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Abstract

This paper discusses identification problems in the fractionally cointegrated

system of Johansen (2008) and Johansen and Nielsen (2012). The identification

problem arises when the lag structure is over-specified, such that there exist sev-

eral equivalent re-parametrization of the model associated with different fractional

integration and cointegration parameters. The properties of these multiple non-

identified sub-models are studied and a necessary and sufficient condition for the

identification of the fractional parameters of the system is provided. The condition

is named F(d). The assessment of the F(d) condition in the empirical analysis

is relevant for the determination of the fractional parameters as well as the lag

structure.
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1 Introduction

The last decade has witnessed an increasing interest in the statistical definition and

evaluation of the concept of fractional cointegration, as a generalization of the idea of

cointegration to processes with fractional degrees of integration. In the context of long-

memory processes, fractional cointegration allows linear combinations of I(d) processes

to be I(d − b), with d ∈ R+ and 0 < b ≤ d. More specifically, the concept of fractional

cointegration implies the existence of one, or more, common stochastic trends, integrated

of order d, with short-period departures from the long-run equilibrium integrated of

order d− b. The coefficient b is the degree of fractional reduction obtained by the linear

combination of I(d) variables, namely the cointegration gap.

Interestingly, the seminal paper by Engle and Granger (1987) already introduced the

idea of common trends between I(d) processes, but the subsequent theoretical works, see

among many others Johansen (1988), have mostly been dedicated to cases with integer

orders of integration. Notable methodological works in the field of fractional cointegration

are Robinson and Marinucci (2003) and Christensen and Nielsen (2006), which develop

regression-based semi-parametric methods to evaluate whether two fractional stochastic

processes share common trends. More recently, Nielsen and Shimotsu (2007) provide a

testing procedure to evaluate the cointegration rank of the multivariate coherence matrix

of two, or more, fractionally differenced series. Despite the effort spent in defining testing

procedures for the presence of fractional cointegration, the literature in this area lacked

a coherent multivariate model explicitly characterizing the joint behaviour of fractionally

cointegrated processes. Only recently, Johansen (2008) and Johansen and Nielsen (2012)

have proposed the FCVARd,b model, an extension of the well-known VECM to fractional

processes, which represents a tool for a direct modeling and testing of fractional cointe-

gration. Johansen (2008) and Johansen and Nielsen (2012) study the properties of the

model and provide a method to obtain consistent estimates when the lag structure of the

model is correctly specified.

The present paper shows that the FCVARd,b model is not globally identified, i.e. for

a given number of lags, k, there may exist several sub-models with the same conditional

densities but different values of the parameters, and hence cannot be identified. The
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multiplicity of not-identified sub-models can be characterized for any FCVARd,b model

with k lags. An analogous identification problem, for the FIVARb model, induced by the

generalized lag operator is discussed in Tschernig et al. (2013a,b).

A solution for this identification problem is provided in this paper. It is proved that

the I(1) condition in the VECM of Johansen (1988) can be generalized to the fractional

context. This condition is named F(d) , and it is a necessary and sufficient condition for

the identification of the system. This condition can be used to correctly identify the lag

structure of the model and to consistently estimate the parameter vector.

The consequence of the lack of identification of the FCVARd,b is investigated from

a statistical point of view. Indeed, as a consequence of the identification problem, the

expected likelihood function is maximized in correspondence of several parameter vec-

tors when the lag order is not correctly specified. Hence, the fractional and co-fractional

parameters cannot be uniquely estimated if the true lag structure is not correctly deter-

mined. Therefore, a lag selection procedure, integrating the likelihood ratio test with an

evaluation of the F(d) condition, is proposed and tested. A simulation study shows that

the proposed method provides the correct lag specification in most cases.

Finally, a further identification issue is discussed. It is proved that there is a poten-

tially large number of parameters sets associated with different choices of lag length and

cointegration rank for which the conditional density of the FCVARd,b model is the same.

This problem has practical consequences when testing for the nullity of the cointegration

rank and the true lag length is unknown. For example, under certain restrictions on the

sets of parameters, the FCVARd,b with full rank and k lags is equivalent to the FCVARd,b

with rank 0 and k+1 lags. It is shown that the evaluation of the F(d) condition provides

a solution to this identification problem and works in most cases.

This paper is organized as follows. Section 2 discusses the identification problem

from a theoretical point of view. Section 3 discusses the consequences of the lack of

identification on the inference on the parameters of the FCVARd,b model. Section 4

presents the method to optimally select the number of lags and provides evidence, based

on simulation, on the performance of the method in finite sample. Section 5 discusses

the problems when the cointegration rank and the lag length are both unknown. Section
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6 concludes the paper.

