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Abstract

This paper evaluates the accuracy of a set of techniques that approximate the solution of

continuous-time DSGE models. Using the neoclassical growth model I compare linear-quadratic,

perturbation and projection methods. All techniques are applied to the HJB equation and the

optimality conditions that define the general equilibrium of the economy. Two cases are studied

depending on whether a closed form solution is available. I also analyze how different degrees of

non-linearities affect the approximated solution. The results encourage the use of perturbations

for reasonable values of the structural parameters of the model and suggest the use of projection

methods when a high degree of accuracy is required.

Keywords: Continuous-Time DSGE Models, Linear-Quadratic Approximation, Perturbation

Method, Projection Method.

JEL classification : C63, C68, E32.

1 Introduction

As described in Blanchard (2009) during the last 20 years macroeconomy has experienced a conver-

gence in methodology to what it is known today as Dynamic Stochastic General Equilibrium models

(DSGE). In general, it is not possible to derive analytical solutions for the policy functions that
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describe the equilibrium outcomes of these models, except under very restrictive and economically

uninteresting assumptions. Thus, this convergence has been accompanied with the application and

further development of numerical techniques to approximate this unknown solution. Currently,

the toolbox of macroeconomists includes a variety of methods that differ in their accuracy and

computational cost. These differences were initially studied in Taylor and Uhlig (1990) and later

on in Aruoba et al. (2006) for discrete-time economies. More recently Binsbergen et al. (2008) and

Caldara et al. (2012) have analyzed the accuracy of numerical methods for the case of discrete-time

models with recursive preferences and stochastic volatility. However, little attention has been paid

in this regard to structural stochastic dynamic models in continuous-time. This paper attempts to

fill this gap in the literature and therefore it complements previous work by Judd (1996), Gaspar

and Judd (1997), Judd (1998), Miranda and Fackler (2002), Kompas and Chu (2010) and Posch

and Trimborn (2013).

Macroeconomic modeling in continuous-time exhibits some features that make it, in some cases,

more attractive than its discrete-time counterpart both from a theoretical and a computational per-

spective. As stated in Turnovsky (1977): “Both kind of models have their place and the choice

between them is often dictated by convenience”. However, continuous-time models are sometimes

preferred because its analytical tractability. In fact, it is possible to derive closed form solutions

for a wider class of models without the need of strong parametric restrictions. This analytical

advantage it is attributable to Ito’s lemma which provides more flexibility for transforming expres-

sions. Furthermore, discrete-time models assume that all decisions made by agents are perfectly

synchronized and the distinction between flows and stocks become obscured, situations that are

easily overcome in a continuous-time framework.

Setting up DSGE models in continuous-time also allows to link the real side of the economy with

all the different devices built in the finance literature which have been useful to explain the behavior

of asset prices. As stated in Cochrane (2005): “[...]finance has a lot to say about macroeconomics,

and it says that something is desperately wrong with most macroeconomic models” when he refers

to the inadequacy of the state of the art discrete-time DSGE models to match financial market

facts. Furthermore, the continuous-time framework allows to incorporate parameter uncertainty on

the mean and variances of the stochastic processes that drive the optimal decisions in an easier way

than the discrete-time setup while retaining a tractable model. Examples of the potential benefits

of continuous-time macro finance models include Brennan (1998), Grinols and Turnovsky (1993),

Xia (2001), Posch (2011), Wachter (2013), among many others.

In addition, due to the martingale property of the Lévy processes commonly used to model

the random shocks that hit the economy, the optimality conditions that describe the equilibrium

in a continuous-time setup are deterministic (Chang, 2009). As a byproduct of this result, the

computational cost and numerical errors made by approximating the solution can be reduced since

there is no need to compute expected values as it is the case in discrete-time. Another advantage of

the continuous-time framework is the potential reduction in the curse of dimensionality, as shown in

Doraszelski and Judd (2012). In fact, the Bellman equation associated with discrete-time problems
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requires the numerical computation of integrals of compound unknown functions. However, the

dynamic programming equation in continuous-time does not include any composition of functions

or expectation operators speeding up the numerical approximations.

In this paper, I study the performance of different numerical methods to compute an approxi-

mated solution of continuous-time DSGE models based on the maximized Hamilton-Jacobi-Bellman

(HJB) equation and the first order conditions that describe the general equilibrium of the economy.

Despite being well known procedures, little is known about their relative performance, an issue that

becomes relevant if we want to proceed with the econometric estimation of the deep parameters

of the model. Then, it is necessary to assess which approximation method is more accurate and

fast to make the estimation feasible without introducing possible bias due to approximation errors

in the solution step. I report the results obtained from three main approaches: first and second

order perturbation; projection methods with collocation and least squares residual functions; and

linear-quadratic approximations with linear and linearized constraints. Alternative ways to solve

the model based on the Euler equations is currently in the research agenda1.

All the methods are evaluated in terms of accuracy and computing time using as a benchmark

the stochastic neoclassical growth model with endogenous labor which is the workhorse model in

the DSGE literature. The basic framework used in Merton (1990) is extended with leisure in

the household’s utility function and with stochastic and stationary variation in the total factor

productivity. The model can be thought as a continuous-time representation of the model studied

in Aruoba et al. (2006). The model is chosen since under suitable parametrizations it allows

for a closed form solution that can be used to assess the different approximation methods2. In

particular, I compute the relative numerical error made by using the approximations instead of the

true solution. For the case where an analytical solution is not available, I use the HJB equation

residuals as a measure of accuracy. Robustness checks are done by using different calibrations

which differ in the degree of non-linearities introduced into the model. I study the effects of higher

volatility both in the stochastic depreciation and/or the productivity shocks and the effects of lower

and higher risk aversion.

Four main results are obtained from this exercise. First, I find that despite their conceptual

and computational differences, all methods provide an acceptable degree of accuracy around the

deterministic steady state. This result is robust to different values of the volatility of the exogenous

processes as long as the risk aversion parameter is not unreasonably high. Otherwise perturbation

and linear-quadratic methods rapidly deteriorate relative to global methods. Among all the alter-

natives, projection techniques are the most reliable and stable. However a good initial guess for

the value and policy functions is required in order to get an accurate approximation, compromising

this way the reliability of the method.

1The method proposed in Posch and Trimborn (2013) follows this approach to solve for the unknown policy
functions.

2The findings reported in this paper are model-dependent but they help to understand the different approximation
methods. Hopefully, the main conclusions derived under this benchmark model can be also obtained under alternative
setups.
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Second, even though perturbation is only locally accurate, the increase in the order of approxi-

mation improves substantially the goodness of fit by taking into account possible non-linearities of

the functions being approximated. This can be done at a low extra computational cost encouraging

its use. This becomes an advantage for global methods since the resulting approximation becomes

an adecuate initial guess.

Third, linear-quadratic approximations are on average less accurate than perturbation methods

despite the fact that both of them use the same local information to build the approximation. In

addition when the method is applied to linearized constraints, the policy functions are incorrectly

approximated outside the deterministic steady state. However, if the constraints of the original

problem are linear then the optimal rules obtained are correctly approximated. On the other hand,

the approximation of the value function is not affected considerably by the use of linear or linearized

constraints. Similar to the perturbation case, the low implementation and computation cost suggest

the use of linear-quadratic approximations as an initial guess for global methods.

Fourth, continuous-time DSGE modeling proves to be a promising area of future policy-oriented

research when compared to the discrete-time framework. All the approximation methods use much

less computing time since there is no need to approximate composition of unknown functions,

neither numerically approximate the integrals associated with expected values.

The first three results are similar to those derived from the numerical solution of DSGE models

in discrete-time. As suggested in Aruoba et al. (2006), they should stimulate the use of perturbation

methods, preferably with orders of approximation higher than one, and suggest relying on projection

techniques whenever high accuracy and stability is needed.

The rest of the paper is organized as follows. Section 2 describes the general stochastic control

problem and summarizes the different methods used to approximate its solution. Section 3 presents

the benchmark model that will be used to test the different numerical techniques and establishes the

conditions under which a closed form solution exists. Section 4 reports the numerical results and

accuracy measures obtained under different setups and calibrations, and presents a brief discussion

on computing time. Finally, Section 5 concludes.

