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Abstract

We embed systematic default, procyclical recovery rates and habit persistence into a model with

a slight possibility of a macroeconomic disaster of reasonable magnitude. We derive analyti-

cal solutions for defaultable bond prices and show that a single set of structural parameters

calibrated to the real economy—and not to bond prices—can simultaneously explain several key

empirical regularities in credit markets. Our model captures the empirical level and volatility

of credit spreads, generates a flexible credit risk term structure, and provides a good fit to a

century of observed spreads. The model also matches the widespread skewness in index options.

Finally, our model reveals a nonlinear relationship between bond and option prices that depends

on the state of the economy and that helps explain conflicting empirical evidence found in the

literature.
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1 Introduction

We set ourselves the following challenge: Within the framework of rare macro disasters—and using

a single set of parameters calibrated to the real economy—can we explain key stylized facts in credit

markets when restricting disasters to be of reasonable size? The empirical credit market regularities

we investigate are: The relative high average level and volatility of investment grade credit spreads

for short and medium-term bonds, the upward-sloping average term structure of investment grade

credit spreads, the highly nonlinear time series dynamic in credit spreads, and the time-varying

relationship between credit spreads and option skewness.

Our analysis shows that the answer is yes: The stylized facts in credit markets are captured in

a rare-disaster model that incorporates habit persistence, systematic default and counter-cyclical

loss rates. We show that all of these features are required in order to match the stylized facts in

credit markets. In particular, we argue that habit-formation alone is not enough to match the level,

term structure and time-series dynamic in credit spreads.

The parameters in the model are calibrated to macro consumption, historical default rates, and

historical loss-given-default rates (referred to as loss rates hereafter). The required magnitude of

consumption disaster in our model is reasonable at 15% in annual terms with a disaster probability

of 2% per annum. It is important to note that a single set of parameters are capable of matching

all the stylized facts that we pursue. It is also important to emphasize that the parameters are

not calibrated to observed bond and option prices. While our focus is on credit markets, our

model also implies a default-free interest rate of 1.4% per year, an equity premium of 5.9% and an

equity market volatility of 17.6% per year on average. These are all close to empirically observed

values and show that our model is capable of simultaneously matching empirical regularities across

markets.

The calibrated model generates average Baa-Treasury spreads of 114 bps and average Aaa-

Treasury spreads of 7 bps at the 5-year maturity. These levels are comparable to the observed CDS

spreads for Baa and Aaa rated firms (107 bps and 18.5 bps), and they are lower than observed

corporate bond spreads, because our model only accounts for credit risk, while other factors such

as liquidity play an important role in corporate bond pricing. When focusing on Baa-Aaa spreads,

the model generates an average of 107 bps with a volatility of 40.7 bps. These numbers are close to

the observed levels of 88.5 bps and 37.4 bps, and they compare well with both traditional structural

models and more recent models (e.g., Chen, Collin-Dufresne, and Goldstein, 2009; Chen, 2010; and

Bhamra, Kuhn and Strebulaev, 2010).

Our model relates the default of investment grade bonds to macro disasters which in turn makes

default a nonzero probability event in the continuous-time limit. In addition, default for investment

grade bonds coincides with states of high marginal utility because risk aversion and loss rate also

peak around default events. These features help generate an empirically relevant spread for short

maturities. For longer maturities, our model-implied term structure of credit spreads tends to
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flatten for investment grade firms which is consistent with the empirical evidence. This feature is

diffi cult to generate in traditional structural models because the stationary default boundary and

positive risk neutral cash-flow growth typically drive long-maturity credit spreads to zero. Our

model can generate both upward and hump-shaped spread term structures, which are documented

empirically in Jarrow, Lando, and Turnbull (1997).

Following Chen, Collin-Dufresne, and Goldstein (2009) we also investigate our model’s implica-

tion for the time-series variation in Baa-Aaa spreads during the past century. The model matches

the historical mean (129 bps vs 126 bps), the standard deviation (80.1 bps vs. 79.8 bps), the mini-

mum (42.6 bps vs 34.0 bps), and the maximum (432 bps vs 510 bps), and it captures the time-series

dynamics in spreads.

There is a growing literature linking options and credit markets.1 However, when regressing

credit spreads on option skewness the coeffi cient is sometimes positive, sometimes negative, and

sometimes insignificant (Cremers, Driessen, Maenhout, and Weinbaum, 2008). Our model shows

that the relationship between credit spreads for investment grade bonds and index option skewness

depends on the prevailing state of the economy and the relationship is not always positive. More

specifically, we show that investment grade credit spreads are always countercyclical while option

skewness is not. It is instead a non-monotonic function of the state of the economy. This insight

explains why the effect of option skewness is not robustly estimated in credit spread regressions in

the literature.

In our model credit spreads and option skewness are both endogenously determined through

their exposure to economic disasters. They both rise as we increase the consumption jump severity

until they reach their respective empirical levels at our calibrated consumption jump level of 15%.

We conclude that allowing for rare disasters is important for generating empirically relevant option

skewness while simultaneously obtaining the required credit spread levels for investment grade

bonds.

Accounting for rare disasters and time-varying risk aversion induces a high and time-varying

risk-adjusted default intensity which induces considerable short-term credit spreads in our model.

The jump magnitude in the pricing kernel controls the price of default risk in our framework. The

jump magnitude generates a wedge in the default intensity between the risk neutral measure and

the actual measure. We find that the default intensity ratio between the two measures is about

4 which is consistent with empirical studies (e.g., Berndt, Douglas, Duffi e, Ferguson and Schranz,

2008). This ratio shows that our model is able to generate empirically relevant credit spreads while

relying on a realistically calibrated pricing kernel.

Our paper also contributes to the literature by including habit formation into the class of credit

risk models that enables closed-form valuation for defaultable bonds. The closed-form bond pricing

expressions we provide are very useful in empirical work and they facilitate our understanding of

1See, among others, Cao, Yu and Zhong (2010), Zhang, Zhou, and Zhu (2009), Collin-Dufresne, Goldstein and
Martin (2001), Wang, Zhou and Zhou (2011), Cremers, Driessen, and Maenhout (2008), and Carr and Wu (2011).
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how time-varying habit and loss rates drive credit spreads and bond risk premia.

Our paper is anchored in the disaster risk literature (Rietz, 1988; Barro, 2006).2 As in the

influential paper by Gabaix (2012), we advocate disaster risk as a unifying solution for asset pricing

puzzles. There are, however, many important differences between the setup in Gabaix (2012) and

ours. First, while Gabaix (2012) investigates a variable disaster framework, we keep the physical

default intensity constant as in the standard Rietz-Barro setup and model investors’time-varying

risk aversion using habit persistence. Second, our study demonstrates that a reasonable 15% drop

in the consumption level, along with time-varying risk aversion, is suffi cient to replicate credit,

equity and options market regularities in our model. Third, we provide a more detailed focus on

various stylized facts in credit markets related to the term structure, state dependences, and time

series variation in spreads.

Our paper is also related to the literature separately explaining puzzles in equity, option and

credit markets. In credit markets, Chen (2010) and Bhamra, Kuhn and Strebulaev (2010) rely on

a long-run risk framework in a regime-switching economy and countercyclical loss rates to explain

both credit spread and leverage puzzles. Gourio (2012) develops a production economy that can

capture the level of credit spreads. We enhance the ability to explain credit market regularities

over time and across maturities using similar levels of economic restrictions and degrees of freedom.

Relying also on habit formation, Chen, Collin-Dufresne and Goldstein (2009), henceforth CCDG,

advocate idiosyncratic risk and a countercyclical default boundary as solutions to credit spread

puzzles. In our view, countercyclical default boundaries are diffi cult to verify empirically and of

course play no role in explaining index option regularities. Furthermore, the ability of CCDG to

generate short-term spreads as well as a sensible term structure is unknown. We develop a model

that combines habit persistence and counter-cyclical loss rates and relates puzzles in different

markets to macroeconomics disasters as the single source of uncertainty. Finally, our paper is

related to the literature on equilibrium option pricing (Benzoni, Collin-Dufresne, and Goldstein,

2011; and Du, 2011) as well as the literature that strives to link pricing in option and credit markets

(Cremers, Driessen and Maenhout, 2008).

The remainder of the paper is organized as follows. We introduce the economic framework

in Section 2. Section 3 derives closed-form bond prices and premia for defaultable and default-

free bonds. Section 4 contains an empirical assessment of the model on credit spreads. Section 5

explores the model further and considers the joint pricing of defaultable bonds and index options.

Section 6 concludes.

2 The Economic Framework

In this section we first outline the pricing kernel used in Du (2011) who allows for consumption dis-

asters and habit persistence. We then extend the model by developing a default intensity structure

2See also Wachter (2006, 2012), Gourio (2008), Barro (2009), and Chen, Joslin and Tran (2012) among others.
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for firms of different credit quality as well as a counter-cyclical process for the loss rate. Finally we

calibrate the model to consumption and default data.

2.1 Preferences and Pricing Kernel

Following Campbell and Cochrane (1999) and Menzly, Santos and Veronesi (2004), we assume that

the representative agent in the economy maximizes expected utility of the form

E

[∫ ∞
0

e−ρtu(Ct, Ht)dt

]
= E

[∫ ∞
0

e−ρt ln(Ct −Ht)dt

]
,

where Ct denotes aggregate consumption, Ht denotes habit level, and ρ denotes the subjective

time-discount rate. The instantaneous risk aversion, γt, is given by

γt ≡ −
Ctucc(Ct, Ht)

uc(Ct, Ht)
=

Ct
Ct −Ht

=
1

St
, (1)

where St denotes the procyclical surplus consumption ratio, which can be thought of as a proxy

for the state of the economy.

Following Menzly, Santos and Veronesi (2004), we assume that γt follows a mean reverting

process, perfectly negatively correlated with innovations in log consumption, ct, that is,

dγt = kγ(γ̄ − γt)dt− αγ(γt − β)(dct − Et[dct]), (2)

where γ̄ is the long-run average risk aversion, kγ controls the speed of mean reversion, αγ > 0

captures the sensitivity of γt to consumption innovations, and β ≥ 1 sets a lower bound for γt.

Following Wachter (2006) we assume that log consumption is subject to a low-probability neg-

ative jump

dct ≡ d log (Ct) = µcdt+ σdBt + JcdNt, (3)

where Bt is a standard Brownian motion, and Nt is a Poisson process with constant intensity λc
that captures the random arrival of economic disaster. The jump size in logs is denoted by Jc < 0.

Upon the occurrence of the i-th disaster at time ti, log consumption jumps from c (ti) to c (ti) +Jc.

For simplicity, we assume Jc is constant, but the model implications are largely unchanged when

allowing for random jump sizes. Using Ito’s lemma for jump-diffusions (e.g., Appendix F of Duffi e,

2001), we get

dCt/Ct = µdt+ σdBt + JCdNt, (4)

where JC ≡ eJc − 1 and µ ≡ µc + 1
2σ

2.

Substituting (3) into (2), the γt-process can now be rewritten as

dγt/γt = µγtdt+ σγtdBt + JγtdNt, with (5)
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µγt = kγ
γ̄ − γt
γt

+ αγ
γt − β
γt

Jcλc, σγt = −αγ
γt − β
γt

σ, Jγt ≡
γt
γt−
− 1 = −αγ

γt − β
γt

Jc, (6)

where γt− denotes the value of γ an instant before the occurrence of a jump. A negative consump-

tion innovation—whether driven by diffusion or a jump—leads to a positive innovation in γt. The

magnitudes of σγt and Jγt are both increasing in γt, implying that the volatility of risk aversion is

increasing in the level of risk aversion.