2 The Identification Problem

This Section provides a discussion of the identification problem related to the FCVARd,b

model

Hk : ∆dXt = αβ ′∆d−bLbXt +
k

∑

i=1

Γi∆
dLi

bXt + εt εt ∼ iidN(0,Ω) (1)

where Xt is a p-dimensional vector, α and β are p × r matrices, where r defines the

cointegration rank.1 Ω is the positive definite covariance matrix of the errors, and Γj, for

j = 1, . . . , k, are p×pmatrices loading the short-run dynamics. The operator Lb := 1−∆b

is the so called fractional lag operator, which, as noted by Johansen (2008), is necessary

for characterizing the solutions of the system. Hk defines the model with k lags and

θ = vec(d, b, α, β,Γ1, ...,Γk,Ω) is the parameter vector. Similarly to Johansen (2010), the

concept of identification and equivalence between two models is formally introduced by

the following definition.

Definition 2.1 Let {Pθ, θ ∈ Θ} be a family of probability measures, that is, a statistical

model. We say that a parameter function g(θ) is identified if g(θ1) 6= g(θ2) implies that

Pθ1 6= Pθ2. On the other hand, if Pθ1 = Pθ2 and g(θ1) 6= g(θ2), the two models are

equivalent or not identified.

As noted by Johansen and Nielsen (2012), the parameters of the FCVARd,b model

in (1) are not identified, i.e. there exist several equivalent sub-models associated with

different values of the parameter vector, θ.

An illustration of the identification problem is provided by the following example.

Consider the FCVARd,d model with one lag2

H1 : ∆
dXt = αβ ′LdXt + Γ1∆

dLdXt + εt

1The results of this Section are obtained under the maintained assumption that the cointegration
rank is known and such that 0 < r < p. An extension to case of unknown rank and number of lags is
presented in Section 5.

2To simplify the exposition, we consider the case FCVARd,b with d = b.
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where d > 0. Consider the following two restrictions, leading to the sub-models:

H1,0 : H1 under the constraint Γ1 = 0 (2)

H1,1 : H1 under the constraint Γ1 = Ip + αβ ′ (3)

Interestingly, these two sets of restrictions lead to equivalent sub-models with different

parameter vectors. The sub-model H1,0 can be formulated as:

∆d1Xt = αβ ′Ld1Xt + εt (4)

where d1 is the fractional parameter under H1,0, and the restriction Γ1 = 0 corresponds

to a FCVARd,d model with no lags, H0. After a simple manipulation, the sub-model H1,1

can be written as

∆2d2Xt = αβ ′L2d2Xt + εt (5)

where d2 is the fractional parameter under H1,1. From (5) it emerges that also H1,1 is

equivalent to H0. This means that the two sub-models, H1,0 and H1,1, are equivalent,

with d1 = 2d2. The fractional order of the system is the same in both cases, i.e. F(d1) =

F(2d2). Hence, under H1,0 the process Xt has the same fractional order as under H1,1,

but the latter is represented by an integer multiple of the parameter d2. In the example

above, the identification condition is clearly violated, as the conditional densities of H1,0

and H1,1 are

p(X1, ..., XT , θ1|X0, X−1, . . .) = p(X1, ..., XT , θ2|X0, X−1, . . .) (6)

where θ1 = vec(d1, α, β,Γ
(1)
1 ,Ω) and θ2 = vec(1

2
d1, α, β,Γ

(2)
1 ,Ω) with Γ

(1)
1 = 0 and Γ

(2)
1 =

Ip + αβ ′.

The identification problem outlined above has practical consequences when the model

with k0 lags and a FCVARd,b model with k lags are considered. Suppose that the Hk0

model is
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Hk0 : ∆d0Xt = α0β
′

0∆
d0−b0Lb0Xt +

k0
∑

i=0

Γ0
i∆

d0Li
b0
Xt + εt εt ∼ N(0,Ω0) (7)

with k0 lags, |α′

0,⊥Γ
0β0,⊥| 6= 0 where Γ0 = Ip −

∑k0
i=1 Γ

0
i . When a model Hk with k > k0

is considered for Xt, then Hk0 corresponds to the set of restrictions Γk0+1 = Γk0+2 = ... =

Γk = 0 imposed on Hk. As shown in the example above, there are several equivalent

sub-models to that under the restriction Γk0+1 = Γk0+2 = ... = Γk = 0.

Therefore, the aim of this Section is to study the number and the nature of these

equivalent sub-models, in order to provide a necessary and sufficient condition to identify

the fractional parameters d0 and b0 as the parameters d and b of the model Hk.

The following Proposition states the necessary and sufficient condition, called the

F(d) condition, for identification of the parameters of the model Hk0.

Proposition 2.2 For any k0 ≥ 0 and k ≥ k0, the F (d) condition, |α′

⊥
Γβ⊥| 6= 0, where

Γ = Ip −
∑k

i=1 Γi, is a necessary and sufficient condition for the identification of the set

of parameters of Hk0 in equation (7).

Corollary 2.3

i) Given k0 and k, with k ≥ k0, the number of equivalent sub-models that can be obtained

from Hk is m = ⌊ k+1
k0+1

⌋, where ⌊x⌋ denotes the greatest integer less or equal to x.

ii) For any k ≥ k0, all the equivalent sub-models are found for parameter values dj =

d0 −
j

j+1
b0 and bj = b0/(j + 1) for j = 0, 1, ..., m− 1.

