

Generalizing smooth transition autoregressions

Emilio Zanetti Chini

CREATES Research Paper 2013-32

Department of Economics and Business Aarhus University Fuglesangs Allé 4 DK-8210 Aarhus V Denmark Email: oekonomi@au.dk Tel: +45 8716 5515

Generalizing smooth transition autoregressions

Emilio Zanetti Chini*

FIRST VERSION: October 2013 THIS VERSION: September 2014

Abstract

We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail, with particular emphasis on two different LM-type tests for the null of symmetric adjustment towards a new regime and three diagnostic tests, whose power properties are explored via Monte Carlo experiments. Four classical real datasets illustrate the empirical properties of the GSTAR, jointly to a rolling forecasting experiment to evaluate its point and density forecasting performances. In all the cases, the dynamic asymmetry in the cycle is efficiently captured by the new model. The GSTAR beats AR and STAR competitors in point forecasting, while this superiority becomes less evident in density forecasting, specially if robust measures are considered.

Keywords: Dynamic Asymmetry, Smooth Transition, Testing, Estimation, (Density) Forecasting Performance. **JEL:** C22, C51, C52

^{*}University of Rome "Tor Vergata"- Department of Economics, Law and Institutions - Via Columbia, 2 - 00181, Rome (ITALY) - *E-mail:* Emilio.Zanetti.Chini@uniroma2.it

1 Introduction

Many of the economic and natural sciences time series show asymmetric fluctuations, see Tong (1990); Teräsvirta, Tjøstheim, and Granger (2010) *inter alia*. Sichel (1993) gives a double definition of asymmetry in Business Cycle: the first - the *steepness* - happens when contractions in the levels are steeper than expansions (symmetry in the level axis); the second - the *deepness* - when the series undergoes at an accelerating time until a minimum after which it starts to recover with high, decreasing acceleration, until to smoothly recover the peak (symmetry in time axis). When these two definitions are combined, we call this *dynamic asymmetry*.

Smooth transition autoregressions (STAR), originated by the pioneering contribution by Bacon and Watts (1971) in Biostatistics, then developed in time series by Haggan and Ozaki (1981); Chan and Tong (1986) and Teräsvirta (1994), are currently one of the most simple and successful tools to model the nonlinear dynamics in the conditional mean and/or variance. In particular, a logistic transition is commonly postulated when the series under consideration is assumed having asymmetric oscillations from its conditional mean. We argue that, being the logistic function reflectively symmetric by construction, the resulting logistic STAR does not match the theoretical definition of dynamic asymmetry. In other words, the available models allow the econometrician, at the best, to answer to the question: *Does the series return to its original regime and when?* Here, our objective is to answer to another, more challenging question: *Is the rate of change (if any) in the left tail of the logistic transition different with respect of the right tail and how much?* As we will show, an appropriate solution to this methodological question, per se interesting for descriptive aims, improves the forecasting ability of STAR family.

The econometric literature provides two strategies: the first, proposed by Sollis, Leybourne, and Newbold (1999) (SLN1), is to raise the STAR's transition function to an exponent using an idea by Nelder (1961); the second, suggested by Sollis, Leybourne, and Newbold (2002) (SLN2) is to add a parameter inside the transition function in such a way to control for the asymmetry of both the tails of the transition function by simply using a Heaviside indicator. Both of these solutions have been successfully applied to some classical macroeconomic series. Lundbergh and Teräsvirta (2006) (LT) provides three diagnostic tests for the assessment of the estimated asymmetric model for exchange rate with GARCH errors.

Unfortunately, both of these solutions present some criticality: Figure 1, panel (a) clearly shows that in the SLN2 case, the transition function could be non-smooth; on the other hand, the SLN1 and LT parametrization, plotted in panel (b) conveys a smooth transition, but the effect of increasing of the asymmetry parameter could translate just in a shift effect, if not properly restricted as stated in the same article; moreover, this parametrization does not provide an immediate description of the behavior of each tail of the transition function (which is instead the beauty of SLN2). Thus, the detection and assessment of the dynamic asymmetry in a statistically well-specified time series model seem still an open issue. This work nests this strand of literature and represents a step ahead for what concerns the basic parametrization of the STAR family.

The literature on point forecast combination and on evaluation of individual density forecasts is nowadays established, see Timmermann (2006) and Corradi and Swanson (2006). The literature on aggregation of more density forecasts is instead in a development phase, and focuses on the so called *scoring rules* (or *opinion pools*), peculiar functions enabling the forecaster to properly aggregate the set of conditional predictive density as well as more common measures as Mean Square Forecast Error *et similia* do for point forecasts. Despite their dated origins in statistics, as documented by Gneiting and Raftery (2007), scoring rules are becoming increasingly applied by contemporaneous econometric literature only recently; see, *inter alia*, Mitchell and Hall (2005); Kascha and Ravazzolo (2010); Geweke and Amisano (2011); Ravazzolo and Vahey (2013) and therein mentioned literature. We contribute to this strand of literature by investigating if dynamic asymmetry accounts for density combination.

The next Section 2 applies to the classical STAR model a generalized version of the logistic transition function with two parameters governing the the two tails of the logistic sigmoid and a logarithmic/exponential rescaling able to preserve the smoothness of the transition without requiring any restriction in the parameters. The resulting Generalized STAR (GSTAR) model encloses the symmetric STAR, so we modify the general-to-specific modeling procedure following Granger and Teräsvirta (1993) (GT); this is done in Section 3. Two different LM-type tests for the null hypothesis that the two tails of the transition function are reflexively symmetric - a situation which is called *dynamic symmetry* for what follows - are built-up in Section 4: the first is a classical Score test on the two slope parameters, while the second is modified version of the Taylor-expansion-based test by Luukkonen, Saikkonen, and Teräsvirta (1988) (LST). Section 5 modifies three diagnostic tests originally introduced by Eitrheim and Teräsvirta (1996) (ET). Section 6 provides a simulation study according to which the SLT-type test seems less restrictive than the Score test. Four different case studies on U.S. industrial production and unemployment rate, International Sunspot Number and Canadian Lynx data are illustrated in Section 7, jointly with a rolling forecasting exercise where both point and density forecasting evaluation are investigated: in all these examples, the dynamic asymmetry is found to be a non negligible feature to deal with.

2 The Model

Definition 1. Let be y_t a realization of a time series observed at $t = 1 - p, 1 - (p - 1), \ldots, -1, 0, 1, \ldots, T - 1, T$. Then the univariate process $\{y_t\}_t^T$ follows a GSTAR(p) model if

$$y_t = \boldsymbol{\phi}' \mathbf{z}_t + \boldsymbol{\theta}' \mathbf{z}_t G(\boldsymbol{\gamma}, h(c_k, s_t)) + \epsilon_t, \quad \epsilon_t \sim I.I.D.(0, \sigma^2), \tag{1}$$

$$G(\boldsymbol{\gamma}, h(c_k, s_t)) = \left(1 + \exp\left\{-\prod_{k=1}^K h(c_k, s_t)\right\}\right)^{-1},\tag{2}$$

$$h(c_k, s_t) = \begin{cases} \gamma_1^{-1} \exp(\gamma_1 | s_t - c_k | -1) & \text{if } \gamma_1 > 0, \\ s_t - c_k & \text{if } \gamma_1 = 0, \\ -\gamma_1^{-1} \log(1 - \gamma_1 | s_t - c_k |) & \text{if } \gamma_1 < 0, \end{cases}$$
(3)

for $(s_t - c_k) > 0$ (or, equivalently, $h(c, s_t) > 1/2$) and

$$h(c_k, s_t) = \begin{cases} -\gamma_2^{-1} \exp(\gamma_2 |s_t - c_k| - 1) & \text{if } \gamma_2 > 0, \\ s_t - c_k & \text{if } \gamma_2 = 0, \\ \gamma_2^{-1} \log(1 - \gamma_2 |s_t - c_k|) & \text{if } \gamma_2 < 0, \end{cases}$$
(4)

for $(s_t - c_k) \leq 0$ (or, equivalently, $h(c_k, s_t) < 1/2$), where y_t is a dependent variable, $\mathbf{z}_t = (1, y_{t-1}, \dots, y_{t-p})'$, $\boldsymbol{\phi} = (\phi_0, \phi_1, \dots, \phi_p)'$, $\boldsymbol{\theta} = (\theta_0, \theta_1, \dots, \theta_p)'$ are parameter vectors, the transition function $G(\cdot, \cdot, \cdot)$ is a continuous function in the vector $\boldsymbol{\gamma} = (\gamma_1, \gamma_2)$ and in the function $h(c_k, s_t)$, which is strictly increasing in the transition variable $s_t = y_{t-d}, d > 0$ is a delay parameter, and the $K = \{1, 2\}$ location parameter(s) c_k .

In what follows we simplify the notation by denoting the kernel of the model corresponding to the k-esim location with $\eta_{k,t} \equiv s_t - c_k$ and by $h(\eta_{k,t})$ the associated function, so that the general form of the transition function $G(\cdot)$ can be written as:

$$G(\boldsymbol{\gamma}, h(\eta_{k,t})) = \left(1 + \exp\left\{-\prod_{k=1}^{K} \left[h(\eta_{k,t})I_{(\gamma_{1} \leq 0, \gamma_{2} \leq 0)} + h(\eta_{k,t})I_{(\gamma_{1} > 0, \gamma_{2} > 0)} + h(\eta_{k,t})I_{(\gamma_{1} > 0, \gamma_{2} > 0)} + h(\eta_{k,t})I_{(\gamma_{1} > 0, \gamma_{2} > 0)}\right]\right\}\right)^{-1}.$$
(5)

Equation (3) (equation (4)) models the higher (lower) tail of the probability function, so allowing for the asymmetric behavior introduced by the slope parameter γ_1 (γ_2) which controls the velocity of the transition. The case in which $h(\eta_{k,t}) = \eta_{k,t}$ implies that the function nests a one-parameter symmetric logistic STAR model with slope $\gamma_1 = \gamma_2 = \gamma$. When $\gamma_1, \gamma_2 > 0$ ($\gamma_1, \gamma_2 < 0$), $h(\eta_{k,t})$ is an exponential (logarithmic) rescaling which increases more quickly (more slowly) than a standard logistic function. Model (1) can be generalized to other distributions of exponential family. The Indicator functions in (5) stress that slope parameters are not constrained, as in the classical STAR model (whereas the positiveness of the slope parameter was an identifying condition). When $\gamma \to +\infty$, both the models nests an indicator function $I_{(s_t>c)}$, in which case the model become a (Self Exciting) Threshold Autoregression (SETAR), see Tong (1983); on the other side, they nest a straight line around 1/2 for each s_t when $\gamma \to -\infty$.

The Generalized Logistic is plotted in Figure 2: the resulting sigmoid is clearly consistent with the Sichel (1993) definition of dynamic asymmetry (see, e.g., the case in which $\gamma_1 = -2$ and $\gamma_2 = 4$) and maintains the global slope of the transition function unchanged with respect to the traditional LSTAR one, so that no additional identification restriction is needed with respect to the traditional STAR model.

Remark 1. The model described in this section is the time series variant of the original generalized logistic model proposed by Stukel (1988), which differs for the definition of $\mathbf{z} = (x_1, \ldots, x_N)'$, for $\{x_i\}_{i=1}^N$ being N exogenous regressors, and consequently, $\eta_t = \phi' \mathbf{z}$.

Remark 2. The GLSTAR model described by equation (1)-(4) nests a linear AR model for $\gamma = 0$ if $h(\eta_t)$ is modified as follows:

$$h(\eta_t)^{EZC} = \begin{cases} \gamma_1^{-1} \exp(\gamma_1 |\eta_t| - 1) & \text{if } \gamma_1 > 0, \\ 0 & \text{if } \gamma_1 = 0, \\ -\gamma_1^{-1} \log(1 - \gamma_1 |\eta_t|) & \text{if } \gamma_1 < 0, \end{cases}$$
(6)

for $\eta_t \ge 0 \ (\mu > 1/2)$ and

$$h(\eta_t)^{EZC} = \begin{cases} -\gamma_2^{-1} \exp(\gamma_2 |\eta_t| - 1) & \text{if } \gamma_2 > 0, \\ 0 & \text{if } \gamma_2 = 0, \\ \gamma_2^{-1} \log(1 - \gamma_2 |\eta_t|) & \text{if } \gamma_2 < 0, \end{cases}$$
(7)

for $\eta_t < 0$ ($\mu < 1/2$). The label "*EZC*" distinguishes this version from the the original Stukel's generalized logistic function for exposition matter. This special case is necessary in order to build a test for the null of linearity against of dynamic asymmetry, see next Section 4.

Remark 3. As in the traditional STAR, the process $\{\epsilon_t\}_t^T$ is assumed to be a martingale difference sequence with respect to the history of the time series up to time t - 1, denoted as $\Omega_{t-1} = [y_{t-1}, \ldots, y_{t-p}]$, i.e., $E[\epsilon_t | \Omega_{t-1}] = 0$. This is sufficient to built up tests based on artificial regressions as demonstrated in Davidson and McKinnon (1990) and has important consequence for applied aims, in what the "All-in-One" test discussed in Section 4 and the three diagnostic tests discussed in Section 5 can still be meaningful if the normality test reject this hypothesis. For expositional purposes, we restrict the conditional variance of the process $\{\epsilon_t\}_t^T$ to be constant, $E[\epsilon_t^2|\Omega_{t-1}] = \sigma^2$. Moreover the parameter vectors $\boldsymbol{\phi}$ and $\boldsymbol{\theta}$ are assumed to not change in time and the number of regimes is assumed to not exceed K = 2. However, these restriction could be relaxed and tested, see Section 5.

Remark 4. As in the traditional STAR, if process is characterized by $G(\mathbf{0}, h(\eta_t)^{EZC})$, we assume $Q(z) = z^p - \phi_1 z^{p-1} - \cdots - \phi_p = 0$ has its roots inside the unit circle, since this implies that the model is stationary and ergodic under the null hypothesis of linearity.

We now discuss three relevant cases of GSTAR model.

Example 1. If K = 1, the parameters $\phi + \theta G(\gamma, \mathbf{c}, s_t)$ change monotonically as a function of s_t from ϕ to $\phi + \theta$. The corresponding transition function is:

$$G(\boldsymbol{\gamma}, h(\eta_{1t})) = \left(1 + \exp\left\{-\left[h(\eta_{1,t})I_{(\gamma_1 \le 0, \gamma_2 \le 0)} + h(\eta_{1,t})I_{(\gamma_1 \le 0, \gamma_2 > 0)} + h(\eta_{1,t})I_{(\gamma_1 > 0, \gamma_2 \le 0)} + h(\eta_{1,t})I_{(\gamma_1 > 0, \gamma_2 > 0)}\right]\right\}\right)^{-1}$$

$$(8)$$

with $h(\eta_{1,t})$ corresponding to (3) and (4).

Example 2. When K = 2 and $c_1 \neq c_2 = \mathbf{c}$, the model (1) nests the following STAR model with second order Generalized Logistic (GLSTAR2) function:

$$G(\boldsymbol{\gamma}, h(\eta_t)) = 1 - \exp\left\{-h(\eta_{2,t})\right\},\tag{9}$$

where:

$$h(\eta_{2,t}) = \begin{cases} \gamma_1^{-1} \exp(\gamma_1 |(s_t - c_1)(s_t - c_2)| - 1) & \text{if } \gamma_1 > 0, \\ (s_t - c_1)(s_t - c_2) & \text{if } \gamma_1 = 0, \\ -\gamma_1^{-1} \log(1 - \gamma_1 |(s_t - c)(s_t - c_2)|) & \text{if } \gamma_1 < 0, \end{cases}$$
(10)

for $(s_t - c)^2 > 0$ (or, equivalently, $h(\eta_t) > 1/2$) and

$$h(\eta_{2,t}) = \begin{cases} -\gamma_2^{-1} \exp(\gamma_2 |(s_t - c)(s_t - c_2)| - 1) & \text{if } \gamma_2 > 0, \\ (s_t - c)(s_t - c_2) & \text{if } \gamma_2 = 0, \\ \gamma_2^{-1} \log(1 - \gamma_2 |(s_t - c_1)(s_t - c_2)|^2) & \text{if } \gamma_2 < 0, \end{cases}$$
(11)

for $(s_t - c_1)(s_t - c_2) < 0$ (or, equivalently, $h(\eta_{2,t}) < 1/2$), which $\eta_t \equiv \eta_t = (s_t - c_1)(s_t - c_2)$. Figure 3 shows the transition function for a set of different combinations of γ_1 for fixed γ_2 (upper panel) and viceversa (lower panel).

Example 3. A particular case of GLSTAR2 holds when K = 2 and $c_1 = c_2 = \mathbf{c}$, in which case the model (1) nests an exponential generalized exponential autoregressive (GESTAR) model, which is defined as in (9) - (11), apart the fact that $h(\eta_{2,t}) = (s_t - c)^2$ if $\gamma_1 = 0$ for $(s_t - c)^2 > 0$ and $\gamma_2 = 0$ for $(s_t - c)^2 \leq 0$ In this case, the parameters $\phi + \theta G(\cdot)$ change asymmetrically at some (undefined) point where the function reaches its own minimum.

A simulated example of GLSTAR model (in both Stukel's and EZC's versions), jointly with its symmetric Teräsvirta (1994) counterpart, is shown in Figure 4. For each of these three models, we used two different specifications, which differ for the location parameter c. As easy seen in panel (a), the Stukel and EZC model coincides; the associated transition functions versus time plotted in panel (b) and versus ordered η_t in panel (c) confirm this finding; on the other hand, the plot of $h(\eta_t)$ versus ordered η_t in panel (d) is more informative with respect to the effect of the different kind of asymmetry in the process: $h(\eta_t)^{EZC}$ is a 45° angle straight line, while the rescaling effect is visible in the Stukel' s $h(\eta_t)$ parametrization.

3 Modelling Strategy and Estimation

According to GT, the investigator should always be interested in testing whether a linear AR(p) representation is adequate when building a GSTAR model. If the answer is negative, then the second step will be the selection of a nonlinear symmetric model. Then, the issue of testing for dynamic symmetry hypothesis arises as further step, when finding good specifications of STAR models becomes too difficult or whenever suggested by the economic theory. The resulting General-to-Specific modelling strategy consists in the following 7 steps:

- 1. Specify a linear autoregressive model.
- Test linearity for different values of d, and if rejected, determining d in (2) or (9).
- 3. Choose between LSTAR, LSTAR2 or ESTAR by the Teräsvirta's rule.
- Test the symmetry of the tails transition function according to the result in Step 3.
- 5. If the hypothesis of symmetry is rejected, estimate the GSTAR model with the most appropriate transition function given by step 3.
- 6. Evaluate the new parametrization by some diagnostic tests.
- 7. Use the estimated GSTAR model for forecasting aims.

The autoregressive order p is selected according to Bayesian Information Criterion (Schwarz, 1978), which is combined with the result with a portmanteau test for

serial correlation in order to avoid a wrong rejection of symmetry hypothesis. This is due to the fact that the GSTAR model requires a lower autoregressive order with respect to its symmetric counterpart.

For what concerns the Step 4, the dynamic symmetry hypothesis is tested by two different LM-type tests. In the first test the series is assumed to follow a STAR model, so that testing for symmetry is a second step with respect to testing for linearity. Hence, we will refer to this test as "Two-Step test". In the second test we do not assume any prior of the nonlinearity of the series, so that it enclose all steps from 2) to 5) of the General-to-Specific modelling strategy above mentioned; hence, the use of the label "All-in-one" to distinguish it from the different null hypothesis of "Two-Step" test. The choice of what test to use depends on the needs of the investigator¹. Our experience suggests to perform the "All-in-One" test should be used if the investigator wants to be conservative against evidence of asymmetric dynamics, while the "Two-Step" tends to not reject the null unless extreme situations (see Section 7 for details). Both the tests will be discussed in the next Section 4. The choice of the delay parameter d and the choice of the transition function can be done with the same procedure adopted in Tsay (1989) and Teräsvirta (1994). Following Leybourne, Newbold, and Vougas (1998), estimation is done by concentrating the Sum of Square Residuals function with respect to θ and ϕ , that is minimizing:

$$SSR = \sum_{t=1}^{T} \left(y_t - \hat{\psi}' \mathbf{x}'_t \right)^2, \tag{12}$$

where:

$$\hat{\boldsymbol{\psi}} = [\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\theta}}] = \left(\sum_{t=1}^{T} \mathbf{x}'_{t}(\boldsymbol{\gamma}, \mathbf{c}) \mathbf{x}_{t}(\boldsymbol{\gamma}, \mathbf{c})\right)^{-1} \left(\sum_{t=1}^{T} \mathbf{x}'_{t}(\boldsymbol{\gamma}, \mathbf{c}) y_{t}\right), \quad (13)$$

and

$$\mathbf{x}_{\mathbf{t}}(\hat{\boldsymbol{\gamma}}, \hat{\mathbf{c}}) = \left[\mathbf{z}, \mathbf{z}_{\mathbf{t}}' G(\hat{\boldsymbol{\gamma}}, h(\hat{\mathbf{c}}, s_t)) \right].$$
(14)

¹Our simulation study shows that the two tests behave differently in terms of empirical power. See Section 6 for details.

