfolios. 5% Tail.
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Notes to Figure: Using portfolios of available on-the-run CDX firms in a given week, we

compute the 5% conditional diversification benefit (CDB) using the DAC model for CDS

spreads (Panel A) and equity returns (Panel B). The credit portfolio sells credit protection

by shorting CDS contracts. The gray line shows the VIX on the right-hand axis.
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Figure 10: Conditional Diversification Benefits.

Equally Weighted Credit and Equity Portfolios. 50% CDB and Volatility CDB Measures
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Notes to Figure: Using an equally weighted portfolio of available on-the-run CDX firms in

a given week, we compute the 50% conditional diversification benefit (CDB) using the DAC

model for CDS spreads and equity returns. We also show the volatility-based VolCDB mea-

sure, which only takes volatilities and linear correlations into account. The credit portfolio

sells credit protection by shorting CDS contracts.
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Amerada Hess Corp. Hilton Hotels Corp. ACE Limited

Anadarko Petroleum Corp. Home Depot Inc. Allstate Corp.

Canadian Natural Resources Limited J. C. Penney Co Inc. American Express Co

ConocoPhillips Johnson Controls Inc. American International Group Inc.

Devon Energy Corp. Jones Apparel Group Inc. Berkshire Hathaway Inc.

Halliburton Co Knight-Ridder Inc. Boston Properties LP

KerrMcGee Corp. Kohls Corp. CIT Group Inc.

Kinder Morgan Energy LP Lear Corp. Capital One Bank USA National Association

Nabors Industries Inc. Lennar Corp. Capital One Financial Corp.

Transocean Inc. Liberty Media Corp. Chubb Corp.

Valero Energy Corp. Limited Brands Inc. Countrywide Home Loans Inc.

XTO Energy Inc. Liz Claiborne Inc. EOP Operating LP

Alcan Inc. Lowe's Companies Inc. ERP Operating LP

Alcoa Inc. M.D.C. Holdings Inc. Federal Home Loan Mortgage Corp.

Barrick Gold Corp. Macy's Inc. Federal National Mortgage Association

Dow Chemical Co Marriott International Inc. General Motors Acceptance Corp.

E. I. du Pont de Nemours & Co May Department Stores Co Hartford Financial Services Group Inc.

Eastman Chemical Co Maytag Corp. International Lease Finance Corp.

Freeport McMoran Copper & Gold Inc. McDonald's Corp. Loews Corp.

International Paper Co Mohawk Industries Inc. MBIA Insurance Corp.

MeadWestvaco Corp. NY Times Co MBNA Corp.

Olin Corp. Newell Rubbermaid Inc. Marsh & Mclennan Co Inc.

Rio Tinto Alcan Inc. News America Inc. MetLife Inc.

Rohm & Haas Co Nordstrom Inc. National Rural Utilities Coop Financial Corp.

Sherwin Williams Co Omnicom Group Inc. Radian Group Inc.

Temple-Inland Inc. Pulte Homes Inc. Residential Capital Corp.

Boeing Capital Corp. RadioShack Corp. SLM Corp.

Bombardier Capital Inc. Sears Roebuck Acceptance Corp. Simon Property Group Inc.

Bombardier Inc. Staples Inc. Vornado Realty LP

Burlington Northern Santa Fe Corp. Starwood Hotels & Resorts Worldwide Inc. Washington Mutual Inc.

CSX Corp. TJX Companies Inc. Wells Fargo & Co

Caterpillar Inc. Target Corp. Weyerhaeuser Co

Cendant Corp. Time Warner Cable Inc. XLIT Limited

Deere & Co Time Warner Inc. iStar Financial Inc.

GATX Corp. Toll Brothers Inc. 1st Data Corp.

General Electric Capital Corp. Toys "R" Us Inc. Arrow Electronics Inc.

Goodrich Corp. Tribune Co Avnet Inc.

Honeywell International Inc. Viacom Inc. CA Inc.

