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Abstract

We consider hypothesis testing in a general linear time series regression framework

when the possibly fractional order of integration of the error term is unknown. We

show that the approach suggested by Vogelsang (1998a) for the case of integer inte-

gration does not apply to the case of fractional integration. We propose a Lagrange

Multiplier-type test whose limiting distribution is independent of the order of inte-

gration of the errors. Di�erent testing scenarios for the case of deterministic and

stochastic regressors are considered. Simulations demonstrate that the proposed test

works well for a variety of di�erent cases, thereby emphasizing its generality.
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1 Introduction

This paper considers the problem of hypothesis testing in a linear regression model when

the order of possibly fractional integration of the error term is unknown. Speci�cally, we

consider the linear regression model

yt = β′zt + et,

where zt is a p× 1 vector of deterministic or stochastic (or both) regressors ful�lling some

regularity conditions speci�ed later, β is a p×1 vector of regression parameters and et is an

error term which is possibly fractionally integrated of unknown order d0, i.e. et ∼ I(d0).

In the case of stochastic regressors, their orders of integration are assumed to be the same

(d1) and unknown as well. We are concerned with testing hypotheses for β. It is well

known that the behavior of standard tests for restrictions on β strongly depend on the

order of integration of the error term. Neglecting the fractional nature of the errors leads

typically to invalid inference.

Vogelsang (1998a) suggests a testing approach which allows valid inference to be drawn

when the order of integration of the error term is unknown. The test is embedded in a

linear trend testing framework where the errors are allowed to be I(0) or I(1). Other con-

tributions cover the case of testing for location (Zambrano and Vogelsang, 2000), testing

against a mean shift (Vogelsang, 1998b) and nonlinear trends (Harvey, Leybourne and

Xiao, 2010). Regarding test against trend breaks, Harvey, Leybourne and Taylor (2009)

and Perron and Yabu (2009) suggest alternative approaches. All of the aforementioned

studies are based on having a choice of two possible orders of integration of which one

is the true order. In the fractional case we have a continuum of possible orders of inte-

gration which renders methods designed for the I(0) and I(1) case problematic. Another

important feature of these tests is that they are dealing with deterministic regressors.

In order to achieve the goal of conducting valid inference on β in linear regression

models with deterministic or stochastic regressors with I(d) errors, we suggest a Lagrange

multiplier (LM) test. The test is derived under fairly mild regularity assumptions ensuring

�exibility of our method. In a similar regression framework Robinson (1994) suggests an

LM test for the order of integration d. Thereby, our work complements Robinson (1994).

Our test exhibits a standard limiting distribution and is shown to have non-trivial power

against local alternatives. These results remain valid, when an LM-type test is carried

out where the memory parameter is estimated in a semi-parametric way, by e.g. exact

local Whittle, see Shimotsu and Phillips (2005). The reason for applying semi-parametric

estimation arises from the need of an estimator for the fractional integration parameter

which is consistent under validity of the null and the alternative hypothesis. Biased

estimation would lead to size distortions and power losses in �nite samples. To this end,
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estimation is carried out under the alternative hypothesis. Simulation results for various

situations, i.e. linear and quadratic trends, mean shifts and trend breaks, as well as

fractional cointegration, shed light on the empirical properties of the test. The results

demonstrate that the LM-type test performs well in practice.

The problem of testing under an unknown order of possibly fractional integration

has recently been investigated elsewhere in several speci�c testing situations involving

deterministic regressors. Iacone, Leybourne and Taylor (2013a) propose a sup-Wald test

against a permanent change in the trend slope. A �xed-b perspective is taken in Iacone,

Leybourne and Taylor (2013b). Xu and Perron (2013) suggest a quasi GLS-based trend

test under fractional integration of the errors. A common feature of these studies is the

use of semi-parametric plug-in estimation for the fractional integration parameter.

The rest of the paper is organized as follows. Section 2 focuses on the properties of

the Vogelsang (1998a) approach under fractional integration. Section 3 contains our LM-

type test for deterministic and stochastic regressors. Section 4 contains some examples

including trend tests and fractional cointegration and a Monte Carlo study investigating

the �nite sample properties of the test. Section 5 concludes. All proofs are gathered in

Appendix A. Appendices B and C cover additional technical details.

For the rest of the paper, let⇒ denote weak convergence and
P→ stand for convergence

in probability.

2 Testing under an unknown order of integration

We consider the linear regression model

yt = β′zt + et (1)

for which the following Assumptions 1, 2 and 3 hold. The parameter vector β = (β1, . . . , βp)
′

is p-dimensional and zt is a p× 1 vector of exogenous regressors. The error term et is as-

sumed to be a type II fractionally integrated process (see Marinucci and Robinson, 1999),

i.e.

(1−B)d0et = ut1(t ≥ 0), (2)

where ut is an I(0) process satisfying Assumption 1 below, d0 is the unknown order of

fractional integration and (1−B)d is de�ned by its binomial expansion

(1−B)d =
∞∑
j=0

Γ(j − d)

Γ(−d)Γ(j + 1)
Bj (3)
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with Γ(z) =
´∞

0
tz−1e−tdt. B denotes the Backshift operator, Bet = et−1. Our asymptotic

results hold also for type I fractionally integrated processes with the respective modi�ca-

tions in the proofs. The main insights of our paper remain una�ected when working with

type II processes. Let us further assume that d0 ∈ [0, 1/2) ∪ (1/2, 3/2) which covers the

relevant values for economic applications.

Assumption 1 ut has the Wold representation

ut =
∞∑
j=0

θjεt−j, (4)

with
∑∞

j=0 ‖θj‖2 < ∞ and the innovations εt are assumed to be a martingale di�erence

sequence satisfying E(εt|Ft−1) = 0 and E(ε2t |Ft−1) <∞ with Ft = σ({εs, s ≤ t}). Further-
more, we assume that ut = 0 for t ≤ 0.

The last part of the assumption is made in accordance with our choice to work with type

II processes. A detailed discussion of initial conditions in non-stationary long memory

time series can be found in Johansen and Nielsen (2013).

Assumption 2 Let φ(B; θ) be a prescribed function of the Backshift operator B ful�lling

φ(B; θ)et = ut

with ut satisfying Assumption 1, and φ(B; θ) is a function of the lag operator B and

possible short memory and heteroskedasticity parameterized by θ, satisfying the normal-

ization φ(0; θ) = 1. The long memory parameter d0 is included in θ, and the derivative

∂φ(.; θ)/∂θ exists and is bounded. Furthermore, the derivative ful�lls

1

T

T∑
t=1

∂φ(B; θ)

∂θ
et

(
∂φ(B; θ)

∂θ
et

)′
→ A, (5)

with A being a non-singular matrix.

As this section covers only deterministic regressors, the next assumption deals with non-

stochastic regressors only, while a modi�ed assumption for the stochastic regressor case

is stated in Section 3.2 where we treat this situation in detail.

Assumption 3 The regressors zt are non-stochastic, with

1

T

T∑
t=1

φ(B, θ)ztφ(B, θ)z′t → J, (6)

where J > 0 is a positive de�nite p× p matrix, with trace tr(J) = ξ2 > 0.
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Since by implication limT→∞(
∑T

t=1 φ(B, θ)ztφ(B, θ)z′t)
−1 = 0, the condition is su�cient for

consistency of the OLS estimator. It is rather weak and allows for instance for polynomial

trends, i.e. zt = (1, t, t2, ..., tp−1)′.

We are interested in testing some set of restrictions on β which are either linear or

non-linear, i.e. Rβ = r or f(β) = r. For simplicity, we reduce the testing problem to

H0 : β = 0 against the alternative H1 : β 6= 0 without loss of generality (see Appendix

C).

In the context of testing for the presence of a linear trend (p = 2), Vogelsang (1998a)

suggested a general testing approach which allows valid inference in the case where the

order of integration of the errors is unknown.1 The order of integration is assumed to be

either zero or one.

The basic idea of Vogelsang's approach is the following, see for example Harvey and

Leybourne (2007) for an application to linearity tests against smooth transition autore-

gressive models. Suppose that one is interested in the testing problem of H0 against the

alternative H1. The relevant test statistic is denoted by W which has a non-degenerate

and pivotal limiting distribution, say D0 if the time series under test is integrated of

order null. In typical applications where standard testing problems are considered, D0 is

a standard distribution. The limiting distribution of W generally di�ers from D0 if the

series is integrated of order one instead. The limiting distribution for this case is denoted

by D1 and typically depends on functionals of Brownian motions. In order to design a

test statistic which is independent of the order of integration let H denote a function of

a unit root test statistic against the stationary alternative. It is assumed that H has

a non-degenerate pivotal limiting distribution, say DH when the series is non-stationary

and that it converges in probability to zero under stationarity of the series. An example

for H is the inverse of a Dickey-Fuller statistic in absolute values. A modi�ed test statistic

along the line of Vogelsang (1998a) is

W ∗ = exp(−bH)W

for some positive scaling constant b. If the series under test is an I(0) process it follows

that W ∗ ⇒ D0 under validity of the null hypothesis, whereas W ∗ ⇒ exp(−bDH)D1 if the

series is an I(1) process. The speci�c value b is chosen such that

P (D0 > cα) = P (exp(−bDH)D1 > cα) = α,

where cα denotes the asymptotic critical value at the given nominal signi�cance level α.