The Proposition 2.2 has important consequences. First, the condition |α′

⊥
Γβ⊥| 6= 0

holds only for the sub-model for which d = d0 and b = b0, i.e. for the sub-model

corresponding to the restrictions Γk0+1 = Γk0+2 = ... = Γk = 0. In the example above,

the F(d) condition is verified only for H1,0, while |α′

⊥
Γβ⊥| = 0 for H1,1, since Γ =

Ip − (Ip + αβ ′) = −αβ ′. Second, for k ≫ k0, the (m − 1)-th sub-model is such that

dm−1 ≈ d0 − b0 and bm−1 ≈ 0, i.e. located close to the boundary of the parameter space.

As a consequence of corollary i), there are cases for which k > k0 doesn’t imply lack of
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identification. For example, when k = 2 and k0 = 1 there are no sub-models of H2 that

are equivalent to the one in correspondence of d = d0, b = b0, Γ1 = Γ0
1 and Γ2 = 0.

Table 1 summarizes the number of equivalent sub-models for different values of k0 and

k. When k0 is small there are several equivalent sub-models for small choices of k. When

k0 increases, multiple equivalent sub-models are obtained only for large k. For example,

when k0 = 5, then two equivalent sub-models are obtained only from suitable restrictions

of the H11 model.

k0 ↓ k → 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 – 1 1 2 2 3 3 4 4 5 5 6 6
2 – – 1 1 1 2 2 2 3 3 3 4 4
3 – – – 1 1 1 1 2 2 2 2 3 3
4 – – – – 1 1 1 1 1 2 2 2 2
5 – – – – – 1 1 1 1 1 1 2 2

Table 1: Table reports the number of equivalent models (m) for different combinations
of k and k0. When k0 > k the Hk is under-specified.

The next Section discusses the consequences of the lack of identification on the esti-

mation of the FCVARd,b parameters when the true number of lags is unknown.

3 Identification and Inference

This Section illustrates, by means of numerical examples, the problems in the estimation

of the parameters of the FCVARd,b that are induced by the lack of identification outlined

in Section 2. In particular, the F(d) condition can be used to correctly identify the

fractional parameters d and b when model Hk is fitted on the data.

As shown in Johansen and Nielsen (2012), the parameters of the FCVARd,b can be

estimated in two steps. First, the parameters d̂ and b̂ are obtained by maximizing the

profile log-likelihood

ℓT (ψ) = − log det(S00(ψ))−
r

∑

i=1

log(1− λi(ψ)) (8)

where ψ = (d, b)′. λ(ψ) and S00(ψ) are obtained from the residuals, Rit(ψ) for i = 1, 2,
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of the reduced rank regression of ∆dYt on
∑k

j=1∆
dLj

bYt and ∆d−bLbYt on
∑k

j=1∆
dLj

bYt, re-

spectively. The moment matrices Sij(ψ) for i, j = 1, 2 are Sij(ψ) = T−1
∑T

t=1

∑T

t=1Rit(ψ)R
′

jt(ψ)

and λi(ψ) for i = 1, . . . , p are the solutions, sorted in decreasing order, of the generalized

eigenvalue problem

det
[

λS11(ψ)− S10(ψ)S
−1
00 (ψ)S01(ψ)

]

. (9)

Second, given d̂ and b̂, the estimates α̂, β̂, Γ̂j for j = 1, . . . , k and Ω̂ are found by

reduced rank regression.

The values of ψ that maximize ℓT (ψ) must be found numerically. Therefore, we

explore, by means of Monte Carlo simulations, the effect of the lack of identification of

the FCVARd,b model on the expected profile likelihood when k > k0. Since the asymptotic

value of ℓT (ψ) is not a closed-form function of the model parameters, we approximate the

asymptotic behaviour of ℓT (ψ) by averaging over S simulations, setting a large number

T of observations. This provides an estimate of the expected profile likelihood, E[ℓT (ψ)].

Therefore, we generate S = 100 times from model (7) with T = 50, 000 observations

and different choices of k0 and p = 2. The fractional parameters of the system are

d0 = 0.8 and b0 is set equal to d0 in order to simplify the readability of the results

without loss of generality. The cointegration vectors are α = [0.5,−0.5] and β = [1,−1],

and the matrices Γ0
i for i = 1, ..., k0 are chosen such that the roots of the characteristic

polynomial are outside the fractional circle, see Johansen (2008). 3 The average profile

log-likelihood, ℓ̄T (ψ), and the average F(d) condition, F̄(d), are then computed with

respect to a grid of alternative values for d = [dmin, . . . , dmax].
4

Figure 1 reports the values of ℓ̄T (d) and F̄(d) when k = 1 lags are chosen but k0 = 0. It

clearly emerges that two equally likely sub-models are found corresponding to d = 0.4 and

d = 0.8. However, F̄(d) is equal to zero when d = 0.4. Consistently with the theoretical

results presented in Section 2, the other value of the parameter d that maximizes ℓ̄T (d)

is found around d = 0.8, where F̄(d) is far from zero. Similarly, as reported in Figure 2,

when k = 2 and k0 = 0, the likelihood function presents three humps around d = 0.8,

3The purpose of these simulations is purely illustrative, so that we do not explore the behaviour of
E[ℓT (ψ)] for other parameter values. All the source codes are available upon request from the authors.