Ingersoll Rand Co Visteon Corp. Cisco Systems Inc.

Lockheed Martin Corp. Walt Disney Co Computer Sciences Corp.

Masco Corp. Wendy's International Inc. Dell Inc.

Norfolk Southern Corp. Whirlpool Corp. Electronic Data System Corp.

Northrop Grumman Corp. YUM! Brands Inc. Hewlett Packard Co

Pitney Bowes Inc. Albertsons Inc. IAC InterActive Corp.

R. R. Donnelley & Sons Co Altria Group Inc. IBM Corp.

Raytheon Co Beam Inc. Motorola Inc.

Ryder System Inc. CVS Caremark Corp. Sabre Holdings Corp.

Southwest Airlines Co Campbell Soup Co Sun Microsystems Inc.

Textron Financial Corp. ConAgra Foods Inc. Xerox Corp.

Union Pacific Corp. General Mills Inc. ALLTEL Corp.

United Parcel Services Inc. H. J. Heinz Co AT&T Corp.

American Axle & Manufacturing Holdings Inc. Kraft Foods Inc. AT&T Inc.

Autozone Inc. Kroger Co AT&T Mobility LLC

Belo Corp. Reynolds American Inc. AT&T Wireless Services Inc.

Black & Decker Corp. Safeway Inc. BellSouth Corp.

Brunswick Corp. Sara Lee Corp. CenturyLink Inc.

CBS Corp. Supervalu Inc. Cingular Wireless LLC

CENTEX Corp. Tyson Foods Inc. Citizens Communication Co

Carnival Corp. Wal Mart Stores Inc. Embarq Corp.

Clear Channel Comms Inc. Aetna Inc. Intelsat Limited

Comcast Cable Communication LLC Amgen Inc. Sprint Corp.

Comcast Corp. Baxter International Inc. Verizon Communications Inc.

Cox Communications Inc. Boston Scientific Corp. Verizon Global Funding Corp.

DIRECTV Holdings LLC Bristol Myers Squibb Co American Electric Power Co Inc.

Darden Restaurants Inc. Cardinal Health Inc. Constellation Energy Group Inc.

Delphi Corp. Cigna Corp. Dominion Resources Inc.

Eastman Kodak Co McKesson Corp. Duke Energy Carolinas LLC

Expedia Inc. Pfizer Inc. Exelon Corp.

Ford Motor Credit Co Quest Diagnostics Inc. FirstEnergy Corp.

GAP Inc. UnitedHealth Group Inc. Progress Energy Inc.

Gannett Co Inc. Universal Health Services Inc. Sempra Energy

Harrah's Operating Co Inc. Wyeth

Notes to Table: Using data from Markit, we consider all firms included in the first 18 series of the CDX North American investment grade index dating from January 1, 2001 to

August 22, 2012. Our sample consists of 215 firms. Firms are first ordered by GIC sector, then alphabetically.

Table 1: Company Names



Annualized 

Average (%)

Annualized 

Standard 

Deviation (%)

Skewness Kurtosis
Jarque-Bera p-

value

AR(1) 

Coefficient

AR(2) 

Coefficient

CDS Spreads

Median 4.08 66.71 0.86 9.75 0.00 0.09 0.05

Interquartile Range [-4.48, 13.19] [60.98, 72.98] [0.48, 1.38] [7.51, 14.72] [0.00, 0.00] [0.06, 0.14] [0.02, 0.09]

Equity Prices

Median 4.17 34.83 -0.48 7.91 0.00 -0.03 -0.02

Interquartile Range [-1.72, 8.60] [28.38, 43.46] [-0.86, -0.17] [6.27, 12.05] [0.00, 0.00] [-0.06, 0.01] [-0.06, 0.02]

CDS Spreads Equity Prices

CDS Spreads

Median 0.39 -0.33

Interquartile Range [0.30, 0.47] [-0.42, -0.24]

Equity Prices

Median 0.32

Interquartile Range [0.25, 0.41]