The limiting distribution of W ∗ thus coincides with that of W under I(0) irrespective of

whether the series is I(0) or I(1). Thus, critical values from standard distributions can be

1The nonlinear trend case is investigated in Harvey et al. (2010).
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used in cases where the true order of integration is zero or one, but unknown. Especially for

economic time series it is di�cult establishing clear results for their orders of integration.

Therefore, Vogelsang's approach appears to be useful for economic applications.

However, this approach bears some limitations. It only allows for two di�erent orders

of integration (zero and one) and it assumes that one of them is the true order. To the best

of our knowledge, the behaviour of the Vogelsang (1998a) approach where both possible

order of integration are wrong has not been explored so far in the related literature. Such

a situation may easily occur under fractional integration with 0 < d < 1 and when the

two possible orders of integration are zero or one. It should be noted that Vogelsang's

approach can be modi�ed to deal with a situation where the assumed orders of integration

are both fractional, but at least one of the assumed integration orders has to be the true

one. In practice, such a restriction may be viewed as too strong and thereby lowering the

practical use of such an approach when fractional integration is considered as a possibility.

The following theorem considers the case where H = |DF |−1, DF being the standard

Dickey-Fuller unit root test statistic. It shows that Vogelsang's approach is not extendable

beyond the case where the unknown order of integration d0 is either 0 or 1. All proofs are

collected in Appendix A.

Theorem 1 Let yt be generated by yt = β′zt+et, et ∼ I(d0) with d0 ∈ (0, 1/2)∪(1/2, 3/2)

and let Assumptions 1, 2 and 3 hold. Under the validity of the null hypothesis H0 : β = 0,

the test statistic W ∗ = exp(−b|DF |−1)W has the same limiting distribution as W , both

depending on the unknown order of integration d0. Moreover, it holds that

1. if d0 ∈ (0, 1/2) then exp(−b|DF |−1)
P→ 1 and W ∗ = O(T 2d0);

2. if d0 ∈ (1/2, 1) ∪ (1, 3/2) then exp(−b|DF |−1)
P→ 1 and W ∗ = O(T 2d0+1).

Applying the statistic W ∗ allows for robustness in the sense of an identical limiting null

distribution regardless whether d0 = 0 or d0 = 1. This limiting distribution is that which

in the case d0 = 0 governs the unmodi�ed statistic W . Theorem 1 demonstrates that

this kind of robustness is lost under fractional integration, i.e. d0 ∈ (0, 1/2) ∪ (1/2, 3/2).

Neither W nor W ∗ has the same limiting distribution when d0 ∈ (0, 1/2) ∪ (1/2, 3/2) as

the one governing W when d0 = 0. While W = O(1) for d0 = 0, the theorem shows that

W and W ∗ diverge for d0 ∈ (0, 1/2) ∪ (1/2, 3/2). In short, the Vogelsang approach bears

some important di�culties when fractional integration is present in the data generating

process. If the unknown order of integration is neither 0 nor 1, the limiting distribution

of W ∗ is no longer the one of W , but dependent on d0.

Of course, Vogelsang's approach can be applied to any other known value of d0, i.e., this

must not necessarily be the value of zero. In the given setup, a test could be constructed

which is valid if the series is either I(d0) or I(d1), for some d0, d1 ∈ [0, 1/2)∪(1/2, 3/2). In
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this case, the test statisticW shall be modi�ed in such a way that it has a non-degenerate

limiting distribution when et ∼ I(d0). However, the approach is still restricted to the case

of two orders of integration, of which one has to be the true order. These issues pose some

important practical limitations. In the next section, we propose a test which is robust to a

continuum of possible fractional orders. We propose a testing framework that is applicable

for trend testing and more generally, for deterministic regressors. Furthermore, we extend

the analysis to the case of stochastic regressors and fractional cointegration.

3 LM-type testing approach

Denote by η′ = (β′, θ, σ2)′ the vector of all parameters. We consider testing the hypothesis

H0 : β = 0 vs. H1 : β 6= 0. (7)

If the hypothesis of interest takes the linear form

H0 : Rβ = r vs. H1 : Rβ 6= r,

with R and r given, of dimension k×p and k×1, respectively, k < p, then β is decomposed

into a free component of dimension (p− k)× 1 and a component of dimension k× 1 that

is zero under the null, so the hypothesis tested is on the latter component and of the form

(7). Recasting the problem in a suitable form in this case also requires a transformation

of the data and consistent estimation of the free component of β, which is assumed to

be possible, see Appendix C for a detailed discussion. Denote by L(η) the log-likelihood

function of yt. Then the score test statistic (see Rao 1973) is given by

(
∂L(η)

∂η

)′ [
E

(
∂L(η)

∂η

)(
∂L(η)

∂η

)′]−1(
∂L(η)

∂η

) ∣∣∣∣∣
β=0;θ=θ̂;σ2=σ̂2

(8)

The expectation is taken under H0 and θ̂ and σ̂2 are the ML estimates for θ and σ2,

respectively.

3.1 Deterministic Regressors

Let us �rst consider the case of purely deterministic regressors zt. We thus impose As-

sumption 3 in the following. In this situation the LM-type test statistic takes the form

LM(β) =
1

σ̂2A
′
B−1A, (9)
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with A =
∑T

t=1

(
φ(B; θ̂)yt

)
φ(B; θ̂)zt and B =

∑T
t=1

(
φ(B; θ̂)zt

)(
φ(B; θ̂)zt

)′
. A detailed

derivation of the score test statistic can be found in Appendix B. We �rst show that the

test statistic has a limiting χ2-distribution independent of d and we derive the local power

function of the test. These results hinge on the consistency of the MLEs for θ (including

d) and σ2 which has been proven by Beran (1995). For simplicity we consider the interval

d ∈ [0, 1/2) ∪ (1/2, 3/2). Subsequently, we show that it is also possible to draw inference

on the basis of standard distributions when other estimators than the MLE are used in

(9).

Theorem 2 Under Assumptions 1, 2, and 3 and for d ∈ [0, 1/2)∪(1/2, 3/2), the limiting

distribution of the LM test statistic under H0 is given by

LM(β)⇒ χ2
p,

as T →∞.

Note that σ̂2 P→ σ2. Next, we consider a local alternative of the form (i.e. a Pitman drift)

βT =
c√
T
,

for an arbitrary non-zero p-vector c. The score for β involves yt that has a non-zero mean.

Theorem 3 Under the assumptions of Theorem 2 the LM-test LM(βT ) has non-trivial

power against local alternatives and converges weakly to a non-central χ2
p-distribution with

non-centrality parameter ξ2

σ2 c
′c.

Here, ξ2 is the trace of the matrix J from Assumption 3. Thus, the test enjoys Pitman

optimality and has non-trivial power against local alternatives.

We now turn to the use of other estimators than the MLE of d in (9). The main

reason for considering di�erent estimators for d is the need for consistency under both,

the null and the alternative hypothesis. Biased estimation of d would induce incorrect

fractional di�erencing which ultimately leads to size distortions and power losses in �nite

samples. When other estimators d̂ are used, the statistic LM(β) is no longer an LM-test,

and we indicate this by the notation LM∗(β), and we continue to refer to it as an LM-type

test. We proceed by stating an assumption on the asymptotic behaviour of alternative

estimators for d.

Assumption 4 d̂ is a consistent estimator of d satisfying

(d̂− d) log T = oP (1).
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Assumption 4 is su�ciently general to include the most commonly used consistent esti-

mators, such as the log-periodogram regression estimator of Geweke and Porter-Hudak

(1983), the Gaussian semiparametric or local Whittle estimator of Robinson (1995) as

well as the exact local Whittle estimator by Shimotsu and Phillips (2005).

Theorem 4 Under Assumptions 1, 2, 3, and 4, and for d ∈ [0, 1/2) ∪ (1/2, 3/2), the

limiting distribution of the LM∗-statistic under H0 is given by

LM∗(β)⇒ χ2
p,

as T →∞.