2 General problem and solution methods

Consider the general dynamic optimization framework in which an agent tries to achieve the maxi-

mum possible payoff out of her decisions given the state of the economy at each instant of time. In

general, a solution to this problem cannot be found analytically and it is necessary to use numerical

methods to approximate it. This section presents a brief overview of the different approximation

methods that will be used in the rest of the paper. A detailed explanation of each of them can be

found in the references presented in each of the following subsections.

Let (Ω,F , P ) be a filtered probability space with filtration {Ft} , st ∈ S ⊂ Rm+ an m-dimensional

vector of state variables at time t with right-continuous sample paths, left-hand limit and initial

value s0 = s which include predetermined endogenous and exogenous variables, and ct ∈ D (S) ⊂
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Rn+ an n-dimensional vector of non-negative endogenous-control variables at time t whose coordi-

nates are functions of the state variables. The set D (S) denotes the set of admissible controls. The

evolution of the state vector is given by the autonomous controlled diffusion process:

dst = µ (st, ct) dt+ Σ
1
2 (st, ct) dBt (1)

where µ (st, ct) ∈ Rm and Σ
1
2 (st, ct) ∈ Rmp are the real-valued drift vector Lipschitzian function

and real-valued square root variance-covariance matrix Lipschitzian function. Bt is a p-dimensional

vector of standard Brownian motions representing stochastic disturbances that affect the state

variables. Define Σ (st, ct) = Σ
1
2 (st, ct) Σ

1
2 (st, ct)

′ ∈ Rmp to be the variance-covariance matrix of

those disturbances.

The decision problem of the agent corresponds to the autonomous discounted stochastic optimal

control problem:

V (s0) = max
{ct}∞t=0∈D(s)×D(s)×...

E0

∞∫
0

e−ρtπ (st, ct) dt

subject to equation (1) and s0 = s given, where E0 denotes the expectation operator conditional on

the information available at time t = 0 and π (st, ct) ∈ R is the time-homogenous continuous and

integrable objective function. For simplicity it is assumed that the variance-covariance matrix of

the disturbances is control independent. The function V (s0) ∈ R denotes the maximum expected

value, or value function, obtained at t = 0 when s = s0.

A necessary condition for optimiality is given by the HJB equation:

0 = max
ct∈D(st)

{
π (st, ct)− ρV (st) + µ (st, ct)∇V (st) +

1

2
trace

(
Σ (st)∇2V (st)

)}
(2)

where ∇V (st) is the gradient of the value function and ∇2V (st) is the associated Hessian matrix.

The first order conditions for any interior solution are:

πc (st, ct) + µc (st, ct)∇V (st) = 0 (3)

for each ct ∈ ct, which implicitly makes the vector of controls a function of the state vector,

ct = P (st). The vector function P : Rm → D (st) maps every possible value of the state vector at

time t into the control vector. The implicit maximized (concentrated) HJB equation reads:

0 = π (st,P (st))− ρV (st) + µ (st,P (st))∇V (st) +
1

2
trace

(
Σ (st)∇2V (st)

)
(4)

which together with the first order conditions determine the unknown functions V (st) and P (st)

and form the basis for all the numerical procedures to be introduced later. A solution to the HJB

equation amounts to find these unknown functions such that they solve the continuum of problems

described by equation (2). The mapping P is called policy function and represents the optimal

response of agents to a given set of values of the possible states.
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The following subsections briefly describe some alternative numerical methods that can be

used to approximate the solution of the dynamic optimization problem described above. I do not

pretend to cover all the techniques proposed in the stochastic control literature but evaluate the

performance of similar methods to the ones usually employed in the discrete-time analysis of DSGE

models. In particular I use linear-quadratic approximations, perturbations and projection methods.

Alternative techniques can be found in Tapiero and Sulem (1994), Candler (2004) and Posch and

Trimborn (2013)

2.1 Linear-Quadratic approximation

Linear-quadratic approximation uses local information to replace the original non-linear problem

with a more tractable problem for which a solution can be easily found. In fact, it is known that the

resulting policy function is linear on the state variables. Linear-quadratic approximations have been

extensively used in economics. First attemps to apply the technique in the field can be found in

Magill (1977b) for the deterministic case and in Magill (1977a) for the stochastic case, eventhough

the method only became popular after the seminal paper of Kydland and Prescott (1982). Further

developments and implementation alternatives can be found in Anderson et al. (1996).

Let ŝt = (st − sss) and ĉt = (ct − css) denote the absolute deviations of the state and control

variables from their deterministic steady state values. The linear-quadratic method approximates

the original non-linear problem in (ŝt, ĉt) by constructing a second order Taylor expansion of the

objective function and a first order Taylor expansion of the stochastic differential equations that

describe the evolution of the state variables around their steady state values. The approximated

stochastic control problem is given by:

V (ŝ0) = max
{ĉt}∞t=0

E0

∞∫
0

e−ρt
(
ŝ′tRŝt + ĉ′tQĉt + 2ĉ′tW

′ŝt
)

dt

subject to

dŝt = (µs (sss, css) ŝt + µc (sss, css) ĉt) dt+ Σ
1
2 (sss) dBt

where now ŝt is an (1 +m)× 1 vector with the first element being the constant 1 and the matrices

µs (sss, css), µc (sss, css) and Σ
1
2 (sss) are of dimensions (1 +m)×(1 +m), (1 +m)×n and (1 +m)×

p respectively with the elements of their first rows all equal to zero. Furthermore, R, Q and W

are (1 +m)× (1 +m), n× n and (1 +m)× n matrices given by:

R =
1

2

[
2π (sss, css) πs (sss, css)

πs (sss, css)′ πss (sss, css)

]
,

Q =
1

2
πcc (sss, css) ,
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W =
1

2

[
πc (sss, css)

πsc (sss, css)

]
.

Following Ljungqvist and Sargent (2004) I introduce an equivalent problem without cross-

products between the states and controls. The transformed stochastic control problem becomes:

V (ŝ0) = max
{ĉt}∞t=0

E0

∞∫
0

e−ρt
(
ŝ′tR̄ŝt + ĉ?

′
t Qĉ?t

)
dt

subject to

dŝt = (µ̄s (sss, css) ŝt + µc (sss, css) ĉ?t ) dt+ Σ
1
2 (sss) dBt

where

R̄ = R−WQ−1W′

µ̄s (sss, css) = µs (sss, css)− µc (sss, css)Q−1W′

and the new control vector ĉ?t is related to the original control ĉt by:

ĉ?t = Q−1W′ŝt + ĉt.

The associated HJB equation is:

ρV (ŝt) = max
ĉ?t

{(
ŝ′tR̄ŝt + ĉ?

′
t Qĉ?t

)
+ Vs (ŝt) (µ̄s (sss, css) ŝt + µc (sss, css) ĉ?t )

+
1

2
trace (Σ (sss)Vss (ŝt))

}
with first order conditions:

2ĉ?
′
t Q + Vs (ŝt)µc (sss, css) = 0

which in turn imply:

ĉ?t = −1

2
Q−1

[
µc (sss, css)′ Vs (ŝt)

′]
i.e., the controls are linear in the costate variables.

Using a guess-and-verify method it can be shown that the optimal policy function for the

linear-quadratic problem is given by:

7



ct = css −Q−1
[
W′ + µc (sss, css)′ Λ1

]
ŝt

with associated value function:

V (ŝt) = Λ0 + ŝ′tΛ1ŝt

where Λ1 is the solution to the continuous-time algebraic Riccati equation:

0 =
(
µ̄s (sss, css)′ − ρ

2
Im+1

)
Λ1 + Λ1

(
µ̄s (sss, css)− ρ

2
Im+1

)
− [Λ1µc (sss, css)]Q−1

[
µc (sss, css)′ Λ1

]
+ R̄

with Im+1 and (m+ 1) identity matrix, and

Λ0 =
1

ρ
trace (Σ (sss) Λ1) .

An undesirable property of the linear-quadratic approximation is the imposition of the certainty

equivalence property on the optimal policy function for stochastic models. In particular note that

ct is unaffected by Λ0, the only parameter that depends on the stochastic assumptions made about

the exogenous forces that drive the economy.