The pricing kernel Λt in the economy is given by

Λt = e−ρtuC(Ct, Ht) = e−ρtγt/Ct. (7)

We see that Λt is determined partly by economic fundamentals captured by aggregate consumption,

Ct, and partly by the representative agent’s risk aversion γt, which can be viewed as market

sentiment. Ito’s lemma gives

dΛt/Λt = µΛtdt+ σΛtdBt + JΛtdNt, with (8)

µΛt = −ρ− µ+ σ2 + µγt − σσγt, σΛt = σγt − σ, JΛt ≡
Λt

Λt−
− 1 = e−Jc (Jγt + 1)− 1. (9)

By combining (9) with (6), a negative consumption innovation, whether driven by diffusion or jump,

leads to an amplified positive innovation in the pricing kernel through the γt innovation. Following

the literature, we refer to −σΛt > 0 as the price of diffusive risk, and −JΛt < 0 as the price of jump

risk. Note that |σΛt| and |JΛt| are both increasing in γt, implying larger compensation per unit of
risk for higher levels of risk aversion which in turn occur in bad economic states.

2.2 Modeling Physical Default

Following Jarrow, Lando, and Turnbull (1997), Duffi e and Singleton (1999), Duffi e and Lando

(2001), and Gabaix (2012) and others, we assume that the representative agent has incomplete

knowledge of the firm’s fundamentals. For a given credit class, j, we assume that bond defaults are

driven by a systematic component modeled by N sys
jt , with intensity λ

sys
j as well as an idiosyncratic

component modeled by N idio
jt , which has intensity λidioj . We can thus write

dNjt (λj) = dN sys
jt

(
λsysj

)
+ dN idio

jt

(
λidioj

)
, (10)

where λj = λsysj +λidioj . Recall that the sum of two independent Poisson processes itself is Poisson.

When tying firm default to macro consumption, we decompose the disaster jump process in (4)

into a component that triggers default captured by the N sys
jt process in (10) and an orthogonal

residual component that does not trigger default, defined by N⊥jt , with intensity λ
⊥
j = λc − λsysj .

This decomposition enables some systematic variation in default while ensuring that consumption
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shocks can occur without necessarily causing firms’to default. We thus have

dNt (λc) = dN sys
jt

(
λsysj

)
+ dN⊥jt

(
λ⊥j

)
, (11)

where λc = λsysj + λ⊥j . Under this specification, the correlation of arrivals of economic disaster and

default for credit class j can be computed as

Corr (dNjt, dNt) =
Cov

(
dNjt, dN

sys
jt + dN⊥jt

)
√
λj
√
λcdt

=
λsysj√
λj
√
λc

=

√
λj
λc

λsysj

λj
. (12)

In Section 5.2, we analyze how defaultable bond prices in our model are impacted when the ratio

of systematic default intensity to total default intensity changes.

Empirically, Bakshi, Madan, and Zhang (2006) find that defaults for investment grade bonds

are related to severe economic conditions which we capture via consumption jumps. Their finding

is consistent with the observation that investment grade bonds default with lower probability than

economic disasters strike, and we thus calibrate default intensities to be much below 1% for 5-year

Aaa and Baa bonds compared with a consumption jump intensity of 2%.

In the so-called structural approach to corporate bond pricing default is modelled as the first

time firm-value falls below a certain boundary. As the firm cash-flow process, like our consumption

process, is specified exogenously, structural models need to first fit the implied firm-level dynam-

ics to empirical observations. Taking into account the fitted firm-level dynamics, the structural

approach has a comparable degree of freedom for pricing with our approach. Both approaches

are subject to the restrictions that model-implied default rates and default losses need to match

empirical sample moments from Moody’s or Standard & Poor’s, for example. Huang and Huang

(2012) have demonstrated that matching default rates and default loss imposes strict economic

restrictions on the ability of traditional structural models to explain credit spreads.

Our default modeling approach has several advantages. It is tractably embedded into the habit

formation framework and it delivers closed-form expressions for bond prices and premia, which

facilitates the analysis of the default premium as studied by Driessen (2005) and Berndt, Douglas,

Duffi e, Ferguson and Schranz (2008). Finally, our consumption-based model framework allows us

to jointly analyze credit spreads and option prices.

2.3 Modeling Loss Rates

We focus on zero-coupon defaultable bonds which pay a face value of 1 at expiration date contingent

on not defaulting. To capture default risk, we need to account for bond losses due to defaults. We

assume that bondholders recover 1−Lt of the bond face value upon bankruptcy, where Lt denotes
the loss rate at the time of default.

Many studies including Altman and Kishore (1996), suggest that default loss is time varying.

In addition, Shleifer and Vishney (1992) and Acharya, Bharath and Srinivasan (2007) argue that
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asset sales of distressed firms suffer from large discounts if an entire industry or the economy as

a whole experiences financial distress, which implies a countercyclical loss rate. In view of this

evidence, we model the loss rate process as

dLt = kL(L̄− Lt)dt− αL(dct − Et[dct]), (13)

where L̄ is the long run average of the recovery rate, kL controls the speed of mean reversion, and

αL captures the sensitivity of Lt to consumption innovations. Using the consumption process in

(4), we can rewrite (13) as

dLt = kL(L̄− Lt)dt− αLσdBt − αLJc (dNt − λcdt) . (14)

Our parsimonious specification of the loss rate process imposes a tight restriction on the depen-

dence of the loss rate on macro variables. Intuitively, a negative consumption innovation implies

a worsening of macroeconomic conditions which, under a positive αL, raises the loss rate. Chen

(2010) provides empirical evidence on the close relation between the bond recovery rate, 1 − Lt,
and consumption growth. In the Appendix we show how the loss rate specification can be extended

by allowing for an additional shock which may be only partially correlated with consumption.

2.4 Model Calibration

We now calibrate parameters related to the dynamic processes for consumption, preferences and

default. It is crucial to note that no parameter is calibrated to option or bond prices.

Consider first the consumption process in (4) which we calibrate as follows

Table 1.A: Consumption Parameters

µ σ λc Jc JC

0.02 0.02 0.02 −0.1625 −0.15

In the model, µ and σ denote, respectively, the mean and the volatility of consumption growth

conditional on no disaster. Since disasters are rare by nature, µ and σ should be close to the

corresponding consumption sample moments. Following numerous previous studies we set µ = σ =

2%. Consistent with the rare disaster literature, we set the jump intensity, λc = 0.02, implying

that economic jumps on average strike once every 50 years.

Calibrating the jump magnitude is complicated by the fact that large consumption drops are

often followed by a strong recovery. Gabaix (2012) follows Barro (2006), and Barro and Ursua

(2008) in calibrating the disaster magnitude to over 30%. Constantinides (2008), Donaldson and

Mehra (2008), and Gourio (2008) have noted that it is diffi cult to reconcile a disaster magnitude of

30% with the historical record. Using a new panel data set on personal consumer expenditure for 24

countries covering more than 100 years, Nakamura, Steinsson, Barro, and Ursua (2011) document

that a peak-to-trough drop in consumption is on average 30% but half of this decline is reversed in
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subsequent recovery. Motivated by their findings, we set JC = −15% to reflect the net impact of

consumption disasters on asset prices. The log consumption jump, Jc, is then −16.25%.

Consider next the preference parameters in (2) and (7) which we calibrate as follows

Table 1.B: Preference Parameters

kγ γ̄ β αγ ρ

0.16 33.97 20 39.4 0.04

We take the preference parameter values kγ and γ̄ directly from Menzly, Santos and Veronesi

(2004) who focus on equity pricing. As they do not model jumps, we scale down αγ from their

value of 79.39 to adjust for the impact of consumption jumps on the equity premium. We set αγ
so that our model implies an equity premium of 5.9%. Simultaneously, and consistent with Pan

(2002), the model generates a jump risk premium which on average accounts for 38.9% of the total

equity premium.

Consider finally the calibration of loss and default

Table 1.C: Loss and Default Parameters

L̄ kL αL λsysAaa λsysBaa λ⊥Aaa λ⊥Baa

0.586 0.4 2.7 0.0214% 0.365% 1.98% 1.635%

Following Chen (2010), we use simulated method of moments to estimate the three parameters,

L̄, kL, and αL, that govern the loss rate process in (14). The target moments are a mean loss of

58.6%, with a volatility of 9.6%, and a first order autocorrelation of 63.5% corresponding to the

empirical moments from Moody’s aggregate recovery rate series from 1982 to 2008. The model

predicted moments are based on a large sample of 100, 000 loss rates simulated according to (14)

for 100 years.

Following Huang and Huang (2012) and CCDG, and consistent with empirical data on physical

default available from Moody’s for the period 1970-2008, we set the 5-year cumulative default

probability for Aaa and Baa bonds to 0.107% and 1.824%, respectively. The annualized default

intensity for these two bonds are thus λAaa = 0.0214% and λBaa = 0.365%. In our benchmark

calibration we set λidioj = 0 so that the λsysAaa = λAaa for highly rated bonds and λ
sys
Baa = λBaa

for lower rated bonds. In Section 5.1 we discuss the impact of allowing for nonzero λidioj . For

each rating class, we fix the orthogonal consumption jump intensity via λ⊥j = λc − λsysj , so that

λ⊥Aaa = .02− .0002 = .0198 and λ⊥Baa = .02− .00365 = .01635.

In order to provide intuition for the calibrated model, we plot in Figure 1 a 120-year simulated

sample path. The top panel shows the log consumption path that features a jump around year 30

and another around year 70. Note that the consumption disasters in the graph are quite reasonable

in magnitude. The second row of panels shows the simulated surplus ratio path, S, which indicates

booms and recessions in the economy (left panel) and the countercyclical loss rate (right panel).

The bottom row of panels shows the number of defaults per year in a population of 1, 000 Aaa
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firms and 1, 000 Baa firms created at the beginning of the simulation. In the bottom-left panel of

Figure 1 we follow the benchmark calibration and assume that Aaa-defaults are purely systematic

and triggered solely by consumption disasters. Since λAaa << λc, only a small fraction of the 1,000

Aaa firms default when consumption disaster strikes, which is realistic. Purely for illustration, we

deviate from the benchmark calibration by assuming that 35% of Baa defaults are idiosyncratic,

and the simulated defaults are plotted in the bottom-right panel of the same figure. In comparison,

we see more Baa firms default upon consumption disasters than Aaa firms, and in addition Baa

firms also default during periods with no consumption jumps.

As forcefully argued in Huang and Huang (2012) and CCDG, calibrating loss and default rates

to physical dynamics imposes tight economic restrictions on the model. Our calibration strategy

ensures that our model has a comparable degree of freedom to traditional credit risk models. Note

in particular that we are conducting a purely out-of-sample exercise when we apply the model for

bond pricing below.

3 Bond Prices and Risk Premia

Above we have developed a 2-regime (default and no-default), 3-factor model with dynamics in

consumption, habit, and loss rates. In this section we first derive expressions for the prices and

premia of default-free and for defaultable bonds. We then provide some intuition for the model’s

ability to generate large credit spreads for investment grade firms. The proofs of all propositions

are provided in the Appendix. For brevity we suppress the dependence of prices on credit class in

this section.