4The values of dmin and dmax presented in the graphs change in order to improve the clearness of the
plots.
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d = 0.4 and d = 0.2667 = d0/3. As in the previous case, the estimates corresponding to

d = 0.4 and d = 0.2667 should be discarded due to the nullity of the F(d) condition.

A slightly more complex evidence arises when k0 > 0. Figures 3 and 4 report ℓ̄T (d)

and F̄(d) when k0 = 1 while k = 2 and k = 3 are chosen. When k = 2 the ℓ̄T (d) function

has a single large hump in the region of d = 0.8, thus supporting the theoretical results

outlined above, i.e. when k = 2 and k0 = 1 there is no lack of identification. However,

another interesting evidence emerges. The l̄T (d) function is flat and high in the region

around d = 0.5. This may produce identification problems in finite samples. This issue

will be further discussed in Section 3.1. When k = 3 we expect m = 4
2
= 2 equivalent

sub-models in correspondence of d = d0 = 0.8 and d = d0/2 = 0.4. Indeed, in Figure 4,

the line ℓ̄T (d) has two humps around the values of d = 0.4 and d = 0.8. As expected, in

the region around d = 0.4 the average F(d) condition is near 0.

3.1 Identification in Finite Sample

In Section 2, the mathematical identification issues of the FCVARd,b have been discussed

in theory. The purpose of this Section is to shed some light on the consequences of the lack

of mathematical identification in finite samples. From the analysis above, we know that

the expected profile likelihood displays multiple equivalent maxima in correspondence of

fractions of d0 for some k > k0.

In finite samples, however, the profile likelihood function displays multiple humps,

but just one global maximum when k is larger than k0. Figure 5 reports the finite sample

profile likelihood function, ℓT (d), of model H1 obtained from two simulated paths of

(7) with k0 = 0 with T = 1000. The plots highlight the behaviour of ℓT (d) and the

consequences of the lack of identification, since the global maximum of ℓT (d) is around

d = 0.4 in Panel a), while it is around 0.8 in Panel b).

Moreover, the lag structure of the FCVARd,b model induces poor finite sample identi-

fication, namely weak identification, also for those cases in which mathematical identifi-

cation is expected. For example, as shown in Figure 3, when k0 = 1 and k = 2 the average

profile likelihood is high in a neighbourhood of d = 0.5, even though in theory there is

no sub-model equivalent to the one corresponding to d = 0.8. The problem worsens if
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we look at the profile likelihoods, ℓT (d), for a given T = 1000. As in Figure 5, Figure 6

reports the shape of the finite sample profile likelihood function, ℓT (d), relative to two

simulated paths of (7) when k0 = 1 and H2 is estimated. When the global maximum is

in a neighbourhood of d = 0.4, Panel a), the F(d) is close to zero, thus suggesting that

the estimated matrix Γ̂1 and Γ̂2 are such that |α′

⊥
Γβ⊥| = 0. This evidence suggests that,

in empirical applications, it is crucial to evaluate the F(d) condition when selecting the

optimal lag length.

4 Lag selection and the F(d) condition

In practical applications the true number of lags is unknown. Commonly, the lag selection

in the VECM framework is carried out following a general-to-specific approach. Starting

from a large value of k, the optimal lag length is chosen by a sequence of likelihood-ratio

tests for the hypothesis Γk = 0, until the nullity of the matrix Γk is rejected. At each step

of this iteration, the profile likelihood function ℓT (d) must be computed. If k is larger

than k0, then there is a non-zero probability that the maximum of ℓ(d)T will be found

in a neighborhood of the values of d, that are fractions of d0 and for which |α⊥Γβ⊥| = 0.

For example, similarly to the evidence shown in Panel a) of Figure 5, it may happen that

when k = 1, max ℓ(d)T is found in a region near d = 0.4, when d0 = 0.8 and k0 = 0. If

the likelihood ratio test

LR = 2 ·
[

ℓ(d̂
(k=1)
T )− ℓ(d̂

(k=0)
T )

]

(10)

rejects the null hypothesis, then the set of parameters which maximizes the likelihood in

this case will correspond to θ = (d0/2, b0/2, α, β,Γ1 = Ip + αβ ′).

In order to avoid this inconvenience, we suggest to integrate the top-down approach

for the selection of the lags with an evaluation of the F(d) condition. Since the value

of |α̂′

⊥
Γ̂β̂⊥| is a point estimate, it is required to compute confidence bands around its

value in order to evaluate if it is statistically different from zero. Therefore, we rely on a

bootstrap approach to evaluate the nullity of |α̂′

⊥
Γ̂β̂⊥|. The suggested algorithm for the

lag selection in the FCVAR model is

1. Evaluate Lk = max ℓT (d) for the FCVAR for a given large k;
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2. Evaluate Lk−1 = max ℓT (d) for the FCVAR with k − 1;

3. Compute the value of the LR test (10) for k and k − 1, which is distributed as

χ2(p2) where p2 are the degrees of freedom, see Johansen and Nielsen (2012).