Furthermore, the linear-quadratic approach is subject to a more general criticism which is

independent of whether the model is stochastic or not. Judd (1998) and more recently Benigno and

Woodford (2012) have discussed the necessary and sufficient conditions for the method to give a

correct policy rule. They have shown that the slope coefficients of the approximated policy function

are significatively different from the true coefficients whenever the constraints of the optimization

problem are non-linear, and thus linearized by means of a first order Taylor expansion around the

deterministic steady state. This approach has been called by Benigno and Woodford (2012) the

’Naive’ linear-quadratic approximation. The significant differences in the approximated coefficients

come from the fact that no information about the curvature of the state processes is included in

the approximation of the objective function. In fact, the correct approximation can be obtained

by using the procedure suggested in Magill (1977b) and Magill (1977a) where the approximated

objective function incorporates that information through the co-state variables resulting from the

associated Hamiltonian of the problem. In other words, it would be possible to obtain the correct

policy function by approximating the objective function with:

π (st, ct) ≈
[
ŝ′t ĉ′t

] [ R W

W′ Q

][
ŝt

ĉt

]
+

m+1∑
i=1

ωssi

(
0 0

0 F

)
where ωssi is the co-state variable associated with state variable i evaluated in the steady state and
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F =

(
µiss (sss, css) µisc (sss, css)

µics (sss, css) µicc (sss, css)

)
.

Following Kydland and Prescott (1982) it is to possible to reformulate the original non-linear

stochastic control problem in such a way that the state processes are linear. Depending on the model

at hand, this can be done by substituting out the restrictions of the problem into the objective

function and using some linear non-stochastic relations to redefine the drift of the state variables.

Under this equivalent representation of the problem all the elements of the matrix F will vanish,

i.e., F = 0 and hence the original linear-quadratic approximation can be used and will deliver the

correct policy functions. This approach will be used later to compute the approximated policy

function of the benchamark model.

2.2 Perturbation method

The perturbation method approximates the true value and policy functions by means of the implicit

function theorem and the Taylor’s series expansion theorem. The outcome will be a polynomial

that approximates the true solution in a neighborhood of a known solution. Following Judd (1998),

the perturbation method can be summarized by the following simple steps:

1. Express the problem (2) and (3) as a continuum of problems parameterized by the added

perturbation parameter ε with the ε = 0 case known.

2. Differentiate the continuum of problems with respect to the control variables, ct, the state

variables, st, and the perturbation parameter, ε. Whenever is needed use the envelope con-

dition to simplify the resulting system of equations.

3. Solve for the implicitly defined derivatives at st = s0 and ε = 0, where s0 denotes the vector

of approximation points. For the benchmark model studied in Section 3, the approximation is

done around the deterministic steady state, s0 = sss, and the associated deterministic model,

ε = 0.

4. Compute the desired order of approximation by means of Taylor’s theorem and set ε = 1.

In general, the order of approximation should be determined by the first non-trivial term or

dominant term, that is, apply a Taylor approximation until the first zero term is reached.

Therefore to apply the perturbation method the autonomous diffusion processes in equation (1)

is extended with the new parameter ε which measures the amount of variance in the model:

dst = µ (st, ct) dt+
√
εΣ

1
2 (st) dBt

The perturbed maximized HJB equation and first order conditions are given by:
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0 = π (st,P (st, ε))− ρV (st, ε) + µ (st,P (st, ε))∇V (st, ε) +
1

2
ε trace

(
Σ (st)∇2V (st, ε)

)
and

πc (st, ct) + µc (st, ct)∇V (st, ε) = 0.

As described in Gaspar and Judd (1997) the perturbation technique is based on the computation

of Taylor approximations of the unknowns V (st, ε) and P (st, ε) that take into account not only

deviations of the state variables from their steady state values (st − sss), but also deviations from

the deterministic model as measured by ε. The second order perturbation, expressed in tensor

form, is given by:

V̂ (st, ε) = V ss,0 + V ss,0
i (st − sss)i + V ss,0

ε ε+ V ss,0
iε (st − sss)i ε

+
1

2
V ss,0
ij (st − sss)i (st − sss)j +

1

2
V ss,0
εε ε2

P̂ (st, ε) = Pss,0 + Pss,0i (st − sss)i + Pss,0ε ε+ Pss,0iε (st − sss)i ε

+
1

2
Pss,0ij (st − sss)i (st − sss)j +

1

2
Pss,0εε ε2

where

V ss,0 ≡ V (sss, 0)

V ss,0
i (st − sss) ≡

∑
i

∂V (st, ε)

∂sit

∣∣∣∣
st=sss,ε=0

(st − sss)i for i = {1, . . . ,m}

V ss,0
ε ε ≡ ∂V (st, ε)

∂ε

∣∣∣∣
st=sss,ε=0

ε

V ss,0
iε (st − sss) ε ≡

∑
i

∂V (st, ε)

∂sit∂ε

∣∣∣∣
st=sss,ε=0

(st − sss)i ε for i = {1, . . . ,m}

V ss,0
ij (st − sss)i (st − sss)j ≡

∑
i

∑
j

∂2V (st, ε)

∂sit∂s
j
t

∣∣∣∣
st=sss,ε=0

(st − sss)i (st − sss)j for i, j = {1, . . . ,m}

V ss,0
εε ε2 ≡ ∂2V (st, ε)

∂ε2

∣∣∣∣
st=sss,ε=0

ε2

and sit denotes the i-th component of st. For the policy function approximation a similar notation

is used for each of its n components.

The constant terms in the approximations are known once the deterministic steady state of

the model is computed. Furthermore, as shown in Gaspar and Judd (1997) and Judd (1998) the
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terms associated with the first order approximation of the policy function, i.e., Pss,0i for all i ∈ s

and each n, correspond to the solution of a Ricatti equation with l roots, where l is the number

of equilibrium paths. Once the stable path is chosen, the first order approximation is completed

and the computation of higher order terms in the approximation becomes relatively easy since they

correspond to the solution of linear system of equations3.

One of the main differences between perturbation methods for discrete-time and continuous-time

frameworks has to do with the certainty equivalence property. It is well known that in discrete-time

the first order terms associated with the perturbation parameter are zero for both the policy and the

value functions regardless of the properties of the economic model (See Judd (1998), Binsbergen

et al. (2008) and Caldara et al. (2012)). This makes linearization and first order perturbation

an equivalent procedure. However, as discussed in Gaspar and Judd (1997) and in Judd (1996),

the approximation of continuous-time stochastic problems only exhibits the certainty equivalence

property if the economic model exhibits the property itself; for example when the utility function is

quadratic and/or the diffusion terms are not only control but state independent. Hence, first order

perturbation does not coincide with the commonly used linearization technique. This difference is

relevant in the macrofinance literature were is well established that for discrete-time setups it is

necessary to compute third order perturbations around the deterministic steady state in order to

obtain variation in the risk premium, whereas a second order perturbation delivers a constant risk

premium and a first order perturbation will eliminate it. However, in continuous-time it is only

necessary to compute a second order perturbation in order to get a time-varying risk premium,

while the first order approximation produces a constant premium.

2.3 Projection methods

The projection method is a widely used technique in applied mathematics and numerical analysis.

Two main approaches have been used in the economic literature to solve functional problems: finite

element methods and spectral methods. In this paper, I only apply the later since in principle their

accuracy is higher and given its structure it is possible to handle a higher number of state variables

(Aruoba et al., 2006).

Let Q = {φj}∞j=0 be a given family of polynomials. Then the unknown real-valued function

f : s → c where s ⊂ Rm and c ⊂ Rn can be approximated by a finite linear combination of the

first k + 1 members of this family. This linear combination is called the approximant f̂ of f , and

the elements of Q basis functions:

f̂ (s) =
k∑
j=0

ajφj (s) , s ∈ S ⊂ Rm

3As mentioned in Judd (1998), the stable path corresponds to the root of the Ricatti equation that ensures
concavity of the value function at the deterministic steady state. In other words, pick the Pss,0i compatible with
V ss,0
ii < 0. If all the roots fulfill this condition then it is not possible to proceed due to the existence of indeterminacies

in the economic model.
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where φj (s) = φj
(
s1
)
φj
(
s2
)
. . . φj (sm) and k =

∏m
i=1 ki with ki + 1 the order of approximation

in each dimension of Rm. In addition let’s suppose that the function f is implicitly defined by the

functional equation N (f) = 0, where N : B1 → B2 is a continuous map with B1 and B2 spaces of

functions.