3.1 Default-Free Bonds

Proposition 1 The price of a zero-coupon default-free bond with τ years to expiration is given by

P 0
t,τ = α0

1 (τ) + α0
2 (τ) τ

1

γt
, (15)

where α0
1 (τ) and α0

2 (τ) are all positive. The instantaneous return on a default-free bond follows:

dP 0
t,τ

P 0
t,τ

= µ0
Ptdt+ σ0

PtdBt + J0
PtdNt, (16)

with

σ0
Pt = −α0

2 (τ)
1

γt · P 0
t,τ

σγt, (17)

J0
Pt ≡

P 0
t,τ

P 0
t−,τ
− 1 = α0

2 (τ)
1

γt− · P 0
t−,τ

(
1

1 + Jγt
− 1

)
, (18)
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where σγt = −αγ γt−βγt
σ is the volatility of γt, and where Jγt = −αγ γt−βγt

Jc is the jump size of γt.

The expression for µ0
Pt is provided in the Appendix.

We have verified that α0
2 (τ) > 0, so that equation (15) shows that P 0

t,τ loads negatively on risk

aversion γt and hence positively on the surplus St. By combining the bond return process (16) with

the pricing kernel process (8), the implied default-free bond risk premium is

BP 0
t = −σΛtσ

0
Pt − λcJΛtJ

0
Pt, (19)

where σΛt is the diffusive volatility and JΛ is the jump size of the pricing kernel given in (9). In

(19), the two terms are compensations for diffusive and jump risks, respectively. As discussed in

Wachter (2006), real default-free bonds are risky under habit formation. Their yields are low for

high consumption surplus which generates an upward-sloping yield curve. This relation implies a

negative covariance between dynamics of bond returns and the pricing kernel, and hence a positive

bond risk premium.

It is straightforward to verify that when τ → 0, the implied bond yield y0
t,τ = − 1

τ lnP 0
t,τ

approaches the short term interest rate rt which by definition equals

rt = −Et (dΛt/Λt) = −µΛt − λcJΛt,

where µΛt and JΛt are the drift and jump size of the pricing kernel given in (9). The risk-free rate

is on average 1.4% per year using our parameter calibration.

3.2 Defaultable Bonds

Let Pt,τ be the time t price of a zero-coupon defaultable bond, which has not yet defaulted, and

which has τ years remaining until expiration. In the following we assume that in case of default the

bond holder recovers face value (RFV). Given the pricing kernel of (8), we can prove the following

proposition.

Proposition 2 Under the recovery of face value (RFV) assumption, the price of a defaultable bond,

which has not yet defaulted, is

Pt,τ = α1 (τ) + α2 (τ)
1

γt
+ α3 (τ)Lt + α4 (τ)

Lt
γt
, (20)

where the αi (τ)s are given in the Appendix.

We have verified that α1 (τ) , α2 (τ) , and α4 (τ) are positive, while α3 (τ) and α3 (τ) +α4 (τ) 1
γt

are negative. From (2), γt has a lower bound of β which bounds the magnitude of the positive term,

α4 (τ) 1
γt
. As a result, the α3 (τ) term always dominates leading to a negative α3 (τ) + α4 (τ) 1

γt

11



coeffi cient on Lt. Therefore, (20) says that a high risk aversion and a high loss rate both translate

into a low defaultable bond price which is intuitive.

The next proposition summarizes the dynamics of Pt,τ .

Proposition 3 The instantaneous return on an RFV defaultable bond conditional on no-default is

given by
dPt,τ
Pt,τ

= µPtdt+ σPtdBt + JPtdN
⊥
t +

[
1− Lt
Pt−,τ

− 1

]
dN sys

t , (21)

where the Poisson process dN sys
t denotes the arrival of default, and the orthogonal dN⊥t process

denotes arrivals of economic disasters that do not induce default. Furthermore, we have

σPt = −α2 (τ)
σγ

γtPt,τ
− α3 (τ)

αLσ

Pt,τ
− α4 (τ)

Ltσγ + αLσ

γtPt,τ

JPt ≡
Pt,τ
Pt−,τ

− 1

= α2 (τ)
1

γt−Pt−,τ

(
−Jγ

1 + Jγ

)
− α3 (τ)

αLJc
Pt−,τ

+ α4 (τ)
1

γt−Pt−,τ

[
Lt−

(
−Jγ

1 + Jγ

)
− αLJc

1 + Jγ

]
,

where σγ and Jγ are the diffusion and jump size of γt from (6), and where αL captures the sensitivity

of Lt to consumption innovations which in turn have volatility σ and jump size Jc. The expression

for µPt is provided in the Appendix.

To understand (21), note that the orthogonal decomposition of dN⊥t and dN
sys
t reflects the fact

that the bond price jump size not triggered by default, denoted by JPt, differs from the jump size

triggered by default, which equals 1−Lt
Pt−,τ

−1. In the latter case, we have relied on the fact that under

the RFV arrangement, upon default, the bond price immediately jumps to the recovery rate 1−Lt.
Combining (21) with (8), we obtain the following risk premium demanded when holding the

defaultable bond

BPt = −σΛtσPt − λ⊥JΛtJPt −
(
λsys + λidio

)
JΛt

[
1− Lt
Pt−,τ

− 1

]
. (22)

In (22), the three terms are compensations for diffusive risk, jump risk not accompanied by default,

and default risk, respectively.

3.3 Model-Based Credit Spreads and Premia

Given the price of defaultable bonds conditional on no-default, Pt,τ , the model-implied yield is

computed from yt,τ = − 1
τ ln (Pt,τ ). The model-based credit spread can then be computed as

CSt,τ ≡ yt,τ − y0
t,τ , where we use the default-free bond as the benchmark. By using the physical

default intensities, λAaa and λBaa, calibrated in Table 1.C above, we can compute model-implied

credit spreads for Aaa and Baa rated bonds.
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Figure 2 plots the model-implied Baa-Treasury and Aaa-Treasury spreads from the model. In

order to investigate how our model generates credit spreads, we consider the following special cases:

In the “Constant Loss and Habit”special case we set kγ = αγ = kL = αL = 0. In this model, there

is a positive relationship between the pricing kernel and default, but we have shut down dynamics

in the loss rate and risk aversion. In the “Constant Habit”special case we allow for only variations

in Lt by setting kγ = αγ = 0. In the “Constant Loss Rate”case we allow for only variations in γ

by setting kL = αL = 0. The most general model where γ and L are both dynamic is labelled “Full

Model”in Figure 2.

The top panel in Figure 2 illustrates the credit spread for a Baa bond as a function of S = 1/γ

when default loss Lt is set to its unconditional value, L̄. From Figure 2, the credit spreads are

very low in the “Constant Loss and Habit” case which can be viewed as one of the risk-neutral

structural models calibrated in Huang and Huang (2012). Allowing for variation in default loss

in the “Constant Habit”model almost doubles the implied credit spreads. Note of course that

when habit is constant the implied spreads do not react to variations in the surplus ratio. Allowing

for habit formation only in the “Constant Loss Rate” case also adds substantially to the credit

spread which now clearly exhibits counter-cyclicality. Finally, the full model further drives up

model spreads to much more realistic levels. Perhaps the most striking result from Figure 2 is that

the dynamic L and γ combine to have such a large effect in driving up the model credit spreads,

as illustrated by the “Full Model”line.

The bottom panel of Figure 2 show the same special cases of our model but now for Aaa rated

bonds, which reveals similar patterns across models. Specifically, credit spreads in our full model

are countercyclical and reach realistically levels ranging from 5 to 18 bps.

In Figure 3 we again plot the Baa-Treasury credit spread (solid line in top panel) and the

Aaa-Treasury credit spread (solid line in bottom panel), but we now focus on the full model and

plot within the same figure the bond premium differences BPt −BP 0
t (dashed lines). While credit

spreads are counter-cyclical for all values of the surplus ratio, bond premium differences are pro-

cyclical for extremely low levels of the surplus ratio and countercyclical for low, moderate and high

levels of surplus. Due to the nonlinearities in the model, the premium differences exceed the credit

spread differences for certain values of S.

In external habit models, the volatility of S, which we can think of as systemic risk, vanishes as

S goes to zero so as to prevent negative marginal utility. This decrease in systematic risk as S goes

to zero results in a decrease in bond return volatility and bond price jump sizes, and consequently

decreases defaultable bond risk premia. The model thus distinguishes between systematic risk and

the risk premium. When S approaches zero the compensation per unit of risk rises but the risk

exposure decreases. The latter effect dominates for very low levels of S which reduces the bond

risk premium as shown in Figure 3.

The impact of disaster-triggered default can also be understood from the strong positive rela-

tionship between the pricing kernel and default time. The pricing kernel is high and default is more
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likely upon the strike of consumption jumps. This relationship is one of two channels that generate

high credit spreads. The relationship between consumption and the loss rate is another important

channel in our model. We now discuss these in more detail.

3.4 Countercyclical Loss Rates, Habit Persistence, and Bond Prices

In this section we provide some intuition for how the jointly countercyclical dynamics in L and γ

create large credit spreads. For this purpose we borrow from the insightful shorthand representation

in CCDG for defaultable bonds which helps us explain the economic channels through which our

model matches observed credit spreads. First, write the price of a zero coupon bond P as

P = E [Λ(A)(1− 1D(A,B)L(A,B))] , (23)

where Λ represents the pricing kernel, A denotes a vector of macro-economic variables including the

surplus ratio, S, and where B denotes a vector of firm specific (idiosyncratic) variables. The default

indicator is denoted by 1D(A,B). Note that we have suppressed the time subscripts everywhere.

Expanding the expectation in (23) gives

P = E [Λ(A)]E [1− 1D(A,B)L(A,B)]− Cov (Λ(A), 1D(A,B)L(A,B)) , (24)

which we refer to as the expectation term and the covariance term, respectively.

Huang and Huang (2012) emphasize that both E [1D(A,B)] and E [L(A,B)] should match their

empirical levels when testing a model. With these constraints, and as emphasized by CCDG, it is

clear that a large covariance between the pricing kernel and the expected loss in default is key to

generating low defaultable bond prices and thus large credit spreads. Our model generates such a

covariance via consumption-related default intensities and countercyclical loss rates.

Countercyclical loss rates also impact the expectation term in a desirable fashion. To see this

we expand the expectation term in (24) to write

E [Λ(A)]E [1− 1D(A,B)L(A,B)] = E [Λ(A)] [1− E [1D(A,B)L(A,B)]]

= E [Λ(A)] [1− E [1D(A,B)]E [L(A,B)]− Cov (1D(A,B), L(A,B))] ,

which shows that a positive covariance between the default probability and the loss rate will drive

down the expectation term and in turn decrease bond prices and increase credit spreads—even when

constraining E [1D(A,B)] and E [L(A,B)] to empirically relevant levels. A positive correlation

between default rates and loss rates is a strong empirical regularity and it is captured in our model

via the joint countercyclicality in defaults and loss rates arising from their covariance with the

consumption process and thus with the habit process, γ.

In summary, allowing the loss rate to depend on macro conditions not only increases the co-

variance term as explained above but also decreases the expectation term. We thus conclude that
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accounting for a countercyclical loss rate that is correlated with the default intensity plays a double

role in decreasing bond prices and generating nontrivial credit spreads.