This is possible because if γ and **c** are known and fixed, the GSTAR model is linear in θ and ϕ , which can be easy computed via conditional OLS. In a such a way, the nonlinear least square minimization problem, otherwise necessary, more demanding in terms of parameters to estimate and not available in closed-form, reduces to a minimization on three (four) parameters, and is solved via a grid search over γ_1 , γ_2 , c (c_1 , c_2 in case of GLSTAR2).

In our applications, both γ_1 and γ_2 are chosen between a minimum value of -10 and a maximum of 10 with rate 0.5 in the first three examples (-150 and 150 with rate 15 in the fourth one); the grid for parameter c_1 (c_2) is the set of values computed between the 10th and 90th percentile of s_t with rate computed as the difference of the two and divided for an arbitrarily high number (here, 200).

The one-step forecast is immediately available if knowing the nonlinear function in what, by least-square criterion, $E(\epsilon_{t+1}|I_t) = 0$, $I_t = y_{t-i}$, $i \ge 1$ in (1). The multistep ahead forecast is not available in closed form and requires numerical integration. Hence at t+1, we generate, $1, \ldots, m, \ldots, M$ draws conditionally on the estimated parameters and obtain the forecast $y_{t+1} \sim f(y_{t+1}|I_t)$; in turn, this is collected to draw, at t + 2, the forecast $y_{t+2} \sim f(y_t + 2|I_t, y_{t+1}^{(m)})$, and so on until, at t + h, the forecast $y_{t+h|t} = f(t+h|I_t, y_{t+1}^{(m)}, \ldots, y_{t+h-1}^{(m)})$ is obtained and then evaluated as:

$$\hat{y}_{t+h} = \frac{1}{M} \sum_{m=1}^{M} \hat{y}_{t+h|t}^{(m)} \tag{15}$$

4 Testing for Dynamic Symmetry

In this section we discuss two LM-type test for the null of dynamic symmetry according to the General-to-Specific strategy stated in the previous section 3. The "Two-Step" test, illustrated in Subsection 4.1, is an adaptation for time series of the original Stukel's parametrization. On the other side, the "All-in-One" test, derived in Subsection 4.2, takes the idea by LST to linearize the $G(\boldsymbol{\gamma}, h(\eta_t^{EZC}))$ by third-order Taylor expansion of $G(\cdot)$, which leads to an augmented artificial model which in turn can be investigated by a classical χ^2 or *F*-test. This is due to the fact that the Information matrix is the same as in GT^2 .

4.1 "Two-Step" Test

Consider the general formulation (1)-(2). Then, the null hypothesis of no logarithmic (exponential) deviations from the logistic transition in systems (1)-(8) or (1)-(11) can be tested by setting the following hypotheses testing system:

$$H_{0i}: (\gamma_1, \gamma_2) = (0, 0) \text{ vs } H_{1i}: (\gamma_1, \gamma_2) \neq (0, 0), \ i = 1, 2, 3 ,$$
 (16)

with subscript *i* indicating the type of underlining transition function, namely i = 1 for generalized logistic (eq. (5)), i = 2 for generalized second order logistic (eq. (9)) and i = 3 for the generalized exponential one.

This hypothesis system requires a simple score test. Let denote by $\boldsymbol{\Xi} = [\boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{\gamma}, c]$ the hyper-parameter vector of the model, so that the log-likelihood function of the T observations can be denoted by $\mathcal{L}_t(\mathbf{z_t}, \boldsymbol{\Xi})$ and the score vector by $\mathbf{q_t}(\mathbf{z_t}, \boldsymbol{\Xi}) =$ $\sum_t \mathbf{q}(\mathbf{z_t}, \boldsymbol{\Xi}) = \partial \mathcal{L}_t(\mathbf{z_t}, \boldsymbol{\Xi}) / \partial \boldsymbol{\Xi}$ evaluated at $(\boldsymbol{\theta_0}, \boldsymbol{\phi_0}, \mathbf{0}, c_0)$. Then, standard results lead to the following log-likelihood function:

$$\mathcal{L}_{t}(\mathbf{z}_{t}, \mathbf{\Xi}) = const + \frac{T}{2} \ln \sigma^{2} - \frac{1}{2} \sigma^{2} \sum_{t} (y_{t} - \boldsymbol{\phi}' \mathbf{z}_{t} - \boldsymbol{\theta}' \mathbf{z}_{t} G)^{2}$$

$$= const + \frac{T}{2} \ln \sigma^{2} - \frac{1}{2} \sigma^{2} \sum_{t} u_{t}^{2}(\mathbf{\Xi}),$$
(17)

with const denoting a constant and u_t the model's residual, and to the score:

$$\mathbf{q}_{\mathbf{t}}(\mathbf{z}_{\mathbf{t}}, \mathbf{\Xi}) = \sum_{t} \mathbf{q}(\mathbf{z}_{\mathbf{t}}, \mathbf{\Xi}) = \frac{\partial \mathcal{L}_{t}(\mathbf{z}_{\mathbf{t}}, \mathbf{\Xi})}{\partial \mathbf{\Xi}} = \frac{1}{\sigma^{2}} \sum_{t} u_{t}(\mathbf{\Xi}) \mathbf{k}_{\mathbf{t}} \quad , \tag{18}$$

²See GT, pp. 64-5, adjust the notation for an autoregressive framework and notice that we only modify the definition of nonlinear part $f_t = f(\boldsymbol{w}_t; \boldsymbol{\psi})$, which does not vary the general result.

where

$$\mathbf{k}_{\mathbf{t}} = \frac{\partial u_t(\boldsymbol{\Xi})}{\partial \boldsymbol{\Xi}} = (\mathbf{z}_{\mathbf{t}}, \mathbf{z}_{\mathbf{t}}G, \boldsymbol{\theta}' \mathbf{z}_{\mathbf{t}}G_{\gamma_1}, \boldsymbol{\theta}' \mathbf{z}_{\mathbf{t}}G_{\gamma_2}, \boldsymbol{\theta}' \mathbf{z}_{\mathbf{t}}G_{t,c}),$$
(19)

with $G_{t,\gamma_1} = \partial G/\partial \gamma_1$, $G_{t,\gamma_2} = \partial G/\partial \gamma_2$, and $G_c = \partial G/\partial \gamma_c$ being defined in Appendix A.1.

Under H_0 , the test statistic is:

$$S_1(\mathbf{\Xi})^{LM} = \frac{1}{\hat{\sigma}^2} \mathbf{\hat{u}'} \mathbf{H} (\mathbf{H'}\mathbf{H} - \mathbf{H'}\mathbf{Z}(\mathbf{Z'}\mathbf{Z})^{-1}\mathbf{Z'}\mathbf{H})^{-1} \mathbf{H'}\mathbf{\hat{u}},$$
(20)

where $\hat{\mathbf{u}} = [\hat{u}_1, \dots, \hat{u}_T]'$, $\mathbf{Z} = (\mathbf{z}'_1, \dots, \mathbf{z}'_T)'$, $\mathbf{H} = [(\mathbf{h}_1^0)', \dots, (\mathbf{h}_T^0)']'$, with $(\mathbf{h}_t^0)' = \mathbf{k}_t^G$, \mathbf{k}_t^G denoting the sub-vector $[\boldsymbol{\theta}' \mathbf{z}_t G_{\gamma 1}, \boldsymbol{\theta}' \mathbf{z}_t G_{\gamma 2}, \boldsymbol{\theta}' \mathbf{z}_t G_c]'$ and $n = dim(\mathbf{k}_t^G)$. Under H_0 , statistic S1 is asymptotically distributed as a χ_n^2 . Just minor modifications are needed in notation of \mathbf{k}_t and \mathbf{q}_t in case of GLSTAR2 model due to an additional cparameter with respect to the GLSTAR.

4.2 "All-in-One" Test

Consider (2) with $G(\boldsymbol{\gamma}, h(\eta_t^{EZC}))|_{\boldsymbol{\gamma}=\mathbf{0}}$ and define $\boldsymbol{\tau} = (\boldsymbol{\tau}_1, \boldsymbol{\tau}_2)'$, where $\boldsymbol{\tau}_1 = (\phi_0, \phi')'$, $\boldsymbol{\tau}_2 = \boldsymbol{\gamma}$. Let $\hat{\boldsymbol{\tau}}_1$ the LS estimator of $\boldsymbol{\tau}_1$ under $H_0 : \boldsymbol{\gamma} = \mathbf{0}, \ \hat{\boldsymbol{\tau}} = (\boldsymbol{\tau}_1', \mathbf{0}')'$. Moreover, let $\mathbf{z}_t(\boldsymbol{\tau}) = \frac{\partial \epsilon_t}{\partial \boldsymbol{\tau}}$ and $\hat{\mathbf{z}}_t = \mathbf{z}_t(\hat{\boldsymbol{\tau}}) = (\hat{\mathbf{z}}_{1,t}, \hat{\mathbf{z}}_{2,t})$, where the partition conforms to that of $\boldsymbol{\tau}$. Then the general form of LM statistic is:

$$S_2(\boldsymbol{\Xi})^{LM} = \frac{1}{\hat{\sigma}^2} \hat{\mathbf{u}}' \hat{\mathbf{Z}}_2 (\hat{\mathbf{Z}}_2' \hat{\mathbf{Z}}_2 - \hat{\mathbf{Z}}_2' \hat{\mathbf{Z}}_1 (\hat{\mathbf{Z}}_1' \hat{\mathbf{Z}}_1)^{-1} \hat{\mathbf{Z}}_1' \hat{\mathbf{Z}}_2)^{-1} \hat{\mathbf{Z}}_2' \hat{\mathbf{u}}, \qquad (21)$$

where $\hat{\mathbf{u}}$ is previously defined, $\hat{\sigma}^2 = \frac{1}{T} \sum_{1}^{T} \hat{u}_t^2$ and $\hat{u}_t = y_t - \hat{\tau}_1' \mathbf{z}_t$, $\hat{\mathbf{Z}}_{\mathbf{i}} = (\hat{\mathbf{z}}_{\mathbf{i}1}, \dots, \hat{\mathbf{z}}_{\mathbf{i}t}, \dots, \hat{\mathbf{z}}_{\mathbf{i}T})'$, $i = \{1, 2\}, t = 1, \dots, T$. When the model is an GLSTAR, $\hat{\mathbf{z}}_{1,t} = -\mathbf{z}_t = -(1, y_{t-1}, \dots, y_{t-p})'$ while $\hat{\mathbf{z}}_{2\mathbf{t}} \equiv \frac{\partial^2 u_t}{\partial \gamma \partial \gamma'} \Big|_{\gamma=0} = -\frac{1}{2} \Big\{ \theta_{20}[y_t(y_{t-d})] - cy_t \theta' \mathbf{z}_t + \theta'_2 \mathbf{z}_t y_t y_{t-d} \Big\}$, where d is the delay parameter. The change in the definition of $\mathbf{z}_{2\mathbf{t}}$ is not significant in terms of LM stastistic build-up. This implies that no change of treatment with respect to the original parametrization is needed. In particular, in order to circumvent the Davies (1977)'s problem of unidentification of nuisance parameters θ_0 and $\bar{\boldsymbol{\theta}} = [\theta_1, \dots, \theta_p]'$ under the null hypothesis, the same LST approach can be used. The linearized GLSTAR model

$$y_{t} = \phi' \mathbf{z}_{t} + \theta' \mathbf{z}_{t} T_{3} \Big[h(\eta_{k,t}) I_{(\gamma_{1} \leq 0, \gamma_{2} \leq 0)} + h(\eta_{k,t}) I_{(\gamma_{1} \leq 0, \gamma_{2} > 0)} + h(\eta_{k,t}) I_{(\gamma_{1} > 0, \gamma_{2} \geq 0)} \\ + h(\eta_{k,t}) I_{(\gamma_{1} > 0, \gamma_{2} > 0)} \Big] + \epsilon'_{t} ,$$
(22)

leads to the following auxiliary regression for testing linearity and symmetry:

$$\hat{u}_{t} = \hat{\mathbf{z}}_{1t}' \tilde{\beta}_{1} + \sum_{j=1}^{p} \beta_{2j} y_{t-j} y_{t-d} + \sum_{j=1}^{p} \beta_{3j} y_{t-j} y_{t-d}^{2} + \sum_{j=1}^{p} \beta_{4j} y_{t-j} y_{t-d}^{3} + v_{t} , \qquad (23)$$

where v_t is a $N.I.D.(0, \sigma^2)$ process, $\tilde{\beta}_1 = (\beta_{10}, \beta'_1)'$, $\beta_{10} = \phi_0 - (c/4)\theta_0$, $\beta_1 = \phi_0 - (c/4)\theta_0$, $\beta_1 = \phi_0 - (c/4)\theta_0 + (1/4)\theta_0 \mathbf{e}_d$, $\mathbf{e}_d = (0, 0, \dots, 0, 1, 0, \dots, 0)'$ with the *d*-th element equal to unit and $T_3(G) = f_1G + f_3G^3$ is the third-order Taylor expansion of $G(\boldsymbol{\Xi})$ at $\gamma = \mathbf{0}, f_1 = \partial G(\boldsymbol{\Xi})/\partial \boldsymbol{\Xi}|_{\gamma=0}$ and $f_3 = (1/6)\partial^3 G(\boldsymbol{\Xi})/\partial \boldsymbol{\Xi}|_{\gamma=0}$, $G(\boldsymbol{\Xi})$ being defined in previous section. The null hypothesis is

$$H_0: \beta_{2j} = \beta_{3j} = \beta_{4j} = 0 \ j = 1, \dots, p,$$
(24)

The test statistic:

$$LM_1 = (SSR_0 - SSR)/\hat{\sigma_v}^2, \qquad (25)$$

with SSR₀ and SSR denoting the sum of squared estimated residuals from the estimated auxiliary regression (23) and under the null and alternative, respectively and $\sigma_v^2 = (1/T)SSR$, has an asymptotic χ^2_{3p} distribution under H_0 .

If the model is an GESTAR(p), then $\hat{\mathbf{z}}_1 = -\mathbf{z}_t$ as in the generalized logistic case, while $\hat{\mathbf{z}}_{2,t} = -2\theta'_2 \mathbf{z}_t y_{t-2}^2 - 2\theta_{20} y_{t-d}^2 + 4c\theta'_2 \mathbf{w}_t y_{t-d} - 2c^2\theta'_2 \mathbf{z}_t y_t + 4c\theta_{20} y_{t-d} - 2c^2\theta_{20} = 2\hat{\mathbf{z}}_{2,t}^{ESTAR}$, where ESTAR denotes the vector $\hat{\mathbf{z}}_{2,t}$ for the ESTAR model. That is, the vector $\hat{\mathbf{z}}_{2,t}$ of the generalized ESTAR model is found to be two times the symmetric one. The corresponding auxiliary regression is

$$\hat{\epsilon}_t = \tilde{\boldsymbol{\beta}}_1' \hat{\mathbf{z}}_1 + \boldsymbol{\beta}_2' \mathbf{z}_t y_{t-d} + \boldsymbol{\beta}_3' \mathbf{z}_t y_{t-d}^2 + v_t' , \qquad (26)$$

where v'_t is a $N.I.D.(0, \sigma^2)$ error term and $\tilde{\boldsymbol{\beta}}_1 = (\beta_{10}, \boldsymbol{\beta}'_1)'$, with $\beta_{10} = \phi_0 - c^2 \theta_0$ and $\boldsymbol{\beta}_1 = \boldsymbol{\phi} - c^2 \boldsymbol{\theta} + 2c\theta_0 \boldsymbol{e}_d$; moreover $\boldsymbol{\beta}_2 = 2c\boldsymbol{\theta} - \theta_0 \mathbf{e}_d$ and $\boldsymbol{\beta}_3 = -\boldsymbol{\theta}$. Thus the null hypothesis of linearity is

$$H_0': \boldsymbol{\beta_2} = \boldsymbol{\beta_3} = 0, \tag{27}$$

which can be tested by the test statistic:

$$LM_2 = (SSR_0 - SSR)/\hat{\sigma}_{v1}^2, \tag{28}$$

where SSR_0 and SSR are the sum of squared residuals from (26) under the null and the alternative respectively, $\hat{\sigma}_{v1}^2 = (1/T)SSR$. When the null is true, the statistic (28) is asymptotically χ_p^2 distributed.

5 Evaluation

For what concerns the diagnostics, the new parametrization can be applied directly to the three tests developed by ET, which will be discussed in detail.