Table 2: Descriptive Statistics on CDS Spreads, Default Intensities and Equity Prices

Panel A: Sample Moments on Weekly Log-Differences

Panel B: Correlations of Weekly Log-Differences

Notes to Table: We report sample moments on weekly CDS spreads and equity prices across available firms. Panel A reports sample moments

computed on the weekly log-differences of spreads and equity prices. Panel B reports average sample correlations across firms using weekly

log-differences. On the diagonal we report the median and IQR across the correlations between each firm and all other firms. On the off-

diagonal we report the median and IQR of the correlation between spreads and equity prices for the same firm. 



Proportion of Model Chosen by AICC Criterion CDS Spreads Equity Prices

ARMA(0,0) 8% 12%

ARMA(0,1) 12% 7%

ARMA(0,2) 10% 9%

ARMA(1,0) 15% 5%

ARMA(1,1) 13% 6%

ARMA(1,2) 5% 6%

ARMA(2,0) 10% 8%

ARMA(2,1) 4% 10%

ARMA(2,2) 23% 36%

Parameter Estimates 

m Median 0.0000 0.0000

Interquartile Range [-0.00, 0.00] [-0.00, 0.00]

AR(1) Median 0.100 -0.040

Interquartile Range [-0.27, 0.59] [-0.84, 0.48]

AR(2) Median -0.280 -0.620

Interquartile Range [-0.80, 0.10] [-0.84, -0.10]

MA(1) Median 0.080 -0.030

Interquartile Range [-0.52, 0.38] [-0.48, 0.79]

MA(2) Median 0.290 0.630

Interquartile Range [0.07, 0.85] [0.07, 0.87]

L-B(4) p-value > 5% Proportion 99% 90%

Parameter Estimates CDS Spreads Equity Prices

b Median 0.780 0.800

Interquartile Range [0.68, 0.85] [0.71, 0.86]

a Median 0.130 0.050

Interquartile Range [0.09, 0.19] [0.03, 0.09]

g Median -0.200 1.230

Interquartile Range [-0.45, 0.02] [0.79, 2.05]

Volatility Persistence Median 0.950 0.980

Interquartile Range [0.89, 0.98] [0.96, 0.99]

n Median 3.720 6.560

Interquartile Range [3.30, 4.31] [5.02, 8.13]

l Median 0.100 -0.110

Interquartile Range [0.07, 0.14] [-0.16, -0.07]

L-B(4) p-value z
2
 > 5% Proportion 98% 87%

Table 3: Summary of ARMA-NGARCH Estimation on Weekly Log-Differences

Panel A: Conditional Mean Dynamics

Panel B: Conditional Volatility Dynamics and Return Distributions

Notes to Table: For each firm we estimate an ARMA(p,q)-NGARCH(1,1) model where the p and q are chosen by the

AICC criterion. The residual distribution is asymmetric t with parameters n and l. L-B(4) denotes a Ljung-Box test that

the residuals (Panel A) or squared residuals (Panel B) are serially uncorrelated.



Skewness Kurtosis
Cross-firm Correlation

Cross-Instrument 

Correlation

CDS Spreads Median 0.91 9.29 0.39 -0.33

Interquartile Range [0.44, 1.65] [6.44, 16.13] [0.30, 0.47] [-0.42, -0.24]

Equity Prices Median -0.45 5.40 0.32

Interquartile Range [-0.75, -0.24] [4.33, 7.26] [0.25, 0.41]