3.5 Credit Spreads and the Default Event Premium

One may be concerned that the nontrivial credit spreads generated in our model are simply driven

by an unrealistically large default event premium. In this section we show that this is not the

case. The magnitude of macro disasters in our models, and thus the implied magnitude of pricing

kernel jumps, JΛt, is calibrated to the international evidence on consumption disasters taking into

account subsequent recoveries (Nakamura, Steinsson, Barro, and Ursua, 2011). Let λQt denote the

risk neutral expectation of the default intensity, EQt [dNt] , then the implied default intensity ratio

between P and Q measures is

λQt /λ = 1 + JΛt = e−Jc
(

1− αγ
γt − β
γt

Jc

)
= e−Jc (1− αγ (1− βSt) Jc) , (25)

which is linear in St with slope e−JcαγβJc = −150.66 and intercept e−Jc (1− αγJc) = 8.71 in our

calibration of the model. The default intensity ratio can be viewed as a measure of the default

event premium.

Using an average surplus ratio of 0.03 the default intensity ratio is around 4 on average in the

model. This number is in line with the empirical findings in Berndt, Douglas, Duffi e, Ferguson, and

Schranz (2008) who use physical default rates and CDS premia to estimate λQt /λ ranging from 2.5

to 5.6 for investment grade firms. Our average default intensity ratio of 4 matches very well with

these findings. The relatively modest average default intensity ratio also shows that our model’s

ability to generate realistic credit spreads is not due to the assumption of a large default (event)

premium.

The default intensity ratio is strongly countercyclical in our model. A low surplus ratio of say

St = 0.005, implies a λQt /λ of almost 8 which in turn denotes the high compensation per unit of

bond price jump attributed to default. In our model, the default intensity under the P measure

is correlated with consumption jumps. Default risk is priced through the covariance between the

default intensity and the consumption disaster intensity. The correlation of arrivals of default and

arrivals of economic disaster can be computed from (12) to be 42.7% for Baa firms and 10% for

Aaa firms.

We emphasize that a time-varying default rate under the P measure is not required for a model

to resolve the credit spread puzzle. What is necessary is that the occurrence of default covaries with

consumption jumps and thus with the pricing kernel. In our habit-based model, the risk-neutral

expected default rate, λQt , is highly variable due the volatility of the surplus ratio, St, even though

we have no variation in the physical default intensity, and even though our model-implied ratio on

average matches the data.

Encouraged by our model’s ability to create counter-cyclical credit spreads of sensible magni-
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tudes under realistic assumptions about physical default and the pricing kernel, we now proceed

with a proper empirical assessment of our model.

4 Model-Implied Versus Empirical Credit Spreads

In this section we compare the model to empirically observed credit spreads. First, we compare the

model’s implications for average Corporate-Treasury spreads with those found in the data. Second,

we analyze market and model-based Baa-Aaa spreads. Third, we analyze the term structure of Baa-

Aaa spreads in the model and in the market data. Finally, we analyze the time-series properties of

model-implied and market spreads.

4.1 Average Corporate-Treasury Spreads

On average, the model generates a 114 bps spread for Baa-Treasury and a 7 bps spread for Aaa-

Treasury. These numbers are close to the average 5-year CDS spreads on Baa and Aaa rated firms

which are 107 bps and 18.5 bps, respectively, when averaging Markit CDS spreads on the 125 con-

stituent firms in the North American investment grade index during 2001-2010. The model spreads

are lower than commonly observed corporate bond spreads. The latter discrepancy results from

the fact that our model accounts solely for credit risk and abstracts from other factors that affect

corporate bond prices such as taxes, conversion options, and illiquidity. Several papers have inves-

tigated the decomposition of spreads into various components and shown that the aforementioned

factors are sizable.3 In light of these findings, we interpret our match for CDS averages and the

underestimation for investment grade bonds as expected.

In a pure habit-formation setting, CCDG report a 4-year Aaa model-implied spread of 1 bps.

In a long-run risk framework, Chen (2010) reports a model-implied spread of 45 bps for Aaa while

the CDS spread for a similar rating is around 10 bps and the corporate bond spread is around

53 bps. One reason for the differences in matching credit spreads between the long-run risk and

existing habit literatures partly lies in the steeply upward-sloping yield curve in habit formation

and the downward sloping yield curve in long-run risk models. Accounting for the macro disaster

component in our external habit setup implies a moderately upward-sloping yield term-structure.

This latter feature enables our model to match credit spreads when measured using CDS data.

In the remainder of this section we focus attention on Baa-Aaa spreads. Our reasoning, which

follows the literature, is that if components of the credit spread due to non-default factors are of

similar magnitude for Aaa and Baa bonds, then their relative spread should be mostly due to credit

risk. We recognize that the call feature on Baa bonds may be more valuable than the call feature

on Aaa bonds. Also, we know from Ericsson and Renault (2006) and He and Xiong (2012) that

liquidity and credit are related. Nevertheless, the Baa-Aaa spread most likely captures credit risk

3See, for example, Elton, Gruber, Agrawal and Mann (2001), Driessen (2005), Longstaff, Mithal and Neis (2005),
and Chen, Lesmond and Wei (2007).
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more accurately than do the corporate spreads versus Treasury.

4.2 Average Baa-Aaa Spreads

We now report on 5-year Baa-Aaa spreads under the four different versions of the model discussed

in Section 3.3. In Table 2.A we use the stationary distribution of the state variables in the model

to compute the model-implied Baa-Aaa spreads.

Table 2.A: Baa-Aaa Spreads (bps). Stationary Distribution.

Model Version Constraints Spread Mean Spread Vol.

Constant Loss and Habit kγ = αγ = kL = αL = 0 23.0 0

Constant Habit kγ = αγ = 0 36.2 1.96

Constant Loss Rate kL = αL = 0 49.5 9.74

Full Model None 107 40.7

Empirical Values from Markit 88.5 37.4

Table 2.A shows that the Full Model, which incorporates a countercyclical loss rate, matches

the average and the standard deviation of credit spreads quite well. This result again emphasizes

the importance of the consumption disaster in addition to both countercyclical habit and loss rate.

When viewed individually, time variation in habit (Constant Loss Rate) is better able to generate

credit spread volatilities than is time variation in the loss rate (Constant Habit). Notice again

that—due to the nonlinearity in the model—the effect of habit persistence together with the loss rate

is larger than the sum of their individual effects.

So far we have documented results for 5-year Baa-Treasury and Aaa-Treasury spreads, and

also for 5-year Baa-Aaa spreads. We now turn our attention to the performance of the model in

matching the observed spread term structure.

4.3 The Term Structure of Baa-Aaa Spreads

Figure 4 shows the average term structure of Baa-Aaa spreads from 2001 to 2010 (solid line) along

with the model-implied credit spreads for various special cases of the model. We know from Table

2.A above that only the full version of the model is able to come close to matching the 5-year credit

spreads. Figure 4 confirms this. Furthermore, Figure 4 shows that the full model is able to roughly

match the average slope and shape of the credit spread term structure.

The model with constant loss rate implies a declining term structure of credit spreads for

maturities beyond 4 years. The model with constant loss rate and habit both exhibit spread levels

that are too low on average and a spread term structure that is too flat on average. The model

with constant habit but dynamic loss rate appears to match the slope of the credit term structure

quite well but of course misses the credit spread levels completely.

The short-term credit spread is strictly positive and sizable in our full model for the following

reasons. First, relating the default of investment grade bonds to macro disasters makes default a
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nonzero probability event in the limit in our setup. This is a desirable property of the incomplete

information framework, including that in Chen and Kou (2009) and Duffi e and Lando (2001).

Second, default for investment grade bonds coincides with states of high marginal utility because

risk aversion also peaks around default events. These effects both help generate an empirically

relevant spread for short maturities. The crucial insight is that habit models augmented with

macro disasters—along with the recognition that investment grade bonds tend to default during bad

macro conditions—are able to match observed short term spreads quite well.

Traditional structural models usually generate extremely steep credit spread term structures.

As mentioned in Duffi e and Lando (2001), this is due to the fact that, for models producing a zero

short-term spread in the limit, a steep slope is required to match observed spreads for medium term

bonds. As noted above, our full model matches the short term spread quite well. Consequently,

as illustrated in Figure 4, the model does not induce excessive steepness in order to achieve a

reasonable spread for medium term bonds.

An additional advantage of our approach is that matching the medium-term spreads does not

come at the expense of generating an unrealistic downward sloping term structure for longer ma-

turities so long as we allow for counter-cyclical loss rates as Figure 4 shows. For long maturities

the model-implied term-structure of credit spreads tends to flatten in the full model which is also

observed empirically. This is a desirable property of modelling default in an incomplete information

setup as well as having stochastic recovery compounding the effect of a loss when it occurs in a bad

state of the economy. In contrast, modelling default as the first hitting time of an asset boundary

often leads to a convergence to zero of spreads for long maturities, which is due to the stationarity

of default boundaries and to the risk-neutral firm cash-flows growing at a positive expected rate.

Such models imply a strong downward sloping term structures beyond the medium term.

Our model has the ability to generate both upward and humped-shaped term structures de-

pending on the parameter values. Humped-shaped credit term structures have been documented

empirically in Jarrow, Lando and Turnbull (1997) who find that term structures are upward sloping

for credits rated A or better but that they can be slightly humped for Baa rated credits.

We highlight again that our full model is able to deliver an average term structure of credit

spreads that matches key stylized facts even though the model is calibrated to a single set of

parameters that is fixed across all maturities. In particular, the default intensity λj is calibrated

in Table 1.C to physical default probabilities from Moody’s for each of the two credit classes we

consider.

4.4 Time Series Dynamics in the Baa-Aaa Spread

Our model’s ability to match the second moments of Baa-Aaa spreads as in Table 2.A and the

term structure of credit spreads in Figure 4 bodes well for our model’s ability to capture the time

series dynamics in observed spreads. To investigate this dimension of the data, following CCDG,

we obtain the time series of past innovations in log consumption growth from the St Louis Fed
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(post-1952) and Robert Shiller’s website (pre-1952). Following Campbell and Cochrane (1999) and

Menzly, Santos and Veronesi (2004), we use this innovation to construct the time series of the

surplus ratio and loss rates using (1)—(2) and (13), respectively. Given the time series of γ and L,

we back out model-implied credit spreads over time and compare them to historical data.

Using credit spread data from the St. Louis Fed for the period 1919-2010, Figure 5 plots in

each panel the observed historical credit spread (solid line) along with one of the four special cases

of the model (dashed lines). The St. Louis Fed relies on data from Moody’s Investor Services

which includes bonds with remaining maturity higher than 20 years and as close as possible to 30

years. The top-left panel shows that when both loss rate and habit are constant then model spreads

are constant and low. The top-right panel shows that with constant habit, a dynamic loss rate is

only able to generate minor variations in model spreads and the levels are still much too low. The

bottom-left panel of Figure 5 shows that with a constant loss rate, the dynamic habit is able to

generate some dynamics in model spreads but arguably not enough and the level still appears to

be too low. Finally, the full model in the bottom-right panel of Figure 5 shows that when the loss

rate and habit are both dynamic then the model is able to capture the level and wide fluctuations

in observed spreads.

Table 2.B below reports the various sample moments for the model and market spreads.

Table 2.B: Baa-Aaa Spreads (bps). Time Series Moments.