The simplest form of the projection method applied to the stochastic control problem is the

case where we solve for the problem’s value function by defining the functional equation:

N1 (V (st)) := π (st, ct)− ρV (st) + µ (st, ct)∇V (st) +
1

2
trace

(
Σ (st)∇2V (st)

)
= 0

where ct, which is a function of the state variables and the derivatives of the unknown value function,

is computed from the first order conditions of the problem. The derivatives of the value function

can be easily computed once the approximant, V̂ (st), is defined. The objective is to approximate

the ∞-dimensional problem associated with the HJB equation with a finite-dimensional problem

by using the following parametric approximation of the unknown value function:

V̂ (a, st) =
k∑
j=0

ajφj (st) = Φ (st)a, st ∈ S ⊂ Rm+

with a = (a0, . . . ak) and Φ (st) = Φm ⊗ Φm−1 ⊗ · · · ⊗ Φ1, where

Φk = [Φij ]k =
[
φj
(
sit
)]

=


φ1
(
si1t
)

φ2
(
si1t
)
· · · φk

(
si1t
)

φ1
(
si2t
)

φ2
(
si2t
)
· · · φk

(
si2t
)

...
. . .

...

φ1
(
sikt
)

φ2
(
sikt
)
· · · φk

(
sikt
)


for all i = 1, . . . ,m and j = 1, . . . k. Thus, for each st ∈ S ⊂ Rm+ the associated maximized HJB

equation becomes:

0 = π (st, ct)− ρΦ (st)a + µ (st, ct)∇Φ (st)a +
1

2
trace

(
Σ (st)∇2Φ (st)a

)
with first order conditions:

πc (st, ct) + µc (st, ct)∇Φ (st)a = 0

for each ct ∈ ct, where ∇Φ (st) and ∇2Φ (st) denote the gradient and hessian matrix of Φ (st)

respectively. Note that the transformed problem is now finite-dimensional. Instead of looking on

the function of spaces for V (·), the task is to compute the (k + 1) basis coefficients {aj}kj=0 such

that the residual function, R (a; st) := N1

(
V̂ (a, st)

)
, is as close to zero as possible.

Following Heer and Maussner (2009), I assume there is a set of test functions {gj (st)}kj=0 and

a weighting function w (st) ≥ 0 which combined with the residual function define an inner product

of the form:

12



〈R (a; st) , g (st)〉 ≡
∫
S
w (st)R (a; st) gj (st) dst.

Since this inner product induces a norm on the function space, it is possible to choose the set of

parameters (a0, . . . ak) such that∫
S
w (st)R (a; st) gj (st) dst = 0, ∀j = 0, . . . , k.

Different definitions of the test functions and the weighting function give rise to different projec-

tion techniques. In particular I am interested in two particular cases: the least squares projection

method which uses gLSj (st) ≡ ∂R (a; st) /∂aj and wLS (st) ≡ 1, and the collocation method which

uses gCOLj (st) ≡ 1 and for the weighting function the Dirac delta function wCOL (s) ≡ δ
(
st − sjt

)
,

where sjt is the j-th element of the state-vector usually called node. The weighting function

wCOL (st) implies that R
(
a; sjt

)
= 0 for j = 1, . . . , k, where the n nodes, s1t , . . . , s

k
t , are called

collocation points. In other words, the first method searches for the vector of parameters that

minimizes the sum of squared residuals along all the nodes, aLS , while the second one searches for

the vector of parameters that make the residual function zero at all collocation points, aCOL. The

implementation relies on a numerical optimization algorithm to find aLS , and on a root-finding

algorithm to find aCOL.

When the problem at hand is highly non-linear it is useful to make a simple extension of the

method just described. In order to give more flexibility to the approximation and increase the

efficiency of the algorithms it is recommendable to apply the projection technique to more than

one functional equation. In particular, it is optimal to approximate not only the HJB equation but

also the policy functions resulting from the non-linear first order conditions, that is:[
N1 (V (st))

N2 (P (st))

]
= 0

where the second set of equations comes from the first order conditions of the stochastic control

problem:

N2 (P (st)) := πc (st,P (st)) + µc (st,P (st))∇V (st) = 0.

Under this extension the approximants are given by:

V̂ (a, st) =

ka∑
j=0

ajφa,j (st) = Φa (st)a, st ∈ S ⊂ Rm+

P̂ (b, st) =

kb∑
j=0

bjφb,j (st) = Φb (st)b, st ∈ S ⊂ Rm+

13



which allow for more flexibility in the approximation through different basis function and basis

points for each of the functional equations. The problem now becomes to find two different set of pa-

rameters a and b that make the residual function R (a,b; st) :=
(
N1

(
V̂ (a, st)

)
,N2

(
P̂ (b, st)

))>
as close to zero as possible.

Regarding the selection of the basis functions, I choose the set of orthogonal polynomials gen-

erated by the Chebyshev function. The nodal points of the state vector correspond to the zeros of

the Chebyshev polynomials. The combination of Chebyshev basis and nodes yields an extremely

well behaved projection equation that can be solved accurately and efficiently even for high degrees

of approximation (Judd, 1998). For this choice, the state variables in S ⊂ Rm+ must be transformed

from their original domain since the Chebyshev polynomials are only defined in [−1, 1]. This is

achieved by using the map Γ
(
sjt

)
=
(

2sjt − a− b
)
/ (b− a), where sjt ∈ [a, b] and a, b are the

predefined bounds of the j-th state variable.

3 Benchmark model

I consider as a test case a continuous-time version of the RBC model described in Aruoba et al.

(2006). The one-good in this economy is produced according to a constant return to scale technol-

ogy:

Yt = AtK
α
t L

1−α
t , α ∈ (0, 1) (5)

where At denotes the total factor productivity (TFP), Kt the aggregate capital stock and Lt the

fraction of hours worked. I assume that the TFP is driven by a Cox-Ingersoll-Ross (CIR) mean

reverting stochastic process of the form:

dAt = κ (ω −At) dt+ η
√
AtdBA,t, κ, ω > 0 and A0 > 0 given (6)

where BA,t is a standard Brownian motion and η denotes the volatility of the TFP. This process

ensures that the random variable At only takes positive values. In fact, if At → 0, then the drift

term κω > 0 and the variance η2At → 0, implying that the process will remain positive w.p.1.

Furthermore, adding the restriction η2 < 2κω ensures that the process never reaches zero: in this

case, the drift will be very high relative to the variance, shooting up the process even before it

reaches zero.

On the other hand, the aggregate capital stock increases if the gross investment It exceeds

the capital depreciation, δKt, where δ is the gross depreciation rate. However, following Wälde

(2011) it is assumed that the rate at which the capital stock depreciates is stochastic. That is, the

accumulation of capital is a risky activity. The intuition behind this assumption is similar to that

in Furlanetto and Seneca (2013). In what follows, I assume that the aggregate capital stock follows

the stochastic differential equation:

14



dKt = (It − δKt) dt+ σKtdBK,t, K0 > 0 given, (7)

where BK,t is a standard Brownian and σ denotes the volatility of the stochastic depreciation

rate. As mentioned in Wälde (2011) introducing uncertainty in the production factors instead of

doing so directly in the resource constraint avoids the problems faced by the common differential

representation of technologies introduced in Merton (1969) and Merton (1971).

The firms producing the only good in the economy are owned by the households and assumed

to operate in a competitive environment. Hence, their demands for capital and labor are given

respectively by:

rt = αAtK
α−1
t L1−α

t (8)

wt = (1− α)AtK
α
t L
−α
t (9)

where rt is the rental rate of capital and wt is the real wage.