4. Iterate points 2. and 3. until the null hypothesis is rejected, in k̃.

5. Evaluate the F(d) condition in d̂k̃, b̂k̃, i.e. |α̂
′

⊥,k̃
Γ̂k̃β̂⊥,k̃|, namely F(d̂k̃).

6. Generate S pseudo trajectories from the re-sampled residuals of the Hk̃ model.

7. For fixed d̂k̃, b̂k̃, estimate the matrices α̂s

⊥,k̃
, β̂s

⊥,k̃
and Γ̂s

1, .., Γ̂
s

k̃
with reduced rank

regression, for s = 1, ..., S.

8. Compute the F s(d) condition, for s = 1, ..., S.

9. Compute the quantiles, qα and q1−α, of the empirical distribution of F s(d).

10. If both F(d̂k̃) and 0 belong to the bootstrapped confidence interval, then iterate

1.-9. for k̃ − i, for i = 1, ..., k̃ until the LR test rejects the null and F(d̂k̃−i) is

statistically different from zero.

Table 2 reports the results on the performance of the lag selection procedure that

exploits the information on the F(d) condition to infer the correct number of lags. The

lag selection method follows the procedure outlined above, starting from k = 10 lags. It

clearly emerges that in more than 95% of the cases the true number of lags is selected,

thus avoiding the identification problems discussed in Section 2. A different evidence

emerges from Table 3. The selection procedure based only on likelihood ratio tests is

not robust to the identification problem and it has a much lower coverage probability.

Indeed, only in 50% of the cases the correct lag length is selected with 500 observations.

As expected, the performance slightly improves when T = 1000 and the percentage of

correctly specified models increases to 65% of the cases.
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k0 ↓ k → 0 1 2 3 4 5 6 7 8 9 10

T=500

0 97 0 1 0 0 0 0 0 1 0 1
1 1 96 0 0 0 1 0 0 1 0 1
2 0 2 91 2 1 2 0 0 1 1 0

T=1000

0 93 3 0 1 1 0 0 0 0 2 0
1 0 95 2 1 1 0 0 0 1 0 0
2 0 0 96 2 0 0 1 0 0 0 1

Table 2: Table reports the percentage coverage probabilities in which a specific lag length
k is selected using the F(d) condition together with the LR test. The reported results
are based on 100 generated paths from the Hk0 model with k0 = 0, 1, 2 and T = 500 and
T = 1000 observations. The bootstrapped confidence intervals for the F(d) condition are
based on S = 200 draws.

k0 ↓ k → 0 1 2 3 4 5 6 7 8 9 10

T=500

0 56 0 0 0 0 0 3 6 9 13 13
1 0 57 0 0 0 2 2 7 10 11 11
2 0 0 46 1 2 4 4 9 11 10 13

T=1000

0 64 3 1 1 1 4 4 1 7 7 7
1 0 67 2 2 1 3 2 3 6 8 6
2 0 0 69 2 3 2 3 1 3 10 7

Table 3: Table reports the percentage coverage probabilities in which a specific lag
length k is selected with a general-to-specific approach using a sequence of LR tests. The
reported results are based on 100 generated paths from the Hk0 model with k0 = 0, 1, 2
and T = 500 and T = 1000 observations.

5 Unknown cointegration rank

This Section extends the previous results to the case of unknown rank, r, which is of

relevance in empirical applications. The FCVARd,b model with cointegration rank 0 ≤

r ≤ p is defined as:

Hr,k : ∆dXt = Π∆d−bLbXt +
k

∑

i=1

Γi∆
dLi

bXt + εt

where r is the rank of the p× p matrix Π.
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Compared to the case discussed in previous sections, model Hr,k exhibits further

identification issues. For example, the model with k = 1 lag and rank 0 ≤ r ≤ p, is given

by

Hr,1 : ∆dXt = Π∆d−bLbXt + Γ1∆
dLbXt + εt (11)

where the parameters θ = (d, b,Π,Γ1). Consider the following two sub-models

Hp,0 : ∆d1Xt = Π1∆d1−b1Lb1Xt + εt (12)

and

H0,1 : ∆d2Xt = Γ2
1∆

d2Lb2Xt + εt (13)

The sub-model Hp,0 is a reparameterization of H0,1 because (12) can be written as

[

∆d1−b1(−Π1) + ∆d1(Ip +Π1)
]

Xt = εt (14)

and (13) is given by
[

∆d2(I − Γ2
1) + ∆d2+b2(Γ2

1)
]

Xt = εt (15)

If I − Γ2
1 = Π1, d1 = d2 + b2, b1 = b2 the two sub-models represent the same process and

d1 ≥ b1 > 0 implies d2 + b2 > b2. Hence, the probability densities

p(X1, . . . , XT ; θ1|X−1, . . .) = p(X1, . . . , XT ; θ2|X−1, . . .)

when

θ1 = (d1, b1,Π
1, 0) θ2 = (d2 + b2, b2, 0, I − Π1)

However, the sub-model H0,1 is not always a reparameterization of Hp,0. In fact, given

the expansions in (14) and (15), it follows that

p(X1, . . . , XT ; θ3|X−1, X−2, . . .) = p(X1, . . . , XT ; θ4|X−1, X−2, . . .) (16)

where

θ3 = (d2, b2, 0,Γ
2
1) θ4 = (d2 − b2, b2, I − Γ2

1, 0)
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The equality (16) holds if and only if θ4 is such that d2 − b2 ≥ b2 > 0. This implies that

H0,1 = Hp,0 ∩ {d ≥ 2b}. Hence, the nesting structure H0,1 ⊂ Hp,0 follows.