Model Version Constraints Mean Vol Min Max RMSE

Constant Loss and Habit kγ = αγ = kL = αL = 0 25.5 0 25.5 25.5 5.033

Constant Habit kγ = αγ = 0 39.5 4.3 29.5 56.0 2.674

Constant Loss Rate kL = αL = 0 75.9 33.9 36.3 180.5 1.254

Full Model None 129.0 80.1 42.6 431.6 0.686

Empirical Values (St. Louis Fed) 126.1 79.8 34.0 510.0

Table 2.B confirms the visual impression from Figure 5 that only the full model is able to match

the level of observed historical credit spreads. Table 2.B also shows that the full model has the

lowest root mean squared error (RMSE) which we compute on the relative credit spread errors as

follows

RMSE =

√
1

T

∑T

t=1

((
CSMkt

t − CSMod
t

)
/CSMkt

t

)2
,

where CSMkt
t and CSMod

t denote market and model credit spreads, respectively. The full model is

also the only model that is close to matching the maximum spread of 510 bps observed in the data.

We again stress the fact that our model parameters have not been fitted to bond prices. The

exercise in Table 2.B and Figure 5 thus demonstrates the model’s ability to fit the dynamics in

credit spreads out-of-sample and it also highlights that both habit persistence and counter-cyclical

loss rates are important for capturing observed spreads.
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5 Exploring the Model Further

In this section we explore various additional aspects of our model. In the empirics so far, we have

set the idiosyncratic default intensity to zero. In the first part of this section we therefore explore

the implications for credit spreads when default can be partly idiosyncratic in nature. We then

study the impact on credit spreads of varying some of the key parameters in our model. Finally, we

discuss the implications of our model for the joint pricing of defaultable bonds and index options.

5.1 The Impact of Idiosyncratic Default on Credit Spreads

When implementing the model in the previous sections, we set idiosyncratic default to zero, which

is motivated by Bakshi, Madan, and Zhang (2006) who document empirically that high grade

bond defaults are mainly explained by systematic factors. As a robustness check, we want to

provide insights concerning the sensitivity of our model’s performance to idiosyncratic shocks.

Unfortunately, there are not many observed defaults for investment grade bonds, and even fewer

default cases that do not coincide with recessionary times for high-quality credit. We thus resort

to a numerical experiment designed to answer the following question: How large a fraction of

idiosyncratic default is needed to match observed credit spreads?

Our benchmark calibration assumes that the idiosyncratic default is zero. Given that our

model generates Aaa-Treasury spreads that match the average CDS spread quite well, the implied

idiosyncratic fraction for this credit class is indeed close to zero.

The top panel of Figure 6 plots the model-implied Baa-Treasury spread against the ratio of

idiosyncratic default to total default, λidioj /
(
λsysj + λidioj

)
in percent. From this figure we see that

the empirical average Baa-Treasury spread of 107 bps is matched in the model when idiosyncratic

default constitutes about 5% of total default for Baa rated bonds.

We have performed the above exercise for eight different rating classes ranging form Aaa to

Caa for which Moody’s objective default probability and average CDS spreads are available. We

find that the required idiosyncratic fraction increases as credit quality decreases: The required

idiosyncratic component is indeed minor for all investment grade bonds, and it gets higher for

speculative grade and for very low credit ratings it is the most important driver of default. These

results are not reported but they are of course available upon request.

An important insight from this exercise is that our model produces a well-documented empirical

fact: The implied ratio of default intensity between P and Q measure decreases with credit quality

(e.g., Berndt et al., 2008, and Coval, Jurek and Stafford, 2009). To see this, note that we can use

the decomposition λj = λsysj + λidioj and equation (25) to write the risk-neutral default intensity

ratio as

λQjt/λj =
(1 + JΛt)

(
λj − λidioj

)
+ λidioj

λj
= 1 + JΛt

(
1− λidioj /λj

)
,

which is clearly decreasing in λidioj . In particular, λQjt/λj = 1 + JΛt > 1 when λidioj = 0 and
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λQjt/λj = 1 when λidioj = λj .

In the bottom panel of Figure 6 we plot the default intensity ratio against the fraction of

idiosyncratic default, which shows a downward sloping pattern as the idiosyncratic component

becomes larger which in turn occurs for the lower credit classes, as argued above.

The analysis in this section suggests that our model can match observed credit spreads across

credit ratings. We focus on investment grade firms simply because they have proven to be the most

challenging to match in the literature.

5.2 Model Robustness Analysis

In this section we first investigate the sensitivity of model-implied spreads to some key parame-

ters. We focus on αγ and αL which control the response of habit and loss rates to consumption

innovations. We also consider |Jc| which captures the absolute log consumption jump size. These
parameters play important roles in the three key features of our model, namely, consumption

disasters, time-varying risk aversion, and counter-cyclical loss rates. We vary each of the three

parameters by up to 30% in both directions from their calibrated values in Table 1, and plot the

implied average and standard deviation of model-implied 5-year Baa-Aaa spreads in Figure 7.

The direction of changes in spreads and volatilities are as expected. By comparison, |Jc| has the
largest impact. This result re-emphasizes the importance of accounting for consumption disasters,

when explaining investment grade credit spreads. The importance of the jump component can also

be inferred from the long-run risk literature. Chen (2010) generates a realistically high average

credit spread for 10-year Baa bonds. Like our model, Chen emphasizes the effect of a large jump

risk premium on the pricing of defaultable bonds. In particular, by shutting down jumps, Chen

reports a roughly 50% reduction in the generated spread, which is very much in line with our

numerical results.

While our model features a constant Jc, we find that the model predictions are insensitive to

the introduction of randomness in Jc. The reason can be found in the structure of the Menzly,

Santos and Veronesi (2004) habit formation used in this paper which implies that the volatility of

Jc has little impact on the jump risk premium. Since the jump risk premium is closely related to

the default risk premium in our setup, the implied credit spreads are also relatively insensitive to

the volatility of Jc.

We next investigate if our results are driven by the specific Menzly, Santos and Veronesi (2004)

MSV-habit that we assume. We consider the SV-habit specification by Santos and Veronesi (2010)

which is close to the original Campbell and Cochrane (1999) CC-habit but with an extra parameter

controlling utility curvature. At first sight, one may argue that having an extra parameter will surely

enhance the model’s ability to capture prices in-sample. However, this is not the case in our exercise

since our model is not fitted to bond prices. The matching of credit spreads is thus a true out-

of-sample exercise which may actually be more diffi cult with a richer parameterization. Choosing

SV-habit instead of MSV-habit and showing that our results still hold demonstrates that our model
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performance is not driven by the MSV-habit that we focus on in this paper. We solve for all asset

valuations in this new framework. We consider various utility curvature parameter values under SV

habit. To save space we do not report the results, which are available upon requests. We find that

the SV-habit augmented with a consumption disaster component is also able to match empirical

credit spreads in terms of their levels, term-structure and time series dynamics. Consequently, we

conclude that our results are not sensitive to changes in the habit specification.

5.3 Empirical Option Skewness Dynamics

We now provide an alternative empirical check on our model by assessing its ability to capture

observed time series variation in option skewness. Du (2011) fits the consumption-based asset

pricing model in this paper to index option prices and finds that the model matches the key

unconditional moments including the level of option skewness. We extend his analysis and focus on

the joint pricing of options and defaultable bonds. Du (2011) shows that when assuming aggregate

dividends equal consumption the aggregate equity price can be derived as

PEt =

(
1

ρ+ kγ
+

kγ γ̄

ρ (ρ+ kγ)

1

γt

)
Ct. (26)

Using our parameter calibration, the equity risk premium is 5.9% per year and the annual stock

market volatility is 17.6% on average. Both values match empirical observations very well. Option

prices can be computed in the model via Monte Carlo simulation of consumption and stock prices.

We obtain daily S&P 500 index option data from CBOE and Ivy DB which combine to cover

a period of nearly 25 years from April 4, 1988 to October 29, 2010. We then compute the model-

implied time series of option skewness for one-month contracts, which are compared to their em-

pirical counterparts during the sample period.

We consider three different measures of option skewness: Besides the usual measure computed

as the Black-Scholes implied volatility (IV ) difference between 10% OTM put options and ATM

options, we also consider option skewness for 8% OTM puts and 6% OTM puts, that is

OS1,t ≡ IVt(M = .90)− IVt(M = 1)

OS2,t ≡ IVt(M = .92)− IVt(M = 1)

OS3,t ≡ IVt(M = .94)− IVt(M = 1)

, (27)

where M is the option moneyness defined as strike price over stock price.

Table 3 below reports the results based on the following time series regression

OSMarket
i,t = β1 + β2OS

Model
i,t + εi,t, for i = 1, 2, 3, (28)

where superscript Market and Model denote option skewness from observed option prices and

model-implied option prices, respectively.
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Table 3: Option Skewness Regression Results

Skewness Measure β2 NW t(β2) R2

OS1: 10% OTM IV 0.583 9.469 0.457

OS2: 8% OTM IV 0.646 9.201 0.351

OS3: 6% OTM IV 0.750 6.305 0.241

Table 3 shows that the β2 coeffi cients are economically significant taking on values between

0.583 and 0.750. These values are highly statistically significant when computing t-stats using

Newey-West standard errors adjusted for heteroskedasticity and autocorrelation. Furthermore, the

R2 measures are also sizable. We thus conclude that our model does a fairly good job in capturing

the time series variations of the observed option skewness.

5.4 Credit Spreads, Option Skewness and Disaster Magnitude

Our model’s resolution of credit spread puzzles hinges on the consumption disaster component,

which drives jumps in the pricing kernel, and on relating defaults to consumption disasters. It

is well known from the option literature that a jump component is also crucial for index option

pricing. It is therefore interesting to study our model’s ability to jointly fit bond spreads and option

prices.

To provide a graphical illustration, we vary the absolute consumption jump size |JC |, and plot
in the top two panels of Figure 8 the implied average Baa-Aaa credit spread and the average

option skewness using the OS1 definition in (27) above. Both the Baa-Aaa spread and option

skewness rise monotonically with |JC |: For defaultable bonds, a larger |JC | means a higher price of
default risk which drives up the default-risk premium and hence the credit spread. For equity index

options, a larger |JC | implies a higher jump risk premium for aggregate equity, which generates a

larger option skewness. The empirical relevant option skewness is around 9% (Dumas, Fleming and

Whaley, 1998, and Du, 2011) and it is reached only when consumption jumps are close to 15% in

magnitude.

To give a more direct comparison, we plot in the bottom panel of Figure 8 the average option

skewness against the average credit spread as we again vary |JC |. In the absence of jumps (|JC | = 0),

habit formation can still produce option skewness but it is very small. Simultaneously, the implied

credit spread is less than one-fifth of the observed level. Both rise in lockstep as we increase

the consumption jump severity until they reach their respective empirical level at our base case

calibration of consumption jump, when |JC | = 0.15. Thus, we conclude that a disaster component

is crucial for linking credit and option markets.

5.5 Credit Spreads, Option Skewness and the State of the Economy

To understand how the spread/skewness relationship varies by the state of the economy, we carry

out comparative statics with respect to the state of the economy as proxied by different levels of
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the surplus ratio. Specifically, we plot in the top two panels of Figure 9 the state dependence of

the 5-year Baa-Aaa spreads and option skewness. As discussed previously, the credit spread in the

top panel is clearly countercyclical. Indeed, recently economists have argued that average credit

spreads can be used to forecast economic growth (Gilchrist and Zakrajšek, 2012).