Thus, the limiting null distribution of LM∗ coincides with that of the LM-test in Theorem

2 and is thus independent of the unknown integration order. In this sense, it is also

possible to draw valid inference on β under an unknown order of integration even when

using other estimators satisfying Assumption 4 than the MLE. The results for the local

power function, see Theorem 3, carry over to LM∗.2

3.2 Stochastic Regressors

So far, the analysis has focussed on the case of deterministic regressors. However, the

new LM∗ testing approach can be applied in situations with stochastic regressors, too.

As before we consider the model

yt = β
′
zt + et, (10)

where now yt and zt are type II fractional processes of order d1. The parameter vector

β = (β1, . . . , βp)
′
and zt are both p-dimensional. As we focus on fractional cointegration

below we assume that all components of zt are integrated of the same order d1 and that

E[z
′
itzjt] = 0 for i 6= j. Furthermore, we assume that d1 > 1/2 holds. The error term et is

assumed to be a type II fractional process of order I(d0) with d0 < d1 and d1−d0 > 1/2+ε

for some ε > 0. Consider testing the hypothesis

H0 : β = β0, against H1 : β 6= β0, (11)

with β and β0 being p-vectors. Imposing an other restriction than β0 = 0 does not change

our results. As we are aware that this restriction might have some attraction to keep the

notation simple it is of minor practical relevance in this set up and therefore we do not

impose it in this section. Regarding exogeneity of the regressors we impose the following

assumption:

2Although the proof of Theorem 4 is speci�c to the case of deterministic regressors, it is a general
property that when plug-in estimators of nuisance parameters (such as d̂) converge su�ciently fast, then
limiting distributions and local power of tests are una�ected (see, e.g., Jansson and Nielsen, 2012).
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Assumption 5 The zt are strictly exogenous with

φ(B, θ1)zt = u1t

and

φ(B, θ0)et = ut,

and u1t and ut ful�ll Assumption 1. Here, φ(B, θ) is de�ned as before with θ1 containing

d1 and θ0 containing d0 as orders of integration.

The log-likelihood function in this framework is similar to the case of non-stochastic

regressors and can be found in Appendix B where also the derivation of the test statistic

is located. By θ̂ and σ̂2 we denote the ML-estimator for θ and σ2, respectively. By

evaluating the scores at β = β0, we obtain by similar arguments as in the case of non-

stochastic regressors that the LM-test statistic is given by

LM(β) =
1

σ̂2A
′
B−1A (12)

with A =
∑T

t=1(φ(B, θ̂)(yt − β
′

0zt)(φ(B, θ̂)zt) and B =
∑T

t=1(φ(B, θ̂)zt)(φ(B, θ̂)zt)
′
. The

test statistic (12) in the case of stochastic exogenous regressors is thus of exactly the

same form as the test statistic (9) for non-stochastic regressors. However, it should be

mentioned that the term φ(B, θ̂)zt is now stochastic and integrated of order d1 − d0.

Theorem 5 Under Assumptions 1, 2 and 5, the limiting distribution of the LM test

statistic under H0 is given by

LM(β)⇒ χ2
p

as T →∞.

Thus, neither the fractional integration order of the regressors (d1) nor the fractional order

of the errors (d0) in�uences the distribution of the test statistic which is similar to the

case of deterministic regressors, a standard one. By similar arguments as in Theorem 4

we can use other estimators for d1 and d0 than the MLE as long as they ful�ll Assumption

4. The test has local power also in the case of stochastic exogenous regressors.

Theorem 6 Under the assumptions of Theorem 5, the LM-test LM(βT ) has non-trivial

power against local alternatives and converges to a non-central χ2
p-distribution with non-

centrality parameter ξ2

σ2 c
′c.

We now relax the assumption of zt being exogenous and derive the limiting distribution

of the LM-type test for this case. Our result shows that the test is biased when no

endogeneity correction is applied. As demonstrated in the Monte Carlo section, correcting
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for endogeniety via fully modi�ed OLS estimation of β results in an unbiased and correctly

sized test. Instead of Assumption 5 let us now assume

Assumption 6 The regressors zt are de�ned by

φ(B, θ1)zt = u1t

and

φ(B, θ0)et = ut,

and u1t and ut ful�ll Assumption 1. Here, φ(B, θ) is de�ned as before with θ1 containing

d1 and θ0 containing d0 as orders of integration. Furthermore, εt = (ut, u
′
1t)
′ ∼ iid(0,Σ)

with �nite fourth moments and Σ is a positive de�nite matrix partitioned as

Σ =

(
σ2

11 σ
′
21

σ21 Σ22

)
.

The log-likelihood function is in this case di�erent to the exogenous case. We rely on the

conditional log-likelihood for this setup, see also Nielsen (2004). It is given by

L(β, θ,Σ) = −T
2

log σ2
1.2 −

1

2σ2
1.2

T∑
t=1

[
φ(B, θ)(yt − β

′
zt)− σ

′

21Σ−1
22 φ(B, θ1)zt

]2

, (13)

where σ2
1.2 = σ2

11 − σ
′
21Σ−1

22 σ21. The parameter vector θ contains the order of integration

d1 − d0. Thus, the LM-test is in this setup given by

LM =
1

σ̂2
1.2

A
′
B−1A (14)

with

A =
∂L(β, θ,Σ)

∂β

∣∣∣
β=β0,θ=θ̂,Σ=Σ̂

(15)

=
1

σ̂2
1.2

T∑
t=1

[
φ(B, θ̂)(yt − β

′

0zt)φ(B, θ̂)zt − σ̂
′

21Σ̂−1
22 φ(B, θ̂1)ztφ(B, θ̂)zt

]
and the Hessian

B =
∂2L(β, θ,Σ)

∂β∂β′

∣∣∣
β=β0,θ=θ̂,Σ=Σ̂

(16)

=
1

σ̂2
1.2

T∑
t=1

(φ(B, θ)zt)(φ(B, θ)zt)
′
.

Theorem 7 Under Assumptions 1, 2, and 6, the limiting distribution of the LM test
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statistic under H0 is given by

LM(β)⇒ χ2
p + Λ,

as T →∞. Λ denotes an endogeneity bias.

Note that Σ̂
P→ Σ.

4 Examples and Monte Carlo simulations

In this section, we discuss the application of the LM-type testing approach to cases of

testing for a deterministic linear and quadratic trend component. We further consider the

case of a possible mean shift and trend break in a linear trend function. As an example of

stochastic regressors we draw inference on the fractional cointegration vector and, as an

extension, also on deterministic components in a cointegrating regression. We combine

these examples with Monte Carlo simulations demonstrating the �nite sample behavior

of the test in di�erent situations.

4.1 Linear and quadratic trend tests under fractional integration

We start by testing for a polynomial trend. Let us assume the data generating process

yt = β0 + β1t+ β2t
2 + . . .+ βp−1t

p−1 + et, (17)

where (1 − B)d0et = ut, (fractional Gaussian noise) with d0 the unknown order of in-

tegration, and the innovations ut ful�ll Assumptions 1 and 2. The parameters β =

(β0, β1, . . . , βk−1)′ and regressors zt = (1, t, t2, . . . , tk−1)′ are deterministic and ful�ll As-

sumption 4. We focus on the empirically relevant cases of p = 2, 3 and consider tests for

the hypotheses that a linear or a quadratic trend component is present in the series yt.

The corresponding null hypotheses are given by H0 : β1 = 0 or H0 : β2 = 0, respectively.

The requirements of Theorem 2 are ful�lled. Thereby, the critical values for the LM-type

tests are taken from the χ2(1)-distribution.

We treat all parameters, including the order of fractional integration d0, as unknown.

Regarding estimation of the fractional order of integration, we compare the two-step

exact local Whittle estimator by Shimoutsu (2010) [2-ELW] to the fully extended local

Whittle estimator by Abadir, Distaso and Giraitis (2007) [FELW]. Both estimators are

consistent under the null and the alternative hypotheses. By Theorem 4, the limiting null

distribution of LM∗ applies without modi�cation when using one of these semi-parametric

estimators.