Next proposition extends this example for a general number of lags k and rank r.5

Proposition 5.1 Consider the FCVARd,b, Hr,k, with k > 0 and 0 ≤ r ≤ p. The following

propositions hold:

• For any k > 0, model H0,k is equivalent to Hp,k−1, if the restriction d > 2b holds.

• For any k > 0, model H0,k is equivalent to Hr,k−1 with 0 < r < p, if and only if

|α′

⊥
Γβ⊥| = 0 in the latter.

• The nesting structure of the FCVARd,b model is represented by the following scheme:

H0,0 ⊂ H0,1 ⊂ H0,2 ⊂ · · · ⊂ H0,k

∩ ∩ ∩ ∩

H1,0 ⊂ H1,1 ⊂ H1,2 ⊂ · · · ⊂ H1,k

∩ ∩ ∩ ∩

...
...

...
. . .

...

∩ ∩ ∩ ∩

Hp,0 ⊂ Hp,1 ⊂ Hp,2 ⊂ · · · ⊂ Hp,k

with

H0,1 ⊂ Hp,0

H0,2 ⊂ Hp,1

...

...

H0,k ⊂ Hp,k−1

Clearly, the nesting structure of the FCVAR impacts on the joint selection of the

number of lags and the cointegration rank. Indeed, the likelihood ratio statistic for

5A similar identification problem arises in the FAR(k) in Johansen and Nielsen (2010)

∆dXt = π∆d−bLbXt +

k
∑

i=1

γi∆
dLi

bXt + εt

Similarly to the FCVARd,b model, the FAR(k) has the following nesting structure:

H0,0 ⊂ H0,1 ⊂ H0,2 ⊂ · · · ⊂ H0,k

∩ ∩ ∩ ∩
H1,0 ⊂ H1,1 ⊂ H1,2 ⊂ · · · ⊂ H1,k

with

H0,1 ⊂ H1,0

H0,2 ⊂ H1,1

...

...
H0,k ⊂ H1,k−1
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cointegration rank r, LRr,k, is given by

−2 logLRr,k(Hr,k|Hp,k) = T · (ℓr,k(d̂r, b̂r)− ℓp,k(d̂p, b̂p))

where ℓr,k is the profile likelihood of the FCVARd,b model with rank r and k lags. Analo-

gously, d̂r,k and b̂r,k are the arguments that maximize ℓr,k. The asymptotic properties of

the LRr statistics for given k are provided in Johansen and Nielsen (2012).

Under the null hypothesis H0,k, it follows from Proposition 5.1 that the LR tests

LR0,k = −2 logLR(H0,k|Hp,k) is equal to LRp,k−1 = −2 logLR(Hp,k−1|Hp,k).
6 Hence,

the equality of the test statistics LR0,k and LRp,k−1 influences the top-down sequence

of tests for the joint identification of the cointegration rank and the lag length. Indeed,

assuming that the top-down procedure for the optimal lag selection terminates in Hp,k−1,

then it would impossible to test whether the optimal model is Hp,k−1 or H0,k. Therefore a

problem of joint selection of k and r > 0 arises in the FCVARd,b when rank is potentially

equal to 0 or p. A trivial solution to this issue is to exclude the models with rank equal

to zero when selecting rank and lag length.

6 Conclusion

This paper discussed in detail the identification problem in the CFVARd,b model of Jo-

hansen (2008) such that the fractional order of the system cannot be uniquely determined

when the lag structure is over-specified. In particular, the multiplicity of equivalent sub-

models is provided in closed form given k and k0. It is also shown that a necessary and

sufficient condition for the identification is that the F(d) condition, i.e. |α′

⊥
Γβ⊥| 6= 0, is

fulfilled. A simulation study highlights the practical problem of multiple humps in the

expected profile log-likelihood function as a consequence of the identification problem

and the over-specification of the lag structure. The simulations also show that the true

parameters can be detected by evaluating the F(d) condition. The simulation study also

reveals a problem of weak identification, characterized by the presence of local and global

maxima of the profile likelihood function in finite samples. It is also shown that the

6Both tests, LRp,k−1 and LR0,k are asymptotically χ2(p2) distributed.
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F(d) condition is necessary and sufficient for identification also when the cointegration

rank is unknown and such that 0 < r < p. It is proved that model H0,k is equivalent

to model Hp,k−1 under certain conditions on d and b, but the F(d) does not provide any

information for the identification in this case. A solution to this issue, which does not

exclude rank equal to zero, is left for future research.
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Proof of Proposition 2.2 when k0 = 0 and k = 1