Option skewness in the middle panel, however, is highly nonlinear in the surplus ratio; it is

decreasing at very low levels of S, and then becomes increasing for higher S levels. This is because

an increase in the surplus ratio has two offsetting effects on option skewness: First, it decreases the

severity of consumption jumps under the pricing measure which gives the agent less incentives to

hedge, hence the lower option premium for a given diffusive stock volatility. Second, it decreases the

diffusive stock volatility which increases the relative importance of jumps in the total stock price

variation. As a result, the agent has stronger incentives to buy insurance via OTM puts which

drives up option skewness. The first effect dominates when S is small, hence the higher premium

as the economy gets worse. However, for relatively large S, the second effect dominates leading to

increasing option skewness in S when S is high.

It is interesting to contrast the bottom panel of Figure 8 with the bottom panel of Figure

9: Figure 8 shows that there is an almost linear relationship between credit spreads and option

skewness when we increase the consumption jump size from 0 to the benchmark calibration of 15%

per year. But Figure 9 shows that there is a non-linear relationship between credit spreads and

option skewness when increasing the surplus ratio, that is, when going from a very bad to a very

good state of the economy.

The above analysis suggests that, while credit spreads may proxy for macroeconomic conditions,

this is not the case for option skewness. Our model shows that option skewness cannot be viewed

as a reliable proxy for credit spreads as both skewness and spreads are endogenously determined

by their respective exposure to consumption disasters. In addition, our model clearly suggests

a nonlinear relation between the two variables. Running regressions of credit spreads on option

skewness, as is sometimes done in the literature (e.g., Cremers, Driessen, Maenhout, and Weinbaum,

2008), is likely to lead to inconclusive results that depend on the state of the economy in the sample

at hand.

6 Conclusion

We have shown that it is possible to explain key stylized facts in credit markets in a model of

rare macro disasters, when using a single set parameters calibrated only to the real economy, and

when restricting disasters to be of reasonable size. Our model is able to match the relative high

average level and volatility of investment grade credit spreads for short and medium-term bonds, the

upward-sloping average term structure of investment grade credit spreads, the strongly persistent

and highly non-linear time series dynamics in credit spreads, and the time-varying and non-linear

relationship between credit spreads and option skewness.
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The stylized facts in credit markets are captured in our rare-disaster model that incorporates

habit persistence, counter-cyclical default and loss rates. Importantly, we provide strong evidence

that all of these features are required in order to match the stylized facts.

Several interesting extensions are left for future work. We have emphasized the value of matching

key moments in credit spreads and options using a single set of parameters calibrated to the real

economy. However, going forward, it would be of interest to estimate the full model on observed

credit spreads and option prices in order to provide a more detailed empirical assessment of the

model. Our closed-form solutions for defaultable bond prices will be very valuable in this regard.

While we have allowed for dynamic habit and recovery in our model, we have assumed that

physical default intensities are constant over time. It would be interesting to relax this assump-

tion. However, the scarcity of investment grade defaults in the data will render identification and

estimation of time-varying default a challenge. The derivation of closed-form bond prices will also

be diffi cult in an environment where loss rates, habit and default rates are all stochastic.

Appendix: Proof of Propositions

In Lemma 1 below we derive the price of a defaultable bond price under the simplifying assumption

that the recovery payment is paid on the terminal payment (TP) date of the bond. We then prove

Proposition 1 as a special case of Lemma 1. More importantly, we show how Proposition 2 can

be proved as a generalization of the intermediate TP case in Lemma 1. Finally, Proposition 3 is

proved using Ito’s lemma for jump-diffusions. The bond pricing formulas we present below are

quite involved and we have therefore verified their accuracy via Monte Carlo simulation.

Lemma 1 Under the TP assumption, the defaultable bond price takes the form

P TPt,τ = αTP1 (τ) + αTP2 (τ)
1

γt
+ αTP3 (τ)Lt + αTP4 (τ)

Lt
γt
, (A.1)

where the expressions for αTPi are given in the proof below.

Before proceeding with the proofs a couple of definitions are needed. For a given rating class,

j, the potential default of the bonds can be written in transition matrix form as

Γsysj ≡
[
−λsysj λsysj

0 0

]
and Γidioj ≡

[
−λidioj λidioj

0 0

]
, (A.2)

where the first regime is no-default and the second regime is default, which is absorbing. We

suppress the rating subscript, j, below.

Note that the proofs in this Appendix are based on the following generalized version of the loss

rate process:

dLt = kL(L̄− Lt)dt− αLσdB̃t − αLb (dNt − λcdt) , (A.3)
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where B̃t is an additional standard Brownian which has correlation ρ̃ with the consumption Brown-

ian, Bt. This specification allows for Lt to be driven by an idiosyncratic shock in addition to the

systematic consumption shock.

A.1 Proof of Lemma 1: Recovery on the Terminal Payment Date

Let P TPt,τ (st) be the price of a zero-coupon defaultable bond with τ period to expiration, where

P TPt,τ (1) and P TPt,τ (2) denote prices conditional on being in the first (no-default) and the second

(default) regime, respectively. When normalizing the face value of the bond to 1, and using the

definition of TP, we have

P TPt,τ (st) =

 E
[

ΛT
Λt
|st
]
, if sT = 1

E
[

ΛT
Λt

(1− LT ) |st
]
, if sT = 2

, (A.4)

where ΛT and LT denote the pricing kernel and the loss rate at the terminal date T and where we

have used the fact that the default regime is absorbing. Using the expression for the pricing kernel

in (7), we can write

P TPt,τ (st) =
Ct
γt

(
E
[
e−ρτθc (sT )C−1

T γT |st
]

+ E
[
e−ρτθs (sT )C−1

T γTLT |st
])
, (A.5)

where we have stacked the regimes using

θc ≡
[
θc (1)

θc (2)

]
=

[
1

1

]
, and θs ≡

[
θs (1)

θs (2)

]
=

[
0

−1

]
. (A.6)

We can rewrite (A.5) as

P TPt,τ (st) =
Ct
γt

[ψc(xt; st) + ψs(xt; st)] , (A.7)

where we have defined,

ψc(xt, τ ; st) ≡ E
[
e−ρτx1Tx2T θ

c (sT ) du|st
]
, (A.8)

ψs(xt, τ ; st) ≡ E
[
e−ρτx1Tx2Tx3T θ

s (sT ) du|st
]
. (A.9)

For ease of exposition we now define a vector of state variables, xt, where

x1t ≡ C−1
t ; x2t ≡ γt; x3t ≡ Lt. (A.10)

Using Ito’s lemma for jump-diffusions, we can write

dxjt = (aj + bjxjt) dt+ (cj + djxjt) dBt + (ej + fjxjt) dNt,
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for j ∈ {1, 2, 3}, where

a1 = 0 b1 = −µ+ σ2 c1 = 0 d1 = −σ e1 = 0 f1 = e−γJc − 1

a2 = kγ γ̄ − αγβJcλc b2 = −kγ + αγJcλc c2 = αγβσ d2 = −αγσ e2 = αγβJc f2 = −αγJc
a3 = kLL̄+ αLJcλc b3 = −kL c3 = −αLσ d3 = −σ e3 = −αLJc f3 = 0

.

(A.11)

We proceed with the derivation of ψs(xt, τ ; i). By applying the multi-regime version of Feynman-

Kac theorem (e.g., Mao and Yuan, 2006), ψs(xt, τ ; i) defined in (A.9) is the solution to the following

partial differential equation (PDE):

ρψs(xt, τ ; i) = =ψs(xt, τ ; i), subject to ψs(xT , 0; i) = θs (i)x1Tx2Tx3T .

Stacking the regimes yields

ρψs(xt, τ) = =ψs(xt, τ) subject to ψs(xT , 0) = θsx1Tx2Tx3T , (A.12)

where

=ψs(xt, τ) ≡ −∂ψ
s(.)

∂τ
+

3∑
j=1

∂ψs(.)

∂xjt
(aj + bjxjt) +

1

2

∑
j,j′

ρjj′
∂2ψs(.)

∂xjt∂xj′t
(cj + djxjt)

(
cj′ + dj′xj′t

)
+λc [ψs (xt + ∆(xt), τ)− ψs(xt, τ)] + Γsysψs(xt + ∆(xt), τ) + Γidioψs(xt), (A.13)

and where

ρ13 = ρ23 = ρ̃ while ρjj′ = 1 for all other
(
j, j′
)
pairs, and (A.14)

∆(xt) ≡ [e1 + f1x1t, e2 + f2x2t, e3 + f3x3t]
′ . (A.15)

We have used the fact that the systematic defaults are triggered by x−jumps which themselves are
induced by consumption jumps in our model.

We conjecture—and later verify—that (A.12)—(A.13) has the following solution:

ψs(xt, τ) = ηs111 (τ)x1tx2tx3t + ηs101 (τ)x1tx3t + ηs110 (τ)x1tx2t + ηs100 (τ) . (A.16)

It can be verified that all terms in =ψs(xt, τ) are proportional to x1tx2tx3t, or x1tx3t, or x1tx2t, or 1,

from which we can identify η (τ) . More specifically, collecting the terms in (A.12)—(A.13) that are

proportional to x1tx2tx3t, x1tx3t, x1tx2t, and 1, yields the following ordinary differential equations

(ODEs):
dηsh (τ)

dτ
= −Ashηsh (τ) +Bs

h (τ) subject to ηsh (0) = θsh, (A.17)

where h ∈ {111, 101, 110, 100};

θs111 = θs and θh = 02×1 for h 6= 111; (A.18)
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Ash and B
s
h (τ) are given by:

As111 = β − b1 − b2 − b3 − ρ12d1d2 − ρ13d1d3 − ρ23d2d3 (A.19)

−λc [(1 + f1)(1 + f2) (1 + f3)− 1]− (1 + f1) (1 + f2) (1 + f3) Γsys − Γidio,

As101 = ρ− b1 − b3 − ρ13d1d3 − λc [(1 + f1)(1 + f3)− 1]− (1 + f1) (1 + f3) Γsys − Γidio,

As110 = ρ− b1 − b2 − ρ12d1d2 − λc [(1 + f1)(1 + f2)− 1]− (1 + f1) (1 + f2) Γsys − Γidio,

As100 = ρ− b1 − λcf1 − (1 + f1) Γsys − Γidio,

and

Bs
111 (τ) = 02×1 (A.20)

Bs
101 (τ) = [a2 + ρ12c2d1 + ρ23c2d3 + λc (1 + f1) (1 + f3) e2] ηs111 (τ) + (1 + f1) (1 + f3) e2Γsysηs111 (τ) ,

Bs
110 (τ) = [a3 + ρ13c3d1 + ρ23c3d2 + λc (1 + f1) (1 + f2) e3] ηs111 (τ) + (1 + f1) (1 + f2) e3Γsysηs111 (τ) ,

Bs
100 (τ) = [a2 + ρ12c2d1 + λc (1 + f1) e2] ηs111 (τ) + [a3 + ρ13c3d1 + λc (1 + f1) e3] ηs111 (τ)

+ [ρ23c2c3 + λc (1 + f1) e2e3] ηs111 (τ) + (1 + f1) Γsys [e2η
s
111 (τ) + e3η

s
111 (τ) + e2e3η

s
111 (τ)] .