Following Turnovsky and Smith (2006) and Posch (2011), the representative household maxi-

mizes the expected discounted life-time utility derived from consumption, Ct, and leisure, (1− Lt):

max
{Ct,Lt}∞t=0

E0

∞∫
0

e−ρt

(
Ct (1− Lt)ψ

)1−γ
1− γ

dt, ψ ≥ 0, γ > 0

subject to the intertemporal budget constraint

dKt = ((rt − δ)Kt + wtLt − Ct) dt+ σKtdBK,t (10)

where ρ > 0 is the rate of time preference, ψ measures the preference for leisure and γ denotes

the inverse of the elasticity of intertemporal substitution (EIS). To ensure concavity of the utility

function the consumption-leisure measure of relative risk aversion has to be greater or equal to

zero, i.e., γ − (1− γ)ψ ≥ 0 (Swanson, 2012).

Under the assumption of competitive markets both welfare theorems hold. Thus, it is possible

to solve the social planner’s problem where the benevolent planner maximizes the utility of the

representative household subject to the production function (Equation 5), the evolution of the

TFP (Equation 6), the evolution of the capital stock (Equation 7), the market clearing condition

Yt = Ct + It and some initial values K0 > 0 and A0 > 0.

The Hamilton-Jacobi-Bellman (HJB) equation for the planner’s problem is given by:

ρV (Kt, At) =
max

{Ct,Lt}∈R2
+

{
(Ct(1−Lt)ψ)

1−γ

1−γ +
(
AtK

α
t L

1−α
t − δKt − Ct

)
VK (Kt, At)

+κ (ω −At)VA (Kt, At) + 1
2σ

2K2
t VKK (Kt, At) + 1

2η
2AtVAA (Kt, At)

} (11)
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for any t ∈ [0,∞), where V (Kt, At) is the value function and denotes the value at instant t of the

planner’s expected utility along the optimal program. The first order conditions for any interior

solution are:

(
Ct (1− Lt)ψ

)1−γ
Ct

= VK (Kt, At) (12)

ψ

(
Ct (1− Lt)ψ

)1−γ
(1− Lt)

= (1− α)AtK
α
t L
−α
t VK (Kt, At) (13)

making optimal consumption and the optimal fraction of hours worked implicit functions of the

state variables, i.e., Ct = C (Kt, At) and Lt = L (Kt, At). The solution to the planner’s problem is

fully characterized by the maximized (concentrated) HJB equation:

ρV (Kt, At) =
(C(Kt,At)(1−L(Kt,At))ψ)

1−γ

1−γ +
(
AtK

α
t L (Kt, At)

1−α − δKt − C (Kt, At)
)
VK (Kt, At)

+κ (ω −At)VA (Kt, At) + 1
2σ

2K2
t VKK (Kt, At) + 1

2η
2AtVAA (Kt, At)

(14)

which corresponds to a functional equation in the unknown value and policy functions. Solving for

the equilibrium of this economy amounts to find in the space of functions for V (Kt, At), C (Kt, At)

and L (Kt, At) such that given a random path for the exogenous process, {At}∞t=0, and an initial

condition K0 > 0:

1. The planner solves his problem. That is, Equation (14) is satisfied at every instant of time,

2. The accumulation constraints (6) and (7) are satisfied at every instant of time, and

3. The goods market clears, Yt = Ct + It.

In general, the planner’s problem does not have a closed form solution. However, under some

parametric restrictions it is possible to derive analytical forms for the value and policy functions.

The parametrizations under which it is possible to derive a closed form solution provide a benchmark

against to which is possible to assess the accuracy of the numerical approximations4.

Proposition 3.1 (Linear consumption rule). Suppose the household does not exhibit disutility

from labor, i.e., ψ = 0, and the output elasticity of capital equals the degree of risk aversion, α = γ.

Then the value function is given by:

V (Kt, At) = Θ−γ

(
K1−γ
t

1− γ
+
ρAt + κω

ρ(ρ+ κ)

)
(15)

4Posch (2011) finds a closed form solution for the case of endogenous labor supply and non-stationary TFP.
Assuming that At evolves according to a geometric Brownian motion and that the capital accumulation is subject to
jumps, a similar solution can be derived.
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and the optimal policy functions are:

C(Kt, At) = ΘKt, L(Kt, At) = 1, (16)

where

Θ =

[
ρ

γ
+

1− γ
γ

(
δ +

1

2
σ2γ

)]
Proof. See Posch (2009).

Proposition 3.2 (Constant savings function). Suppose that total factor productivity is con-

stant, i.e., At = Ā. Let ψ > 0, γ ≥ 1 and ρ = ρ̄ with

ρ̄ = − (1− αγ)

(
δ +

1

2
αγσ2

)
> 0

then, the value function is given by:

V (Kt, Ā) = Γ
K1−αγ
t

1− αγ
(17)

where

Γ =

(
−(1− s)(1−γ) Ā(1−γ)L(1−α)(1−γ)(1− L)ψ(1−γ)

(1− γ) ĀL(1−α) − (1− γ) (1− s)ĀL(1−α)

)
and

1− s ≡ (1− α) (1− L)

ψL

denotes the constant propensity to consume out of income. On the other hand, the optimal con-

sumption will be a constant fraction of income:

C(Kt, Ā) = (1− s)ĀKα
t L

1−α (18)

and the optimal fraction of hours supplied will be constant:

L(Kt, Ā) =
γ(1− α)

γ(1− α)− ψ(1− γ)
∈ [0, 1] . (19)

Proof. See Posch (2011).

Using equations (6), (7), (8), (9), (12), (13) together with the first order derivatives of equa-

tion (14) with respect to the state variables it is possible to derive the non-stochastic steady

state of the planner’s problem. This is given by the quantities: rss = ρ + δ, Ass = ω, Lss =

(1− α) /
(

1 + ψ − α− αψδ
ρ+δ

)
, Kss = (αAss/ (ρ+ δ))

1
1−α Lss, wss = (1− α)Ass (Kss)α (Lss)−α, Css =
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(rss − δ)Kss +wssLss, V ss =
(
Css (1− Lss)ψ

)1−γ
/ρ (1− γ) which will be used for the implemen-

tation of the perturbation method and the linear-quadratic approximation.

The model just outlined has an equivalent representation with investment and leisure as control

variables. Under this alternative setup the drift of stochastic differential equation describing the

capital stock is linear in the control and state variables. This formulation will be used later to

compute an alternative linear-quadratic approximation of the policy function of consumption with

correct coefficients as mentioned in Subsection 2.1. This representation can be found in A.

4 Numerical results

4.1 Calibration

In order to evaluate the performance of the different numerical methods I carry out two type of

exercises5. In the first one I use the analytical solution derived under Proposition 3.2 to assess the

methods by comparing deviations of the numerical approximations from the true solution. In a

second exercise I use the model without any parametric restriction and rely on a different set of

measures to evaluate the relative performance of the numerical procedures.

Both exercises are based on the benchmark parametrization presented in Table 1. For the case

where no closed form solution is available I use the calibration for the U.S. economy described

in Aruoba et al. (2006). The rate of time preference is set to ρ = 0.0105 to match a 4% annual

interest rate. The risk aversion parameter γ is fixed to 2.0, a value widely used in the literature.

The share of labor in aggregate output and the depreciation rate are set to α = 0.4 and δ = 0.0196

respectively, while the leisure preference parameter is fixed to ψ = 1.8011 to match a labor supply

of 31% in the steady state. Regarding the stochastic components of the model, I set the volatility

of the capital stock accumulation equal to zero and choose κ, ω and η to match the properties of

the Solow residual in the U.S. economy. For the constant savings function of proposition 3.2 the

risk aversion parameter is increased to 3.85 in order to obtain a “knife-edge” value of the rate of

time preference, ρ̄, close to 0.0105, while the TFP is set to a constant Ā = 1 and the standard

deviation of the stochastic depreciation rate is equal to 0.001 to allow for some stochastics in the

model.

Parameter ρ ψ γ α δ σ κ ω η Ā

Analytical Sol. ρ̄ 1.8011 3.85 0.4 0.0196 0.001 N.A. N.A. N.A. 1.00
No Analytical Sol. 0.0105 1.8011 2.00 0.4 0.0196 0.000 0.05 1.00 0.007 N.A.