Let us define the FCVARd,b model with one lag, H1, as

∆dXt = αβ ′∆d−bLbXt + Γ1∆
dLbXt + εt (17)

which can be written as

{

∆d [I + αβ ′ − Γ1] + ∆d−b [−αβ ′] + ∆d+bΓ1

}

Xt = εt (18)

Similarly, the model Hk0 with k0 = 0 lags in (7) can be rewritten as

{

∆d0 [I + α0β
′

0] + ∆d0−b0[−α0β
′

0]
}

Xt = εt (19)

Imposing I + αβ ′ − Γ1 = 0, it follows that

∆d+bΓ1 = (I + α0β
′

0)∆
d0 (20)

and the condition

−αβ ′∆d−b = −α0β
′

0∆
d0−b0 (21)

it is satisfied when d = d0 − b0/2 and b = b0/2. The other equivalent sub-model corre-

sponding to Hk0 in (7) with k0 = 0 with α0β
′

0 = αβ ′, Γ1 = 0, d = d0 and b = b0.

When the Hk0 has k0 = 0 lags and model Hk with k > 0 is considered, then the k−th

model can be rewritten as
k

∑

i=−1

Ψi∆
d+ibXt = εt (22)

where
∑k

i=−1Ψi = Ip, Ψ−1 = −αβ ′ and Ψ0 = αβ ′ + Γ.

Similarly, the Hk0 model with k0 lags is given by

0
∑

i=−1

Ψi,0∆
d0+ib0 = εt, with Ψ−1,0 +Ψ0,0 = Ip. (23)

It is possible to show, that k + 1 sub-models equivalent to Hk0 can be obtained
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imposing suitable restrictions on the matrices Ψi i = −1, ..., k of the model Hk. The

equivalent sub-models, Hk,j, j = 0, 1, . . . , k, are found in correspondence of

Ψ−1 = Ψ−1,0 corresponding to d− b = d0 − b0 (24)

Ψj = Ψ0,0 corresponding to d+ jb = d0

Ψs = 0, s 6= j

This system entails that all sub-models Hk,j, j = 1, . . . , k are such that Ψ−1 = −αβ ′ =

−α0β
′

0 = Ψ−1,0 and Ψ0 = 0. This implies that αβ ′ + Γ = Ψ0 = 0. Hence, the sub-models

for j = 1, ..., k are such that |α′

⊥
Γβ⊥| = 0. Only for j = 0, the condition |α′

⊥
Γβ⊥| 6= 0 is

satisfied.

Hence, verifying |α′

⊥
Γβ⊥| 6= 0 is sufficient for the identification of the parameters of

Hk0 .�

The following Table summarizes the set of restrictions that have to be imposed on a

Hk model in order to find k + 1 sub-models equivalent to the model Hk0 with k0 = 0:

Matrices in Hk → Ψ−1 Ψ0 Ψ1 Ψ2 Ψ3 · · · Ψk

Hk,0 Ψ−1,0 Ψ0,0 0 0 0 · · · 0
Hk,1 Ψ−1,0 0 Ψ0,0 0 0 · · · 0
Hk,2 Ψ−1,0 0 0 Ψ0,0 0 · · · 0
Hk,3 Ψ−1,0 0 0 0 Ψ0,0 · · · 0
...

...
...

...
...

...
. . .

...
Hk,k Ψ−1,0 0 0 0 0 · · · Ψ0,0

Table 4: Restrictions imposed on the Hk model when the model Hk0 is a FCVARd,b with
k0 = 0 lags.
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Proof of Proposition 2.2

Let us define the model Hk0 under k0 ≥ 0 as

k0
∑

i=−1

Ψi,0∆
d0+ib0Xt = εt (25)

and the model Hk with k > k0 as

k
∑

i=−1

Ψi∆
d+ibXt = εt (26)

It is possible to show, that, for a given k0, m sub-models equivalent to the DGP

(25) can be obtained imposing suitable restrictions on the matrices Ψi i = −1, ..., k

of the model Hk. The equivalent sub-models, Hk,j, j = 0, 1, . . . , m − 1, are found in

correspondence of

Ψ−1 = Ψ−1,0 corresponding to d− b = d0 − b0 (27)

Ψ(ℓ+1)(j+1)−1 = Ψℓ,0 corresponding to d+ [(ℓ+ 1)(j + 1)− 1]b = d0 + ℓb0,

for ℓ = 0, . . . , k0 j = 0, 1, . . . , m− 1

Ψs = 0 for s 6= (ℓ+ 1)(j + 1)− 1,

and ℓ = 0, . . . , k0 j = 0, 1, . . . , m− 1.

The restriction Ψ0 = αβ ′ + Γ = 0, implying |α′

⊥
Γβ⊥| = 0 with Γ = I −

∑k

i=1 Γi, is

always imposed for the sub-models Hk,j when j ≥ 1.