In the following, we report the empirical size and power of the LM-type test based on

the two di�erent estimators. As a benchmark we include the performance of an infeasible
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Table 1: Empirical size and power for testing H0 : β1 = 0 or H0 : β2 = 0, T = 500,
normally distributed errors

Linear Trend

d0 Stat Size avg d̂0 sd d̂0 Power avg d̂0 sd d̂0

0 2-ELW 0.057 0.001 0.057 1.000 0.000 0.057

FELW 0.069 -0.013 0.055 1.000 -0.014 0.055

Infeasible 0.050 0.000 0.000 1.000 0.000 0.000

0.4 2-ELW 0.059 0.403 0.058 0.836 0.402 0.058

FELW 0.074 0.380 0.060 0.869 0.379 0.060

Infeasible 0.048 0.400 0.000 0.872 0.400 0.000

0.8 2-ELW 0.053 0.810 0.057 0.104 0.808 0.057

FELW 0.075 0.783 0.055 0.140 0.781 0.055

Infeasible 0.050 0.800 0.000 0.102 0.800 0.000

1.2 2-ELW 0.049 1.212 0.055 0.058 1.211 0.055

FELW 0.084 1.174 0.054 0.096 1.173 0.054

Infeasible 0.047 1.200 0.000 0.052 1.200 0.000

Quadratic Trend

d0 Stat Size avg d̂0 sd d̂0 Power avg d̂0 sd d̂0

0 2-ELW 0.065 -0.010 0.059 1.000 -0.009 0.059

FELW 0.075 -0.026 0.057 1.000 -0.025 0.058

Infeasible 0.051 0.000 0.000 1.000 0.000 0.000

0.4 2-ELW 0.062 0.392 0.060 0.993 0.393 0.060

FELW 0.079 0.369 0.062 0.996 0.370 0.063

Infeasible 0.051 0.400 0.000 0.997 0.400 0.000

0.8 2-ELW 0.052 0.800 0.060 0.210 0.801 0.060

FELW 0.075 0.773 0.057 0.265 0.774 0.057

Infeasible 0.048 0.800 0.000 0.204 0.800 0.000

1.2 2-ELW 0.055 1.204 0.057 0.070 1.204 0.057

FELW 0.084 1.164 0.056 0.104 1.164 0.056

Infeasible 0.050 1.200 0.000 0.066 1.200 0.000

test using the true parameter d0 instead of an estimate. The nominal signi�cance level

equals �ve percent, the sample size is T = 500 and the number of Monte Carlo replications

equals 5,000 for each single experiment. All computations are carried out in MATLAB.3

In addition to the size and power results, we also report the Monte Carlo mean and

standard deviation of the 2ELW and the FELW estimator. The importance of normality

is investigated by considering non-normal errors. To this end, we generate fat-tailed t(6)-

distributed and skewed standardized χ2(5)-distributed errors. In these cases, estimation

of β is achieved via quasi-ML assuming normality for constructing the likelihood function.

3We would like to thank Karim Abadir, Walter Distaso and Luidas Giraitis for sharing their MATLAB
code for the FELW estimator with us. The code for the Shimotsu (2010) estimator can be found on the
author's webpage.
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Table 2: Empirical size for testing H0 : β1 = 0 or H0 : β2 = 0, T = 500, non-normally
distributed errors

Linear Trend

d0 Stat t(6) avg d̂0 sd d̂0 χ2(5) avg d̂0 sd d̂0

0 2-ELW 0.058 0.000 0.057 0.044 0.001 0.056

FELW 0.070 -0.014 0.056 0.066 -0.013 0.054

Infeasible 0.050 0.000 0.000 0.041 0.000 0.000

0.4 2-ELW 0.058 0.403 0.058 0.043 0.403 0.057

FELW 0.079 0.380 0.061 0.080 0.381 0.059

Infeasible 0.051 0.400 0.000 0.042 0.400 0.000

0.8 2-ELW 0.059 0.808 0.057 0.052 0.809 0.056

FELW 0.082 0.781 0.055 0.051 0.782 0.054

Infeasible 0.053 0.800 0.000 0.050 0.800 0.000

1.2 2-ELW 0.053 1.212 0.054 0.057 1.212 0.054

FELW 0.086 1.174 0.054 0.069 1.174 0.053

Infeasible 0.050 1.200 0.000 0.050 1.200 0.000

Quadratic Trend

d0 Stat t(6) avg d̂0 sd d̂0 χ2(5) avg d̂0 sd d̂0

0 2-ELW 0.067 -0.009 0.058 0.063 -0.010 0.059

FELW 0.075 -0.024 0.057 0.073 -0.026 0.058

Infeasible 0.052 0.000 0.000 0.051 0.000 0.000

0.4 2-ELW 0.059 0.393 0.060 0.067 0.392 0.060

FELW 0.076 0.370 0.062 0.083 0.369 0.061

Infeasible 0.046 0.400 0.000 0.049 0.400 0.000

0.8 2-ELW 0.056 0.801 0.058 0.055 0.801 0.059

FELW 0.074 0.775 0.055 0.076 0.774 0.057

Infeasible 0.045 0.800 0.000 0.053 0.800 0.000

1.2 2-ELW 0.053 1.206 0.056 0.058 1.205 0.057

FELW 0.085 1.166 0.055 0.092 1.165 0.056

Infeasible 0.051 1.200 0.000 0.048 1.200 0.000

Results shed light on the role of normality for the �nite-sample performance of the LM-

type test.

Table 1 presents the size and power results for testing for a linear (upper panel) and

quadratic trend component (lower panel). The parameter d0 takes the values 0, 0.4,

0.8 and 1.2. Thereby, we cover short memory, stationary and non-stationary fractional

integration. Regarding the size results, we �nd the LM-type test based on the 2-ELW

estimator provides accurate levels, whereas the variant using the FELW estimator tends

to be somewhat oversized. This �nding relates to a slight downward bias of the FELW

estimator. Consider, e.g. the results for d = 0.8: the Monte Carlo average for the FELW

estimator is 0.783 and the corresponding size of the test is 0.075. In contrast, the 2-ELW

estimator is a bit upward biased (less than the FELW in absolute terms, however) (0.810),
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but the simulated size is 0.053. Noteworthy, the FELW estimator has a smaller standard

deviation (0.055 versus 0.057). An even slight downward bias implies that the series will

not be di�erenced to I(0), but to a small positive order of integration. The LM-type

test appears to be sensitive towards such a bias and therefore, we recommend to use the

2-ELW estimator for testing linear trends. This �nding also holds for testing quadratic

trend components. The infeasible test has very accurate size in all cases. Interestingly,

the LM-type test based on the 2-ELW estimator performs very well in comparison to the

infeasible test. The results for both estimators show their merits as they perform very

well under H0 and H1.

The reported results for the empirical power (β1 = 0.005 and β2 = 0.00005) indicate

similar performances amongst the di�erent variants of the test. It shall be noted that

the values for β1 and β2 are �xed for di�erent values of d0. The larger the fractional

order of integration, the larger is the variance of the stochastic part of the process and

the more di�cult is the detection of a linear or quadratic trend component. Thus, it is

not surprising that the power decreases as d0 increases.

Table 2 presents size results for fat-tailed and skewed errors. The results are very

similar to the ones obtained for normally distributed errors. The main conclusions do

not change and the results suggest robustness against a misspeci�cation of the error

distribution. The LM-type test also performs well when errors are assumed to be normal,

but are fat-tailed or skewed instead.

4.2 Structural change tests for intercept and slope of a linear

trend model under fractional integration

We also consider the problem of testing for a break in the intercept and slope parameter

of a linear trend function. A slightly di�erent model (without intercept shift) is studied in

Iacone et al. (2013a, 2013b). They consider the behavior of �xed-b tests for trend breaks

and robustify those to the fractional case. The model of our interest, see also Perron and

Yabu (2009) for a quasi-feasible GLS approach in case of I(0) or I(1) errors, is given by

yt = β0 + δ0DUt + β1t+ δ1DTt + et (18)

where the variables DUt and DTt are given by

DUt = 1(t > c),

DTt = 1(t > c)(t− bcT c).

The relative break point is denoted by c and c ∈ [τL, τU ] =: Λ ⊂ [0, 1] and τL and τU

are the lower and upper bounds of the interval to which the break point is restricted.

15



Table 3: Empirical size and power for testing H0 : δ0 = 0 or H0 : δ1 = 0, T = 500,
normally distributed errors

MS TB MS TB

d Stat Size Size avg d̂ sd d̂ Power Power avg d̂ sd d̂

0 2-ELW 0.046 0.055 0.005 0.050 1.000 1.000 0.005 0.050

FELW 0.062 0.076 -0.026 0.048 1.000 1.000 -0.026 0.048

Infeasible 0.044 0.051 0.000 0.000 1.000 1.000 0.000 0.000

0.4 2-ELW 0.050 0.052 0.407 0.051 0.512 1.000 0.406 0.052

FELW 0.075 0.085 0.360 0.051 0.575 1.000 0.359 0.052

Infeasible 0.048 0.050 0.400 0.000 0.516 1.000 0.400 0.000

0.8 2-ELW 0.054 0.045 0.816 0.051 0.263 0.344 0.816 0.051

FELW 0.058 0.085 0.758 0.048 0.284 0.488 0.759 0.049

Infeasible 0.051 0.046 0.800 0.000 0.267 0.392 0.800 0.000

1.2 2-ELW 0.051 0.083 1.165 0.066 0.257 0.132 1.164 0.065

FELW 0.052 0.151 1.091 0.063 0.255 0.214 1.091 0.062

Infeasible 0.049 0.047 1.200 0.000 0.258 0.080 1.200 0.000

In practice c is usually treated as unknown and consistent breakpoint estimators are

readily available from the related literature, see also Perron and Zhu (2005) and Iacone

et al. (2013a, 2013b). For simplicity of the exposition, we work with a known value of

c = 0.5 (middle of the sample). The fractionally integrated error term et is generated via

(1−B)d0et = ut and ut satis�es Assumption 1.