CDS Spreads Equity Prices CDS Spreads Equity Prices

bC 0.963 0.924 0.960 0.921

aC 0.021 0.020 0.022 0.019

Correlation Persistence 0.984 0.944 0.982 0.940

nC,0 6.123 7.521 37.188 18.786

nC,1 - 0.004 - 0.002

lC 0.077 - 0.230 0.000 - 0.334

Composite Log-likelihood 1,142,150 696,454 1,144,583 697,187

CDS Spreads Equity Prices CDS Spreads Equity Prices

bC 0.961 0.920 0.960 0.921

aC 0.021 0.020 0.022 0.019

Correlation Persistence 0.982 0.940 0.982 0.940

nC,0 10.064 10.811 37.188 18.783

nC,1 - 0.004 - 0.002

Composite Log-likelihood 1,138,394 686,403 1,144,583 688,493

CDS Spreads Equity Prices

bC 0.959 0.913

aC 0.020 0.019

Correlation Persistence 0.979 0.933

Composite Log-likelihood 1,087,840 651,622

Model I: nc(t) = 2 + nc,0 Model II: nc(t) = 2 + nc,0 exp( nc,1 t )

Panel D: Dynamic Normal Copula Estimation

Notes to Table: We report sample statistics on ARMA-NGARCH residuals and estimation results for different copula models. Using the ARMA-

NGARCH residuals, z, we compute in Panel A the median and interquartile range of the skewness, kurtosis, correlations for each pair of firms,

and correlations between CDS and equity for each firm. We estimate the dynamic asymmetric copula (DAC) and the dynamic symmetric copula

(DSC) with and without at time trend for the degree-of-freedom, and the dynamic normal copula (DNC) models on the 215 firms in our sample.

Each of the models is estimated on ARMA-NGARCH residuals from weekly log-differences on CDS spreads and equity prices.

Table 4: ARMA-NGARCH Residual Statistics and Dynamic Copula Parameter Estimation

Panel A: Residual Sample Moments

Panel B: Dynamic Asymmetric Copula Estimation

Model I: nc(t) = 4 + nc,0 Model II: nc(t) = 4 + nc,0 exp( nc,1 t )

Panel C: Dynamic Symmetric Copula Estimation



(i) (ii) (iii) (iv) (v) (vi) (vii)

Constant -0.050 -0.037 0.089 0.058 * 0.052 * 0.045 -0.353 *

First lag 0.951 ** 0.957 ** 0.983 ** 0.987 ** 0.987 ** 0.952 ** 0.920 **

CDX 0.064 * -0.013 0.035

VIX 0.008 ** 0.085 * 0.105 **

Interest rate level -0.004 -0.007 -0.002

Yield curve slope 0.004 -0.003 -0.005

TED spread 0.000 0.000 0.000

Crude oil price 0.053

Business conditions index 0.015

Breakeven inflation 0.017

Adjusted R2 0.988 0.989 0.988 0.988 0.988 0.989 0.989 

(i) (ii) (iii) (iv) (v) (vi) (vii)

Constant -0.090 ** -0.068 * 0.059 ** 0.018 ** 0.013 ** 0.009 -0.363 **

First lag 0.954 ** 0.962 ** 0.960 ** 0.978 ** 0.987 ** 0.931 ** 0.853 **

CDX 0.326 ** -0.007 0.007

VIX 0.038 ** 0.048 * 0.084 **

Interest rate level -0.007 * -0.013 -0.027 **

Yield curve slope 0.004 -0.010 -0.027 *

TED spread 0.000 0.000 0.000

Crude oil price 0.067 **

Business conditions index 0.007

Breakeven inflation 0.026

Adjusted R2 0.979 0.979 0.979 0.979 0.979 0.979 0.980 

(i) (ii) (iii) (iv) (v) (vi) (vii)

Constant 0.408 * 0.322 ** 0.107 * 0.081 0.049 0.311 1.347 **

First lag 0.969 ** 0.975 ** 0.978 ** 0.987 ** 0.992 ** 0.957 ** 0.900 **

CDX -0.053 * 0.021 0.018

VIX -0.060 * -0.068 -0.131 **

Interest rate level 0.009 0.019 0.041 *

Yield curve slope -0.007 0.009 0.027

TED spread 0.000 0.000 0.000

Crude oil price -0.115 **

Business conditions index -0.003

Breakeven inflation -0.027

Adjusted R2 0.991 0.991 0.990 0.990 0.990 0.991 0.991 

Notes to Table: We report coefficients and adjusted R
2

for regressions using variables in levels. We regress the DAC weekly

median CDS correlation in panel A, the median CDS tail dependence in panel B, and the 5% conditional diversification benefit