Table 1: Benchmark calibration

In Section 4.3 the second exercise is repeated using alternative calibrations to check the ro-

bustness of the solution methods to different degrees of non-linearities of model arising from the

5Regarding the implementation of the algorithms, global methods and the linear-quadratic approximation are
coded in MatlabR© 7.11.0. For projection methods I complement my codes with the CompEcon Toolbox developed
by Miranda and Fackler (2002). On the other hand, perturbations are coded in MathematicaR© 7.0.
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risk aversion parameter and the volatility of the disturbances. Table 2 summarizes the alternative

scenarios.

Case
η = 0.007 η = 0.035

σ = 0.000 σ = 0.001 σ = 0.000 σ = 0.001

γ = 0.65 M1 M3 M6 M8
γ = 2 Benchmark M4 M7 M9
γ = 10 M2 M5 Extreme I Extreme II

Table 2: Sensitivity analysis. The value γ = 0.65 was chosen in such a way that the concavity
condition for the utility function was fulfilled given the calibrated value of ψ.

4.2 Value function, policy functions and HJB equation residuals

Figure 1 plots the approximated value and policy functions and their corresponding true values

derived under Proposition 3.2. From the analytical solution it is evident that V
(
Kt, Ā

)
→ −∞

as Kt → 0, i.e., the value function exhibits a very steep slope for low values of the capital stock.

This result suggests to include values of the capital stock away from the deterministic steady

state in order to compare the performance of the approximation methods around highly non-linear

regions of the state space. The unknown functions are therefore approximated over the interval

[0.5Kss, 1.5Kss] using 1000 equally spaced grid points. For projection methods I first compute a

Chebyshev approximation with 17 Chebyshev basis functions using the true values as a starting

point. Given the width of the state-space a fewer number of nodes results in non-accurate and

non-smooth policy functions. Once the coefficients of the approximation are found, I use linear

interpolation on a set of 1000 equally spaced points. Finally, the tolerance level for the iterative

algorithms is fixed at E = 1.4901e−8.

As expected from theory, global approximations (projection methods) outperform the local ap-

proximations (perturbation method and linear-quadratic approximations) of both the value function

and policy functions for levels of the capital stock away from the steady state. However, it is re-

markable the improvement obtained by moving from a first to a second order perturbation. In

particular, it is worth emphasizing the correction of about 100% in the curvature of the value func-

tion at the lower bound of the grid. This encourages the computation of higher order perturbations

which as shown later come at no significant extra cost in terms of implementation.

Regarding the accuracy of the linear-quadratic approximation two points are worth to mention.

First, when the ’Naive’ linear-quadratic approximation is used the slopes of the policy functions

are miscalculated a discused in Subsection 2.1. This can be easily identified in the middle panel of

Figure 1 under the label LQ:consumption. However, if the equivalent representation of the problem,

as described in A, is used the slopes of the approximated functions are correctly computed. Since the

restrictions of the optimization problem are linear no information is lost in the approximation step of

the objective function. The resulting policy functions can be found under the label LQ:investment.

Second, the approximated value function is not dramatically affected by the model’s representation
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being used. Nevertheless some improvement can be obtained by using linear instead of linearized

constraints.
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Figure 1: Approximated vs. true value and policy functions along [0.5Kss, 1.5Kss]

To complement the previous findings I compute the following measures introduced in Collard
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and Juillard (2001) designed to evaluate the quality of the approximations:

El1 = 100× 1

nK

nK∑
i=1

∣∣∣∣∣f
(
Ki, Ā

)
− f̂ l

(
Ki, Ā

)
f
(
Ki, Ā

) ∣∣∣∣∣ and El∞ = 100×max
i

{∣∣∣∣∣f
(
Ki, Ā

)
− f̂ l

(
Ki, Ā

)
f
(
Ki, Ā

) ∣∣∣∣∣
}

where f
(
Ki, Ā

)
denotes the true solution of either the value or the policy functions evaluated at grid

point i, f̂ l
(
Ki, Ā

)
is the approximation obtained by method l evaluated at grid point i, and nK is

the number of grid points in the state-space. The statistic El1 measures the average relative error of

using the approximation instead the true solution, while El∞ measures the maximum relative error.

Sometimes, the latter is preferred since it bounds the mistake made by using the approximation

instead of the true function (Aruoba et al., 2006). The results are shown in Table 3.

Overall, the results suggest the use of projection methods over the alternatives for the solution

of continuous-time DSGE models: a maximum error of 0.16% when collocation is used for the

case of the value function. However, as it will be shown later, a greater level of accuracy requires

considerable more computing time relative to perturbation or linear-quadratic methods which might

relegate it from an econometric perspective where the solution of the model is needed at each

iteration of the estimation procedure, e.g., the maximum likelihood estimator. On the other hand,

one alternative to improve the accuracy of perturbation for any given degree of approximation is to

use rational functions. This parametric method, known as Padé approximations, has been proven

to perform better away from the steady state. Judd and Guu (1993) discuss its application in the

context of a one state - one control variable continuous-time stochastic growth model.

Method
Value function Consumption Labor supply
E1 E∞ E1 E∞ E1 E∞

Perturbation 1 11.2008 57.1436 6.8988 60.7601 0.0000 0.0001
Perturbation 2 6.6285 47.4301 3.1341 36.3450 0.0000 0.0000
Collocation 0.0275 0.1592 0.0948 0.4635 0.1201 0.5224
Least Squares 0.0229 0.0904 0.0962 0.3863 0.1186 0.4430
Linear-Quadratic (cons.) 9.1221 53.3116 24.2086 135.8970 5.6952 13.5280
Linear-Quadratic (inv.) 6.6287 47.4303 2.4204 21.3193 0.0003 0.0004

Table 3: Accuracy check for benchmark model under Proposition 3.2 (%).

Figure 2 plots the log10 magnitude of the relative numerical error obtained from the approxi-

mation of the value function along all the state-space. A value of -6 indicates that for every million

of units of welfare, the agent makes an error of 1 unit by using the approximation instead of the

true value function. Values close to zero are not desirable. The plot depicts the global nature of

projection methods as well as the local nature of perturbation and linear-quadratic methods where

the approximation deteriorates as the capital stock moves away from the steady state. However,

the use of a second order approximation significantly reduces this error.

Next I consider the general case where no closed form solution is available. Under this scenario

the state-space becomes R2
+. The approximations are computed over [0.5Kss, 1.5Kss]×

[
A,A

]
where
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Figure 2: Numerical error for benchmark model under Proposition 3.2

the grid along the TFP lattice is designed following Heer and Maussner (2009): I set
(
A−A

)
equal

to a multiple of the limiting standard deviation of Equation (6) which is given by6:

σA =

√
ω

(
η2

2κ

)
.

In particular, the grid for the TFP is defined as [Ass − 5σA, A
ss + 5σA] which for the AR(1) discrete-

time representation of the Ornetin-Uhlenbeck process it has been shown to be a reasonably good

approximation. For projection methods I use 9 Chebyshev basis functions. Regarding the initial

values for the global methods I use the following rule-of-thumb: First obtain a local approximation

by means of a first order perturbation. Use this as an initial guess for the least squares approx-

imation. Once a reasonable approximation has been found (usually before 100.000 iterations of

the trust-region-dogleg numerical procedure) use it as an initial guess for the collocation method.

When the later converges (usually after just a few iterations using the trust-region-dogleg numerical

procedure) use it as a starting value for the least squares algorithm again to check for robustness.

I use the least squares residual function first since it is less demanding in terms of the projection

criterion. While least squares seeks to minimize the residual function, collocation calls for exact

zeros in each of the approximating nodes.

Figure 3 plots the value and policy functions for each of the numerical methods using 301 grid

6See Cox et al. (1985) for a derivation of this formula.
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points in each lattice and fixing the TFP is at its steady state value. Plots for different values of the

TFP can be easily derived and are available upon request. A similar pattern to that described for

the closed form solution is obtained. All the approximations are almost indistinguishable around

the steady state value of the capital stock. For linear-quadratic approximations and perturbation

some deviations are found when moving away from that point. However, a correction of almost

100% in the boundaries of the later can be obtained for the approximation of value function when

we move from a first to a second order perturbation.