5.1 Serial independence

Consider the general additive model (1), where:

$$\epsilon_t = a' v_t + u_t = \sum_{j=1}^q a_j L^j \epsilon_t + u_t, \quad u_t \sim I.I.D.(0, \sigma^2),$$
 (29)

with L^{j} denoting the lag operator, $v_{t} = (u_{t-1}, \ldots, u_{t-q})'$, $a = (a_{1}, \ldots, a_{q})'$, $a_{q} \neq 0$. Under the assumption of stationarity and ergodicity (see Section 2), the null hypothesis of serial independence is H_{0} : a = 0. By pre-multiplying eq. (2) by $1 - \sum_{j=1}^{q} a_j L^j$ we get:

$$y_t = \sum_j a_j L^j y_t + \boldsymbol{\phi'} \mathbf{z}_t - \sum_j a_j L^j \boldsymbol{\phi'} \mathbf{z}_t + \boldsymbol{\theta'} \mathbf{z}_t G(\cdot) - \sum_j a_j \boldsymbol{\theta'} G(\cdot) + \epsilon_t , \qquad (30)$$

hence, assuming the necessary initial values $y_0, y_{-1}, \ldots, y_{-(p+q)+1}$ fixed, the pseudo normal loglikelihood for $t = 1, \ldots, T$ is:

$$\mathcal{L}_{t} = constant + \frac{1}{2}\ln\sigma^{2} - \frac{\epsilon_{t}^{2}}{2\sigma^{2}},$$

$$\epsilon_{t} = y_{t} - \sum_{j} a_{j}L^{j}y_{t} - \boldsymbol{\phi}'\mathbf{z_{t}} + \sum_{j} a_{j}L^{j}\boldsymbol{\phi}'\mathbf{z_{t}} - \boldsymbol{\theta}'G(\mathbf{z_{t-j}}, \boldsymbol{\Xi}) + \sum_{j} a_{j}\boldsymbol{\theta}'G(\mathbf{z_{t-j}}, \boldsymbol{\Xi}).$$
(31)

Consistently with the model initial assumptions, the information matrix is block diagonal, hence we can consider σ^2 fixed for the rest of the derivations. So we have:

$$\frac{\partial \mathcal{L}_t}{\partial a_i} = \frac{\epsilon_t}{\sigma^2} [y_{t-j} - \boldsymbol{\phi'} \mathbf{z_{t-j}} - \boldsymbol{\theta'} G(\mathbf{z_{t-j}}, \boldsymbol{\Xi})]$$
(32)

$$\frac{\partial \mathcal{L}_t}{\partial \Xi} = \frac{\epsilon_t}{\sigma^2} \left[\boldsymbol{\theta}' \mathbf{z}_t \frac{\partial G(\mathbf{z}_{t-j}, \Xi)}{\partial \Xi} - \sum_j a_j \boldsymbol{\theta}' \frac{\partial G(\mathbf{z}_{t-j}, \Xi)}{\partial \Xi} \right].$$
(33)

Under H_0 , consistent estimators of (32) - (33) are:

$$\frac{\partial \hat{\mathcal{L}}_t}{\partial a_t}\Big|_{H_0} = \frac{1}{\sigma^2} \hat{\mathbf{u}}_t \hat{\mathbf{v}}_t \quad \frac{\partial \hat{\mathcal{L}}_t}{\partial \mathbf{\Xi}_t}\Big|_{H_0} = -\frac{1}{\sigma^2} \hat{\mathbf{u}}_t \hat{\mathbf{z}}_t , \qquad (34)$$

where $\hat{\mathbf{u}}_{\mathbf{t}} = (\hat{\mathbf{v}}_{\mathbf{t}-\mathbf{1}}, \dots, \hat{\mathbf{v}}_{\mathbf{t}-\mathbf{q}})', \ \hat{\mathbf{v}}_{\mathbf{t}-\mathbf{j}} = y_{t-j} - \boldsymbol{\phi}' \mathbf{z}_{\mathbf{t}-\mathbf{j}} - \boldsymbol{\theta}' G(\mathbf{z}_{\mathbf{t}-\mathbf{j}}, \hat{\boldsymbol{\Xi}}), \ j = 1, \dots, q, \ \hat{\boldsymbol{\Xi}} \text{ is the QMLE of } \boldsymbol{\Xi} \text{ and } \hat{\mathbf{z}}_{\mathbf{t}} = \frac{\partial G(\mathbf{z}_{\mathbf{t}}, \hat{\boldsymbol{\Xi}})}{\partial \hat{\boldsymbol{\Xi}}} = \mathbf{k}_{t}^{G} = [\boldsymbol{\theta}' \mathbf{z}_{\mathbf{t}} G_{\gamma 1}, \boldsymbol{\theta}' \mathbf{z}_{\mathbf{t}} G_{\gamma 2}, \boldsymbol{\theta}' \mathbf{z}_{\mathbf{t}} G_{\gamma c}].$ The resulting LM statistic is:

$$LM = \frac{1}{\hat{\sigma}} \left(\hat{\mathbf{u}}_{\mathbf{t}}' \hat{\mathbf{v}}_{\mathbf{t}} \right) \left\{ \hat{\mathbf{v}}_{\mathbf{t}}' \hat{\mathbf{v}}_{\mathbf{t}} - \hat{\mathbf{v}}_{\mathbf{t}}' \hat{\mathbf{z}}_{\mathbf{t}} \left(\hat{\mathbf{z}}_{\mathbf{t}} \hat{\mathbf{z}}_{\mathbf{t}}' \right)^{-1} \hat{\mathbf{z}}_{\mathbf{t}}' \hat{\mathbf{v}}_{\mathbf{t}} \right\}^{-1} \left(\hat{\mathbf{v}}' \hat{\mathbf{u}}_{\mathbf{t}} \right), \tag{35}$$

with $\hat{\sigma}^2 = \frac{1}{T} \sum_t u_t^2$. Under the null hypothesis, statistics (35) is asymptotically χ_q^2 distributed. The partial derivatives of $G(\cdot)$ are shown in Appendix A.1. Another

possibility is to use the same three-step procedure for carrying an F-test:

- 1. Estimate the GSTR model under the assumption of uncorrelated errors and compute the residual sum of squares $SSR_0 = \sum_{t=1}^{T} \hat{u}_t^2$.
- 2. Regress \hat{u}_t on \hat{v}_t , \mathbf{z}_t , $\mathbf{z}_t \hat{G}(\mathbf{z}_{t-d})$, $\hat{G}_{\gamma 1}$, $\hat{G}_{\gamma 2}$, \hat{G}_c (eventually \hat{G}_{c2} in case of GLSTR2) and compute SSR;
- 3. Compute the test statistic $F_{LM} = \frac{SSR_0 SSR}{q} / \frac{SSR}{T n q}$, where $n = \dim(\hat{\mathbf{z}}_t)$

The F-statistics is preferable to the χ^2 statistics which may suffer from size problems when the number of lags is high and time series is short, so that the estimated residuals can be non-orthogonal to the gradient vector $\hat{\mathbf{z}}_t$. In this case ET suggests to add an extra-step to the step (i), consisting in regressing the estimated errors to \mathbf{z}_t , \mathbf{z}_t , $\mathbf{z}_t \hat{G}(\mathbf{z}_{t-j})$, $\hat{G}_{\gamma 1}$, $\hat{G}_{\gamma 2}$, \hat{G}_c ; the resulting errors \tilde{u}_t is used to derive the $SSR_1 = \sum_{t=1}^T \tilde{u}_t^2$.

5.2 No remaining asymmetry

As in the symmetric STAR model, we are interested to detect possible misspecification. In this case there are two plausible issues to investigate: neglected (additive) nonlinearity and, in our case, neglected asymmetry. Consider the additive GSTAR model:

$$y_t = \boldsymbol{\phi}' \mathbf{z}_t + \boldsymbol{\theta}' \mathbf{z}_t G_1(\boldsymbol{\gamma}, h(\eta_t)^{(1)}) + \boldsymbol{\pi}' \mathbf{z}_t G_2(\boldsymbol{\gamma}, h(\eta_t)^{(2), EZC}) + u_t, \quad (36)$$

with $u_t \sim I.I.D.$ $(0, \sigma^2)$. The null of neglected asymmetry is:

$$H_0: h(\eta_t)^{(2), EZC} = 0 \quad \text{vs} \quad H_0: h(\eta_t)^{(2), EZC} \neq 0.$$
 (37)

If γ is found being not null, the investigator can easily check if the additive nonlinear part is significant. The *EZC* version of $h(\eta_t)$ is necessary in order to nest the discussion to ET framework. We assume that, under H_0 , Ξ can be consistently estimated by QML. Similarly to the symmetric case, it should be noticed that the model is not identified under H_0 , so that the Taylor expansion of the $G(\cdot)$ suggested by LST can be used in order to circumvent this problem. In this case, we assume $G_2(\cdot)$ as generalized logistic and replace it with its third-order Taylor expansion about $h(\gamma)^{(2)} = 0$. This implies:

$$T_2 = g_{20} + g_{21}y_{t-l} + g_{22}y_{t-l}^2 + g_{23}y_{t-l}^3, \qquad (38)$$

where g_{2j} , j = 0, 1, 2, 3, 4 are functions of $\gamma^{(2)}$ such that $g_{20} = g_{21} = g_{22} = g_{23} = 0$ for $\gamma^{(2)} = \mathbf{0}$, consistently with the definition of $h_{\gamma}(s_t)$. By re-parametrizing, the model (36) became:

$$y_t = \beta_0' \mathbf{z}_t + \boldsymbol{\theta}' \mathbf{z}_t G_1(\cdot) + \beta_1' \tilde{\mathbf{z}}_t y_{t-l} + \beta_2' \tilde{\mathbf{z}}_t y_{t-l}^2 + \beta_3' \tilde{\mathbf{z}}_t y_{t-l}^3 + r_t , \qquad (39)$$

where $\tilde{\mathbf{z}}_{\mathbf{t}} = (y_{t-1}, \dots, y_{t-p})'$. The null hypothesis of no additive nonlinearity is $H_0: \beta_1 = \beta_2 = \beta_3 = 0$, and, as in the symmetric case, under $H_0, r_t = u_t$. The *LM* statistics distributes as a $\chi^2(3p)$. As in the symmetric case, the test preserves power also against generalized exponential transition. Since there are no modifications in the statistical assumptions concerning the errors distribution, the asymptotic theory is the same of the symmetric STAR case. The test statistic is (21) with $\hat{\mathbf{z}}_{\mathbf{t}} = (\mathbf{z}_{\mathbf{t}}, \mathbf{z}_{\mathbf{t}} \hat{G}(\cdot), \hat{G}_{\gamma 1}, \hat{G}_{\gamma 2}, \hat{G}_c)'$ (or $\hat{G}_{c1}, \hat{G}_{c2}$ in case of GLSTR2), whereas $\mathbf{v}_{\mathbf{t}} = (\tilde{\mathbf{z}}'_t y_{t-l}, \tilde{\mathbf{z}}'_t y_{t-l}^2, \tilde{\mathbf{z}}'_t y_{t-l}^3)'$. As in the symmetric STAR model, the test is implemented with the same procedure for serial correlation, the F-test has (3p) and (T - n - 3p) degrees of freedom and the Teräsvirta rule can be applied to (39) in order to select the form of the transition. If this selection is not desirable, a polynomial expansion of (36) can be performed to build up an omnibus test, but in this case, a rejection of the null of no additive nonlinearity will not give any qualitative information, that is why we do not take in consideration this scenario.

5.3 Parameter constancy

Consider the model:

$$y_t = \boldsymbol{\phi}(t)' \bar{\mathbf{z}}_t + \boldsymbol{\theta}(t)' \tilde{\mathbf{z}}_t G(\boldsymbol{\gamma}, h(\eta_t)) + u_t, \quad u_t \sim I.I.D. \ (0, \sigma^2), \quad (40)$$

with $\bar{\mathbf{z}}_{\mathbf{t}}$ denoting the $k \leq p + 1$ element of $\mathbf{z}_{\mathbf{t}}$ for which the corresponding element of ϕ is not assumed zero a priori, $\tilde{\mathbf{z}}_{\mathbf{t}}$ is the same $(l \times 1)'$ for the element of $\boldsymbol{\theta}$. Let $\tilde{\boldsymbol{\phi}}$ and $\tilde{\boldsymbol{\theta}}$ denote the equivalent (k + 1) and (l + 1) parameter vectors, $\boldsymbol{\phi}(t) =$ $\tilde{\boldsymbol{\phi}} + \lambda_1 G_j(t; \boldsymbol{\gamma}, h(\eta_t)^{(1)})$, and $\boldsymbol{\theta}(t) = \tilde{\boldsymbol{\theta}} + \lambda_2 G_j(t; \boldsymbol{\gamma}, h(\eta_t)^{(2)})$ with λ_1 and λ_2 being a $(k \times 1)$ and $(l \times 1)$ vectors respectively. Then the null of parameter constancy in (40) is

$$H_0: G_j(t; \boldsymbol{\gamma}, h(\eta_t)) \equiv 0 \quad (\text{or} \equiv \text{const}).$$
(41)

Three forms for G_j can be considered:

$$G_{1}(t; \boldsymbol{\gamma}, h(\mathbf{c}, s_{t})) = (1 + \exp\{-h(\eta_{t}^{GL})\})^{-1} \text{ with}$$

$$\eta_{t}^{GL} \equiv t - c ,$$

$$G_{2}(t; \boldsymbol{\gamma}, h(\mathbf{c}, s_{t})) = 1 + \exp\{-h(\eta_{t}^{GE})\} \text{ with}$$

$$\eta_{t}^{GE} \equiv (t - c)^{2} ,$$

$$G_{3}(t; \boldsymbol{\gamma}, h(\mathbf{c}, s_{t})) = (1 + \exp\{-h(\eta_{t}^{C})\})^{-1} \text{ with}$$

$$\eta_{t}^{C} \equiv (t^{3} + c_{12}t^{2} + c_{11}t + c_{10})$$
(42)

The null of parameter constancy is $H_0: \gamma = 0$. Notice that in this case the model is identified also in case of $\gamma < 0$, so that the only identifying restriction is that $\gamma \neq 0$. G_1 and G_2 are the Generalized Logistic and Exponential smooth transition of the change in parameters, while G_3 is a cubic function which allows for both monotonically and non-monotonically changing parameters and can be seen as a general case of G_1 and G_2 when building up a test. As suggested by the literature, we use a third-order Taylor expansion of G_3 about $\gamma = 0$:

$$T_3(t; \boldsymbol{\gamma}, h(\eta_t)) = \frac{1}{4}h(\boldsymbol{\gamma})(t^3 + c_{12}t^2 + c_{11}t + c_{10}) + R(t, \boldsymbol{\gamma}, h(\eta_t)).$$
(43)

in order to approximate $\phi(t)$ and $\theta(t)$ in (40) using (43). This yields to:

$$y_{t} = \boldsymbol{\beta}_{0}'(\bar{\mathbf{z}}_{t}) + \boldsymbol{\beta}_{1}'(t\bar{\mathbf{z}}_{t}) + \boldsymbol{\beta}_{2}'(t^{2}\bar{\mathbf{z}}_{t}) + \boldsymbol{\beta}_{3}'(t^{3}\bar{\mathbf{z}}_{t}) + + \{\boldsymbol{\beta}_{4}'(\tilde{\mathbf{z}}_{t}) + \boldsymbol{\beta}_{5}'(t\tilde{\mathbf{z}}_{t}) + \boldsymbol{\beta}_{6}'(t^{2}\tilde{\mathbf{z}}_{t}) + \boldsymbol{\beta}_{7}'(t^{3}\tilde{\mathbf{z}}_{t})\}G(t;\boldsymbol{\gamma},h(\eta_{t})) + r_{t}^{*},$$

$$(44)$$

where $r_t^* = u_t + R(t; \boldsymbol{\gamma}, h(\eta_t))$. Under $H_0, r_t^* = u_t$. In (44), $\boldsymbol{\beta}_j = h(\eta_t) \boldsymbol{\bar{\beta}}, j = 1, \ldots, 7$, hence the null hypothesis in terms of (44) becomes $H_0 : \boldsymbol{\beta}_j = \mathbf{0}, j = 1, \ldots, 7$. Consequently, the locally approximated pseudo normal log-likelihood under H_0 (ignoring R) is

$$\mathcal{L}_{t} = const - \frac{1}{2} \ln \sigma^{2} - \frac{1}{2} \sigma^{2} [y_{t} - \beta_{0}^{\prime} \mathbf{w}_{t} - \beta_{1}^{\prime} (t \bar{\mathbf{w}}_{t}) - \beta_{2}^{\prime} (t^{2} \bar{\mathbf{w}}_{t}) - \beta_{3}^{\prime} (t^{3} \bar{\mathbf{w}}_{t}) - \left\{ \beta_{4}^{\prime} (\tilde{\mathbf{w}}_{t}) + \beta_{5}^{\prime} (t \tilde{\mathbf{w}}_{t}) + \beta_{6}^{\prime} (t^{2} \tilde{\mathbf{w}}_{t}) + \beta_{7}^{\prime} (t^{3} \bar{\mathbf{w}}_{t}) \right\} G(y_{t-d}; \boldsymbol{\gamma}, h(\eta_{t})]^{2}.$$

$$(45)$$

The partial derivatives are:

$$\frac{\partial \mathcal{L}_t}{\partial \boldsymbol{\beta}_j} = \frac{1}{\sigma^2} u_t(t^j \bar{\mathbf{w}}_t), \qquad \qquad j=0, \dots, 3, \qquad (46)$$

$$\frac{\partial \mathcal{L}_t}{\partial \boldsymbol{\beta}_j} = \frac{1}{\sigma^2} u_t(t^j \tilde{\mathbf{w}}_t) G(y_{t-d}; \boldsymbol{\gamma}, h(\eta_t)), \qquad j=4, \dots, 7, \qquad (47)$$

$$\frac{\partial \mathcal{L}_t}{\partial \gamma_1} = \frac{1}{\sigma^2} u_t \{ \boldsymbol{\beta'_4}(\tilde{\mathbf{w}}_t) + \boldsymbol{\beta'_5}(t\tilde{\mathbf{w}}_t) + \boldsymbol{\beta'_6}(t^2\tilde{\mathbf{w}}_t) + \boldsymbol{\beta'_7}(t^3\tilde{\mathbf{w}}_t) \} G_{\gamma_1} , \qquad (48)$$

$$\frac{\partial \mathcal{L}_t}{\partial \gamma_2} = \frac{1}{\sigma^2} u_t \{ \boldsymbol{\beta'_4}(\tilde{\mathbf{w}}_t) + \boldsymbol{\beta'_5}(t\tilde{\mathbf{w}}_t) + \boldsymbol{\beta'_6}(t^2\tilde{\mathbf{w}}_t) + \boldsymbol{\beta'_7}(t^3\tilde{\mathbf{w}}_t) \} G_{\gamma_2} , \qquad (49)$$

$$\frac{\partial \mathcal{L}_t}{\partial c} = \frac{1}{\sigma^2} u_t \{ \boldsymbol{\beta'_4}(\tilde{\mathbf{w}}_t) + \boldsymbol{\beta'_5}(t\tilde{\mathbf{w}}_t) + \boldsymbol{\beta'_6}(t^2\tilde{\mathbf{w}}_t) + \boldsymbol{\beta'_7}(t^3\tilde{\mathbf{w}}_t) \} G_c , \qquad (50)$$

where $G_{\gamma_1}, G_{\gamma_2}, G_c$ are the derivatives of $G(y_{t-d}, \boldsymbol{\gamma}, h(\eta_t))$ with respect to γ_1, γ_2 and c. With this notation, the estimators of $\frac{\partial \mathcal{L}_t}{\partial \gamma_1}, \frac{\partial \mathcal{L}_t}{\partial \gamma_2}$ and $\frac{\partial \mathcal{L}_t}{\partial c}$ are $\frac{\partial \hat{\mathcal{L}}_t}{\partial \gamma_1} = \frac{1}{\hat{\sigma}^2} u_t \hat{G}_{\gamma_1}, \frac{\partial \hat{\mathcal{L}}_t}{\partial \gamma_2} = \frac{1}{\hat{\sigma}^2} u_t \hat{G}_c$ respectively, so that: $\hat{\mathbf{z}}_t = (1, \mathbf{\bar{z}}'_t, \mathbf{\bar{z}}'_t \hat{G}(y_{t-d}; \cdot), \hat{G}_{\gamma_1}, \hat{G}_{\gamma_2}, \hat{G}_{\gamma_c})'$ and $\hat{u}_t = (t \mathbf{\bar{z}}'_t, t^2 \mathbf{\bar{z}}'_t, t^3 \mathbf{\bar{z}}'_t, t \mathbf{\bar{z}}'_t \hat{G}(y_{t-d}, \cdot), t^2 \mathbf{\bar{z}}'_t \hat{G}(y_{t-d}, \cdot), t^3 \mathbf{\bar{z}}'_t \hat{G}(y_{t-d}, \cdot))$. Like in the symmetric scenario, under H_0 , the statistic (35) has a χ^2 distribution with 3(k+l) degrees of freedom and the equivalent *F*-distribution has 3(k+l) and T-4(k+l)-2 degrees of freedom (the stastistic is denoted LM_3). The following rule is used: if H_1 is (40) with transition function G_3 , then (35) is based on (44) assuming $\beta_3 = 0$ and $\beta_7 = 0$ (statistic LM_2) and, if the same alternative hypothesis has the transition function G_2 , the test is based on (44), assuming $\beta_2 = \beta_3 = 0$ and $\beta_6 = \beta_7 = 0$ (statistic LM_2).

6 Simulation Study

6.1 Simulation design

A Monte Carlo simulation experiment is settled in order to investigate the empirical properties of the proposed asymmetry tests. We consider two different data generating processes (DGP):

$$y_{1,t}^{(i)} = 0.4y_{1,t-1}^{(i)} - 0.25y_{1,t-2}^{(i)} + (0.02 - 0.9y_{1,t-1}^{(i)} + 0.795y_{1,t-2})^{(s)}G^{(i)}(\boldsymbol{\Xi}) + \epsilon_{1,t}^{(s)}, \quad (51)$$

and

$$y_{2,t}^{(i)} = 0.8y_{2,t-1}^{(i)} - 0.7y_{2,t-2}^{(i)} + (0.01 - 0.9y_{2,t-1}^{(i)} + 0.795y_{2,t-2}^{(i)})G^{(i)}(\boldsymbol{\Xi}) + \epsilon_{2,t}^{(s)}, \quad (52)$$

where

$$G^{(i)}(\boldsymbol{\Xi}) = \left(1 + \exp\left\{-h(\eta_t)^{(i)}I_{(\gamma_1 < 0, \gamma_2 < 0)} + h(\eta_t)^{(i)}I_{(\gamma_1 > 0, \gamma_2 < 0)} + h(\eta_t)^{(i)}I_{(\gamma_1 > 0, \gamma_2 > 0)}\right] + h(\eta_t)^{(i)}I_{(\gamma_1 > 0, \gamma_2 > 0)}\right]\right\} \right)^{-1},$$
(53)

with $\epsilon_t^{(i)} \sim N(0,1)$, $i = \{1, \ldots, I\}$ denoting the *i*-esim simulation of the process $\{y_t\}_{t=1}^T$ with $s = y_{t-1}$, $c = \frac{1}{T}y_t^{(i)}$, I = 1,000.