We are interested in testing the two distinct null hypotheses H0 : δ0 = 0 (no mean

shift) or H0 : δ1 = 0 (no trend break). A main problem in this setup is the estimation

of d0 in order to obtain a feasible test. In line with our previous analysis, we compare

the two-step ELW estimator to the fully extended LW estimator and an infeasible version

using the true value d0 instead of an estimate. The data yt is �rst de-trended as given in

equation (2), i.e. êt denote the corresponding OLS residuals. We note that this framework

is not directly captured in the asymptotic derivations of Shimotsu (2010) and Abadir et

al. (2007), but our conjecture is that their procedures remain valid. Results for size and

power with normally distributed innovations ut are reported in Table 3. Our �ndings

suggest similar conclusions as before. The LM-type test based on the 2-ELW estimator

by Shimotsu (2010) continues to provide accurate size performance in almost all cases.

The only exception is the trend break test for d0 = 1.2. The LM-type test also exhibits

non-trivial power against mean shifts (δ0 = 1) and trend breaks (δ1 = 0.05). The results

for both estimators also underline their usefulness as they are nearly unbiased, both under

the null and under the alternative hypothesis.
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4.3 Inference on the fractional cointegration vector and deter-

ministic trends

Cointegration is a natural example in the case of stochastic regressors. In the standard

Engle and Granger (1987) cointegration model it is assumed that the data series (yt, zt)

are I(1), and cointegration exists if one or more linear combinations of the series are I(0).

Thus, in our regression framework

yt = β′zt + et,

cointegration is implied if et ∼ I(0), and spurious regression if et ∼ I(1). As in Vogelsang's

approach to trend testing, it is critical that the order of integration of the errors (d0) is

known to be one of only two possible values (again, 0 or 1). In practical applications, other

possible values for d must often be considered, as well. In case of fractional cointegration,

zt may be (possibly fractionally) integrated of order d1, say, not necessarily restricting

d1 to unity. Fractional cointegration exists if the errors are integrated of lower order,

et ∼ I(d0), with d0 < d1. In this case, yt is integrated of order d1, too, and the series yt

and zt move together in the long run, in a more general sense not necessarily implying

standard I(1)−I(0) cointegration. In particular, d may take values in a continuum, rather

than being restricted to be either 0 or 1. In particular, we consider the simple case of

fractional cointegration

yt = βzt + et (19)

(1−B)d0et = ut (20)

(1−B)d1zt = u1t (21)

satisfying Assumption 6. yt and zt are scalar type II fractional processes of order d1 > 1/2.

The errors et are integrated of order d0 = 0 for simplicity. This type of triangular system

has been considered by Phillips (1991) for the case of standard cointegration, and by

Nielsen (2004) for fractional cointegration, and is easily extended to the case of multiple

cointegrating relations. Evidently, zt are stochastic regressors in the cointegration case,

whether standard or fractional, and the latter is a natural application of our results in

Section 3.2. Estimation of the cointegration system under unknown order of integration

has been considered by Robinson and Hualde (2003).

With yt and zt moving together in the long run, interest centers on the cointegrating

relation, as described by the cointegrating vector β. The linear hypothesis of interest is

given by H0 : β = 1 which is a restriction on the sub-cointegrating vector and imposes

a one-to-one long-run relationship between yt and zt. This is a typical example for a

hypothesis of long-run unbiasedness in predictive regressions, e.g., testing expectation
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Table 4: Stochastic regressors - size for LM-type testing H0 : β = 1 in yt = βzt + et with
et ∼ I(d0) and yt, zt ∼ I(d1) and ρ = corr(ut, vt)

T d1 LM∗|d LM∗|d̂ d̂1 d̂0 ρ̂|d ρ̂|d̂

ρ = 0: exogeneity
250 0.6 0.062 0.103 0.578 -0.011 0.000 0.000

0.8 0.064 0.094 0.762 -0.012 0.001 0.001

1 0.065 0.091 0.948 -0.008 -0.003 -0.003

1.2 0.064 0.091 1.137 -0.012 0.001 0.001

500 0.6 0.056 0.108 0.584 -0.007 0.001 0.001

0.8 0.061 0.084 0.771 -0.006 -0.001 -0.001

1 0.054 0.086 0.962 -0.005 -0.001 -0.001

1.2 0.042 0.068 1.160 -0.006 -0.001 -0.001

1000 0.6 0.059 0.076 0.590 -0.005 0.001 0.001

0.8 0.043 0.051 0.779 -0.003 0.001 0.001

1 0.050 0.069 0.974 -0.005 0.001 0.001

1.2 0.060 0.083 1.170 -0.002 0.000 0.000

ρ = 0.5: endogeneity
250 0.6 0.078 0.251 0.578 0.011 0.395 0.389

0.8 0.074 0.132 0.761 -0.002 0.473 0.468

1 0.052 0.109 0.948 -0.003 0.493 0.488

1.2 0.075 0.124 1.138 -0.010 0.500 0.496

500 0.6 0.068 0.242 0.583 0.017 0.413 0.409

0.8 0.054 0.088 0.771 0.004 0.478 0.475

1 0.049 0.096 0.962 -0.002 0.498 0.496

1.2 0.047 0.076 1.161 -0.004 0.499 0.497

1000 0.6 0.077 0.243 0.590 0.022 0.424 0.422

0.8 0.050 0.074 0.779 0.005 0.486 0.484

1 0.053 0.080 0.974 -0.003 0.500 0.498

1.2 0.059 0.079 1.170 0.000 0.501 0.499

hypotheses, interest rate parity, purchasing power parity, etc., in persistent data.

A typical assumption in the fractional cointegration literature, e.g. Nielsen (2004), is

that d1 ≥ d1 − d0 ≥ 3/4 + ε, for some ε > 0. Thus, the series are nonstationary, and

cointegration reduces the integration order by more than 3/4. However, our Theorem 5

applies more generally, as long as the strength of cointegration d1−d0 ≥ 1/2+ ε, for some

ε > 0. Of course, this requires in addition exogeneity of zt, i.e., ut and u1t are orthogonal.

In general, this would seem a rather restrictive form of cointegration, but it is indeed

relevant when testing predictive regressions. In particular, if the theory under test posits

that zt is the conditional expectation of yt given an information set that includes ut, then

ut and u1t must be orthogonal, and exogeneity is implied, c.f. Assumption 5. On the

other hand, the construction of our LM* test requires substituting estimators for θ and

σ2 in the LM-statistic from Section 3.2 that are consistent both under the null and the

18



Table 5: Stochastic regressors - power for LM-type testing H0 : β = 1 in yt = 1.005zt + et
with et ∼ I(d0) and yt, zt ∼ I(d1) and ρ = corr(ut, vt) = 0

T d1 LM∗|d LM∗|d̂ d̂1 d̂0 ρ̂|d ρ̂|d̂

250 0.6 0.061 0.122 0.577 -0.007 0.000 0.000

0.8 0.081 0.119 0.757 -0.012 0.002 0.002

1 0.155 0.199 0.949 -0.010 -0.002 -0.002

1.2 0.498 0.501 1.138 -0.008 0.002 0.002

500 0.6 0.086 0.114 0.584 -0.005 -0.001 -0.001

0.8 0.111 0.138 0.770 -0.007 0.002 0.002

1 0.356 0.382 0.962 -0.007 0.000 0.000

1.2 0.837 0.839 1.157 -0.007 0.002 0.002

1000 0.6 0.095 0.128 0.589 -0.006 0.000 0.000

0.8 0.203 0.233 0.779 -0.005 0.000 0.001

1 0.707 0.718 0.973 -0.003 0.000 0.000

1.2 0.980 0.982 1.170 -0.003 -0.001 -0.001

alternative.

Some generalizations are possible. Exogeneity may be relaxed by considering fully

modi�ed residuals, but the limiting distribution becomes more complicated. It is possible

to combine our results and consider, e.g., both deterministic and stochastic trends, and

test on either, or both. It is also possible in the fractional cointegration case to test

only on a subvector of β, substituting estimators consistent both under the null and the

alternative for the other components (when estimating θ and σ2). For the estimator for

β, we may consider those in Kim and Phillips (2001), Nielsen (2004), or Christensen and

Nielsen (2006). Other possible choices for estimators of d and σ2 are those suggested by

Nielsen (2004), Christensen and Nielsen (2006), or Nielsen (2007).