(CDB) measure in panel C. Regressors include the CDX North American investment grade index, the CBOE implied volatility

index, the 3-month constant maturity U.S. Treasury rate, the difference between the 10-year and the 3-month constant maturity

U.S. Treasury rates, the TED spread, the West Texas Intermediate cushing spot crude oil price, the Aruoba-Diebold-Scotti

business conditions index, and the U.S. breakeven inflation rate. All regressors are lagged, and the first lag of the regressand is

also included. We compute Newey-West standard errors, and significance for regression coefficients at 5% and 1% are denoted

by * and **. All regression estimates are multiplied by 10 for ease of exposition, except for the first lag of the regressand.

Table 5: Regressions of CDS Risk Measures in Levels

Panel A: Regressions for Median CDS Correlation

Panel B: Regressions for Median CDS Tail Dependence

Panel C: Regressions for Conditional Diversification Benefit



(i) (ii) (iii) (iv) (v) (vi) (vii)

Constant -0.213 ** -0.034 ** -0.113 ** -0.094 ** -0.237 ** -0.266 ** -0.240 **

Lagged CDS 0.964 ** 0.986 ** 0.983 ** 0.983 ** 0.960 ** 0.958 ** 0.957 **

Leverage 0.073 ** 0.104 ** 0.062 * 0.045

Interest rate level 0.004 0.002 0.005 * 0.007 **

Yield curve slope 0.009 ** 0.008 ** 0.011 ** 0.013 **

TED spread 0.011 ** 0.010 ** 0.007 * 0.009 **

Equity volatility 0.014 ** 0.011 ** 0.017 ** 0.019 **

CDS volatility 0.014 ** 0.010 **

CDS correlation 0.070 ** 0.086 **

CDS tail dependence 0.098 ** 0.180 **

Average Adj. R
2

0.975 0.977 0.976 0.976 0.975 0.975 0.975

 

(i) (ii) (iii) (iv) (v) (vi) (vii)

Constant -0.002 -0.008 -0.010 -0.012 * -0.002 0.003 0.001

Lagged CDS 0.994 ** 0.997 ** 0.997 ** 0.997 ** 0.994 ** 0.994 ** 0.994 **

Leverage 0.009 * 0.009 ** 0.009 * 0.009 *

Equity volatility 0.010 ** 0.010 ** 0.010 ** 0.010 **

CDS volatility 0.002 -0.001

CDS correlation -0.009 -0.011

CDS tail dependence -0.026 -0.037

Average Adj. R
2

0.992 0.992 0.992 0.992 0.992 0.992 0.992

 

Table 6: Time Series and Cross-Sectional Regressions for CDS Spreads in Levels

Notes to Table: We report coefficients and adjusted R
2

for time series regressions in panel A and for cross-

sectional regressions in panel B using variables in levels. The left hand side variable is the weekly CDS spreads

for each firm. Right hand side variables include the firm’s leverage ratio, the 3-month constant maturity U.S.

Treasury rate, the difference between the 10-year and the 3-month constant maturity U.S. Treasury rates, the

TED spread, the firm-level equity GARCH volatility, the firm-level CDS GARCH volatility, the average CDS

correlation with all other firms, and the average CDS tail dependence with all other firms. All regressors are

lagged, and we also include the first lag of the regressand. In panel A, we run time-series regressions and then

average coefficients over all firms. In panel B, we run cross-sectional regressions and then average coefficients

over all weeks. We compute Newey-West standard errors, and significance for regression coefficients at 5% and

1% are denoted by * and **. Estimates for the TED spreads in panel A are multiplied by 100 for ease of

exposition.

Panel A: Time Series Regressions

Panel B: Cross-Sectional Regressions
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