 $y_{2,t}^{(i)}$ (henceforth "DGP 1") is an additive nonlinear model with accentuated nonlinear behavior, due to the high autoregressive parameters driving $G(\Xi)$ and the low ones driving the linear part; this can be the case of a macroeconomic indicator affected by an unexpected shocks affecting the whole dynamics. On the other hand, $y_{2,t}^{(i)}$ (henceforth "DGP 2") describes a more balanced scenario.

In order to simulate the function $h(\eta_t)$ we use a set of values of vector γ . The same different combinations of (γ_1, γ_2) of the two symmetry tests has been used to investigate the empirical size and the empirical power of the three diagnostic test described in Section 5. These combinations allow us to investigate: i) the different cases of null, medium and extreme asymmetry respectively; ii) the effect of having different kinds of asymmetry, due to the different signs in the two γ -s. Moreover, we consider three different hypotheses for T and the size α , namely $T = \{100, 300, 1000\}$ and $\alpha = \{1\%, 5\%, 10\%\}$. For each DGP we explore the possibility of both types of different functional form of asymmetry in $G(\cdot)$ and compute the corresponding statistics (25) - (28), jointly to the "Two-Step" test hypothesis corresponding to statistics (20). In this experiment, the first 100 simulations have been discarded in order to avoid the initialization effect.

For what concerns the three diagnostic tests, in the error autocorrelation test we assumed the errors of the generating process followed an AR(1) process $u_t = \rho u_{t-1} + \epsilon$, $\epsilon \sim NID(0, 1)$ and $\rho = \{0.2, 0.4\}$. In the test for no additive asymmetry we added to the previously described DGP a generalized logistic function $G_2(\gamma^{(2)}, h(\mathbf{c}, y_{t-1}))$ with coefficients $\pi_0 = 0.01$, $\pi_2 = -1.8$, $\pi_3 = 1.6$, $\gamma^{(2)} = (\gamma_3, \gamma_4) = \{(5, 2), (50, 20), (500, 200)\}$ and $\gamma^{(1)}$ fixed at (120,70); this ensures that the behavior of the additive component remains isolated from the second; our experience shows that if higher parameter are set, the inversion become problematic. For the test for parameter constancy, the coefficients has been simulated according to a generalized logistic smooth change with $\lambda_1 = (0, 0.4, -0.25)'$ and $\lambda_2 = (0.2, -0.9, -0.795)'$. All these devices should make our simulation exercise comparable to the ET results.

6.2 Results

The results of the "All-in-one" and "Two-step" tests discussed in Section 4 for single DGP 1 and DGP 2 are reported in Table 1 and Table 2, respectively. Several findings can be easily noticed: first, the two tests have good and similar size properties. Only in large samples the two models behave in a slightly different way because of the statistics LM_2 , being its size in for DGP 1 (0.0735 at a nominal size 5%) slightly oversized with respect to DGP 2 (0.0391), while statistics LM_1 and the "Two-Step" test are more consistent.

Second, both the tests react similarly to different DGPs: the statistics LM_1 is more powerful of LM_2 , regardless to the DGP 2 as sample size grows, although the empirical power is similar for moderate asymmetry and T=100. The "Two-Step" test makes an exception: under DGP1, the power of S_1 is very similar to LM_1 and LM_2 , while, under DGP 2, the S_1 power is full when one of the slopes is 0 and the other is positive (see rows 4, 6 or 10 and 12 in Table 2). An important difference between the two scenarios is the change is scale of the empirical power under DGP 2; for example, when T=300, LM_1 statistic passes from 0.99 to 0.13 for $\alpha = 5\%$. This implies that the detection of a dynamic asymmetric movement of the series when the underlining process is not unambiguously nonlinear remains critical.

Third, both the tests are quite sensitive to different couples of (γ_1, γ_2) with respect to signs and scale: the empirical power of both tests tends to decline while γ has opposite signs. In particular, for $\gamma_1 < 0$, the power decays up to one third (see the case of $\gamma = (50, 10)$ for $\alpha = \%5$ in statistic LM_2 at DGP1). In any case, all the statistics requires high slopes (500, 100 and similar) to get power in low sample. Heuristically, this is justified with the fact that the Stukel' s function approximates a near-to-linear function for extreme negative slopes, implying the possibility of a missed dynamic asymmetry problem. This argument will be actively invoked in our empirical applications in Section 7.

With reference to diagnostic tests, the results reported in Table 3 and Table 4 deliver

a similar picture: on one hand, all the tests have good empirical size properties for both the DGP used. Some *caveat* are required to interpret the empirical power properties: under DGP 1, all the tests have good power, in particular for serial correlation test; the test of no additive asymmetry and parameter constancy are characterized by a duality: when the two slopes are high, that is $\gamma = (500, 200)$, the power is extreme, while it decays for low-medium asymmetry (0.21 vs 1.00 at $\alpha = 5\%$, T=100 in no additive asymmetry test, 0.44 vs 0.87 for LM_2 statistic at the same nominal and sample size for parameter constancy). On the other hand, under DGP 2, the change in scale of the power is evident only for the parameter constancy test; interestingly, the test for no serial correlation is more powerful. Thus, we are substantially confident in the use of diagnostic tests in empirical analysis, conditionally on high dynamic asymmetry.

7 Illustrations

7.1 Data and Methods

In this section the GSTAR model is applied to four time series, namely: the U.S. index of industrial production and unemployment (IP and UN, respectively); the yearly average of daily International Sunspot Number (YSSN), and the Canadian Lynx data (LYNX). We consider also the monthly average of Sunspot Number from January 1850 to December 2013 (1962 observations) for which three different kinds of data transformations are compared to link our model to the existing literature: the logarithmic (logMSSN), square root (sqrtMSSN) and the growth rate (DLMSSN); in this case, the Kalman-smoothed version of the series is available and necessary to avoid inversion problems due to the high noise. Further informations on the dataset can be found in Table 5. The data and the resulting (multiple) transition function(s), plotted versus time are reported in Figure 5, while the same transitions plotted versus the selected transition variable are shown in Figure 6.

The out-of-sample predictive properties of the estimated models are investigated via rolling forecast experiment, according to which the series y_t is divided in a "preforecast" period (going from time $\{1 \dots t\}$) from which the model is estimated and the *h*-step-ahead forecast are computed and compared with the "test" period, going from time $\{T^s \dots T\}$ where $T^s = t + h$; this allows to measure $T - T^s - h + 1$ out-ofsample forecasts. Let denote the corresponding realization of the series as y_t, y_T^s and y_T , as well as the corresponding density forecasts as f_t, f_T^s and f_T . Since our interest lies in short-run forecasting we consider $h = \{1, 3, 6, 12\}$. The point predictive performances of the model *j* are investigated by four different measures: the mean forecast error (MFE), the symmetric mean absolute percentage error (sMAPE), the median relative absolute error (mRAE) and the root mean square forecast error (RMSFE)³:

$$MFE_{j,h} = \frac{1}{T - h - T^s + 1} \sum_{t=T^s}^{T-h} \left(y_{t+h} - \hat{y}_{t+h|t}^j \right)$$
(54)

$$sMAPE_{j,h} = \frac{100|y_{t+h} - \hat{y}_{t+h}^{j}|}{0.5(y_{t+h} - \hat{y}_{t+h|t}^{j})}$$
(55)

$$mRAE_{j,h} = \frac{|y_{t+h} - \hat{y}_{t+h}^j|}{|y_{t+h} - \hat{y}_{t+h}^{(1)}|}, \text{ with (1) indexing the benchmark model;}$$
(56)

$$RMSFE_{j,h} = \frac{1}{T - h - T^s + 1} \sum_{t=T^s}^{T-h} \left(y_{t+h} - \hat{y}_{t+h|t}^j \right)^2$$
(57)

In a similar fashion, four different scoring rules are used for aggregate the $T - T^s - h + 1$ density forecasts produced by the same forecasting exercise⁴:

 $^{^{3}}$ In particular, sMAPE and mRAE are recommended when the series is known to present volatility effects or skewness, two features often associated to nonlinearity; see the discussion in Tashman (2000).

⁴The scoring rules here considered are just a fraction of the many nowadays available. The choice of the scores has been done for easy of treatment and does not imply any preference.

• the logarithmic score (LogS) (Good, 1952):

$$LogS_{j,h} = \frac{1}{T - h - T^s + 1} \sum_{t=T^s}^{T-h} log\hat{f}_{t+h|t}^j$$
(58)

corresponding to a Kullback-Liebler distance from the true density; models with higher LogS are preferred.

• The quadratic score (Brier, 1950), somehow the equivalent of the MSFE in point forecasting, is defined as:

$$QSR_{j,h} = \frac{1}{T - h - T^s + 1} \sum_{t=T^s}^{T-h} \sum_{k=i}^{K} (f_{t+h|t}^j - d_{kt})^2$$
(59)

where $d_{kt} = 1$ if k = t and 0 otherwise; models with lower QSR are preferred.

• The (aggregate) continuous-ranked probability (CRPS) score (Epstein, 1969), equivalent to the sMAPE, is defined as:

$$CRPS_{j,h} = \frac{1}{T - h - T^s + 1} \sum_{t=T^s}^{T-h} \left(|f_{t+h} - \hat{f}_{t+h|t}^j| - 0.5|f_{t+h} - f_{t+h}'| \right), \quad (60)$$

where f and f' are independent random draws from the predictive density and $f_{t+h|t}$ the observed value; models with lower CRPS are preferred.

• Finally, the quantile score (qS) (Cervera and Munoz, 1996) can be obtained if $f_{t+h|t}^{j}$ is replaced in (58) by a predictive α -level quantile $q_{t+h|t}^{\alpha}$ (and the logarithmic function removed); this score is used in risk analysis because provide information about deviations from the true tail of the distribution.

Finally the p-values of the Giacomini and White (2006) test for equal predictive ability are reported for completeness of analysis.

7.2 Results

Tables 6 and 7 report the results of the General-to-Specific modelling strategy discussed in Section 3, and specifically: the descriptive analysis of the series, using basic statistics and a battery of test for normality via Jarque-Brera test (JB), ARCH-effect (via Engle's test), serial uncorrelation via Durbin-Watson test (DW), identical distribution via Kolmogorov-Smirnov test (KS) and the *t*-statistics of the Dikey-Fuller test augmented with two lags and constant as deterministic kernel (ADF) in the first panel; the result of the LST linearity test, the selected model according to the Teräsvirta rule and two symmetry tests introduced in Section 4 (second panel); parameter estimates and HAC standard errors of the selected GSTAR model with its equivalent STAR specification, for which the possibility of multiple regimes has been taken in consideration (third panel); the diagnostic tests (fourth panel). The rolling forecasting exercise is shown in Table 8.

Several facts arises: (i) first, the dynamic asymmetry here introduced is never rejected if a GSTAR model is assumed, as the "All-in-One" test suggests; however, the "Two-Step" approach, which strictly follows the original Stukel's methodology changes this result; this seems reasonable at least for case of UN. This is not the case of monthly sunspots series, for which the "Two-Step" test, although still not able to reject the null for the selected model, starts to reject if different data and models are used⁵. (ii) The GSTAR transition function differs from its symmetric equivalent and this holds also when the two estimated slopes are very similar. In particular, Figure 5, panels (a), (c) and (d), shows that the estimated asymmetric $G(\gamma, s_t, c)$ functions tends to concentrate in the upper part of the of the space of continuum of states (between 0.5 and 1); on the other side, in panel (b) of the same figure, the estimated GLSTAR transition for UN (where $\gamma_1 = \gamma_2 = 0.001$) reduces of 30% from the full [0, 1] range (from 1950 to 1980) to a [0.2, 0.9] range (after first 1980s), allowing to reproduce the cyclical movements of the data and their change

⁵The results, not shown here, can be provided upon request.

in scale better than the traditional parametrization. The differences between transition functions are still more evident in Figure 6.

(iii) The GSTAR(p) specification allows the modeller to gain in terms of parsimony, since in all the examples the dynamics of the series is found being well replicated by using just one asymmetric transition, while the same does not hold for its symmetric counterpart. This is immediately evident in the LYNX example, where an autoregressive order 7 is sufficient to pass all the diagnostic tests, whereas more lags was required by previous literature⁶ and monthly sunspot data enforces this finding. (iv) Coherently with the logarithmic (exponential) rescaling imposed by *h*-functions (3) - (4) and with the evidence from application of SETAR and STAR models obtained by previous studies, the GSTAR model is sensitive to changes in scale, so that a further transformation tends to over-smoothing (exacerbate) the nonlinear dynamics of the process if further transformations are applied. In this sense, Figure 7 is almost self-explanatory.

(v) The dynamic asymmetry is an important feature to take in account for forecasting aims: in particular, according to mRAE, the GSTAR model beats almost always its symmetric counterpart, while, in terms of RMSFE, the GSTAR wins in many forecast horizons of YSSN and LYNX and at longest horizons of UN; similar evidence is provided by MFE criterion: the new model prevails in two cases (UN and YSSN) whereas at very short term, the AR is still a good model for IP and LYNX. The superiority is less evident if considering sMAE: the two nonlinear specification almost equivalent for IP, while, for other three cases the MR-STAR prevails with a factor of less than 0.1%.

(vi) The results of density forecasting are quite more challenging. In particular, according to LogS, the GSTAR wins for UN, while AR does for IP and shot horizons of YSSN and MR-STAR for LYNX. The GSTAR returns to outperform if QSR is used, beating its competitors for YSSN and LYNX and at long horizons of IP and

⁶Tong (1977) and Teräsvirta (1994) suggested p=11.

UN. Differently, the CRPS conveys a clear superiority of MR-STAR, which win in almost all cases, with the exception of YSSN and short-run horizons of IP (where AR better). The qS^{α} enforces this result by providing evidence in favor linear specifications with the only exception of IP, and STAR being still the second best for IP and UN.

(vii) Finally, according to the results for Giacomini and White (2006) test, there is evidence of significant improvement in prediction until h=6 if a GSTAR(p) is considered with respect to a linear AR specification.

8 Conclusions

The Generalized Logistic function is applied to STAR family as simple, statistically feasible way to capture the dynamic asymmetry in the conditional mean of a time series. The resulting GSTAR model ensures the smoothness of the transition function by construction without requiring further efforts for what concerns identification and estimation, is able to characterize some of the most prominent examples of nonlinear time series also when the estimated asymmetry coefficients are very similar and presents good point forecasting properties.

The results of density forecasting exercise confirm - and possibly enforce - the Kascha and Ravazzolo (2010) evidence that the relation between highest LogS and lower RMSFE is not one-to-one. In addiction to this, we find that such a relation breaks under CRPS and reverts under qS^{α} . This means that dynamic asymmetric models are superior to traditional STARs if classical measures are used and not dissimilar if robust measures are. In any case, nonlinear specifications remains preferable to linear ones.

The GSTAR model is feasible of several developments, first of all for what concerns modelling the conditional variance in long samples (Gonzáles-Rivera, 1998; Amado and Teräsvirta, 2013; Silvennoinen and Teräsvirta, 2013) and multiple time series analysis, see Rothman, van Dijk, and Franses (2001); Milas and Rothman (2008) and Camacho (2004) for an economic examples and Hubrich and Teräsvirta (2013) for a survey. The properties of the GSTAR in non-stationary time series is still unknown and constitutes an important issue for financial applications; Kapetanios, Shin, and Snell (2003), Vougas (2006) and Addo, Billio, and Guégan (2014) discuss this problem in a traditional STAR and MT-STAR framework and provide a basis to start with. Finally, the dynamic asymmetry here introduced has been modelled by implicitly assuming autoregressive structure. Wecker (1981), and Brännäs and De Gooijer (1994, 2004) provide interesting asymmetric moving-average models which can be compared and possibly merged with GSTAR features.

Acknowledgements

This paper has been mainly developed when the author was visiting PhD student at CREATES - Center for Research in Econometric Analysis of Time Series (DNRF78), funded by the Danish National Research Foundation. The hospitality and the stimulating research environment provided by Niels Haldrup are gratefully acknowledged. The author is particularly grateful to Tommaso Proietti and Timo Teräsvirta for their constant and careful supervision. He also thanks Barbara Annicchiarico, Gianna Boero, Alessandra Canepa, Jan G. De Gooijer, Menelaos Karanasos, Alessandra Luati, James Morley, Alessia Paccagnini, Phil Rothman and Howell Tong for helpful discussions. He is also grateful to seminar participants at "ECTS2011" Conference held in Villa Modragone, CFE 2012 in Oviedo, ICEEE-5th in Genoa, 8th BMRC-QASS Conference of Royal Statistical Society in Newcastle. This paper has been awarded of the "James B. Ramsey" Prize for the best paper in Econometrics presented by a PhD student at the 21st Annual Symposium of the Society for Nonlinear Dynamics and Econometrics held in University of Milan-Bicocca. This

work is in memory of Giancarlo Marini for his great support and encouragement. The usual disclaimer applies.

References

- ADDO, P., M. BILLIO, AND D. GUÉGAN (2014): "The univariate MT-STAR model and a new linearity and unit root test procedure," *Computational Statistics and Data Analysis*, In press.
- AMADO, C., AND T. TERÄSVIRTA (2013): "Modelling volatility by variance decomposition," *Journal of Econometrics*, 175, 142–153.
- ANDERSON, H., AND T. TERÄSVIRTA (1992): "Characterizing nonlinearities in business cycles using smooth transition autoregressive models," *Journal of Applied Econometrics*, 7(S1), S119–S136.
- BACON, D., AND D. WATTS (1971): "Estimating the transition between two intersecting straight lines," *Biometrika*, 58(3), 525–534.
- BRÄNNÄS, K., AND J. DE GOOIJER (1994): "Autoregressive-asymmetric moving average models for business cycle data," *Journal of Forecasting*, 13, 529–544.
- ——— (2004): "Asymmetries in Conditional Mean and Variance: Modelling Stock Returns by asMA-asQGARCH," *Journal of Forecasting*, 23, 155–171.
- BRIER, G. (1950): "Verification of the forecasts Expressed in Terms of Probability ," Monthly Weather Review, 78, 1–3.
- CAMACHO, M. (2004): "Vector Smooth Transition Regression models for US GDP and the composite index of leading vectors," *Journal of Forecasting*, 23(3), 173– 196.

- CERVERA, J., AND J. MUNOZ (1996): "Proper Scoring Rules for Fractiles," in Bayesian Statistics 5, ed. by J. Bernardo, J. Berger, A. Dawid, and A. Smith, pp. 513–519. Oxford University Press, Oxford, UK.
- CHAN, K., AND H. TONG (1986): "On estimating thresholds in autoregressive models," *Journal of Time Series Analysis*, 7(3), 178–190.
- CORRADI, V., AND N. SWANSON (2006): "Predictive Density Evaluation," in Handbook of Economic Forecasting, ed. by G. Elliott, C. Granger, and A. Timmermann. North Holland.
- DAVIDSON, R., AND J. MCKINNON (1990): "Specification Tests Based on Artificial Regressions," Journal of the American Statistical Association, 85, 220–227.
- DAVIES, R. (1977): "Hypothesis Testing When a Nuisance Parameter is Present only Under the Alternative," *Biometrika*, 64(1), 247–254.
- EITRHEIM, O., AND T. TERÄSVIRTA (1996): "Testing the adequacy of smooth transition autoregressive models," *Journal of Econometrics*, 74(1), 59–75.
- ELTON, C., AND M. NICHOLSON (1942): "The Ten-Year Cycle in Numbers of the Lynx in Canada," *Journal of Animal Ecology*, 11, 215–244.
- EPSTEIN, E. (1969): "A scoring system for probability forecasts of ranked categories," *Journal of Applied Meteorology*, 8, 985–987.
- GEWEKE, J., AND G. AMISANO (2011): "Optimal prediction pools," *Journal of Econometrics*, 164, 130–141.
- GIACOMINI, A., AND H. WHITE (2006): "Tests for Conditional Predictive Ability," *Econometrica*, 74(6), 1545–1578.
- GNEITING, T., AND A. RAFTERY (2007): "Strictly Proper Scoring Rules, Prediction and Estimation," Journal of the American Statistical Association, 102(477), 359– 378.