In the following, we estimate d0 and d1 via the FELW estimator. The innovations

u1t which generate zt are possibly correlated with ut of strength ρ. As long as ρ = 0

holds, zt is strictly exogenous (c.f. Assumption 5). If this restriction is true, plain OLS

estimation of β delivers a well-sized LM-type test. Otherwise, the size of the test behaves

badly even for small deviations, i.e. ρ = 0.1 (unreported results). Instead, we apply

fully modi�ed OLS estimation (see Phillips and Hansen, 1990) for fractional cointegration

systems as suggested in Kim and Phillips (2001) and further studied in Nielsen (2004).

Our theoretical results in Theorem 7 show the validity of this approach.

Simulation results for the empirical size under exogeneity (upper panel) and en-

dogeneity (lower panel) are reported in Table 4. The sample sizes vary as follows:

T = {250, 500, 1000}. The fractional order of integration of the series takes the values

d1 = {0.6, 0.8, 1, 1.2}. Thereby, we consider the case where the restriction d1 ≥ d1 − d0 ≥
3/4 + ε is not ful�lled, i.e. when d1 = 0.6. As d0 = 0 for simplicity, d1 directly measures
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Table 6: Stochastic regressors - size for LM-type testing H0 : β = 1 or H0 : γ = 0 in
yt = η + γt+ βzt + et with et ∼ I(d0) and yt, zt ∼ I(d1) and ρ = corr(ut, vt)

T d1 LM∗(γ)|d LM∗(β)|d LM∗(γ)|d̂ LM∗(β)|d̂ d̂1 d̂0 ρ̂|d ρ̂|d̂

ρ = 0: exogeneity
250 0.6 0.062 0.046 0.103 0.099 0.575 -0.024 0.001 0.001

0.8 0.055 0.057 0.086 0.105 0.759 -0.026 0.000 0.000

1 0.054 0.055 0.099 0.092 0.950 -0.028 -0.001 -0.001

1.2 0.046 0.060 0.081 0.097 1.138 -0.030 0.000 0.000

500 0.6 0.055 0.053 0.078 0.090 0.581 -0.011 -0.004 -0.004

0.8 0.061 0.044 0.083 0.076 0.769 -0.015 0.000 0.000

1 0.058 0.057 0.079 0.072 0.965 -0.016 0.001 0.001

1.2 0.053 0.052 0.081 0.077 1.157 -0.017 0.001 0.001

1000 0.6 0.049 0.040 0.078 0.071 0.590 -0.010 0.000 0.000

0.8 0.051 0.045 0.075 0.078 0.779 -0.011 0.000 0.000

1 0.046 0.052 0.064 0.059 0.975 -0.008 0.000 0.000

1.2 0.055 0.047 0.077 0.065 1.172 -0.011 0.000 0.000

ρ = 0.5: endogeneity
250 0.6 0.061 0.053 0.103 0.536 0.578 0.043 0.314 0.304

0.8 0.061 0.055 0.075 0.081 0.761 0.014 0.438 0.428

1 0.059 0.057 0.085 0.100 0.948 -0.010 0.485 0.480

1.2 0.043 0.045 0.086 0.083 1.138 -0.027 0.497 0.493

500 0.6 0.062 0.063 0.126 0.588 0.583 0.054 0.341 0.333

0.8 0.062 0.051 0.056 0.075 0.771 0.019 0.454 0.448

1 0.044 0.053 0.061 0.075 0.962 -0.006 0.494 0.491

1.2 0.067 0.049 0.087 0.078 1.161 -0.016 0.498 0.496

1000 0.6 0.067 0.051 0.106 0.644 0.590 0.063 0.363 0.358

0.8 0.057 0.051 0.049 0.071 0.779 0.021 0.468 0.465

1 0.060 0.068 0.067 0.083 0.974 -0.005 0.497 0.496

1.2 0.072 0.061 0.085 0.079 1.170 -0.009 0.500 0.498

the strength of cointegration in the bivariate system. We report the following statistics:

LM∗|d (infeasible, assuming known d = (d0, d1)′), LM∗|d̂, the Monte Carlo averages of

the FELW estimator for d1 and d0, ρ̂|d (infeasible estimator for the correlation between

ut and u1t) and �nally ρ̂|d̂. The null hypothesis is given by H0 : β = 1.

The results indicate the following �ndings: under exogeneity the size results are sat-

isfying. Performance improves along two directions: (i) an increasing sample size and (ii)

an increasing strength of cointegration. For large T , di�erences between the feasible and

the infeasible test are reduced, whereas we observe some upward size distortions for a

fairly small sample size of T = 250. The Monte Carlo averages of the estimator for d1 and

d0 are reasonably close to the true values, albeit a small downward-bias for d1 is present

for the smallest sample size. The estimator for d0 is nearly unbiased, although the series

from which d0 is estimated are residuals of the OLS regression yt = βzt + et. The estima-
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Table 7: Stochastic regressors - power for LM-type testing H0 : β = 1 or H0 : γ = 0 in
yt = η + 0.0005t+ 1.005zt + et with et ∼ I(d0) and yt, zt ∼ I(d1) and ρ = corr(ut, vt) = 0

T d1 LM∗(γ)|d LM∗(β)|d LM∗(γ)|d̂ LM∗(β)|d̂ d̂1 d̂0 ρ̂|d ρ̂|d̂

250 0.6 0.203 0.098 0.237 0.155 0.577 -0.023 0.000 0.001

0.8 0.168 0.179 0.195 0.224 0.755 -0.024 -0.001 -0.001

1 0.134 0.338 0.185 0.394 0.949 -0.028 -0.004 -0.004

1.2 0.131 0.730 0.170 0.745 1.139 -0.030 -0.002 -0.002

500 0.6 0.827 0.170 0.815 0.195 0.586 -0.013 0.000 0.000

0.8 0.779 0.379 0.789 0.400 0.771 -0.017 -0.001 -0.001

1 0.639 0.801 0.654 0.807 0.964 -0.017 0.000 0.000

1.2 0.510 0.992 0.530 0.994 1.156 -0.017 0.001 0.001

1000 0.6 1.000 0.303 1.000 0.332 0.589 -0.009 0.000 0.000

0.8 0.996 0.723 0.997 0.731 0.778 -0.009 -0.001 -0.001

1 0.982 0.997 0.979 0.996 0.974 -0.010 0.002 0.002

1.2 0.905 1.000 0.903 1.000 1.169 -0.010 0.001 0.000

tion of ρ is performing well, too. It appears that assuming the true value of d = (d1, d0)′

leads to similar results as if d is treated as unknown. Under endogeneity, we �nd that the

test has expected problems when the restriction d1 ≥ d1 − d0 ≥ 3/4 + ε is not met. On

the contrary, results are satisfying for d1 ≥ 0.8. The test statistic depends on estimation

of β, d1, d0 and ρ which depends itself on the previously mentioned estimators. Clearly,

any estimation error carries over to the LM-type test. Therefore, we conclude that the

size results are reasonable and we expect improvements from using e�cient estimators.

Estimation results for d1 and d0 are very similar to the case where ρ = 0. Estimation of

ρ is less precise, however, for small d1 and small T . Only small gains can be found when

assuming the true value of d. For large d1 and large T results improve considerably.

Regarding empirical power, we report simulation results under exogeneity in Table 5.

The true parameter takes the value β = 1.005 and is thus only a slight deviation from

the null hypothesis of unity. The empirical power enhances with growing T and growing

d1. Importantly, the estimators for d1 and d0 perform well under H1. A similar result is

found for the estimator of ρ.

Next, we study the case where additional linear deterministic components are present

in the data generating process. To this end, the model is given by

yt = η + γt+ βzt + et.

A linear deterministic trend is now present and we are interested in testing for (i) H0 : γ =

0 (absence of a linear trend) or (ii) H0 : β = 1. Again, endogeneity is allowed for by using

fully modi�ed OLS estimation. Results are reported in Tables 6 and 7. The infeasible

tests LM∗(γ)|d and LM∗(β)|d perform very well under exogeneity and endogeneity as
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well. For the feasible versions of both tests we observe some mild upward size distortions.

These can be connected to the slight downward-bias of the estimators for d1 mainly and

partly for d0. As before, the case of d1 = 0.6 leads to expected problems: The test for

H0 : β = 1 is heavily a�ected due to endogeneity and the estimator for d0 is clearly

upward biased which in turn renders the estimator for ρ to be largely downward-biased.

Unsurprisingly, even for a large sample size of T = 1000 the problem persists. On the

other hand, the test for absence of a linear trend in the cointegrating regression is nearly

una�ected as the linear trend is deterministic. While point estimation of ρ is very exact

under exogeneity, some bias arises when d1 = 0.6. As long as d ≥ 0.8, estimation of ρ

works reasonably well.

