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Abstract

Polynomial specifications are widely used, not only in applied economics,
but also in epidemiology, physics, political analysis, and psychologytqust
mention a few examples. In many cases, the data employed to estimate
such specifications are time series that may exhibit stochastic nonstationary
behavior. We extend Phillips’ (1986) results by proving an inferenagvdr
from polynomial specifications, under stochastic nonstationarity, is mislead-
ing unless the variables cointegrate. We use a generalized polynomial spec-
ification as a vehicle to study its asymptotic and finite-sample properties.
Our results, therefore, lead to a call to be cautious whenever practgioner
estimate polynomial regressions.
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1 Introduction

There is some research on the effects of nonstationarityeo¥/ariables on non-
linear relationships (spurious inference on linear speatifons was uncovered by
Granger and Newbold (1974), and later explained by Phi(lj#86)). Lee, Kim,
and Newbold (2005) show (both, in finite samples and asyngaibt) that six
nonlinear test$,when applied to independent random walks, tend to idengify s
rious (non existing) nonlinear relationshipsO’Brien (2008) extends these re-
sults by studying the behavior of two additional tests; theSBBst and another
one proposed by Pa and Rodriguez (2005); he finds that the former also yields
results that don’'t make sense, whilst the latter proves e lg@od power prop-
erties even in small samples. Wagner (2012) studies theeptiep of the non-
parametric Phillip’s unit root test applied to polynomialsintegrated processes,
and concludes, broadly speaking, that the tests does neeg®sin asymptotic
nuisance-parameter-free distribution except under veegiic conditions.

To the best of our knowledge, the “nonlinear relationstpprus inference”
literature (briefly sketched earlier) focuses on statitiests rather than polyno-
mial regressions. The latter are used to linearly relatelépendent variable to a
k" order polynomial on an independent variableSuch regressions therefore fit
(through ordinary least squares, ols) a nonlinear relatignbetween a polyno-
mial on the independent variable and the conditional mean of

These specifications can be traced back to the nineteentirgeto impute
series (see Gergonne (1815)). Despite its old age, pohalamgressions re-
main widely used in a large number of scientific fields whiatlude, epidemiol-
ogy/disease progression (Chatterjee and Sarkar (2009phgsics (Verma (2009)),
physics (Barker, Street-Perrott, Leng, Greenwood, Swasn;oRt, Telford, and
Ficken, 2001, p. 2310), political analysis (Green, LeongyrK Gerber, and
Larimer (2009)), psychology Shanock, Baran, Gentry, Rattisnd Heggestad
(2010), and of course, statistics. Splines regression eddabic splines, for
example) can be used to smooth / impute series.

In empirical economics, polynomial specifications can hentbin many sub-
fields, such as, financial economics (loannidis, Peel, ared €03); Ferrer,
Gonalez, and Soto (2010)), labour economics (Leonardi andR@E3); Straka

Five of these tests are well known: RESET test, McLeod andest, tkeenan test, Neural
Network test, and White’s information matrix. The last onesypaoposed by Hamilton (2001).

2lt is noteworthy that de Jong (2003) studied the spuriousessijon phenomenon under
stochastic nonstationarity when the logarithms of indeleanl(1) variables are used. Logarithmic
transformations are commonly used in applied studies tbvddanonlinearity.



(1993)), agricultural economics (Ackello-Ogutu, Paris] &Villiams (1985)), macroe-
conomics (exchange rates, Darvas (2008)) and environhesmmomics (Auffham-
mer and Kellogg (2011); Kellenberg (2012)). An evocativareple can be found
in the empirical research dealing with the Kuznets curve, the environmental
Kuznets curve; the inverse U-shaped relationship betwleervariables is typ-
ically specified as the dependent variable regressed omtepéendent and its
square (see Grossman and Krueger (1993); Labson and Croifi@98); it is
noteworthy that Kuznetz specifications usually employ eweter polynomials).

Even though polynomial regressions remain an importantieaptool, we
could not find in the literature any attempt to study theimaties when the vari-
ables behave as independent nonstationary processesmifiisbe so because
the effect of nonstationarity is rather intuitive and ecmetricians, at least those
familiar with the spurious regression, could speculaténatios diverge and the
R? does not collapse. However, many researchers in diversts fagdem to be
unaware of this possibility.