- GONZÁLES-RIVERA, G. (1998): "Smooth-Transition GARCH Models," Studies in Nonlinear Dynamics and Econometrics, 3(2), 61–78.
- GOOD, I. (1952): "Rational Decisions ," Journal of Royal Statistical Society, Ser. B, 14, 107–114.
- GRANGER, C., AND T. TERÄSVIRTA (1993): Modelling Nonlinear Economic Relationships. Oxford University Press, Oxford.
- HAGGAN, V., AND T. OZAKI (1981): "Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model," *Biometrika*, 68(3), 189–196.
- HANSEN, B. (1999): "Testing for Linearity," Journal of Economic Surveys, 13, 551–576.
- HUBRICH, K., AND T. TERÄSVIRTA (2013): "Thresholds and Smooth Transitions in Vector Autoregressive Models," CREATES Research Paper 2013-18.
- KAPETANIOS, G., Y. SHIN, AND A. SNELL (2003): "Testing for a unit root in the nonlinear STAR framework," *Journal of Econometrics*, 112(2), 359–379.
- KASCHA, C., AND F. RAVAZZOLO (2010): "Combining Inflation Density Forecasts," Journal of Forecasting, 29(1–2), 231–250.
- LEYBOURNE, S., P. NEWBOLD, AND D. VOUGAS (1998): "Unit roots and smooth transitions," *Journal of Time Series Analysis*, 19(1), 83–97.
- LUNDBERGH, S., AND T. TERÄSVIRTA (2006): "A time series model for an exchange rate in a target zone with applications," *Journal of Econometrics*, 131(1), 579–609.
- LUUKKONEN, R., P. SAIKKONEN, AND T. TERÄSVIRTA (1988): "Testing linearity against smooth transition autoregressive models," *Biometrika*, 75(3), 491–499.

- MILAS, C., AND P. ROTHMAN (2008): "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," *International Journal Forecasting*, 24, 101– 121.
- MITCHELL, J., AND S. HALL (2005): "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR "Fan" Charts of Inflation," Oxford Bulletin of Economics and Statistics, 67(S1), 995–1033.
- MONTGOMERY, A., V. ZARNOWITZ, R. TSAY, AND G. TIAO (1998): "Forecasting the US unemployment rate," *Journal of American Statistical Association*, 93(442), 478–493.
- MORAN, P. (1953): "The statistical analysis of the Canadian Lynx cycle," Australian Journal of Zoology, 1, 291–298.
- NELDER, J. (1961): "The fitting of a generalization of the logistic curve," *Biomet*rics, 17(1), 89–110.
- PROIETTI, T. (1998): "Characterizing Asymmetries in Business Cycles Using Smooth-Transition Structural Time Series Models," *Studies in Nonlinear Dynamic* & Econometrics, 3(3), 141–156.
- (2003): "Forecasting the US unemployment rate," Computational Statistics and Data Analysis, 42(2), 451–476.
- RAVAZZOLO, F., AND S. VAHEY (2013): "Forecast densities for economic aggregates from disaggregate ensembles," *Studies of Nonlinear Dynamics and Econometrics*, forthcoming.
- ROTHMAN, P. (1991): "Further evidence on the asymmetric behaviour of unemployment rates over the business cycle," *Journal of Macroeconomics*, 13(2), 291–298.

(1998): "Forecasting asymmetric unemployment rates," *Review of Economics and Statistics*, 80(2), 164–168.

- ROTHMAN, P., D. VAN DIJK, AND P. FRANSES (2001): "Multivariate STAR Analysis of Money-Output Relationship," *Macroeconomic Dynamics*, 5, 506–532.
- SCHWARZ, G. (1978): "Estimating the dimension of a model," Annals of Statistics, 6, 461–464.
- SICHEL, D. (1993): "Business cycle asymmetry: a deeper look.," *Economic Inquiry*, 31(2), 224–236.
- SILVENNOINEN, A., AND T. TERÄSVIRTA (2013): "Modelling conditional correlations of asset returns: A smooth transition approach," *Econometric Reviews*, In Press.
- SKALIN, J., AND T. TERÄSVIRTA (2002): "Modelling asymmetries moving equilibria in unemployment rates," *Macroeconomic Dynamics*, 6(2), 202–241.
- SOLLIS, R., S. LEYBOURNE, AND P. NEWBOLD (1999): "Unit Roots and Asymmetric Smooth Transitions," *Journal of Time Series Analysis*, 20(6), 671–677.
- (2002): "Tests for Symmetric and Asymmetric Nonlinear Mean Reversion in Real Exchange Rates," *Journal of Money, Credit and Banking*, 34(3), 686–700.
- STRIKHOLM, B., AND T. TERÄSVIRTA (2005): "Determing the number of regimes in a threshold autoregressive model using smooth transition autoregressions,".
- STUKEL, T. (1988): "Generalized Logistic Models," Journal of American Statistical Association, 83(402), 426–431.
- TASHMAN, L. (2000): "Out-of-sample tests of forecasting accuracy: an analysis and review," *International Journal of Forecasting*, 16, 437–450.

- TERÄSVIRTA, T. (1994): "Specification, estimation and evaluation of smooth transition autoregressive models," Journal of the American Statistical Association, 89(425), 208–218.
- TERÄSVIRTA, T., D. TJØSTHEIM, AND C. GRANGER (2010): Modelling Nonlinear Economic Time Series. Oxford University Press, Oxford, New York.
- TERÄSVIRTA, T., D. VAN DIJK, AND M. MEDEIROS (2005): "Linear Models, smooth transition autoregression and neural networks for forecasting macroeconomic time series," *International Journal of Forecasting*, 21, 755–774.
- TIMMERMANN, A. (2006): "Forecast Combinations," in Handbook of Economic Forecasting, ed. by G. Elliot, C. Granger, and A. Timmermann, pp. 135–196. Elsevier, Amsterdam.
- TONG, H. (1977): "Some Comments on the Canadian Lynx Data," Journal of Royal Statistical Society, ser. A, 140, 432–436.

— (1983): Threshold Models in Non-Linear Time Series Analysis, no. 21 in Lecture Notes in Statistics. Springer-Verlag, New York.

(1990): Nonlinear Time Series. Oxford University Press, Oxford.

- TONG, H., AND K. LIM (1980): "Threshold Autoregression, Limit Cycles and Cyclical Data" (with discussion)," Journal of Royal Statistical Society, ser. B, 42, 295– 292.
- TSAY, R. (1989): "Testing and modeling threshold autoregressive processes," Journal of the American Statistical Association, 84(405), 231–240.
- VOUGAS, D. (2006): "On unit root testing with smooth transitions," Computational Statistics and Data Analysis, 51, 797–800.
- WECKER, W. (1981): "Asymmetric time series," Journal of the American Statistical Association, 76, 16–21.

A Appendix

A.1 Mathematical derivations

A.1.1 Preliminar notation

Let denote $G_t = G(\Xi)$, $\Xi = [\gamma_1, \gamma_2, c]$ or $[\gamma_1, \gamma_2, c_1, c_2]$ in case of GLSTR1 and GESTAR (GESTR). Then we can re-define $G(\Xi)$ as:

$$\begin{split} G^{\{i\}}(\mathbf{\Xi}) &= [1 + g(f^{\{i\}}(\mathbf{\Xi}))]^{j}, \\ f^{\{GLSTR\}}(\mathbf{\Xi}) &= -[h(\eta_{t}^{L})I_{(\gamma_{1} \leq 0, \gamma_{2} \leq 0)} + h(\eta_{t}^{L})I_{(\gamma_{1} \leq 0, \gamma_{2} > 0)} + h(\eta_{t}^{L})I_{(\gamma_{1} > 0, \gamma_{2} \leq 0)} + h(\eta_{t}^{L})I_{(\gamma_{1} > 0, \gamma_{2} > 0)}], \\ f^{\{GLSTR2\}}(\mathbf{\Xi}) &= -[h(\eta_{t}^{2L})I_{(\gamma_{1} \leq 0, \gamma_{2} \leq 0)} + h(\eta_{t}^{2L})I_{(\gamma_{1} \leq 0, \gamma_{2} > 0)} + h(\eta_{t}^{2L})I_{(\gamma_{1} > 0, \gamma_{2} \leq 0)} + h(\eta_{t}^{2L})I_{(\gamma_{1} > 0, \gamma_{2} \geq 0)}], \\ f^{\{GESTR\}}(\mathbf{\Xi}) &= -[h(\eta_{t}^{E})I_{(\gamma_{1} \leq 0, \gamma_{2} \leq 0)} + h(\eta_{t}^{E})I_{(\gamma_{1} \leq 0, \gamma_{2} > 0)} + h(\eta_{t}^{E})I_{(\gamma_{1} > 0, \gamma_{2} \leq 0)} + h(\eta_{t}^{E})I_{(\gamma_{1} > 0, \gamma_{2} \geq 0)}], \end{split}$$

with $i = \{L, 2L, E\}$, denoting the Logistic, Double Logistic and Exponential parametrization, $j = \{1; -1\}$, with j = 1 only if $f(\Xi) = f^{GESTR}(\Xi)$, $\eta_t^L = s_t - c$, $\eta_t^{2L} = (s_t - c_1)(s_t - c_2)$, $\eta_t^L = (s_t - c)^2$. Moreover, let $f'(\Xi) = -[h'(\eta_t)I_{(\gamma_1 \le 0, \gamma_2 \le 0)} + h'(\eta_t)I_{(\gamma_1 \le 0, \gamma_2 \le 0)} + h'(\eta_t)I_{(\gamma_1 > 0, \gamma_2 \le 0)} + h'(\eta_t)I_{(\gamma_1 > 0, \gamma_2 \le 0)}]$ define the first derivative of $f(\Xi)$ and $D = 1 + g(\Xi)$ denote the denominator of the fraction which is the result of the computation of the second derivatives so that:

$$\begin{split} D^2 &= 1 + g(\mathbf{\Xi})^2 + 2g(\mathbf{\Xi}), \\ g^{\{i\}}(\mathbf{\Xi})^2 &= 1 + \exp\{-2(h(\eta_t^{\{i\}})I_{(\gamma_1 \le 0, \gamma_2 \le 0)} + h(\eta_t^{\{i\}})I_{(\gamma_1 \le 0, \gamma_2 \ge 0)} + h(\eta_t^{\{i\}})I_{(\gamma_1 > 0, \gamma_2 \le 0)} + \\ &+ h(\eta_t^{\{i\}})I_{(\gamma_1 > 0, \gamma_2 \ge 0)})\} + 2\exp\{h(\eta_t^{\{i\}})I_{(\gamma_1 \le 0, \gamma_2 \ge 0)} + h(\eta_t^{\{i\}})I_{(\gamma_1 \le 0, \gamma_2 \ge 0)} + \\ &+ h(\eta_t^{\{i\}})I_{(\gamma_1 > 0, \gamma_2 \le 0)} + h(\eta_t^{\{i\}})I_{(\gamma_1 > 0, \gamma_2 \ge 0)}\}, \end{split}$$

A.1.2 LSTR1 case

When the transition equation is a Generalized Logistic, we have the following derivatives:

$$G_{\gamma_1}(\Xi) = -\frac{g'(f(\Xi)) \cdot f'(\Xi)}{D^2}$$
(61)

where:

$$h'(\eta_t)I_{(\eta_t>0)} = \frac{\partial}{\partial\gamma_1}h(\boldsymbol{\gamma}) = \begin{cases} -\frac{1}{\gamma_1^2} \cdot \exp(|\eta_t| - 1)(|\eta_t| - 1) & \text{if } \gamma_1 > 0\\ 0 & \text{if } \gamma_1 = 0\\ -\frac{1}{\gamma_1^2} \cdot \ln(1 - \gamma_1|\eta_t|) + \frac{|\eta_t|}{1 - \gamma_1|\eta_t|}) & \text{if } \gamma_1 < 0 \end{cases}$$
(62)

and

$$h'(\eta_t)I_{(\eta_t \le 0)} = \begin{cases} 0 & \text{if } \gamma_2 > 0 \\ 0 & \text{if } \gamma_2 = 0 \\ 0 & \text{if } \gamma_2 < 0 \end{cases}$$
(63)

(ii) $G_{\gamma_2}(\cdot)$: equal to (61) but with

$$h'(\eta_t)I_{(\eta_t>0)} = \frac{\partial}{\partial\gamma_2}h(\boldsymbol{\gamma}) = \begin{cases} 0 \text{ if } \gamma_1 > 0\\ 0 \text{ if } \gamma_1 = 0\\ 0 \text{ if } \gamma_1 < 0 \end{cases}$$
(64)

and

$$h'(\eta_t)I_{(\eta_t \le 0)} = \begin{cases} \frac{1}{\gamma_2} \exp(1 - \gamma_2 |\eta_t|) \cdot (\frac{1}{\gamma_2} + |\eta_t|) & \text{if } \gamma_2 > 0\\ 0 & \text{if } \gamma_2 = 0\\ -\frac{1}{\gamma_2} \left[\frac{1}{\gamma_2} \ln(\gamma_2 |\eta_t| - 1) + \frac{|\eta_t|}{\gamma_2 |\eta_t| - 1} \right] & \text{if } \gamma_2 < 0 \end{cases}$$
(65)

(iii) $G_c(\cdot)$: equal to (61) but with

$$f'(\Xi) = h(\eta_t) I_{(\eta_t \le 0)} + h(\eta_t) I_{(\eta_t > 0)}$$
(66)

A.1.3 LSTR2 case

When the transition equation is a (Generalized) Double Logistic as in model (??), we have the following derivatives:

- (i) $G_{\gamma_1}(\cdot)$ equal to equation (61) with: $f^{\{i\}}(\Xi) = f^{\{GLSTR2\}}(\Xi) = -[h(\eta_t^{2L})I_{(\gamma_1 \le 0, \gamma_2 \le 0)} + h(\eta_t^{2L})I_{(\gamma_1 > 0, \gamma_2 \le 0)} + h(\eta_t^{2L})I_{(\gamma_1 > 0, \gamma_2 > 0)}], g^{\{GLSTR2\}} = \exp\{f^{\{GLSTR2\}}(\Xi)\}, h'(\eta_t^{2L})I_{(\eta_t^{2L} > 0)} \text{ and } h'(\eta_t^{2L})I_{(\eta_t^{2L} \le 0)} \text{ equal to systems (62) and (63).}$
- (ii) $G_{\gamma_2}(\cdot)$: equal to equation (61) with: $f^{\{GLSTR2\}}(\Xi)$ and $g^{\{GLSTR2\}}(\Xi)$ above defined as in case (i) and $h'(\eta_t^{2L})I_{(\eta_t^{2L}\geq 0)}$ and $h'(\eta_t^{2L})I_{(\eta_t^{2L}<0)}$ equal to systems (64) and (65) respectively.
- (iii) $G_{c_1}(\cdot)$: equal to equation (61) with: $f^{\{GLSTR2\}}(\Xi)$ and $g^{\{GLSTR2\}}(\Xi)$ defined as in case (i) and

$$f'(\mathbf{\Xi}) = h'(\eta_t^{2L}) I_{(\eta_t^{2L} \le 0)}(s_t - c_2) + h'(\eta_t^{2L}) I_{(\eta_t^{2L} > 0)}(s_t - c_2)$$
(67)

(iv) $G_{c_2}(\cdot)$: equal to equation (61) with: $f^{\{GLSTR2\}}(\Xi)$ and $g^{\{GLSTR2\}}(\Xi)$ defined as in case i) and

$$f'(\mathbf{\Xi}) = h'(\eta_t^{2L}) I_{(\eta_t^{2L} \le 0)}(s_t - c_1) + h'(\eta_t^{2L}) I_{(\eta_t^{2L} > 0)}(s_t - c_1)$$
(68)

A.1.4 ESTR case

When the transition equation is an exponential as in model (??), we have: $f^{\{ESTR\}}(\Xi) = -[h(\eta_t^E)I_{(\gamma_1 \le 0, \gamma_2 \le 0)} + h(\eta_t^E)I_{(\gamma_1 \ge 0, \gamma_2 \ge 0)} + h(\eta_t^E)I_{(\gamma_1 > 0, \gamma_2 \ge 0)}], g^{\{ESTR\}}(\Xi) = -\exp\{f^{\{E\}}\},$ hence the following derivatives:

- (i) $G_{\gamma_1}(\cdot) = f^{\{ESTR\}*'(\Xi)}$ with: $f'(\Xi) = -[h(\eta_t^E)I_{(\eta_t^E \le 0)}(s_t c)^2 + h'(\eta_t^E)I_{(\eta_t^E \le 0)}(s_t c)^2)$, $h'(\eta_t^E)I_{(\eta_t^E > 0]}$ and $h'(\eta_t^E)I_{(\eta_t^E \le 0)}$ being the same of systems (62) and (63).
- (ii) $G_{\gamma_2}(\cdot)$: same as $G_{\gamma_1}(\cdot)$ with $h'(\eta_t^E)I_{(\eta_t^E>0]}$ and $h'(\eta_t^E)I_{(\eta_t^E\leq 0)}$ being the same of systems (64) and (65).
- (iii) $G_c(\cdot) = f^{\{ESTR\}*'}(\Xi)$ with $f'(\Xi) = h'(\eta_t^E)I_{(\eta_t^E \le 0)}(2c) + h'(\eta_t^E)I_{(\eta_t^E > 0)}(2c)$, with $h'(\eta_t^E)I_{(\eta_t^E > 0]}$ and $h'(\eta_t^E)I_{(\eta_t^E \le 0)}$ being the same of systems (64) and (65).

A.2 Tables and Graphs

(a) Sollis et al. (2002)

(b) Sollis et. al (1999) - Lundbergh and Terasvirta (2006)

Figure 2: The Generalized Logistic function.

Figure 3: The Generalized Second-Order Logistic function.

Figure 4: An example of GLSTAR model.

Simulation performed with following parameters: $\phi_0 = 0.05$; $\phi_1 = 0.4$; $\phi_2 = 0.25$; $\theta_0 = 0.2$; $\theta_1 = 0.4$; $\theta_2 = 0.25$; $\gamma_1 = 0.25$; $\gamma_2 = -1.0$; c = 0; $c_1 = 3$; $c_2 = 5$; T = 100

Figure 5: Estimated transition function for (MR)STAR and GSTAR specifications.

(b) U.S. Unemployment

NOTE: The data are plotted in blue line.

Figure 6: Estimated transition functions vs transition variable.

Figure 7: Monthly SSN: estimated transition functions for different data transformations.

NOTE: The data are plotted in blue line of left-had subfigures.