5 Conclusion

In this paper we consider testing in a general linear regression framework when the order

of possible fractional integration of the error term is unknown. We show that the ap-

proach suggested by Vogelsang (1998a) for the I(0)/I(1) case cannot be carried over to

the fractional case. Therefore, we suggest an LM-type test which is independent of the

order of fractional integration of the error term and allows testing in a general setup. The

test statistic exhibits a standard limiting distribution and has non-trivial power against

local alternatives. As possible examples covered by our approach we consider testing for

polynomial trends, mean shifts and trend breaks. Regarding stochastic regressors, we test

restrictions on the fractional cointegrating vector as well as the deterministic components

in cointegrating regressions. The LM-type test shows in all considered situations reason-

able size and power properties and thus provides a �exible technique for practitioners who

are uncertain about the possibly fractional order(s) of integration.

Appendix A

This appendix contains the proofs of our theorems, and some necessary technical lemmas

with proofs.

Proof of Theorem 1: Let us assume that yt follows the data generating process (1)

yt = β
′
zt + et. (22)

Under the null hypothesis H0 : β = 0 this deduces to

yt = et (23)

where we now assume that et = γet−1 + εt and εt ∼ I(δ) with δ ∈ (−1/2, 1/2). Further-
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more, we set e0 = 0 as in Assumption 1. In this setup, the process et is I(d) with d = 1+δ

if γ = 1, and I(δ) if |γ| < 1. The standard Dickey-Fuller unit root test statistic is given

by

DF =

∑T
t=1 et−1εt√

σ̂2
ε

(∑T
t=1 e

2
t−1

) . (24)

For the estimator of the residual variance we have

σ̂2
ε =

1

T

T∑
t=1

ε̂2
t (25)

=
1

T

T∑
t=1

ε2
t + oP (1)

P→ σ2
ε.

We furthermore de�ne σ2
T = V ar(

∑T
t=1 εt). Following along the lines of Sowell (1990), we

can write ∑T
t=1 et−1εt

σ̂ε

(∑T
t=1 e

2
t−1

)1/2
=

1√
TσT

∑T
t=1 et−1εt

1√
TσT

σ̂ε

(∑T
t=1 e

2
t−1

)1/2
. (26)

Thus, we have for the denominator

1√
TσT

(
T∑
t=1

e2
t−1

)1/2

=

(
1

Tσ2
T

T∑
t=1

e2
t−1

)1/2

(27)

⇒
(ˆ 1

0

Bδ(s)
2ds

)1/2

,

where Bδ(t) denotes fractional Brownian motion. For the numerator, we always have

ε2
t = (et− et−1)2 = e2

t + e2
t−1− 2et−1et, or et−1et = (e2

t + e2
t−1− ε2

t )/2, and inserting this in

et−1εt = et−1et − e2
t−1 yields

2
T∑
t=1

et−1εt =
T∑
t=1

(e2
t − e2

t−1)−
T∑
t=1

ε2
t (28)

= e2
T −

T∑
t=1

ε2
t .

Hence, we have for the numerator

1√
TσT

T∑
t=1

et−1εt =
σT

2
√
T

(
eT
σT

)2

−
√
T

2σT

(
1

T

T∑
t=1

ε2
t

)
.
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Since
1

T

T∑
t=1

ε2
t
P→ Eε2

t <∞

by Assumption 1 and because of σT = OP (T 1/2+δ), we have if δ > 0 that σT

2
√
T

= OP (T δ)

and
√
T

2σT
→ 0, and if δ < 0 the vice versa relations. Therefore, in both cases |DF |−1 P→ 0

and thus exp(−b|DF |−1) → 1. Similar arguments hold for δ < −1/2 and thus d < 1/2.

For the Wald test W we obtain by standard long memory asymptotics

1. d ∈ (0, 1/2) : W = OP (T 2d);

2. d ∈ (1/2, 1) : W = OP (T 2d+1).

This proves the theorem. 2

Proof of Theorem 2: Denote by θ̂ the ML-estimator for θ. Under H0 : β = 0 we have

from Assumption 2 that φ(B, θ̂)yt = φ(B, θ̂)et + oP (1) = ut + oP (1). From Assumption

3, we know that T−1
∑T

t=1 φ(B, θ)ztφ(B, θ)z′t → J > 0. As ut is a martingale di�erence

sequence by Assumption 1, we have by Davidson (1994), Theorem 24.5 that

1√
T

T∑
t=1

utφ(B, θ̂)zt ⇒ N(0, σ2J) + oP (1). (29)

Denote by σ̂2 a
√
T -consistent estimator for σ2. Then we have for the LM-test under H0

that

LM(β) =
1

σ̂2

(
T∑
t=1

utφ(B, θ̂)zt

)′( T∑
t=1

(φ(B, θ̂)zt)(φ(B, θ̂)zt)
′

)−1( T∑
t=1

utφ(B, θ̂)zt

)
⇒ χ2

p.

This proves the result in Theorem 2. 2

Proof of Theorem 3: The proof of this theorem uses results for the local power of score

tests by Harris and Peers (1980). Before applying their results, recall that ∂L(0,θ,σ2)
∂θ

|θ=θ̂ = 0

and ∂L(0,θ,σ2)
∂σ2 |σ2=σ̂2 = 0, where θ̂ and σ̂2 denote the ML-estimators for θ and σ2, respec-

tively. Following Harris and Peers (1980), the distribution of the score test under the al-

ternative is a non-central χ2-distribution with non-centrality parameter λ = β′TK|β=0βT ,

where K = E

[(
∂L(β,θ,σ2)

∂β

)′ (
∂L(β,θ,σ2)

∂β

)]
. Let us �rst evaluate K. It is given by
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K =
1

σ4
E

[
T∑
t=1

φ(B, θ)(yt − β′zt)(φ(B, θ)zt)
′(φ(B, θ)zt)φ(B, θ)(yt − β′zt)

+
T∑

s,t=1;s 6=t

φ(B, θ)(yt − β
′
zt)(φ(B, θ)zt)

′(φ(B, θ)zs)φ(B, θ)(ys − β′zs)

]
β=0
=

1

σ4

T∑
t=1

E
[

(φ(B, θ)yt)
2 (φ(B, θ)zt)

′(φ(B, θ)zt)
]

+
T∑

s,t=1;s 6=t

E
[
φ(B, θ)ytφ(B, θ)ys(φ(B, θ)zt)

′(φ(B, θ)zs)
]

=
1

σ4

T∑
t=1

E
[
u2
t (φ(B, θ)zt)

′(φ(B, θ)zt)
]

+
T∑

s,t=1;s 6=t

E
[
utus(φ(B, θ)zt)

′(φ(B, θ)zs)
]

=
1

σ2

T∑
t=1

(φ(B, θ)zt)
′(φ(B, θ)zt).

From Assumption 3, we have that

T−1

T∑
t=1

(φ(B, θ)zt)
′(φ(B, θ)zt) = tr(T−1

T∑
t=1

(φ(B, θ)zt)(φ(B, θ)zt)
′)→ ξ2.

Altogether, we have

λ = β′TK|β=0βT

=
1

σ2
c′

1

T

T∑
t=1

(φ(B, θ)zt)
′(φ(B, θ)zt)c

→ ξ2

σ2
c′c,

which proves the theorem. 2

Before proving Theorem 4, we de�ne a class of admissible �lters or possible lag functions

φ(z, θ), similar to the class H in Robinson (1994). In the strict sense of our approach,

this is not really necessary, as we only deal with short-term autocorrelations and possible

heteroscedasticity in the error term. However, it basically shows how wide the range of

possible �lters φ(z, θ) can be chosen, allowing for instance also for seasonality.
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Assumption 7 In addition to Assumption 2, we assume furthermore that for real λ

ψ(λ) = Re

(
d

dθ
log φ(eiλ, 0)

)
(30)

has �nitely many poles ρl on (−π, π] such that ‖ψ(λ)‖ is monotonically increasing as

λ → ρl− and as λ → ρl+ and there exists disjoint intervals Sl such that
⋃
Sl ∈ (−π, π],

ρl ∈ Sl, ρl /∈ Sk for l 6= k, and

sup
λ∈Sk−(ρk−δ,ρk+δ)

{|λ− ρk| ‖ψ(λ)− ψ(λ± 0.5δ)‖} = O(δη), (31)

as δ → 0 and for some η > 1/2.