In this paper, we confirm that an inference drawn from a patyiabregres-
sion, when the variables are generated as independentatedgprocesses, is
misleading® We provide evidence that generalizes Phillip’s resultsnin hew
directions: (i) We allow for the exponent of the variablestthexplanatory and
dependent in a bivariate regression, take any natural ngrieve allow for an
arbitrary (natural number) order for the polynomiakiimn a k-variate regression.
The main objective of this work is to warn practitioners abthe considerable
risks of spurious inference when powers of a nonstationariable are used as
regressors.

This paper is organized in a very simple manner. Next segiresents the
data-generating processes (DGPs) and the main resuligediwn two theorems.
A small Monte Carlo shows that the asymptotics are a suffilgi@ticurate repre-
sentation of finite sample behavior of the regressions.

2 Asymptotics of polynomial regressions

The variables, both dependent and independent, are gedexatindependent
driftless unit roots,

2t = Zi—1 + Uy, (1)

3When the variables cointegrate, inference drawn from sugheeification is no longer mis-
leading.



for = = z,y. The innovationsy,, andu,, are independent of each other and
obey the conditions stated in Phillips’s (1986, p. 313) Asption 1. We use
these variables to estimate the following specification:

yit = o+ By + g, 2)

wherem, k € N. A word on notation; the symbe% denotes weak convergence
and, for simplicity W, = W,(r), for = = x, y, denotes a Wiener standard process.

The stochastic integrq[j1 is written as/.

Theorem 1. Let {y},~,, and{z,;},~, be independently generated by eq. (1).
Estimate by ols specification (2). Then,/As— oco:

1. T-%a4 3 oy {fwymfwik—fwﬁwi”fwg],

Jwh—(fwh)®

[T

[(f w2 (b)) (g = )= (S kg wh fug)?)

4.}#-3»52[1355193§22}.
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Proof: see appendix A.

Note that all these results are an extension of Phillips §198vhich implies
that, no matter what power does the practitioner appliesaosériables, the spu-
rious regression phenomenon remains identical. That saidpre interesting
specification should allow for a more complete polynomiakité¢ independent
variable, as in

Yo = Bo+ Brxy + o} + - + Bt + uy, (3)
wherek € N. In this case, ols estimates still generate a spurious ssigne

Theorem 2. Let {y:},-, and{z;},°,, be independently generated by eq. (1).
Estimate by ols specification (3). Then, Bs— oo:

41t is noteworthy to mention that, fok = m = 1, our results are exactly those of Phillips
(1986).
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Proof: see appendix B.

Note the linear pattern in the order of convergence of tharpaters; whilst
the constant termy, diverges at ratd’z, 3, neither diverges, nor collapses,
collapses at ratd'~z, and so on. Even though, all theatios of the estimated
parameters diverge at the usual rite In both theorems, the convergence rate
of thet-ratios associated with the estimates diverge. This imphat, for a suffi-
ciently large sample, the null hypothesis that the pararaete equal to zero will
eventually be rejected. Finite sample evidence suggeatghis actually occurs
in even rather small samples tf0 — 500 observations (Table 1).

3 Concludingremarks

In this paper we extended the results of what is known as epsiinference by
studying the asymptotic and finite-sample behavior of #matios in an OLS-
estimated regression where the dependent variable ahé/explanatory variable
are nonlinearly tranformed by means of a polynomial. Whervérables are in-
dependent and stochastically nonstationary, the inferbased on OLS estimates



Table 1:Regjection rates of ¢-ratios

Specification (2) Specification (3)
m with k=4
T k
1 2 3 P Pa B D
1 0.77 0.71 0.71
100 2 0.71 0.66 0.65 0.46 0.35 0.33 0.31
3 0.72 0.66 0.66
1 0.85 0.82 0.82
250 2 0.81 0.78 0.78 0.64 056 0.52 0.50
3 0.82 0.78 0.78
1 0.89 0.87 0.87
500 2 0.86 0.84 0.84 0.73 0.67 0.64 0.63

3 0.88 0.84 0.84

Rejection rates of t-ratio associated to: (i) for specifara(2), ﬂ (ii) for specification (3) allg’s.
DGP parametersi, ; ~ iidN(0,1), for = = z, y. The code of this Monte Carlo experiment is
available as supplementary material.

is misleading (our results concern pure 1(1) processeqrovide a natural guide
to future research; near-integration, 1(2) and brokerdlirieend processes should
be further studied). This result should be understood ab todse cautious when-
ever practitioners estimate polynomial regressions.
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A Proof of Theorem 1

Proof. In order to get all of the results we use the asymptotic resartvided in
Giles (2007):

L T30 ek, ) 5ok [ wa () dr,
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By simple algebra, we get:
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which proves results 1 and 2 in Theorem 1.