Γ.
ЧЪ
Ď
under
ymmetry
namic as
dy:
\mathbf{for}
test
Step"
Lwo-
۲. ۲.
and
One'
ll-in-
F" 3
sr of
DOWE
and]
Size a
oirical
$\operatorname{Em}_{\mathrm{I}}$

Table

						EI	npirical Si	ze			
H	γ_1	γ_2		LM_1			LM_2			S_1	
			$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
100	0	0	0.0003	0.0221	0.0458	0.0000	0.0230	0.0467	0.0025	0.0135	0.0430
300	0	0	0.0058	0.0255	0.0565	0.0070	0.0288	0.0653	0.0039	0.0168	0.0433
1000	0	0	0.0073	0.0384	0.0798	0.0208	0.0735	0.1297	0.0088	0.0527	0.0882
						Em	pirical Pov	ver			
H	γ_1	γ_2		LM_1			LM_2			S_1	
			$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
	50	10	0.0315	0.1382	0.2366	0.0142	0.0951	0.1561	0.0271	0.0646	0.1006
	- 20 20 20	-10	0.0180	0.0939	0.1904	0.0100	0.0747	0.1240	0.0175	0.0554	0.0790
	50	0	0.0170	0.0836	0.1601	0.0169	0.0731	0.1448	0.0006	0.0252	0.0443
	-50	0	0.0094	0.0801	0.1288	0.0164	0.0767	0.1364	0.0072	0.0416	0.0765
	0	50	0.0128	0.0732	0.1486	0.0128	0.0732	0.1486	0.0034	0.0226	0.0491
100	500	100	0.7930	0.8165	0.8335	0.7927	0.7987	0.8191	0.7986	0.8049	0.8130
	- 200	-100	0.7931	0.8073 0.8073	0.1040	0.007927	0.8031	0.8155	0.7965	0.80040	0.11/3 0.8259
	500	0	0.7954	0.8059	0.8215	0.7947	0.8067	0.8189	0.7928	0.7959	0.8004
	-500	0	0.0094	0.0782	0.1325	0.0164	0.0776	0.1394	0.0114	0.0466	0.0795
	0	500	0.8037	0.8083	0.8303	0.8037	0.8083	0.8303	0.8012	0.8083	0.8165
	50	10	0.1098	0.2570	0.3719	0.0281	0.1295	0.2018	0.0681	0.1501	0.2173
	-50	10	0.0207	0.1266	0.1941	0.0102	0.0640	0.1392	0.0390	0.0946	0.1496
	50	-10	0.0420	0.1458	0.2253	0.0132	0.0729	0.1561	0.0287	0.0890	0.1509
	50 -50		0.0353	0.1339 0 1033	0.2059 0.1476	0.0212	0.0823	0.1496 0.2085	0.0103	0.0363	0.0634
	0	50	0.0176	0.0964	0.1898	0.0176	0.0964	0.1898	0.0092	0.0359	0.0729
300	500	100	0.9958	0.9961	0.9980	0.9958	0.9958	0.9958	0.9959	0.9999	1.0000
	-500	100	0.0360	0.1485	0.2147	0.0096	0.0765	0.1389	0.0468	0.1197	0.1856
	500	-100	0.9958	0.9961	0.9961	0.9958	0.9961	0.9961	1.0000	1.0000	1.0000
	200		1.0000	1.0000	1.0000	0.9958	0.1975	1966.0	0.000	1.0000	1.0000
	0	500	0.9917	0.9966	0.9972	0.9917	0.9966.0	0.9972	1.0000	1.0000	1.0000
	50	10	0.4727	0.7274	0.8419	0.1173	0.2498	0.3634	0.2139	0.3545	0.4518
	-50	10	0.0830	0.2032	0.2996	0.0274	0.0822	0.1506	0.0580	0.1589	0.2205
	50	-10	0.1411	0.2863	0.4373	0.0312	0.0942	0.1778	0.0866	0.2054	0.2599
	50	0	0.1344	0.3275	0.4455	0.0476	0.1435	0.2856	0.0107	0.0635	0.1281
	-20	0 0	0.0446	0.1193	0.2482	0.0846	0.2535	0.3520	01100	0.0471	0.0893
1000	200	100	1.0000	0.11.99	1.0000	1.0000	0.1799	1.0000	0,000	1,0000	0.000.1
	-500	100	0.1281	0.2695	0.4265	0.0242	0.0719	0.1607	1.0000	1.0000	1.0000
	500	-100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.1181	0.2180	0.2752
	500	0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	-200	0	0.0462	0.1223	0.2390	0.0890	0.2565	0.3556	1.0000	1.0000	1.0000
	D	nne	T.UUUU	T.UUUU	T.UUUU	T.UUUU	1.UUUU	T.UUUU	T.UUUU	T.UUUU	T.UUUU

5.
Ч
Ď
under
symmetry
lynamic a
or C
test f
Step"
"Two-
and
One"
ll-in-
f "A
ver o
and Pov
Size 8
Empirical
.: .:
Table

						Er	npirical Si	ze			
Н	γ_1	γ_2		LM_1			LM_2			S_1	
			$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
100	0	0	0.0024	0.0164	0.0185	0.0014	0.0131	0.0237	0.0006	0.0264	0.0423
300	0 0	0 0	0.0000	0.0081	0.0272	0.0002	0.0123	0.0242	0.0112	0.0292	0.0469
1000	0	0	0.0036	0.0460	0.1018	0.0015	0.0391	0.0787	0.0126	0.0482	0.0863
						Em	pirical Pov	ver			
Т	γ_1	γ_2		LM_1			LM_2			S_1	
			$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
	50	10	0.0308	0.1249	0.2454	0.0111	0.0328	0.1117	0.0031	0.0261	0.0585
	-50	10	0.0185	0.1021	0.1847	0.0117	0.0262	0.0520	0.0100	0.0393	0.0698
	002	01-	0.0308	0.1249 0 1249	0.2454 0.2454	0.0111	0.0328	0.1117	1.0000	0.0411 1 0000	0.0002 1 0000
	-50	0 0	0.0185	0.1021	0.1847	0.0111	0.0262	0.0520	0.0098	0.0354	0.0697
	0	50	0.0185	0.0930	0.1705	0.0108	0.0262	0.0560	1.0000	1.0000	1.0000
100	500	100	0.0192	0.0950	0.1893	0.0108	0.0247	0.0544	0.0006	0.0159	0.0416
	-500	100	0.0189	0.1028	0.1786	0.0117	0.0262	0.0520	0.0111	0.0485	0.0800
	500	-100	0.0192	0.0950	0.1893	0.0108	0.0247	0.0544	0.0044	0.0349	0.0574
	-500		0.0182	0.10330	0.1093	21100	0.0247	0.0344	1 0000	1 0000	1 0000
	0	500	0.0185	0.0930	0.1705	0.0108	0.0262	0.0560	1.0000	1.0000	1.0000
	50	10	0.1044	0.2473	0.3516	0.0510	0.1327	0.2083	0.0099	0.0230	0.0409
	-50	10	0.0221	0.0957	0.1983	0.0103	0.0398	0.0681	0.0141	0.0315	0.0757
	50	-10	0.1044	0.2473	0.3516	0.0510	0.1327	0.2083	0.0138	0.0258	0.0511
	50	0 0	0.1044	0.2473	0.3516	0.0510	0.1327	0.2083	0.0099	0.0230	0.0387
	00-	50	0.0190	0.0929	0.1907	0.0084	0.0379	0.0666	0.0141	0.0292	0.0478
300	500	100	0.0329	0.1381	0.2106	0.0165	0.0575	0.0906	0.0131	0.0189	0.0369
	-500	100	0.0221	0.0957	0.1953	0.0103	0.0394	0.0623	0.0167	0.0443	0.0820
	500	-100	0.0329	0.1381	0.2106	0.0165	0.0575	0.0906	0.0131	0.0252	0.0533
	500		0.0329	0.0057	0.2106	6010.0 0.0103	6760.0 0.0304	0.0906	1.0000	1.0000	1.0000
	0	500	0.0190	0.0929	0.1907	0.0084	0.0379	0.0666	1.0000	1.0000	1.0000
	50	10	0.5292	0.7540	0.8404	0.3287	0.5776	0.6915	0.0082	0.0251	0.0541
	-50	10	0.0964	0.2863	0.4173	0.0240	0.1301	0.2150	0.0073	0.0370	0.0527
	50	-10	0.5292	0.7540	0.8404	0.3287	0.5776	0.6915	0.0087	0.0322	0.0686
	50	0 0	0.5292	0.7540	0.8404	0.3287	0.5776	0.6915	1.0000	1.0000	1.0000
	00-		0.0964	0.2803	0.4173	0.0240	0.1301	0.2150	1.0000	1.0000	1.0000
1000	500	100	0.1872	0.4034	0.5708	0.0693	0.2030	0.3046	0.0020	0.0181	0.0379
	-500	100	0.0926	0.2848	0.4135	0.0233	0.1267	0.2122	0.0087	0.0385	0.0656
	500	-100	0.1872	0.4034	0.5708	0.0693	0.2030	0.3046	0.0057	0.0290	0.0533
	200		0.00 <i>96</i>	0.4034	0.0108	0.0093	0.2030	0.3040	1 0000	1.0000	1.0000
	0	500	0.0888	0.2829	0.4009	0.0208	0.1199	0.2118	1.0000	1.0000	1.0000

	ancy	LM_3	$\begin{array}{c} 0.0005 \\ 0.0005 \\ 0.0029 \end{array}$	$\begin{array}{c} 0.0000\\ 0.0023\\ 0.0092\end{array}$	$\begin{array}{c} 0.0000\\ 0.0012\\ 0.0040\end{array}$	$\begin{array}{c} 0.0000\\ 0.0023\\ 0.0081 \end{array}$	$\begin{array}{c} 0.0041 \\ 0.0297 \\ 0.0607 \end{array}$	$\begin{array}{c} 0.0045 \\ 0.0344 \\ 0.0836 \end{array}$		ancy	LM_3	$\begin{array}{c} 0.5316 \\ 0.6858 \\ 0.7378 \end{array}$	$\begin{array}{c} 0.5356 \\ 0.6958 \\ 0.7517 \end{array}$	$\begin{array}{c} 0.8924 \\ 0.9230 \\ 0.9331 \end{array}$	0.7728 0.9442 0.9917	$\begin{array}{c} 0.7728 \\ 0.9442 \\ 0.9940 \end{array}$	$0.9961 \\ 1.0000 \\ 1.0000$
	ster const	LM_2	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0012 \end{array}$	0.0000 0.00000 0.00000	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0023 \end{array}$	$\begin{array}{c} 0.0000\\ 0.0023\\ 0.0057 \end{array}$		ster const	LM_2	$\begin{array}{c} 0.3280 \\ 0.4577 \\ 0.5354 \end{array}$	$0.3257 \\ 0.4403 \\ 0.5361$	0.8489 0.8770 0.8934	0.3353 0.6957 0.8281	$0.3353 \\ 0.6957 \\ 0.8281$	$0.9961 \\ 0.9970 \\ 0.9991$
	Parame	LM_1	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\end{array}$		Parame	LM_1	$\begin{array}{c} 0.2313 \\ 0.2957 \\ 0.3333 \end{array}$	$\begin{array}{c} 0.2270 \\ 0.2768 \\ 0.3228 \end{array}$	$\begin{array}{c} 0.7871 \\ 0.8239 \\ 0.8296 \end{array}$	$\begin{array}{c} 0.0215 \\ 0.0835 \\ 0.1804 \end{array}$	$\begin{array}{c} 0.0215 \\ 0.0835 \\ 0.1804 \end{array}$	0.9961 0.9961 0.9968
										No additional asymmetry	H_1	$\begin{array}{c} 0.1744 \\ 0.2157 \\ 0.2516 \end{array}$	0.1747 0.2161 0.2496	1.0000 1.0000 1.0000	0.0118 0.0535 0.1149	0.1747 0.2161 0.2496	1.0000 1.0000 1.0000
	No additional asymmetry	H_0	0.0020 0.0034 0.0063	$\begin{array}{c} 0.0000\\ 0.0007\\ 0.0020\end{array}$	0.0000 0.0000 0.0080	$\begin{array}{c} 0.0024 \\ 0.0065 \\ 0.0122 \end{array}$	$\begin{array}{c} 0.0018 \\ 0.0018 \\ 0.0099 \end{array}$	0.0142 0.0657 0.1083		tion	q=10	0.9916 1.0000 1.0000	0.9930 0.9959 1.0000	0.9931 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000
										autocorrelat $ = 0.4$	q=4	$\begin{array}{c} 0.8493 \\ 0.9535 \\ 0.9706 \end{array}$	$0.7557 \\ 0.9013 \\ 0.9465$	0.7552 0.9035 0.9490	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000
										No error a	q=2	$\begin{array}{c} 0.0295 \\ 0.1011 \\ 0.1897 \end{array}$	$\begin{array}{c} 0.0228 \\ 0.1014 \\ 0.1834 \end{array}$	$\begin{array}{c} 0.0290 \\ 1.0000 \\ 0.1767 \end{array}$	$\begin{array}{c} 0.1235 \\ 0.2724 \\ 0.4229 \end{array}$	$\begin{array}{c} 0.1331 \\ 0.2848 \\ 0.4272 \end{array}$	$\begin{array}{c} 0.1422 \\ 0.2980 \\ 0.4364 \end{array}$
al Size									l Power		q=1	$\begin{array}{c} 0.0276 \\ 0.0840 \\ 0.1530 \end{array}$	$\begin{array}{c} 0.0227 \\ 0.0777 \\ 0.1371 \end{array}$	$\begin{array}{c} 0.0158 \\ 0.0759 \\ 0.1376 \end{array}$	$\begin{array}{c} 0.1047\\ 0.2974\\ 0.4006\end{array}$	$\begin{array}{c} 0.0890 \\ 0.2430 \\ 0.3436 \end{array}$	0.0860 0.2156 0.3349
Empiric	-	q=10	0.0053 0.0435 0.0995	$\begin{array}{c} 0.0040 \\ 0.0167 \\ 0.0393 \end{array}$	$\begin{array}{c} 0.0047 \\ 0.0318 \\ 0.0491 \end{array}$	$\begin{array}{c} 0.0057 \\ 0.0436 \\ 0.0983 \end{array}$	$\begin{array}{c} 0.0014 \\ 0.0112 \\ 0.0241 \end{array}$	$\begin{array}{c} 0.0000\\ 0.0208\\ 0.0356\end{array}$	Empirica	-	q=10	$\begin{array}{c} 0.6185 \\ 0.7702 \\ 0.8719 \end{array}$	0.5425 0.7090 0.7988	$0.5540 \\ 0.7341 \\ 0.8176$	1.0000 1.0000 1.0000	0.9968 0.9980 1.0000	0.9968 1.0000 1.0000
	correlation 0	q=4	$\begin{array}{c} 0.0087 \\ 0.0354 \\ 0.0931 \end{array}$	$\begin{array}{c} 0.0070 \\ 0.0186 \\ 0.0515 \end{array}$	0.0098 0.0389 0.1008	0.0112 0.0616 0.1075	$\begin{array}{c} 0.0043 \\ 0.0287 \\ 0.0708 \end{array}$	$\begin{array}{c} 0.0149 \\ 0.0618 \\ 0.1195 \end{array}$		correlatior .2	q=4	$0.1261 \\ 0.3388 \\ 0.4723$	0.0863 0.2024 0.3262	0.0934 0.2538 0.3696	$\begin{array}{c} 0.8014 \\ 0.9070 \\ 0.9467 \end{array}$	$\begin{array}{c} 0.7414 \\ 0.8827 \\ 0.9069 \end{array}$	0.7046 0.8476 0.8963
	error auto $\rho =$	q=2	$\begin{array}{c} 0.0041 \\ 0.0482 \\ 0.1008 \end{array}$	$\begin{array}{c} 0.0134 \\ 0.0392 \\ 0.0953 \end{array}$	$\begin{array}{c} 0.0149 \\ 0.0478 \\ 0.1024 \end{array}$	$\begin{array}{c} 0.0114 \\ 0.0527 \\ 0.0969 \end{array}$	$\begin{array}{c} 0.0084 \\ 0.0563 \\ 0.1210 \end{array}$	$\begin{array}{c} 0.0137 \\ 0.0043 \\ 0.0124 \end{array}$		error auto $\rho = 0$	q=2	$\begin{array}{c} 0.0074 \\ 0.0594 \\ 0.0952 \end{array}$	$\begin{array}{c} 0.0138 \\ 0.0621 \\ 0.1007 \end{array}$	$\begin{array}{c} 0.0203 \\ 0.1011 \\ 0.1146 \end{array}$	0.0312 0.0953 0.1914	$\begin{array}{c} 0.0810 \\ 0.1652 \\ 0.2323 \end{array}$	$\begin{array}{c} 0.0419 \\ 0.1110 \\ 0.1986 \end{array}$
	No	q=1	$\begin{array}{c} 0.0060 \\ 0.0628 \\ 0.0991 \end{array}$	$\begin{array}{c} 0.0045 \\ 0.0526 \\ 0.0970 \end{array}$	$\begin{array}{c} 0.0102 \\ 0.0459 \\ 0.0921 \end{array}$	$\begin{array}{c} 0.0136 \\ 0.0462 \\ 0.1078 \end{array}$	$\begin{array}{c} 0.0087 \\ 0.0622 \\ 0.1245 \end{array}$	$\begin{array}{c} 0.0250 \\ 0.0621 \\ 0.1221 \end{array}$		No	q=1	$\begin{array}{c} 0.0075 \\ 0.0520 \\ 0.1111 \end{array}$	$\begin{array}{c} 0.0112 \\ 0.0589 \\ 0.1033 \end{array}$	$\begin{array}{c} 0.0075 \\ 0.0611 \\ 0.1027 \end{array}$	$\begin{array}{c} 0.0290 \\ 0.0940 \\ 0.1859 \end{array}$	$\begin{array}{c} 0.0987 \\ 0.1866 \\ 0.2372 \end{array}$	0.0216 0.1106 0.1755
	Nominal size		$\begin{aligned} \alpha &= 0.01\\ \alpha &= 0.05\\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01\\ \alpha &= 0.05\\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$		Nominal size		$\begin{array}{l} \alpha = 0.01 \\ \alpha = 0.05 \\ \alpha = 0.10 \end{array}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01\\ \alpha &= 0.05\\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01\\ \alpha &= 0.05\\ \alpha &= 0.10 \end{aligned}$	$\begin{array}{l} \alpha = 0.01 \\ \alpha = 0.05 \\ \alpha = 0.10 \end{array}$
	γ_4									γ_4		5	20	200	5	20	200
	γ3									γ3		ю	50	500	го	50	500
	γ_2		1	10	100	-	10	100		γ_2		1	10	100	-	10	100
	γ_1		0	20	200	10	20	200		γ_1		7	20	200	5	20	200
	F			100			300			H			100			300	

Table 3: Empirical Size and Empirical Power of test for serial correlation, no additive asymmetry and parameter constancy under DGP 1.