Lemma 1 Let d̂ be an estimator of the memory parameter ful�lling Assumption 4. Then,

when Assumption 7 is ful�lled,

1

σ2

T∑
t=1

(
∂

∂d
φ(B, d̂)yt

)
φ(B, d̂)yt

P→ 0. (32)

Proof: We show �rst similar as in Lemma 1 in Robinson (1994)

lim
T→∞

T−1/2 max
λj∈M

‖ψ(λj, d)‖ = 0, (33)

where M = {λ : π < λ < π, λ /∈ (ρl − λl, ρl + λl), l = 1, . . . , s}. It is

max
λj∈M

‖ψ(λj, d)‖ ≤
r∑
l=1

(‖ψ(ρl − λl, d)‖+ ‖ψ(ρl + λl, d)‖) (34)

≤ λ−1
l

r∑
l=1

ˆ ρl+λl

ρl−λl
‖ψ(λj, d)‖dλ

≤
(

2

λl

)1/2 r∑
l=1

(ˆ ρl+λl

ρl−λl
‖ψ(λj, d)‖2dλ

)1/2

= o(T 1/2).

From log T (d̂− d) = oP (1) we have

lim
T→∞

T−1/2 max
λj∈M

‖ψ(λj, d̂)‖ = 0. (35)

Furthermore, we have

E[φ(B, d̂)yt − φ(B, d)yt] = oP (log T ). (36)
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This altogether shows that

lim
T→∞

T−1/2

T∑
t=1

(
∂

∂d
φ(B, d̂)yt

)
φ(B, d̂)yt

P→ 0 (37)

which proves the lemma. 2

Lemma 2 Let d̂ be again a consistent estimator for d ful�lling Assumption 4. Then

1

2σ2

T∑
t=1

[
(φ(B, d̂)yt)

2 − σ2
]

P→ 0. (38)

Proof: The result follows directly from

E[φ(B, d̂)yt − φ(B, d)yt] = oP (log T ). (39)

2

Proof of Theorem 4: From Lemma 1 and Lemma 2 we have that the second and third

equation of the score function is zero if a consistent estimator for d is used. Furthermore,

we have under H0 and using Assumption 2,

φ(B, d̂)yt = φ(B, d̂)et

= φ(B, d)et + (d̂− d)
∂

∂d
φ(B, d)et

= ut + oP (log T ).

Additionally,

φ(B, d̂)zt = φ(B, d)zt + (d̂− d)
∂

∂d
φ(B, d)zt

= φ(B, d)zt + oP (log T ).

Altogether, we have

LM(β)∗ = LM(β) + oP (log T ), (40)

which proves the theorem. 2

Proof of Theorem 5: For simplicity of notation denote b := d1 − d0 in what follows.
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For the matrix B we have:

T−2b

T∑
t=1

(φ(B, θ̂)zt)(φ(B, θ̂)zt)
′ ⇒
ˆ 1

0

Bb(s)Bb(s)
′
ds,

where Bb(r) = 1
Γ(b)

´ r
0

(r − s)b−1dB(s) is a p-dimensional fractional Brownian motion of

order b and B(s) is a standard Brownian motion. From Dolado and Marmol (1999) (see

also Davidson and Hashimzade, 2009 or Dolado and Marmol, 2004) we obtain for the

matrix A

T−b
T∑
t=1

φ(B, θ̂)(yt − β0zt)(φ(B, θ̂)zt)⇒
ˆ 1

0

Bb(s)dB(s).

Conditional on φ(B, θ̂)zt we thus have asymptotically that A ∼ N(0,
´ 1

0
Bb(s)Bb(s)

′
ds)

which proves the theorem. 2

Proof of Theorem 6: The proof follows just the lines as that of Theorem 3 by denoting

that

E[(φ(B, θ)(yt − β0zt))
2 (φ(B, θ)zt)

′(φ(B, θ)zt)] = K <∞

with K being a �nite constant by using equation (3.8) in Davidson and Hashimzade

(2009). Therefore,

1

T

T∑
t=1

E[(φ(B, θ)(yt − β0zt))
2 (φ(B, θ)zt)

′(φ(B, θ)zt)]→ ξ2.

2

Proof of Theorem 7: The proof is similar to that of Theorem 5. For simplicity of

notation denote again b := d1 − d0 in what follows. For the matrix B we have:

T−2b

T∑
t=1

(φ(B, θ̂)zt)(φ(B, θ̂)zt)
′ ⇒
ˆ 1

0

Bb(s)Bb(s)
′
ds,

Analogous to Theorem 5, we obtain

T−b
T∑
t=1

φ(B, θ̂)(yt − β0zt)(φ(B, θ̂)zt)⇒ (1− σ′21Σ−1
22 )

ˆ 1

0

Bb(s)dB(s).

Conditional on φ(B, θ̂)zt we obtain the result of the theorem by similar arguments as in

the proof of Theorem 5. 2
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Appendix B

To derive the LM-test statistic, we consider the Gaussian likelihood function of model

(1), given as

L(β, θ, σ2) = −T
2

log(2πσ2)− 1

2σ2

T∑
t=1

(φ(B; θ)(yt − β′zt))
2
. (41)

We �rst consider the score functions

∂L(β, θ, σ2)

∂β
=

1

σ2

T∑
t=1

(φ(B; θ)(yt − β′zt))φ(B; θ)zt,

∂L(β, θ, σ2)

∂θ
= − 1

σ2

T∑
t=1

(
∂φ(B; θ)

∂θ
(yt − β′zt)

)
(φ(B; θ)(yt − β′zt)) ,

∂L(β, θ, σ2)

∂σ2
= − T

2σ2
+

1

2σ4

T∑
t=1

(φ(B; θ)(yt − β′zt))
2
.

The portion of the Hessian corresponding to β is

∂2L(β, θ, σ2)

∂β∂β′
= − 1

σ2

T∑
t=1

(φ(B; θ)zt) (φ(B; θ)zt)
′ .

By Assumption 3, this behaves asymptotically as −TJ/σ2. For the LM-test of (7), we

use the score under the null (β = 0):

∂L(0, θ, σ2)

∂β
=

1

σ2

T∑
t=1

(φ(B; θ)yt)φ(B; θ)zt,

∂L(0, θ, σ2)

∂θ
= − 1

σ2

T∑
t=1

(
∂φ(B; θ)

∂θ
yt

)
φ(B; θ)yt,

∂L(0, θ, σ2)

∂σ2
= − T

2σ2
+

1

2σ4

T∑
t=1

(φ(B; θ)yt)
2 .

The maximum likelihood (ML) estimators of θ and σ2 equate the last two components of

the score to zero. The LM-test is constructed as the norm of the remaining score for β,

in the appropriate information matrix metric, given from above as

(
−∂

2L(β, θ, σ2)

∂β∂β′

)−1

= σ2

(
T∑
t=1

(φ(B; θ)zt) (φ(B; θ)zt)
′

)−1

,

and substituting estimates for θ and σ2.
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Appendix C

The case where the hypothesis of interest is of the general linear form

Rβ = r,

with R a given matrix of dimension k × p, for p > k = 1, and r a given k-vector, readily

reduces to the situation considered in the main text. Thus, select a suitable (p − k) × p
matrix so that the p× p matrix

C =

(
R

S

)
has full rank p = dim β. We may without loss of generality reparametrize to

µ =

(
µ1

µ2

)
=

(
Rβ − r
Sβ

)
,

and the hypothesis is recast as

H0 : µ1 = 0,

with µ2 free. Writing s = (r′, 0)′, of dimension p × 1, we have Cβ = µ + s, and hence

β = C−1(µ + s), so β′zt = [C−1(µ+ s)]
′
zt = (µ + s)′ [C−1]

′
zt. Again without loss of

generality, we may transform the regressors to

z̃t =

(
z̃1t

z̃2t

)
=
[
C−1

]′
zt,

with z̃1t and z̃2t of dimension k × 1 and (p− k)× 1, respectively. Assume there exists an

estimator β̃ that is consistent under the null, and let µ̃2 = Sβ̃. Then yt is transformed to

ỹt = yt − s′z̃t − µ̃′2z̃2t, or, equivalently,

ỹt = yt − r′z̃1t − µ̃′2z̃2t.

The transformed regression is

ỹt = µ′1z̃1t + ẽt,

in which the zero restriction µ1 = 0 and hence equivalently the general linear hypothesis

H0 : Rβ = r may be tested in the same manner as the hypothesis β = 0 in the untrans-

formed regression. Note that since R and r do not depend on parameters, neither does z̃t,

and for su�cient convergence rate of β̃ under the null, the test of the hypothesis µ1 = 0

in the general situation may be analyzed along the same lines as that of the hypothesis

30



β = 0. Nonlinear hypotheses are handled similarly, writing the hypothesis as

f(β) = 0,

where f : Rp → Rk may be nonlinear. Let

R = ∇f(β̃),

the k × p Jacobian of f at β̃, and

r = ∇f(β̃)β̃ − f(β̃).

Now zt and yt are transformed as before, and the test carried out on µ1 (i.e., formally as

a test of the linear hypothesis µ1 = 0).
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