The statistics E1 and E∞ defined previously cannot be used anymore to evaluate the perfor-

mance of the different approximation methods since no closed form solution is available7. Therefore

I follow Judd and Guu (1993) and compute the unit free vector of HJB equation residuals for each

of the procedures. A similar measure, usually called Euler equation errors, is used in discrete-time

analysis of DSGE models8. The idea is to check how much N1

(
V̂ (Ki, Aj)

)
for i = 1, . . . , nK ,

j = 1, . . . , nA, as a fraction of the discounted steady state value function, differs from the zero

function9. I define the HJB equation residuals as:

RlHJB (Ki, Aj) ≡

N1

(
V̂ l (Ki, Aj)

)
ρV̂ l (Kss, Ass)


for all i, j in the state-space and approximation method l10. This measure can be interpreted as

the relative optimization error incurred by the use of the approximated value and policy functions.

It is an optimization error since the residuals are computed from the maximized HJB equation.

The results are summarized in Table 4 where I have computed a similar set of statistics to those

presented for the closed form solution case, i.e.:

Ẽl1 =
1

nAnK

nA∑
j=1

nK∑
i=1

RlHJB (Ki, Aj) and Ẽl∞ = max
i,j

{
RlHJB (Ki, Aj)

}
where Ẽl1 is the average HJB equation residual and Ẽl∞ is the maximum HJB equation residual.

As before, the maximum HJB equation residual bounds the error made by using a particular

approximation method.

Once again global methods outperform local methods. The rule-of-thumb described previously

7In the discrete-time literature it is common to use as “true solution” the approximation obtained by Value
Function iteration due to its convergence properties.

8Alternative accuracy checks like the one proposed in Den Haan and Marcet (1994), or the simulation based
assessments used in Taylor and Uhlig (1990) and Aruoba et al. (2006) are not used in this paper due to their discrete-
time nature. Their implementation require a discretization procedure for the partial/stochastic differential equations
that describe the model adding more errors to those already obtained in the approximation stage of the value and
policy functions.

9For projection methods this measures is computed for the interpolated value and policy functions and not for
the functions at the approximation nodes.

10To prevent for under- and overflow problems, the measure is corrected by computing its base 10 logarithm and
adding a small number respectively.
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Figure 3: Computed value and policy functions for benchmark calibration at At = Ass

seems to aminorate the trade-off between accuracy and computing time that compromises the

reliability of projection methods. Aruoba et al. (2006) follow an alternative rule-of-thumb which

is related to the choice of the approximating nodes: solve the model for a small number of basis
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Method Ẽ1 Ẽ∞
Perturbation 1 -1.6243 -0.5889
Perturbation 2 -2.3272 -0.8374
Collocation -5.4546 -4.8822
Least Squares -5.3024 -4.5718
Linear-Quadratic (cons.) -0.8691 -0.1122
Linear-Quadratic (inv.) -0.6340 -0.1147

Table 4: HJB residuals for benchmark calibration

functions and then use that solution as an initial guess in a system with more basis functions after

using a proper interpolation scheme.

Figure 4 plots a transversal cut of the HJB equation residuals for At = Ass. Figure 5 in B

presents the HJB equation residuals on both dimensions of the state-space for each of the numerical

procedures. The superiority along all the state space of the global methods relative to perturbation

it is clear from the results.
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Figure 4: HJB residuals

4.3 Robusteness check

Tables 5 and 6 presents the average and maximum HJB equation residuals obtained under the

alternative calibrations in Table 2. In particular I analyze the effects of different values of the risk

aversion parameter and of increased volatility in both the shocks to productivity and the capital
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stock. The value and policy functions as well as the transversal cuts of the residuals are not plotted

due to space considerations but are available upon request.

Pert. 1 Pert. 2 Coll. LS LQ (cons.) LQ (inv.)

M1 -1.7534 -2.5994 -3.5808 -3.5808 -1.1115 -0.9203
M2 -0.0404 -0.4921 -5.4004 -4.4462 0.4303 0.9677
M3 -1.7534 -2.5997 -3.5808 -3.5807 -1.1115 -0.9203
M4 -1.6241 -2.3272 -5.4546 -5.4406 -0.8691 -0.6339
M5 -0.0408 -0.4921 -5.4006 -5.1345 0.4306 0.9677
M6 -1.3447 -1.8854 -3.1957 -3.1957 -0.8112 -0.5140
M7 -1.4026 -1.7357 -4.8053 -4.7996 -0.5698 -0.3513
M8 -1.3417 -1.9640 -3.1957 -3.1952 -0.8112 -0.4495
M9 -1.4025 -1.7357 -4.8155 -4.8128 -0.5698 -0.3513
Extreme I 0.4966 0.2155 -3.0293 -3.0293 0.8952 1.3156
Extreme II 0.4967 0.2157 -3.0295 -3.0294 0.8952 1.3156

Table 5: Average HJB residuals for alternative calibrations
(
Ẽ1

)

Pert. 1 Pert. 2 Coll. LS LQ (cons.) LQ (inv.)

M1 -0.7104 -1.0813 -2.9793 -2.9793 -0.4211 -0.3793
M2 1.2829 1.2766 -4.4311 -3.7181 1.5801 1.6142
M3 -0.7104 -1.0813 -2.9793 -2.9801 -0.4211 -0.3793
M4 -0.5890 -0.8375 -4.8822 -4.8511 -0.1122 -0.1146
M5 1.2830 1.2766 -4.4313 -4.2401 1.5801 1.6142
M6 -0.5497 -0.7261 -2.4306 -2.4306 -0.0643 0.0441
M7 -0.3938 -0.7039 -3.1427 -3.1254 0.2949 0.4192
M8 -0.5536 -0.7252 -2.4306 -2.4305 -0.0643 0.1070
M9 -0.3984 -0.7039 -3.1456 -3.1476 0.2949 0.4192
Extreme 1 2.8473 2.5840 -2.3470 -2.3740 2.0828 2.2600
Extreme 2 2.8474 2.5841 -2.3742 -2.3742 2.0828 2.2600

Table 6: Maximum HJB residuals for alternative calibrations
(
Ẽ∞

)
In terms of the relative performance of the numerical methods the results are robust to changes

in the degree of non-linearities. Nevertheless, global methods require additional computing time

to converge relative to the benchmark case especially when the coefficient of risk aversion is high.

In other words changes in the concavity of the utility function, and hence, in the concavity of the

value function reduce the computational efficiency of projection methods. Furthermore this effect

dominates when compared to the additional computing time induced by changes in the variance

of the shocks. Despite this result, global methods exhibit a superior level of accuracy relative to

perturbations and linear-quadratic approximations. The performance of the local methods deeply

deteriorates for high levels of the risk aversion parameter as can be seen from HJB equation residuals

crossing the zero line under the extreme calibrations and scenarios M2 and M5.

To reduce the impact of higher non-linearities on the implementation of projection methods the
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rule-of-thumb suggested in Section 4.2 is complemented in the following recursive way: approximate

the unknown functions on a narrow grid for the capital stock, e.g. between [0.95Kss, 1.05Kss], using

as an initial guess the solution from perturbation. Once a solution has been found increase the

size of this lattice by a small amount, e.g. ±0.05Kss, while keeping fixed the number of nodes in

both dimensions and use as an initial value the previous solution. Continue in this fashion until

the solution for the desired grid has been found.

A puzzling result regarding the approximated policy functions is found. Contrary to the results

in Aruoba et al. (2006), when the risk aversion is high (and probably unrealistic) and the volatility

of shocks are either low or high, the levels of the consumption and labor supply functions derived by

perturbation and the linear-quadratic method differ substancially from the levels obtained by global

methods: on average 51% more labor is supplied and consumption decreases 23%. Aruoba et al.

(2006) argue that the difference in levels of the linear and log-linear approximations relative to the

other methods (including second order perturbation) is due to the certainty equivalence property

that holds for discrete-time models. However, as mentioned before, the first order perturbation for

the continuous-time case does not exhibit this property and still produces different levels of the

policy functions. Thus the question regarding what explains the different levels obtained through

linear or quasi-linear methods remains unanswered and should be addressed in future research11.