		۔ ا	0000	$100 \\ 53 \\ 53$	00000	0000	$100 \\ 52 \\ 52 \\ 100 \\ $	0000			f ₃	177 05 92	31 89 89	140 03 82	49 99	00 149 99	149 99 99
	stancy	$_{LN}$	0.00	0.00 00.0	0.00 00.0	00.0	0.00 0.00 0.00	0.00 00.00		stancy	LM	$\begin{array}{c} 0.02 \\ 0.12 \\ 0.19 \end{array}$	$\begin{array}{c} 0.17 \\ 0.40 \\ 0.56 \end{array}$	$\begin{array}{c} 0.13 \\ 0.33 \\ 0.47 \end{array}$	0.06 0.23 0.35	$\begin{array}{c} 0.06\\ 0.23\\ 0.35\end{array}$	$\begin{array}{c} 0.06\\ 0.23\\ 0.35\end{array}$
	neter con	$_{LM_{2}}$	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000		neter con	LM_2	$\begin{array}{c} 0.0042 \\ 0.0456 \\ 0.0880 \end{array}$	$\begin{array}{c} 0.0186 \\ 0.0807 \\ 0.1597 \end{array}$	$\begin{array}{c} 0.0566 \\ 0.1591 \\ 0.2475 \end{array}$	$\begin{array}{c} 0.0015\\ 0.0225\\ 0.0509\end{array}$	$\begin{array}{c} 0.0015 \\ 0.0225 \\ 0.0509 \end{array}$	$\begin{array}{c} 0.0015 \\ 0.0225 \\ 0.0509 \end{array}$
	Paran	LM	0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000		Paran	LM_1	$\begin{array}{c} 0.0019 \\ 0.0075 \\ 0.0197 \end{array}$	$\begin{array}{c} 0.0016 \\ 0.0121 \\ 0.0223 \end{array}$	$\begin{array}{c} 0.0059 \\ 0.0207 \\ 0.0503 \end{array}$	0.0000 0.0000 0.0001	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0001 \end{array}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0001 \end{array}$
										No additional asymmetry	H_1	$\begin{array}{c} 0.1299\\ 0.1675\\ 0.2029 \end{array}$	0.1299 0.1675 0.2029	1.0000 1.0000 1.0000	0.3567 0.3777 0.4125	$\begin{array}{c} 0.3567 \\ 0.3777 \\ 0.4125 \end{array}$	1.0000 1.0000 1.0000
	No additional	asymmetry H _o	0.0055 0.0464 0.0945	$\begin{array}{c} 0.0011\\ 0.0425\\ 0.0812\end{array}$	$\begin{array}{c} 0.0345 \\ 0.0700 \\ 0.1089 \end{array}$	$\begin{array}{c} 0.0118\\ 0.0512\\ 0.0925\end{array}$	$\begin{array}{c} 0.0127 \\ 0.0505 \\ 0.0916 \end{array}$	$\begin{array}{c} 0.0381 \\ 0.0640 \\ 0.1217 \end{array}$		tion	$q{=}10$	0.9892 0.9919 0.9959	0.9892 0.9960 0.9960	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000
										autocorrela $\rho = 0.4$	q=4	$\begin{array}{c} 0.9581 \\ 0.9842 \\ 0.9881 \end{array}$	$\begin{array}{c} 0.9618 \\ 0.9858 \\ 0.9881 \end{array}$	1.0000 1.0000 1.0000	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\end{array}$	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000
										No error	q=2	$\begin{array}{c} 0.4917 \\ 0.7035 \\ 0.7885 \end{array}$	$\begin{array}{c} 0.4811 \\ 0.7083 \\ 0.8168 \end{array}$	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\end{array}$	$\begin{array}{c} 0.9979\\ 0.9997\\ 1.0000\end{array}$	$\begin{array}{c} 0.9983 \\ 1.0000 \\ 1.0000 \end{array}$	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\end{array}$
į	ıl Size								Power		q = 1	$\begin{array}{c} 0.3615 \\ 0.5759 \\ 0.7180 \end{array}$	$\begin{array}{c} 0.3746 \\ 0.6207 \\ 0.7587 \end{array}$	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\end{array}$	$\begin{array}{c} 0.9431 \\ 0.9873 \\ 0.9948 \end{array}$	$\begin{array}{c} 0.9565 \\ 0.9921 \\ 0.9964 \end{array}$	1.0000 1.0000 1.0000
	npirice	I	I						pirical								
1	E E	a=10	$ \begin{array}{c} 0.0039 \\ 0.0443 \\ 0.0781 \\ \end{array} $	$\begin{array}{c} 0.0029 \\ 0.0333 \\ 0.0819 \end{array}$	$\begin{array}{c} 0.0018 \\ 0.0163 \\ 0.0455 \end{array}$	$\begin{array}{c} 0.0058 \\ 0.0532 \\ 0.0926 \end{array}$	$\begin{array}{c} 0.0051 \\ 0.0461 \\ 0.0905 \end{array}$	$\begin{array}{c} 0.0100\\ 0.0481\\ 0.0968\end{array}$	Em	ц	q=10	$\begin{array}{c} 0.6581 \\ 0.8088 \\ 0.8812 \end{array}$	0.6560 0.8127 0.8792	1.0000 1.0000 1.0000	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\end{array}$	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000
	correlatio	0 0=4	0.0107 0.0503 0.1119	$\begin{array}{c} 0.0074 \\ 0.0400 \\ 0.1062 \end{array}$	$\begin{array}{c} 0.0046 \\ 0.0446 \\ 0.0977 \end{array}$	$\begin{array}{c} 0.0159 \\ 0.0506 \\ 0.1006 \end{array}$	$\begin{array}{c} 0.0164 \\ 0.0484 \\ 0.0882 \end{array}$	$\begin{array}{c} 0.0111\\ 0.0611\\ 0.1013\end{array}$		correlati 0.2	q=4	$\begin{array}{c} 0.2704 \\ 0.5272 \\ 0.6532 \end{array}$	$\begin{array}{c} 0.2863 \\ 0.5427 \\ 0.6689 \end{array}$	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\\ \end{array}$	0.9576 0.9806 0.9890	$\begin{array}{c} 0.9622 \\ 0.9819 \\ 0.9922 \end{array}$	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\\ 1.0000 \end{array}$
	error auto	ρ = 0 = 2	0.0064 0.0453 0.1124	$\begin{array}{c} 0.0069 \\ 0.0421 \\ 0.0948 \end{array}$	$\begin{array}{c} 0.0059 \\ 0.0470 \\ 0.1089 \end{array}$	0.0098 0.0479 0.0890	$\begin{array}{c} 0.0083 \\ 0.0446 \\ 0.0920 \end{array}$	$\begin{array}{c} 0.0134 \\ 0.0413 \\ 0.0853 \end{array}$		error auto $\rho = 0$	q=2	$\begin{array}{c} 0.0819 \\ 0.2302 \\ 0.3440 \end{array}$	$\begin{array}{c} 0.0633\\ 0.2241\\ 0.3312 \end{array}$	1.0000 1.0000 1.0000	0.3919 0.6956 0.7885	$\begin{array}{c} 0.4193 \\ 0.7093 \\ 0.8015 \end{array}$	1.0000 1.0000 1.0000
	No	1=0	0.0082 0.0534 0.1120	$\begin{array}{c} 0.0059 \\ 0.0488 \\ 0.0978 \end{array}$	$\begin{array}{c} 0.0084 \\ 0.0433 \\ 0.0983 \end{array}$	$\begin{array}{c} 0.0096 \\ 0.0448 \\ 0.0899 \end{array}$	$\begin{array}{c} 0.0099\\ 0.0463\\ 0.0884 \end{array}$	$\begin{array}{c} 0.0128\\ 0.0584\\ 0.0891 \end{array}$		No	q = 1	$\begin{array}{c} 0.0538 \\ 0.1772 \\ 0.2873 \end{array}$	$\begin{array}{c} 0.0540 \\ 0.1817 \\ 0.2749 \end{array}$	1.0000 1.0000 1.0000	$\begin{array}{c} 0.3156\\ 0.5697\\ 0.7064\end{array}$	$\begin{array}{c} 0.3455 \\ 0.6141 \\ 0.7394 \end{array}$	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\end{array}$
	Nominal	size	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01\\ \alpha &= 0.05\\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$		Nominal size		$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\alpha = 0.01$ $\alpha = 0.05$ $\alpha = 0.10$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$	$\begin{aligned} \alpha &= 0.01 \\ \alpha &= 0.05 \\ \alpha &= 0.10 \end{aligned}$
	γ_4									γ_4		7	20	200	5	20	200
	γ3									γ_3		Ŋ	50	500	ы	50	500
	γ_2		1	10	100	-	10	100 (70)		γ_2		1	10	100	1	10	100
	λ1		6	20	200	10	20	200 (120)		γ_1		7	20	200	5	20	200
	F			100			300			F			100			300	

Table 4: Empirical Size and Empirical Power of test for serial correlation, no additive asymmetry and parameter constancy under DGP 2.

Series	Sample	T^{s}	Testing Period	Source	Previous Studies
EI	$1947~{ m M1}-2013~{ m M3}$	500	1982 M9+h — 2013M3-12+h	OECD Main Economic Indicators	Anderson and Teräsvirta (1992) Proietti (1998) Teräsvirta, van Dijk, and Medeiros (2005)
ΝN	1948 M1 — 2013 M3	500	1983 M9+h — 2013M3-12+h	OECD Main Economic Indicators	Rothman (1991) Rothman (1998) Montgomery, Zarnowitz, Tsay, and Tiao (1998) Skalin and Teräsvirta (2002) Proietti (2003)
NSSY	1700 - 2013	150	1851 + h - 2013 - 12 + h	Solar Influences Data Analysis Center	Tong and Lim (1980) Tsay (1989) Hansen (1999) Strikholm and Teräsvirta (2005)
TYNX	1820 - 1934	50	1871 + h - 1934 - 12 + h	The Encyclopedia of Mathematics wiki	Elton and Nicholson (1942) Moran (1953) Tong (1977) Tsay (1989) Teräsvirta (1994)

Table 5: Datasets

						escriptive sta	tistics							3	100
Series	Mea	n Mé	dian	MAD	Std.Dev.	Skewnes	K	urtosis	JB	ARCH-ef	ffects	DW	KS	$ADF^{(1)}$)(3)
IP UN YSSN LYNX	0.24(0.097 6.395 2.903	90 0 74 -0 31 6.6. 37 2.2.8	2790 3704 1246 1870	0.3474 1.3182 2.4452 0.4721	$\begin{array}{c} 0.4780 \\ 1.8054 \\ 2.9486 \\ 0.5584 \end{array}$	-0.2815 0.9802 0.1790 -0.3620	4 7 O O	L.5233 L.9645 L.2904 L.2664	$\begin{array}{c} 0.0010 \\ 0.0010 \\ 0.0226 \\ 0.0582 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.002\end{array}$	0004	$\begin{array}{c} 0.0293\\ 0.9341\\ 0.2978\\ 0.0176\end{array}$	$\begin{array}{c} 0.0000\\ 0.0001\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	-11.196 -10.777 -5.286 -5.824	32 * 7 ប * * ប * * *
					inearity and	l Asymmetry	tests (p-va	lues)							
Series				Linearity	Test ⁽²⁾								Symmetry	r Test	
	F_L		F_3		F_2		F_1		1	Model ⁽²⁾		All-in	-One	Two-S	step
IP UN YSSN LYNX	$\begin{array}{c} 0.05\\ 2.1e^{-}\\ 3.03e^{\circ}\\ 0.00? \end{array}$	10 - 1 - 00 10 - 10 - 00	$\begin{array}{c} 0.016\\ 0.016\\ 0.140\\ 1.6\ e^{-4}\end{array}$		0.223 0.569 0.940 0.614		$\begin{array}{c} 0.560 \\ 1.6 \ e^{-5} \\ 2.99 \ e^{-7} \\ 0.166 \end{array}$			LSTAR1 LSTAR1 LSTAR1 LSTAR1 LSTAR1		0.01	50 05 01	1.000 1.000 1.000 1.000	
						Estimates									
			M)	R)STAR							GSTAR				
Parameter	IP		Ní	YSS	N	LYNX		IP		UN	Í	ASS	N	LYN	X
	Value SE	Value	SE	Value	SE	Value	\mathbf{SE}	Value	\mathbf{SE}	Value	SE	Value	SE	Value	SE
0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.0217 0.8624 0.2670 -0.2039 -	0.0319 0.0511 0.0659 0.0490	0.8386 1.3673 -0.6531 -0.0246 -0.0596 0.2429	0.4665 0.1859 0.2167 0.2418 0.2221 0.1534	3.6129 -0.2229 0.2898 0.0388 0.0388 0.0388 0.0388 0.0388 0.03993 0.02993	8.9173 2204 1.7223 1.7223 1.1648 1.1648 1.5730 1.837 1.837 1.8559	-0.0317 1.2509 -0.1757 0.0389 0.0422 -0.1608 -0.1499	$\begin{array}{c} 0.0304\\ 0.0809\\ 0.1228\\ 0.1263\\ 0.1263\\ 0.1318\\ 0.1318\\ 0.0835\end{array}$	-0.1318 0.8283 0.2150 -0.1499 -	0.1212 0.0856 0.0903 0.0751	0.0016 0.0017 -0.0013 0.0001 -0.0001 0.0001	0.8946 0.5732 1.0925 0.5034 0.3340 0.3513	3.0571 -0.8190 0.9297 -0.1618 0.6786 0.3750 -0.9116	3.5488 3.7255 3.0686 1.0542 1.9507 1.9507 0.7873 0.7873 0.7873
φ7 φ10 φ12 φ13 φ15	0.0626 0.0320 -0.1975 0.0893 0.2327 0.1359 -0.1057 0.1362 0.0044 0.1390 0.1746 0.1411	0.0805 0.3500 -0.2121 -0.1326	0.0582 0.0725 0.1058 0.0708	1.8438 0.2799 -0.5836 -0.0460 0.2602 -0.3025	1.1950 0.2938 0.3459 0.3298 0.3379 0.2201	-0.0261 -0.0261 -1.02348 -1.3248 -1.3248 -1.75666 -1.75666 -1.75666 -1.75666 -1.75666 -1.75666 -1.75666 -1.75666 -1.75666 -1.756666 -1.75666666666666666666666666666666666666		$\begin{array}{c} 0.0787\\ -0.0582\\ 0.0566\\ -0.0944\\ -0.1125\\ 0.0269\end{array}$	0.0433 0.1109 0.1668 0.1668 0.1733 0.1839 0.1806	0.3241 0.4011 -0.1428 -0.2521 -	- 0.2318 0.1103 0.1525 0.1081 -	0.7902 -0.5954 1.1665 -0.5191 0.0003 -0.0003	1.2649 0.5798 1.0964 0.3865 0.3830 0.3680	-2.0815 -2.0815 -1.7943 -1.7943 -1.1562 -1.1562 -1.2925	0.4333 3.5317 3.5317 3.1006 3.1006 1.1143 1.1143 0.8333
$egin{array}{c} \theta_{17} \\ heta_{20} \\ heta_{21} \end{array}$	1.00.0 1.242.0 			- -0.3877 -0.5768	$^{-}$ 1.0656 0.2432	1.5902 0.1031 0.5321 -0.7867 0	2.83949 0.7856 1.5232 1.7169	0.2337						1.0047 -0.1760 -	0.4510
$ heta_{23} heta_{24} heta_{25} heta_{25}$				1.1635 - 0.3871 - 0.0173 - 0.0099	$\begin{array}{c} 0.3362 \\ 0.2829 \\ 0.3069 \\ 0.1914 \end{array}$	-1.3103 (3.0855 1 -2.8533 1 3.9498 1	0.7344 2053 4792 185						1 1 1 1		
926 927 712 712 712 712 712 712		29.0890 - - 0.0590	- - 0.0582 0.0725 -	129.56 1.2482 1.2482 2.0760	- 1.1950 0.0010 0.2938 0.0001	-2.6500 0.1947 (0.7807 41 9.8119 4 2.6201 2 4.6587		- 5.0000 3.0000 -0.0446 -	- 0.0433 0.1109 0.1668 -	- 0.0001 0.2900 -	- 0.2318 0.1103 0.1525 -	- 3.3171 -3.3171 6.3746 -	- 1.2649 0.5798 1.0964	-15.000 17.000 2.3006	0.202 0.334 1.475
					Di	agnostics (<i>p</i> -1	alues)								
Diagnostic Test				STAR							GST	AR			
No error autocorrelation $\begin{array}{c} q=1\\ q=2\\ q=4\\ q=10\\ q=10 \end{array}$	$\begin{array}{c} 0.1785\\ 0.4028\\ 0.0001\\ 0.0000\end{array}$		1014 2616 1130 1882	0.33 0.62 0.92 0.99	41 78 36 99	$\begin{array}{c} 0.2398\\ 0.5018\\ 0.8486\\ 0.9993\end{array}$		0.333 0.550 0.008 0.000	8 6 0	$\begin{array}{c} 0.143 \\ 0.343 \\ 0.710 \\ 0.995 \end{array}$	4 0 9 8 3 6 0 4	0.24 0.84 0.99	11 36 99 93	0.66 0.908 0.998 1.000	889 58 00 00
No rem. nonlinearity / No rem. asymmetry	1.0000	1.(000	1.00	00	1.0000		1.000	Q	1.000	0	1.00	00	1.000	00
Parameter constancy H1 H3 H3	1.0000 1.0000 1.0000	1.0	0000	1.00 1.00 1.00	00	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\end{array}$		1.000 1.000 1.000	<u>0</u> 0 0	1.000 1.000 1.000	000	1.00	00000	1.000 1.000 1.000	000

Table 7: Empirical application of the (G)STAR model to Monthly Smoothed Sunspot Number from 1850 to 2013.