Solving (A.17) yields:

ηsh (τ) =

∫ τ

0
e−(τ−u)AshBs

h(u)du+ e−τA
s
hθsh, (A.21)

for h ∈ {111, 101, 110, 100} where eA denotes the matrix exponential. Substituting (A.11), (A.14),
and (A.18) into (A.19)—(A.20) yields

As111 = as111I2×2 − e−Jc (1− αγJc) Γsys − Γidio, (A.22)

As101 = as101I2×2 − e−JcΓsys − Γidio,

As110 = as110I2×2 − e−γJc (1− αγJc) Γsys − Γidio,

As100 = as100I2×2 − e−JcΓsys − Γidio,

and

Bs
101 (τ) ≡ bs101e

−τAs111θs + αγβJce
−JcΓsyse−τA

s
111θs, (A.23)

Bs
110 (τ) ≡ bs110e

−τAs111θs − e−Jc (1− αγJc)αLJcΓsyse−τA
s
111θs,

Bs
100 (τ) ≡ bs,1100

(∫ τ

0
e−(τ−u)As110Bs

110(u)du

)
+ bs,2100

(∫ τ

0
e−(τ−u)As101Bs

101(u)du

)
+bs,3100e

−τAs111θs + e−JcαγβJcΓ
sys

(∫ τ

0
e−(τ−u)As110Bs

110(u)du

)
−e−γJcαLJcΓsys

(∫ τ

0
e−(τ−u)As101Bs

101(u)du

)
− e−JcαγαLβJ2

c Γsyse−τA
s
111θs,
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where ash in (A.22) and b
s
h in (A.23) are given by

as111 = ρ+ µ− σ2 + kγ − αγJcλc + kL − αγσ2 − λc
[
e−Jc (1− αγJc)− 1

]
, (A.24)

as101 = ρ+ µ− σ2 + kL − λc
(
e−Jc − 1

)
,

as110 = ρ+ µ− σ2 + kγ − αγJcλc − αγσ2 − λc
[
e−Jc (1− αγJc)− 1

]
,

as100 = ρ+ µ− σ2 − λc
(
e−Jc − 1

)
,

and

bs101 = kγ γ̄ − αγβJcλc − αγβσ2 + λce
−JcαγβJc, (A.25)

bs110 = kLL̄+ αLJcλc + ρ̃αLσ
2 + ρ̃αγαLσ

2 − λce−Jc (1− αγJc)αLJc,

bs,1100 = kγ γ̄ − αγβJcλc − αγβσ2 + λce
−JcαγβJc,

bs,2100 = kLL̄+ αLJcλc + ρ̃αLσ
2 − λce−JcαLJc,

bs,3100 = −ρ̃αγαLβσ2 − λce−JcαγαLβJ2
c .

The closed form valuation of ψc(.) can be obtained by the same logic. We omit the derivation

and simply report the result:

ψc(xt, τ) ≡ [ψc(xt; 1), ψc(xt; 2)]′ = ηc11 (τ)x1tx2t + ηc10 (τ)x1t, (A.26)

where

ηc11 (τ) = e−τA
c
11θc, (A.27)

ηc10 (τ) =

∫ τ

0
e−(τ−u)Ac10Bc

10(u)du.

In (A.27), Ac11, A
c
10, and B

c
10(τ) are given by

Ac11 = ac11I2×2 − e−Jc (1− αγJc) Γsys − Γidio, (A.28)

Ac10 = ac10I2×2 − e−JcΓsys − Γidio,

Bc
10 (τ) = bc10e

−τAc′11θc + αγβJce
−JcΓsyse−τA

c′
11θc,

where

ac11 = ρ+ µ− σ2 + kγ − αγJcλc − αγσ2 − λc
[
e−Jc (1− αγJc)− 1

]
, (A.29)

ac10 = ρ+ µ− σ2 − λc
(
e−Jc − 1

)
,

bc10 = kγ γ̄ − αγβJcλc − αγβσ2 + λce
−JcαγβJc.
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By combining (A.7), (A.16), and (A.26) and using the expressions for ηs (τ) and ηc (τ), we get

P TPt,τ ≡
[
P TPt,τ (1), P TPt,τ (2)

]′
=

1

x1tx2t
[ψc(xt) + ψs(xt)]

=
Ct
γt


(∫ τ

0 e
−(τ−u)Ac10Bc

10(u)du
)
C−1
t + e−τA

c
11θcC−1

t γt

+
(∫ τ

0 e
−(τ−u)As100Bs

100(u)du
)
C−1
t +

(∫ τ
0 e
−(τ−u)As110Bs

110(u)
)
C−1
t γt

+
(∫ τ

0 e
−(τ−u)As101Bs

101(u)du
)
C−1
t Lt + e−τA

s
111θsC−1

t γtLt

 ,
where we have used the definitions of (x1t, x2t, x3t) given by (A.10). Rearranging yields

P TPt,τ = αTP1 (τ) + αTP2 (τ)
1

γt
+ αTP3 (τ)Lt + αTP4 (τ)

Lt
γt
, (A.30)

where

αTP1 (τ) =

∫ τ

0
e−(τ−u)As110Bs

110(u)du+ e−τA
c
11θc (A.31)

αTP2 (τ) =

∫ τ

0
e−(τ−u)As′100Bs

100(u)du+

∫ τ

0
e−(τ−u)Ac10Bc

10(u)du

αTP3 (τ) = e−τA
s
111θs

αTP4 (τ) =

∫ τ

0
e−(τ−u)As′101Bs

101(u)du.

The intuition of the above derivation is as follows. Default induces a structural change in the

bond payoffs. We thus need to use vector integrations taking into account the interaction between

the non-default and the default regime in order to obtain bond prices in both regimes.

A.2 Proof of Proposition 1

The price of a non-defaultable bond is a special case of a defaultable TP bond where λsys = λidio =

0. In this case Lemma 1 gives

P 0
t,τ = α0

1 (τ) + α0
2 (τ) τ

1

γt
,

where

α0
1 (τ) =

∫ τ

0
e−(τ−u)As110Bs

110(u)du+ e−τA
c
11θc

α0
2 (τ) =

∫ τ

0
e−(τ−u)As′100Bs

100(u)du+

∫ τ

0
e−(τ−u)Ac10Bc

10(u)du,

and where Ah, and Bs
h are as defined in Lemma 1 with λ

sys and λidio set to zero.

The dynamic process for the instantaneous return on the default-free bond is

dP 0
t,τ

P 0
t,τ

= µ0
Ptdt+ σ0

PtdBt + J0
PtdNt, where
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µ0
Pt =

1

P 0
t,τ

[
dα0

1 (τ)

dτ
+
dα0

1 (τ)

dτ

1

γt

]
+ α0

2 (τ)
1

γtP
0
t,τ

(
−µγt + σ2

γt

)
,

and where σ0
Pt and J

0
Pt are given in Proposition 1. The bond return process can be derived by

applying Ito’s lemma for jump-diffusions to the bond pricing formula for P 0
t,τ .

A.3 Proof of Proposition 2

Proposition 2 states that

PRFVt,τ = αRFV1 (τ) + αRFV2 (τ)
1

γt
+ αRFV3 (τ)Lt + αRFV4 (τ)

Lt
γt
, (A.32)

where we use superscript RFV to denote recovery of face value to distinguish it from the TP case

in Lemma 1. We will now show that

αRFV1 (τ) = e−τÃ
c
11θc +

∫ τ

0
e−(τ−u)Ãs110B̃s

110(u)du, (A.33)

αRFV2 (τ) =

∫ τ

0
e−(τ−u)Ãc10B̃c

10(u)du+

∫ τ

0
e−(τ−u)Ãs100B̃s

100(u)du,

αRFV3 (τ) = e−τÃ
s
111θs,

αRFV4 (τ) =

∫ τ

0
e−(τ−u)Ãs101B̃s

101(u)du.

In the above formula,

Ãh ≡
[

1 0

0 0

]
Ah, (A.34)

for h ∈ {111, 101, 110, 100, 11, 10} , where Ah are given in Lemma 1. Note we do not differentiate
between Ash and A

c
h in (A.34). This is also the case for B̃h (τ) which is defined as follows:

B̃h (τ) ≡
[

1 0

0 0

]
B̂h (τ) , (A.35)

where h ∈ {101, 110, 100, 10}. In (A.35), B̂h (τ)s are defined by

B̂s
101 (τ) ≡ bs101e

−τÃs111θs + αγβJce
−JcΓsyse−τÃ

s
111θs, (A.36)

B̂s
110 (τ) ≡ bs110e

−τÃs111θs − e−Jc (1− αγJc)αLJcΓsyse−τÃ
s
111θs,

B̂s
100 (τ) ≡ bs,1100

(∫ τ

0
e−(τ−u)Ãs110B̃s

101(u)du

)
+ bs,2100

(∫ τ

0
e−(τ−u)Ãs101B̃s

101(u)du

)
+bs,3100e

−τÃs111θs + e−JcαγβJcΓ
sys

(∫ τ

0
e−(τ−u)Ãs110B̃s

110(u)du

)
−e−JcαLJcΓsys

(∫ τ

0
e−(τ−u)Ãs101B̃s

101(u)du

)
− e−JcαγαLβJ2

c Γsyse−τÃ
s
111θs,
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B̂c
10 (τ) ≡ bc10e

−τÃc11θc + αγβJce
−JcΓsyse−τÃ

c
11θc,

where the bh terms are identical to those given in Lemma 1.

With appropriate revisions of A and B (τ), the bond price coeffi cients under RFV are similar to

those in Lemma 1. Note that under RFV, bondholders receive the residual payment immediately

upon default so that PRFVt,τ (2) = 1 − Lτ , where τ (< T ) denotes the time of default. Translated

into ψc (.) and ψs (.) which are defined as in (A.8)-(A.9), we have

ψc(xτ , τ ; 2) = C−1
τ γτ = x1τx2τ , (A.37)

ψs(xτ , τ ; 2) = −C−1
τ γτLτ = −x1τx2τx3τ . (A.38)

Equations (A.37)-(A.38) give defaultable bond prices under RFV conditional on a default regime

which is known. Below, we use ψs (.) as an example to show that the ODEs for the bond price

under TP in Lemma 1 can be adjusted to accommodate the stopping time problem in RFV.

We conjecture—and later verify—that the solution for ψs (.) under RFV is still given by (A.16)

and (A.21). Equation (A.38) thus implies

ηs111 (τ ; 2) = θs (2) = −1, and ηh (τ ; 2) = 0 for h ∈ {101, 110, 100} , (A.39)

where we have used that ηs111 is the coeffi cient associated with x1tx2tx3t. It is easy to check that

(A.39) is the solution to

dηsh (τ ; 2)

dτ
= 0, subject to ηs111 (0; 2) = θs (2) and ηsh (0; 2) = 0 for h 6= 111. (A.40)

Recall that under TP ηsh (τ) satisfies the ODEs of (A.17) which we rewrite as follows:

dηsh (τ)

dτ
= −Ashηsh (τ) +Bs

h (τ) subject to: ηsh (0) = θsh, (A.41)

where θsh, A
s
h, and B

s
h(τ) are given by (A.18), (A.19), and (A.20). Below, we use a 3-step procedure

to show that (A.40) can be accommodated by (A.41) through appropriate modifications of Ash and

Bs
h (τ).

• Step 1: We go from Ah to Ãh by setting the last row of Ah to zeros so that the last row of

−Ahηh (τ) also is zero. This step provides (A.34).

• Step 2: Note that the values of Bh (τ) s are derived from the Ahs and hence cannot be directly

modified. Instead, we replace Ah with Ãh and then compute the implied Bs using (A.23)

which we have denoted by B̂h (τ). This step ensures that the structure of ODE for ηh (τ , 1)

which determines the pricing conditional on non-default regime is unaffected, and it provides

(A.36).
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• Step 3: We set the last entry of B̂h (τ) to zero so as to fulfill the requirement in (A.40). The

resulting B̃h (τ) provides (A.35).