Let 3 = fl}];wf::(ffwif)f;’n; following Phillips (1986), to get;, we define
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Then, we use equations (4) and (5) to get,

T-3t, = —L2—,
B 725,

Nl

(ke )sn(r-en )
(T2 5) ’

g i)
oy [Juim—(Jwp)* =52 (f w3t (S b))
Then, after simple algebra we get,

T—%té as’ — oo.

[T

D fw’;w;/"—fw;}”fw];

T_%tﬁ — 3 ; 2
(S wzi—(fwh)®) (S wzm—(Jwp) (S whwg—f wh fwy))]

Y

ol

as’T — oo,

proving result 3 of Theorem 1.

Finally, the asymptotic nonstandard distribution/t¥is given by:
B2 — XUr-v’

Sy -9

32 7= (m=k)—(k+1) Z(z,’f—f)Q
T (g

o B[fu(fwh)’]
R = fwgmf(fw;’,")Q )

This proves the last result of theorem 1.

asT — oo.
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B Proof of Theorem 2.

Proof. The polynomial specification (3) has the following ols estiors:

—1

. o T 2 k
Bo dow Y wy > T Sy
~ x xz x?’ [ xk+1
3 Ya Yt Yab o Yl 5 e
R 2 3 k+2
Bo _ 2T DT > T foyt 7
k 2k
L Bk J 2.7 2. Exfyt

or B = %1%, for short. To obtain the rates of convergences of the ols

estimates, note that,! is a Hankel matrix. The orders of convergence of each
element in such a matrix are given by:

o(T) Op(T%) Op(TQ) Op(T%(’f+2))

Op (T%) Op(T?) Op (T%> .o Op (T%(k+3)>

[NI[S]

Op (T?) Op (T ) e ... Op (T%(’”‘*))

Op (T%(k“)) o Op(TF)

The Hankel matrix can be inverted using some results fromalimlgebra
theory (spectral decomposition)That said, we are not interested on computing
the exact inverse, but rather to use cases with 1,2,3,.... For specification

5Also, while it would be possible to analyze some interespingperties of Hankel matrices
given by Hannan and Deistler (2012) or Golub and Van Loan Z20tter alia, there are some
numerical algorithms like Trench (1965), or Kumar and Ad$e|1996) for polynomial regressions,
that work with a Hankel matrix.
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(3), it is straightforward to see that:

Toa=

T

o)
on(7%)
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Op (T*%(k’ﬁ))

Op(T°%)  Op(17?)

Op (T‘2) Op (T‘
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Op (T‘

)

2

')
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Op (T—%(k+3))

Op (T—%(k+4))

Op (Tf(k+1))

which is again a Hankel matrix. We follow Hamilton (1994) tbtain the
orders of convergence and the asymptotic distributiondsoéstimates. We first
define the following matrices:

"=

and

Yo =

T2 0 0
0 1 0
0 0 T2
0 0 0

T: 0 0

0 T2 0
0 0 T2
0 0 0

T%(k—&-S)
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Then, using matrices (6) and (7) we hayeB = v (3..)) 127 " (ny). Fi-
nally, we gety, B = {77 32 '} {’61 (Zﬁy) } :
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We then multiply the matrices of equation (8):

_15 g 1 o [we 02 [w2 .- ok [wk -t
T2 B T f x x f x z f @ oy f,wy
k k
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Finally, we factor the variances,, o,) from equation (9):

1 A~ -
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i | B o, 00 o0 |
| T3k, | 0o 0 0 --- oF
-1
1 f’LUm fw% fwlag f’wy
2 3. k+1
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k 2k
Jwk e w2 ok,

which proves eq. (1) in Theorem 2.

To obtain the asymptotics of thiet-ratios, note that the order of convergence
of the estimated varianc§?,

T
N N ~ ~ 2
$ = T3 (g Bo— Phare — ot — o = Bt (10)
t=1

is always equal td@™. To see this, we expand expression (10) and analyze the
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convergence order of each element given by the previoutt:resu
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This proves Theorem 2.
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