Series Mean Median logSSN 3.5843 3.8597 strt5SN 6.7691 6.8844 DLSSN 0.0021 -0.0076 strt5SN 0.0021 -0.0076 Series F_L - Parameter Value SE Series F_L - Series F_L - Series F_L - Series -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Std.Dev 1.0484 3.0051 0.1224 arity Test ⁽²⁾	. Skewness -0.7149 0.1714 22.6304	Kurtosis 2.7842 2.1951	JB 0.0010 0.0010	ARCH-effects 0.0000 0.0000	0.0000 0	0.00C	0000	4.3619**	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0484 3.0051 0.1224 arity Test ⁽²⁾	-0.7149 0.1714 22.6304	2.7842 2.1951	0.0010 0.0010	0.0000 0.0000	0.0000	0.000	0000	4.3619^{**}	
$ \begin{array}{c c} \mbox{Series} & F_L \\ \mbox{logSSN} & F_L \\ \mbox{logSSN} & 1.05e^{-35} \\ \mbox{serieSSN} & 0.0012 \\ \mbox{serieSSN} & 0.0012 \\ \mbox{logSSN} & 0.0012 \\ \mbox{logSN} & 0.0012 \\ $	Line F_3 0.0027 0.2410 0.2780 0.2780 0.2780 0.2410 0.2356 0.2410 0.2356 0.2556	arity Test ⁽²⁾		798.4572	0.0010	0.9901	0.0000	0.000		5.37187^{**} 36.5383^{**}	
Series F_L logSSN $1.05e^{-35}$ sert5SN $1.05e^{-35}$ 0.0002 DLSSN 0.0002 $parameter 1.05e^{-35}0.00120.00020.00120.00$	Lim F_3 0.0027 0.2410 0.9780 0.9780 0.9780 0.9780 -221.870 -21.8270 -21.8270 -32.574 -1.412 3.1192 3.1192 -1.412 0.93866 0.938666 0.938666 0.938666 0.9386666 0.938666666666666666666666666666666666666	aarity Test ⁽²⁾	Linearity a	nd Asymmet	ry tests (p	-values)					
$\begin{array}{c c} P_L \\ logSSN \\ sertSSN \\ sertSSN \\ parameter \\ \hline DLSSN \\ DLSSN \\ 0.0012 \\ parameter \\ \hline Parameter \\ \hline \\ \phi \\ \phi$	F_3 0.0027 0.2410 0.9780 0.9780 0.9780 0.9780 0.9780 0.9780 0.9780 0.9780 0.9780 0.9386 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93								Symmetr	ry Test	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0027 0.2410 0.2410 0.2410 (MR)STA sqrtSSN sqrtSSN value -21.8270 -32.574 -1.412 3.1192 3.1192 3.1192 -3.2854 0.9386 0.9380 0.9380 0.9410 0.97800 0.97800 0.97800 0.97800 0.97800000000000000000000000000000000000		F_2	F_1		$Model^{(2)}$		All-in-6	One	Two-S	tep
Parameter $logSSN$ ϕ_1 $Value$ SE ϕ_2 $2,495,1000$ 0.3420 ϕ_2 31.4922 0.5348 ϕ_2 31.4922 0.5348 ϕ_2 31.4922 0.5348 ϕ_1 0.7843 0.6516 ϕ_1 0.7843 0.6516 ϕ_1 0.7843 0.6516 ϕ_1 0.78432 0.6516 θ_{12} 0.16733 0.6516 θ_{12} 0.7733 0.56447 θ_{12} 0.78392 0.6516 θ_{13} 0.7733 0.56406 θ_{12} 0.7790 0.6516 θ_{13} 0.7641 1.539 θ_{12} 0.76406 0.563406	(MR)STA sqrtSSN sqrtSSN value -21.8270 -32.574 -1.412 3.1192 3.1192 3.1192 -1.412 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.938666 0.938666666666666666666666666666666666666		$20e^{-14}$ $5.57e^{-5}$ $4.57e^{-4}$	$5.92e^{-23}$ 0.1210 0.0123		LSTAR1 LSTAR2 LSTAR2 LSTAR2		000.0 000.0		1.000	000
Parameter logSSN ϕ_0 -2,495.1000 0.3420 ϕ_1 -2,495.1000 0.3420 ϕ_2 -67.1761 2.1995 ϕ_1 -67.460 2.1943 ϕ_1 -67.460 0.3433 ϕ_2 31.4922 0.5348 ϕ_1 -16.3030 0.4879 ϕ_1 -16.3030 0.4879 ϕ_1 -16.3030 0.4879 ϕ_1 -16.3030 0.4879 ϕ_1 -336.763 0.5516 ϕ_1 -338.763 0.5516 θ_1 -338.763 0.5516 θ_1 -338.763 0.5516 θ_1 -338.764 0.9647 θ_1 -338.763 1.5519 θ_2 -53.489 2.4075 θ_2 -6.22 -6.2406 θ_2 -7.238.73 -7.238.73 θ_2 -7.238.72 -7.7390 θ_2 -7.7391 -7.7390 θ_2	(MR.)STA sqrtSSN value -21.8270 -21.8270 -32.574 -1412 3.1192 3.1192 3.1192 -3.2854 0.9386 0.9386 0.9386 0.9386 0.93666 0.93666 0.93666 0.93666 0.93666 0.93666 0.936666 0.936666 0.93666666666666666666666666666666666666			Estimat	es						
ParameterlogSSN ϕ_0 γ_1 ValueSE ϕ_1 γ_1 γ_2 γ_2 ϕ_2 γ_2 γ_2 γ_2 ϕ_2 γ_3 γ_4 γ_2 ϕ_2 γ_4 γ_2 γ_2 ϕ_2 γ_1 γ_2 γ_2 ϕ_1 γ_2 γ_3 γ_4 ϕ_1 γ_2 γ_3 γ_4 ϕ_1 γ_4 γ_4 γ_4 ϕ_2 γ_4 γ_4 γ_4 ϕ_2 γ_4 γ_4 γ_4 ϕ_2 γ_4 γ_4 <t< td=""><td>sqrtSSN Value -21.8270 -32.574 -1.412 3.1192 3.1192 3.1192 3.1192 -1.3386 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.938666 0.9386666 0.938666666666666666666666666666666666666</td><td>.R.</td><td></td><td></td><td></td><td></td><td>GST</td><td>AR</td><td></td><td></td><td></td></t<>	sqrtSSN Value -21.8270 -32.574 -1.412 3.1192 3.1192 3.1192 3.1192 -1.3386 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.93866 0.938666 0.9386666 0.938666666666666666666666666666666666666	.R.					GST	AR			
ϕ_0 -2,495.1000 0.3420 ϕ_1 -2,495.1000 0.3420 ϕ_2 -2,495.1000 0.3420 ϕ_3 31.492 0.5348 ϕ_3 31.4922 0.5348 ϕ_3 31.4922 0.5348 ϕ_3 31.4922 0.5348 ϕ_1 0.5348 0.5348 ϕ_1 -336.73 0.6516 ϕ_1 -336.73 0.6516 ϕ_1 -336.73 0.647 ϕ_1 -336.73 0.6116 θ_{12} 10 236.73 0.647 θ_{13} 0.616 - - θ_{13} 0.6516 0.947 θ_{13} 0.5244 0.647 θ_{14} - - - θ_{13} 0.6516 0.947 θ_{13} 0.7790 0.6516 θ_{15} - - θ_{15} 0.7790 θ_{23} 0.7313 0.57339 <tr< td=""><td>Value -21.8270 -32.574 -1.412 3.1192 3.1192 - 0.9386 0.9386 0.9386 - 7,618.1000 -1,196.8000</td><td></td><td>DLSSN</td><td></td><td></td><td>logSS</td><td>Z</td><td>sqrtSS</td><td>SN</td><td>DLSS</td><td>Z</td></tr<>	Value -21.8270 -32.574 -1.412 3.1192 3.1192 - 0.9386 0.9386 0.9386 - 7,618.1000 -1,196.8000		DLSSN			logSS	Z	sqrtSS	SN	DLSS	Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-21.8270 -32.574 -1.412 3.1192 -3.2854 0.9386 - - 7,618.1000 -1,196.8000	SE Val	ue SE			Value	SE	Value	SE	Value	SE
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 7,618.1000 -1,196.8000	1.4187 -0.30; 0.9746 0.170 0.9745 -1.60; 0.2425 -1.65; 0.2704 1.55; 0.2380 -1.00; 0.1156 0.70;	34 0.2572 60 0.5590 14 0.8251 67 0.9119 67 0.9119 27 0.6947 84 0.5401			0.5143 1.9919 -2.0721 1.1495 -0.3047 -0.3126	$\begin{array}{c} 0.0555\\ 0.1757\\ 0.3724\\ 0.3527\\ 0.3030\\ 0.1556\end{array}$	$\begin{array}{c} 1.0461\\ 1.0461\\ -2.8801\\ 1.6989\\ -0.3700\\ -0.3191 \end{array}$	$\begin{array}{c} 0.1757\\ 0.3804\\ 0.38284\\ 0.8284\\ 0.7672\\ 0.6026\\ 0.2778\end{array}$	-9.2453 -5.4026 2.5303 -2.1641 1.2448 -0.7517	$\begin{array}{c} 48.1169\\ 30.5430\\ 10.4673\\ 8.9374\\ 5.2104\\ 3.2121\\ \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7,618.1000 -1,196.8000	0.31	75 0.3528 			1 1				-0.3563	1.9530
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-17.7000 -57.3000 90.6000 31.1000	0.3182 0.61(0.5750 -0.55) 1.5695 3.51 1.8193 -3.62 2.18193 -3.62 2.2599 -1.56(-0.788	07 0.3457 27 0.7197 75 0.8990 85 1.1869 1.0968 97 0.9668 68 0.7366			0.3626 -1.1847 2.2391 -1.2748 0.3345 0.2752 -	0.1929 0.1659 0.3769 0.3821 0.3389 0.1738	-0.8152 -1.2356 2.8006 -1.7257 0.3700 0.2100	0.1908 0.3808 0.8309 0.7710 0.6074 0.2815 -	17.8136 3.5103 -4.9874 4.2078 -2.3867 1.4728 0.7243	29.8383 34.6796 3.6295 3.8702 3.5481 3.1431 2.1704
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-147.2963 96.2139	0.8512 -0.00 1.6993 -0.30	45 0.0128 15 0.3592								
θ_{24}^{-4} 6.9089 1.5679 θ_{25}^{-5} -37.372 1.3244	-6.6805 20.4282	3.0229 -1.82 3.1806 1.810	44 0.4337 68 0.5167					1 1		1 1	
θ ₂₆	-17.8232 3.8179 -	2.7499 -1.128 1.2654 0.688 0.298	88 0.4262 36 0.3218 50 0.2336								
θ_{27}	3.7500	$\begin{array}{c} - \\ 0.0331 \\ 0.0492 \\ 0.0492 \\ 19.503 \\ 19.503 \\ 19.503 \\ 19.503 \\ 19.503 \\ 10.503 \\ 1$	$\begin{array}{ccc} - & - \\ 73 & 0.3457 \\ 33 & 10.9862 \\ \end{array}$			- 0.0001 -0.0001	-0.1929 0.1659	- 0.0001 -0.0001	- 0.1908 0.3808	- 0.0001 0.0001	- 29.8383 34.6796
73 0.1289 0.57103 C1 2.1121 C2 2.1673 C3 2.8470 -	0.0452 0.09085 0.9214 0.9267	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} - & - \\ 10 & 0.7197 \\ 06 & 0.0450 \\ - & - \end{array}$			2.0109 - -	3769 -	2.7331 - -	0.8309 - -	-0.0761 -	3.6295 - -
				\mathbf{b} iagnostics (p	-values)						
Diagnostic Test	STAR							GSTAR			
No error autocorrelation 0.8947 q=1 0.9913 q=2 0.9913 q=4 1.0000 q=10 1.0000	0.7664 0.9569 0.9991		0.7563 0.9530 0.9989 1.0000			0.003 0.012 0.067 0.555	8 3 <u>6</u> 1	0.000 0.000 0.003 0.108	01 04 34 39	$\begin{array}{c} 0.383 \\ 0.684 \\ 0.943 \\ 1.000 \end{array}$	8 2 3 0 0
No rem. nonlinearity / 1.0000 No rem. asymmetry	1.0000		1.0000			1.000	0	1.000	00	1.000	0
Parameter constancy H1 H2 H3 1.0000 H3	1.0000 1.0000 1.0000		1.0000 1.0000 1.0000			1.000 1.000 1.000	000	1.000 1.000 1.000	0000	366.0 366.0)4)1)1

models
AR 1
and .
STAR
(MR)-
with
comparison
ons and
horize
orecast
rent f
t diffe
lel fo
mod
TAR
of GS
ormances o
perfc
redictive
3: P
Table {

						Point]	predictive	performs	ances				
Forecast horizon	Forecast Error Measure			AR			(MF)STAR			GSTA	R	
		IP	UN	YSSN	LYNX	IP	ΝN	YSSN	LYNX	IP	UN	VSSN	LYNX
1	MFE	-0.0011	0.0009	-0.0300	0.0029	-0.0065	0.0156	0.0807	-0.0013	-0.0093	0.0095	0.0744	-0.0003
6 12		-0.1108 -0.3024 -1.4908	0.0607 0.1117	-0.0221 -0.0221 -7.8745	-3.2309 -8.6402 -25.2732	-0.0072 -0.0068 -0.0068	0.0150 0.0163	0.1007 0.1007 0.0984	-0.0176 -0.0176	-0.0099 -0.0094	0.0103	0.0986 0.0986 0.0957	-0.0066 -0.0115
9 J T	sMAE	$\begin{array}{c} 0.0011 \\ 0.0037 \\ 0.0070 \end{array}$	0.0058 0.0087 0.0128	$\begin{array}{c} 0.0009 \\ 0.0016 \\ 0.8572 \end{array}$	0.0008 0.0116 0.0203	0.0011 0.0011 0.012	0.0061 0.0059 0.0056	0.0008 0.0008 0.0008	0.0008 0.0008 0.0000	0.0011 0.0011 0.0012	$\begin{array}{c} 0.0060\\ 0.0058\\ 0.0058\end{array}$	0.0008 0.0008 0.0008	0.0010 0.0010
12	m R A F.	0.0124	0.0190	0.0050	0.0308	0.0012	0.0050	0.0009	0.0011	0.0012	0.0049	0.0009	0.0013
1 6 12		$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\end{array}$	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\end{array}$	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\end{array}$	1.0000 1.0000 1.0000 1.0000	$\begin{array}{c} 1.0324 \\ 1.1560 \\ 1.4886 \\ 2.0115 \end{array}$	$\begin{array}{c} 1.0224 \\ 1.0552 \\ 1.2189 \\ 1.4965 \end{array}$	$\begin{array}{c} 1.7950 \\ 2.0764 \\ 2.5357 \\ 9.4989 \end{array}$	$\begin{array}{c} 1.8697\\9.6346\\15.3676\\0.0260\end{array}$	$1.0290 \\ 1.1241 \\ 1.4546 \\ 2.1142$	$\begin{array}{c} 1.0107\\ 1.0369\\ 1.1693\\ 1.5085\end{array}$	$\begin{array}{c} 1.6913 \\ 2.1851 \\ 2.7649 \\ 9.4308 \end{array}$	$\begin{array}{c} 1.6567\\ 8.2831\\ 13.2310\\ 13.0395\end{array}$
1 6 12	RMSFE	$\begin{array}{c} 0.0698 \\ 0.2894 \\ 0.7552 \\ 0.7638 \end{array}$	$\begin{array}{c} 0.2856\\ 0.4234\\ 0.5915\\ 0.8545\end{array}$	$\begin{array}{c} 1.0050\\ 2.0443\\ 1.8299\\ 9.0253\end{array}$	$\begin{array}{c} 0.1878 \\ 3.2842 \\ 8.7639 \\ 25.6618 \end{array}$	$\begin{array}{c} 0.0041 \\ 0.0042 \\ 0.0042 \\ 0.0042 \end{array}$	$\begin{array}{c} 0.0178 \\ 0.0179 \\ 0.0181 \\ 0.0184 \end{array}$	$\begin{array}{c} 0.0860\\ 0.0863\\ 0.0876\\ 0.0876\\ 0.0907 \end{array}$	$\begin{array}{c} 0.0243 \\ 0.0249 \\ 16.9274 \\ 0.0281 \end{array}$	$\begin{array}{c} 0.0042\\ 0.0043\\ 0.0043\\ 0.0043\\ 0.0043\end{array}$	$\begin{array}{c} 0.0176\\ 0.0177\\ 0.0179\\ 0.0179\\ 0.0182 \end{array}$	$\begin{array}{c} 0.0868\\ 0.0874\\ 0.0885\\ 0.0917 \end{array}$	$\begin{array}{c} 0.0283 \\ 0.0291 \\ 0.0305 \\ 0.0336 \end{array}$
						Density	predictiv	e perforn	ances				
Forecast horizon	Giacomini-White Test												
1 6 12	(p-values)	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0843\\ 0.1023 \end{array}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0241\\ 0.1004 \end{array}$	$\begin{array}{c} 0.0000\\ 0.0250\\ 0.0921\\ 0.0921\end{array}$	$\begin{array}{c} 0.0001\\ 0.3923\\ 0.0000\\ 0.9042 \end{array}$	$\begin{array}{c} 0.0000\\ 0.0001\\ 0.1558\\ 0.0106\end{array}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.1292\\ 0.0033 \end{array}$	$\begin{array}{c} 0.0000\\ 0.0040\\ 0.0000\\ 0.0000\end{array}$	$\begin{array}{c} 0.2030 \\ 0.0000 \\ 0.0000 \\ 0.9217 \end{array}$	$\begin{array}{c} 0.1112\\ 0.0000\\ 0.1112\\ 0.0170\end{array}$	$\begin{array}{c} 0.0000\\ 0.0003\\ 0.5175\\ 0.0002\end{array}$	$\begin{array}{c} 0.0919 \\ 0.0078 \\ 0.0000 \\ 0.0000 \end{array}$	$\begin{array}{c} 0.0002 \\ 0.0836 \\ 0.0038 \\ 0.0038 \\ 0.8646 \end{array}$
Forecast horizon	Scoring Rule												
1 6 12	LogS	$\begin{array}{c} 0.0020\\ 0.1108\\ 0.0020\\ 0.0020\end{array}$	$\begin{array}{c} 0.0031\\ 0.0031\\ 0.0031\\ 0.0031\end{array}$	$\begin{array}{c} 0.0073 \\ 0.0072 \\ 0.0071 \\ 0.0071 \end{array}$	$\begin{array}{c} 0.0064 \\ 0.0062 \\ 0.0067 \end{array}$	$\begin{array}{c} 0.0017\\ 0.0017\\ 0.0017\\ 0.0017\\ 0.0017\end{array}$	$\begin{array}{c} 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\end{array}$	$\begin{array}{c} 0.0072 \\ 0.0072 \\ 0.0072 \\ 0.0072 \end{array}$	$\begin{array}{c} 0.0065 \\ 0.0061 \\ 0.0064 \\ 0.0063 \end{array}$	0.0018 0.0018 0.0018 0.0018	$\begin{array}{c} 0.0036 \\ 0.0035 \\ 0.0035 \\ 0.0035 \\ 0.0035 \end{array}$	$\begin{array}{c} 0.0072 \\ 0.0072 \\ 0.0071 \\ 0.0072 \end{array}$	$\begin{array}{c} 0.0048\\ 0.0047\\ 0.0050\\ 0.0051\end{array}$
1 6 12	л Э	$1.1568 \\ 1.1644 \\ 1.1665 \\ 1.2024$	$\begin{array}{c} 0.7986\\ 0.7998\\ 0.8125\\ 0.6741 \end{array}$	$\begin{array}{c} 0.2619 \\ 0.2624 \\ 0.2620 \\ 0.2613 \end{array}$	$\begin{array}{c} 1.4829\\ 1.4698\\ 1.5058\\ 1.6211\end{array}$	2.1303 2.1386 2.1391 2.1479	$\begin{array}{c} 0.8511 \\ 0.8537 \\ 0.8550 \\ 0.6412 \end{array}$	$\begin{array}{c} 0.2340 \\ 0.2333 \\ 0.2357 \\ 0.2340 \end{array}$	$\begin{array}{c} 1.3515\\ 1.3384\\ 1.3762\\ 1.3106\end{array}$	$\begin{array}{c} 2.1689\\ 2.1821\\ 2.1895\\ 2.1921\\ 2.1921\end{array}$	$\begin{array}{c} 0.8683 \\ 0.8698 \\ 0.8698 \\ 0.6354 \end{array}$	$\begin{array}{c} 0.2269 \\ 0.2276 \\ 0.2268 \\ 0.2271 \end{array}$	$\begin{array}{c} 1.1717\\ 1.1385\\ 1.1677\\ 1.1668\\ 1.1668\end{array}$
1 3 6 12	CKPS	$\begin{array}{c} 0.2142 \\ 0.2161 \\ 0.2188 \\ 0.2255 \end{array}$	$\begin{array}{c} 1.6750 \\ 1.6850 \\ 1.6983 \\ 1.7295 \end{array}$	$\begin{array}{c} 4.2628 \\ 4.2932 \\ 4.3551 \\ 4.5782 \end{array}$	$\begin{array}{c} 1.5977 \\ 1.6689 \\ 1.7700 \\ 2.0151 \end{array}$	$\begin{array}{c} 0.2170 \\ 0.2189 \\ 0.2212 \\ 0.2279 \end{array}$	$\begin{array}{c} 1.6090\\ 1.6193\\ 1.6317\\ 1.6594\end{array}$	4.6027 4.2935 4.3787 4.6027	$\begin{array}{c} 1.4743 \\ 1.5435 \\ 1.6279 \\ 1.8482 \end{array}$	$\begin{array}{c} 0.2201 \\ 0.2224 \\ 0.2252 \\ 0.2318 \end{array}$	$\begin{array}{c} 1.6094 \\ 1.6197 \\ 1.6344 \\ 1.6617 \end{array}$	4.2893 4.3243 4.3942 4.6064	$\begin{array}{c} 1.4906\\ 1.5545\\ 1.6375\\ 1.8558\end{array}$
1 6 12	2	$\begin{array}{c} 0.0084 \\ 0.0083 \\ 0.0082 \\ 0.0077 \end{array}$	-0.0713 -0.0706 -0.0695 -0.0667	0.6198 0.6267 0.6329 0.6218	$\begin{array}{c} 0.2557 \\ 0.2527 \\ 0.2511 \\ 0.2511 \end{array}$	$\begin{array}{c} 0.0089 \\ 0.0085 \\ 0.0083 \\ 0.0083 \\ 0.0071 \end{array}$	-0.0727 -0.0721 -0.0708 -0.0682	$\begin{array}{c} 0.6060\\ 0.6119\\ 0.6176\\ 0.6068\end{array}$	$\begin{array}{c} 0.2571 \\ 0.2544 \\ 0.2537 \\ 0.2496 \end{array}$	$\begin{array}{c} 0.0087\\ 0.0086\\ 0.0085\\ 0.0080\end{array}$	-0.0723 -0.0717 -0.0705 -0.0679	$\begin{array}{c} 0.6067 \\ 0.6122 \\ 0.6173 \\ 0.6065 \end{array}$	$\begin{array}{c} 0.2468 \\ 0.2439 \\ 0.2434 \\ 0.2387 \end{array}$
NOTE: Fore	scast windows size is set to	500 for IP a	nd UN, 5	0 for LYN	X and 150 for	YSSN. For	the Giaco	mini-Wig	ght test, an A	R(1) model	is used as	s benchma	urk.

Research Papers 2013

- 2013-15: Ole E. Barndorff-Nielsen, Mikko S. Pakkanen and Jürgen Schmiegel: Assessing Relative Volatility/Intermittency/Energy Dissipation
- 2013-16: Peter Exterkate, Patrick J.F. Groenen, Christiaan Heij and Dick van Dijk: Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression
- 2013-17: Daniela Osterrieder: Interest Rates with Long Memory: A Generalized Affine Term-Structure Model
- 2013-18: Kirstin Hubrich and Timo Teräsvirta: Thresholds and Smooth Transitions in Vector Autoregressive Models
- 2013-19: Asger Lunde and Kasper V. Olesen: Modeling and Forecasting the Volatility of Energy Forward Returns - Evidence from the Nordic Power Exchange
- 2013-20: Anders Bredahl Kock: Oracle inequalities for high-dimensional panel data models
- 2013-21: Malene Kallestrup-Lamb, Anders Bredahl Kock and Johannes Tang Kristensen: Lassoing the Determinants of Retirement
- 2013-22: Johannes Tang Kristensen: Diffusion Indexes with Sparse Loadings
- 2013-23: Asger Lunde and Anne Floor Brix: Estimating Stochastic Volatility Models using Prediction-based Estimating Functions
- 2013-24: Nima Nonejad: A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory
- 2013-25: Nima Nonejad: Time-Consistency Problem and the Behavior of US Inflation from 1970 to 2008
- 2013-26: Nima Nonejad: Long Memory and Structural Breaks in Realized Volatility: An Irreversible Markov Switching Approach
- 2013-27: Nima Nonejad: Particle Markov Chain Monte Carlo Techniques of Unobserved Compdonent Time Series Models Using Ox
- 2013-28: Ulrich Hounyo, Sílvia Goncalves and Nour Meddahi: Bootstrapping preaveraged realized volatility under market microstructure noise
- 2013-29: Jiti Gao, Shin Kanaya, Degui Li and Dag Tjøstheim: Uniform Consistency for Nonparametric Estimators in Null Recurrent Time Series
- 2013-30: Ulrich Hounyo: Bootstrapping realized volatility and realized beta under a local Gaussianity assumption
- 2013-31: Nektarios Aslanidis, Charlotte Christiansen and Christos S. Savva: Risk-Return Trade-Off for European Stock Markets
- 2013-32: Emilio Zanetti Chini: Generalizing smooth transition autoregressions