It is worth pointing out that when calculating B̂s
100 (τ) in the second step, we use

(
B̃s

101, B̃
s
110

)
instead of

(
B̂s

101, B̂
s
110

)
. This is because the Bh matrices under this scenario are computed by

backward induction starting from B111 = 02×1. For example, in order to calculate Bs
100 (τ) under

TP, we need to use the previously computed Bs
101 and B

s
110. Similarly, in order to calculate B̃

s
100 (τ)

via B̂s
100 (τ) under RFV, we need to use the previously computed B̃s

101 and B̃
s
110.

A.4 Closed-form Expressions for Integrals

At this stage, we have completed the proof of the solution for the defaultable bond under the RFV

assumption. However, the pricing formulas in both Lemma 1 and Proposition 2 are presented up

to a set of integral computations. On the one hand, the vector integrations can be easily computed

by methods of Gaussian quadrature (e.g., Miranda and Fackler, 2002), given that integrands are in

closed forms. However, we have also derived complete closed-form solutions for the expressions for

P TPt,τ and PRFVt,τ by analytically evaluating the vector integrations appearing in the above proofs of

Lemma 1 and Proposition 2.

To save space, we only report the analytical expressions of the α-coeffi cients in (A.33), and the

details of derivations are available upon request. To facilitate the presentation, we first define

c11 ≡ e−Jc (1− αγJc)λs + λidio, (A.42)

c10 ≡ e−Jcλsys + λidio.

Given (A.42), we have

αRFV1 =

[
ac11

ac11+c11
e−τ(a

c
11+c11) + c11

ac11+c11

1

]
− bs110

(
c11

as111 + c11

)
e−τ(a

s
110+c11) · (A.43) e−τ(as111−a

s
110)−1

as111−as110
+ eτ(as110+c11)−1

as110+c11

0



+e−Jc (1− αγJc)αLJce−τ(a
s
110+c11)λsys


− c11
as111+c11

e−τ(as111−a
s
110)−1

as111−as110
+

as111
as111+c11

eτ(as110+c11)−1
as110+c11

0

 ,

αRFV3 =

 ( c11
as111+c11

)(
e−τ(a

s
111+c11) − 1

)
−1

 ,
αRFV4 = −bs100

c11

as111 + c11
e−τ(a

s
101+c11)

 e−τ(as111−a
s
101)−1

as111−as101
+ eτ(as101+c11)−1

as101+c11

0


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−αβJce−Jce−τ(a
s
101+c11)λsys


− c11
as111+c11

e−τ(as111−a
s
101)−1

as111−as101
+

as111
as111+c11

eτ(as101+c11)−1
as101+c11

0

 ,
where the as and bs are given by (A.24), (A.25) and (A.29). We can also derive,

αRFV2 (τ) =

[
Θ0 (τ)

0

]
+
(
bs,1100 − e−JcαγβJcλsys

)[ Θ1 (τ)

0

]
+
(
bs,2100 + e−JcαLJcΓ

sysλsys
)[ Θ2 (τ)

0

]
,

(A.44)

where we in addition have defined:

Θ0 (τ) ≡ e−τ(a
c
11+c10)

(
− c11

as111 + c11

e−τ(a
c
11+c11−ac10−c10) − 1

ac11 + c11 − ac10 − c10
+

c11

ac11 + c11

eτ(a
c
10+c10) − 1

ac10 + c10

)
(A.45)

− c11

ac11 + c11
λsyse−τ(a

c
11+c10)

[
eτ(a

c
10+c10) − 1

ac10 + c10
+
e−τ(a

c
11+c11−ac10−c10) − 1

ac11 + c11 − ac10 − c10

]

−bs,3100

c11

as111 + c11

(
e−τ(a

s
111+c11) − 1

as111 + c11
+ τ

)

+e−JcαγαLβJ
2
c λ

sys

(
c11

as111 + c11

e−τ(a
s
111+c11) − 1

as111 + c11
+

as111

as111 + c11
τ

)

Θ1 (τ) ≡ −bs110

c11

as111 + c11

1

as111 − as110

[
e−τ(a

s
110+c11)

as110 + c11
− e−τ(a

s
111+c11)

as111 + c11

]

−bs110

c11

as111 + c11

1

as110 + c11

(
τ +

e−τ(a
s
110+c11) − 1

as110 + c11

)
+ e−Jc (1− αγJc)αLJce−τ(a

s
110+c11)λsys ·[

c11

as111 + c11

1

as111 − as110

[
e−τ(a

s
111−as110) − 1

as111 − as110

+ τ

]
+

as111

as111 + c11

1

as110 + c11

(
eτ(a

s
110+c11) − 1

as110 + c11
− τ
)]

Θ2 (τ) ≡ −bs100

c11

as111 + c11

1

as111 − as101

[
e−τ(a

s
111)

as111 + c11
− e−τ(a

s
101+c11)

as101 + c11

]

−bs110

c11

as111 + c11

1

as110 + c11

(
τ +

e−τ(a
s
101+c11) − 1

as101 + c11

)
− αγβJce−Jce−τ(a

s
101+c11)λsys ·[

c11

as111 + c11

1

as111 − as101

[
e−τ(a

s
111−as101) − 1

as111 − as101

+ τ

]
+

as111

as111 + c11

1

as101 + c11

(
eτ(a

s
101+c11) − 1

as101 + c11
− τ
)]

.

A.5 Proof of Proposition 3

In the RFV case we have the bond price formula

PRFVt,τ = αRFV1 (τ) + αRFV2 (τ)
1

γt
+ αRFV3 (τ)Lt + αRFV4 (τ)

Lt
γt
,
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Applying Ito’s lemma for jump-diffusions, we get

dPRFVt,τ

PRFVt,τ

= µRFVPt dt+ σRFVPt dBt + JRFVPt dN⊥t +

[
1− Lt
PRFV
t−,τ

− 1

]
dN sys

t ,

where

µRFVPt = − 1

PRFVt,τ

[
dαRFV1 (τ)

dτ
+
dαRFV2 (τ)

dτ

1

γt
+
dαRFV3 (τ)

dτ
Lt +

dαRFV4 (τ)

dτ

Lt
γt

]
+

1

PRFVt,τ

[
αRFV2 (τ) + αRFV4 (τ)Lt

] 1

γt

(
−µγt + σ2

γt

)
+

1

PRFVt,τ

[
αRFV3 (τ) + αRFV4 (τ)

1

γt

]
kL
(
L̄− Lt

)
+ αLJcλc

+
1

PRFVt,τ

αb,RFV4 (τ)
1

γt
σγtαLσ.

The expressions for σRFVPt and JRFVPt are provided in Proposition 3.
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Figure 1. Simulated 120-Year Path of the Model Economy
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Notes to Figure: We simulate a 120-year path of the model economy. Moderate macro consumption

disasters strike at around year 30 and 70 in the particular sample path plotted.
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Figure 2. Model-Implied 5-Year Credit Spreads Plotted Against the Surplus Ratio
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Notes to Figure: In the “Constant Loss and Habit” special case we set kγ = αγ = kL = αL = 0.

In the “Constant Habit”special case we allow for only variations in Lt by setting kγ = αγ = 0. In

the “Constant Loss Rate”special case we allow for only variations in γ by setting kL = αL = 0. In

the “Full Model”γ and L are both dynamic. The top panel plot the 5-year Baa-treasury spread

as a function of surplus ratio S. The bottom two panel shows the 5-year Aaa-Treasury spreads.
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Figure 3. Credit Spreads and Premium Differences versus the Surplus Ratio: Full Model.
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Notes to Figure: We plot the model-based credit spreads (solid lines) and premium differences

(dashed lines) in Baa over Treasury (top panel) and in Aaa over Treasury (bottom panel). The

surplus ratio, S is on the horizontal axis. The spreads are computed using the full model with

dynamic loss rate and habit.
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Figure 4. Term structure of the Baa-Aaa Spread: Market and Models

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Years to Maturity

B
aa

­A
aa

 S
pr

ea
ds

 (
bp

s)

Market  Data
Full Model
Constant  Loss Rate
Constant  Habit
Constant  Loss and Habit

Notes to Figure: The solid line shows the term structure of empirical Baa-Aaa credit spreads

for maturities from 1 through 10 years and the other lines show model-implied spreads. In the

“Constant Loss and Habit”special case we set kγ = αγ = kL = αL = 0. In the “Constant Habit”

special case we allow for only variations in Lt by setting kγ = αγ = 0. In the “Constant Loss Rate”

special case we allow for only variations in γ by setting kL = αL = 0. In the “Full Model”γ and

L are both dynamic.
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Figure 5. Time Series of Credit Spread Levels: Market and Models

1920 1940 1960 1980 2000
0

100

200

300

400

500
Constant  Loss Rate and Habit

B
aa

­A
aa

 S
pr

ea
d 

(b
ps

)

Market
Model

1920 1940 1960 1980 2000
0

100

200

300

400

500
Constant  Habit

Market
Model

1920 1940 1960 1980 2000
0

100

200

300

400

500
Constant  Loss Rate

Year

B
aa

­A
aa

 S
pr

ea
d 

(b
ps

)

Market
Model

1920 1940 1960 1980 2000
0

100

200

300

400

500
Full Model

Year

Market
Model

Notes to Figure: We obtain the innovation of the historical log consumption growth rates from the

St. Louis Fed and Robert Shiller’s website. We use this innovation to construct the time series of

the surplus ratio and loss rate using (1)—(2) and (13), respectively. Given the time series of S and

L, we back out the model implied spreads and compare them to historical data. Each panel shows

a different version of the model. The full model is in the bottom right panel.
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Figure 6. The Impact of Idiosyncratic Default
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Notes to Figure: The top panel plots the 5-year Baa-Treasury model-implied spread as a function

of the idiosyncratic default intensity in percent of the total default intensity, λidio/
(
λsys + λidio

)
.

The bottom panel shows the model-implied ratio of default intensity between P and Q measures,

λQt /λ, plotted against the idiosyncratic default intensity in percent of the total.
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Figure 7. Model-Implied Spread Sensitivities
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Notes to Figure: The top panel plots the sensitivity of the average model-implied 5-year Baa-Aaa

spread level to changes in three key parameters: The sensitivity of habit and loss to consumption

shocks (αγ and αL), and the absolute consumption jump size (|Jc|). The bottom panel plots the

sensitivity of the volatility of the 5-year model-implied Baa-Aaa spreads to changes in the same

three parameters.
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Figure 8. Baa-Aaa Spreads, Option Skewness and Consumption Jumps Size
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Notes to Figure: The top panel shows the model-implied Baa-Aaa spread as the consumption

disaster magnitude, JC varies from zero to 0.15 which is the benchmark calibration value. The

middle panel plots option skewness (the implied volatility difference between 10% OTM puts and

ATMs) against JC . In the bottom panel we plot option skewness in the middle panel against the

Baa-Aaa spreads from the top panel.
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Figure 9. Model-Implied Option Skewness and Credit Spreads across the State of the Economy
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Notes to Figure: The top panel plots the model-implied 5-year Baa-Aaa spread against the surplus

ratio. The middle panel plots option skewness against the surplus ratio. Option skewness is

measured as the implied volatility difference between 10% OTM puts and ATMs. The bottom

panel plots the credit spread from the top panel against option skewness from the middle panel.
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