As in the case k0 = 0, Ψ−1,0 = −α0β
′

0 and Ψ−1 = −αβ load the terms ∆d0−b0Xt and

∆d−bXt respectively. This implies that d0 − b0 = d − b. For a given j > 0, a system of

k0 + 2 equations (27) in d and b is derived from the restrictions on the matrices Ψi. The

solution of this system is found for b = b0/(j + 1) and d = d0 −
j

j+1
b0. All sub-models

Hk,j, j = 1, . . . , k are such that Ψ−1 = −αβ ′ = −α0β
′

0 = Ψ−1,0 and Ψ0 = 0. This implies

that αβ ′+Γ = Ψ0 = 0. Hence, the sub-models for j = 1, ..., k are such that |α′

⊥
Γβ⊥| = 0.

Only for j = 0, the condition α′

⊥
Γβ⊥| 6= 0 is satisfied.

For a given k > k0, the number of possible restriction to be imposed on Ψi that
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satisfies the system in (27) is ⌊ k+1
k0+1

⌋. Hence, the number of equivalent sub-models is

m = ⌊ k+1
k0+1

⌋.

Finally, the following Table reports the set of restrictions to be imposed on the H6

model to have m = ⌊7
2
⌋ = 3 sub-models equivalent to the model Hk0 with k0 = 1 lags.

Matrices in H6 → Ψ−1 Ψ0 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

H6,0 Ψ−1,0 Ψ0,0 Ψ1,0 0 0 0 0 0
H6,1 Ψ−1,0 0 Ψ0,0 0 Ψ1,0 0 0 0
H6,2 Ψ−1,0 0 0 Ψ0,0 0 0 Ψ1,0 0

Table 5: Restrictions imposed on the H6 model when the model Hk0 is a FCVARd,b with
k0 = 1 lag.

�

21



Proof of Proposition 5.1

Consider the model

Hr,k : ∆dXt = Π∆d−bLbXt +

k
∑

j=1

Γj∆
d−bLbXt + εt

It can be written as
k

∑

i=−1

Ψj∆
d+ibXt = εt

where Ψ−1 = −Π, Ψ0 = I +Π−
∑k

i=1 Γi and Ψk = −(1)k+1Γk.

Consider the two sub-models of Hr,k with the following two restrictions:

Hp,k−1 : Π is a p× p matrix and Γk = 0

H0,k : Π=0

The model Hp,k−1 can be written as:

k−1
∑

i=−1

Ψ̃i∆
d̃+ib̃Xt = εt

where Ψ̃−1 = Π, Ψ̃0 = I + Π−
∑k−1

i=1 Γi and Ψ̃k−1 = (−1)kΓk−1.

The model H0,k can be written as:

k
∑

i=0

Ψ̄i∆
d̄+ib̄Xt = εt

because Ψ̄−1 = 0, Ψ̄0 = I + 0−
∑k

i=1 Γi and Ψ̄k = (−1)k+1Γk.

The two sub-models are equal if











































Ψ̃−1 = Ψ̄0

Ψ̃0 = Ψ̄1

...

Ψ̃k−1 = Ψ̄k

and











































d̃− b̃ = d̄

d̃ = d̄+ b̄

...

d̃+ (k − 1)b̃ = d̄+ kb̄

(28)
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Given that the FCVARd, b model assumes that d ≥ b > 0, it implies that d̃ ≥ b̃ and

d̄ ≥ b̄. The inequality d̃ ≥ b̃ is always verified but d̄ ≥ b̄ is verified if and only if d̃ ≥ 2b̃.

Therefore, H0,k ⊂ Hp,k−1.

Consider the case in which Π is a reduced rank matrix with 0 < r < p. Hr,k−1 and

H0,k are equivalent if the systems of equations (28) hold. In this case, Ψ̄0 is equal to

I −
∑k

i=1 Γ̄i = −α̃β̃ ′. Hence, the models Hr,k−1 are equivalent to H0,k if and only if the

F(d) condition is equal to 0. �
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Figure 1: Figure reports simulated values of l̄(d) and ¯F(d) for different values of d ∈
[0.2, 1.2]. The DGP is generated with k0 = 0 lags and a model Hk with k = 1 lags is
fitted.
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Figure 2: Figure reports simulated values of l̄(d) and ¯F(d) for different values of d ∈
[0.2, 1.2]. The DGP is generated with k0 = 0 lags and a model Hk with k = 2 lags is
fitted.
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Figure 3: Figure reports simulated values of l̄(d) and ¯F(d) for different values of d ∈
[0.4, 1]. The DGP is generated with k0 = 1 lags and a model Hk with k = 2 lags is fitted.
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Figure 4: Figure reports simulated values of l̄(d) and ¯F(d) for different values of d ∈
[0.3, 0.8]. The DGP is generated with k0 = 1 lags and a model Hk with k = 3 lags is
fitted.
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Figure 5: Figure reports the values of the profile likelihood l(d) and F(d) for different
values of d ∈ [0.35, 0.9] for two different simulated path with T = 1000 of the FCVARd,d

when k0 = 0 and model H1 is estimated in the data.
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Figure 6: Figure reports the values of the profile likelihood l(d) and F(d) for different
values of d ∈ [0.35, 0.9] for two different simulated path with T = 1000 of the FCVARd,d

when k0 = 1 and model H2 is estimated in the data.
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