Another difference with respect to the results reported in Aruoba et al. (2006) has to do with

the threshold level of the risk aversion parameter for which the slope of the labor supply changes

from negative to positive. They conclude from their numerical exercises that for levels of γ > 40

highly risk averse agents will work hard whenever the capital stock is high in order to accumulate

even more capital in order to insure themselves against unforeseen bad times. However, I find that

for the model of Section 3 a value of γ = 10 already exhibit this precautionary behaviour of agents.

4.4 A note on computing time

As argued in Aruoba et al. (2006) the computing time can be considered of minor relevance when

compared with the programming and debugging time used in coding. Specially because the first

indicator does not include the time spent by the researcher in the formulation of the problem and

its implementation on the computer. This is particularly relevant for the perturbation method

where it is necessary to code the derivatives of both the implict value and policy functions12.

Nonetheless Table 7 presents a comparison of the computing times for each of the methods

implemented for the model with closed form solution as well as the model without analytical

solution using the benchmark calibration. The former gives a clearer idea of the computational

efficiency of the each individual methods since I use the true solution of the model as an initial

value for the global methods. To compute the approximations when no closed form is available I

11Doubts about the accuracy of second order perturbations has been previoulsy addressed in Becker et al. (2007).
12Recall that for perturbation methods I have used MathematicaR© 7.0 instead of MatlabR© 7.11.0 (see footnote

10). The main reason for choosing the former is the need of computing derivatives of implicit functions with respect
to the state variables and then evaluate this unknown functions at a particular point. To my knowledge this task
cannot be performed in the Symbolic Toolbox of MatlabR©.
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follow the rule-of-thumb described earlier. However it is important to keep in mind that this rule

favors the collocation method over least squares since more time is used in the later in order to find

a good initial candidate for the former. For all the computations I have used a 2.53GHz Intel R©

CoreTM2 Duo running Windows 7.

From the first two columns it is evident how local approximation methods, which do not need

an initial guess, outperform global methods. However, as discussed in previous sections, this comes

with a cost in terms of accuracy, especially for highly non-linear models. In contrast, conditional

on a correct initial value, the collocation method provides the best balance between speed and

accuracy offering an even lower computing time than second order perturbation and at the same

time a global precision in the approximation of the unknown functions.

The last column of Table 7 reports the ratio of computational time used by the different methods

in the discrete-time DSGE model to the computational time used by the same methods applied

to the continuous-time version of the same model. For the former, I use the companion codes of

Aruoba et al. (2006)13. For the calculations is use the model with no closed form solution.

The results indicate that perturbation methods use much less time when applied to continuous-

time models. In fact, for first order approximations discrete-time models take approximately 40

times more time to deliver the value and policy functions, while for second order approximations

the computational time is 5 times that of continuous-time models. Mixed results are obtained when

we compare projection methods. Collocation methods are more efficient in continuous-time setups

but least square methods perform better in discrete-time models.

Method
Analytical No analytical Computing time
solution solution ratio (DT/CT)

Perturbation 1 2.900E-2 4.900E-2 40.816
Perturbation 2 8.500E-2 5.770E-1 5,746
Collocation 5.928E-2 2.976E+0 572,043
Least Squares 1.078E+1 9.648E+2 -97.927
Linear-Quadratic (cons.) 2.448E-1 6.511E-1 N.A.
Linear-Quadratic (inv.) 1.613E+0 2.167E+0 N.A.

Table 7: Computing times for alternative approximation methods using the benchmark calibration
(in seconds)

5 Concluding remarks

This paper describes and compares different numerical methods to approximate the solution of

continuous-time DSGE models in the spirit of Taylor and Uhlig (1990), Aruoba et al. (2006) and

Caldara et al. (2012). The stochastic Ramsey model described in Merton (1990) with endogenous

labor and stationary stochastic variation in total factor productivity is used as a test case. Under

13It is important to mention that in the case of projection methods, Aruoba et al. (2006) use Fortran and not
Matlab.
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plausible parametrizations this version of the standard neoclassical growth model admits a closed

form solution that can be used to check the accuracy of the different solution methods by measuring

how far the approximations are from the true solution. When the model is left unrestricted alterna-

tive measures based on the Hamilton-Jacobi-Bellman (HJB) equation residuals are used to evaluate

the performance of the approximations. I study both global and local methods to approximate the

value and policy functions that characterize the optimal behaviour of a benevolent planner.

Regarding global methods I implement collocation and least squares projections. For the local

methods I focus on first and second order perturbation and linear-quadratic approximations with

linear and linearized constraints. Regarding the latter, it is important to remember that: “subject

to applicability, other linearization methods like the Eigenvalue decomposition [...], Generalized

Schur decomposition [...] or the QZ decomposition among many others should deliver the same

results. The linear approximation of a differentiable function is unique and invariant to differentiable

parameters transformation.” (working paper version of Aruoba et al. (2006)).

Similarly to the discrete-time case I find projection methods to be overwhelmingly more accurate

and robust than perturbation for a wide range of values of the state-space centered around the

deterministic steady state. Their accuracy carries over for higher degrees of non-linearities. In

particular I study the effect of different values of the risk aversion parameter and higher values of

the volatility of the shocks that hit the economy. This becomes a relevant issue not only for its

qualitative and quantitative economic implications but also from an econometric perspective. When

concerned about the estimation of the structural parameters of the model we will be interested in

studying the global shape of the approximated likelihood function. This will not be possible if the

solution of the model is built from a local approximation. Furthermore, as shown in Rubio-Ramirez

and Fernandez-Villaverde (2005) it is possible to obtain a better fit of the model to the data as

well as more accurate point estimates of the moments of the model by exploiting the non-linear

structure of the economic model which can only be achieved through the use of global methods.

However, all these advantages come at a non-negligible cost. A good initial guess for the value

function is required in order to obtain a good approximation which increases the computing time

of the solution and hence compromises the feasibility of any econometric procedure.

On the other hand, the fit of perturbation and linear-quadratic approximations deteriorate when

the degree of non-linearities is increased. In particular, they deliver approximated value and policy

functions with a different level to that obtained by global methods. It has been argued previously

in the literature that this could be explained by the lack of volatility correction that the certainty

equivalence property implies. However, perturbation methods do not exhibit this property in the

continuous-time framework and still the same results are obtained. A future line of research should

include the study of this result more deeply.

From an econometric point of view, the use of perturbations is usually preferred since the

estimation of the deep parameters of the model is simple and fast given that the implementation of

the solution method is easy and quick. However, as described in Fernandez-Villaverde et al. (2006)

the approximation error arising from the solution modify the likelihood function at least up to a
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first-order degree. In addition, the period by period error made in the approximation accumulates

at a rate exactly equal to the rate at which the sample size grows making the approximated

likelihood diverge from the exact likelihood of the economic model. One way to circumvent these

problems is to increase the order of the approximation in the solution step which comes at a very

low computational cost.

Finally, after gathering the computing times of each of the numerical methods I find that

continuous-time DSGE modeling prove to be a promising area of future research when compared to

the discrete-time framework. The approximation methods use much less computing time in both

perturbation and projection methods since there is no need to approximate composition of unknown

function neither to numerically approximate the integrals associated with expected values.
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Appendix

A Equivalent benchmark model

By using the aggregate resource constraint of the economy, Yt = Ct+It, Equation (5) and Equation

(7) the model described in Section (3) can be written in the following equivalent way:

V (K0, A0) ≡ max
{It,Lt}∞t=0

E0

∞∫
0

e−ρt

((
AtK

α
t L

1−α
t − It

)
(1− Lt)ψ

)1−γ
1− γ

dt

subject to

dKt = (It − δKt) dt+ σKtdBK,t

dAt = κ (ω −At) dt+ η
√
AtdBA,t

where now the control varibles are the level of investment, It, and the fraction of hours worked, Lt.

Note that under this alternative represenation, the drift function of both stochastic state processes

are linear in the control and state variables.

Once the model has been solved for their respective policy functions it is possible to recover the

level of optimal consumption by using the aggregate resource constraint:

Ct = AtK
α
t L (Kt, At)

1−α − I (Kt, At) .
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B HJB residuals

Figure 5: HJB residuals under benchmark calibration and all grid points in state-space
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