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Abstract

We introduce a variant of the smooth transition autoregression - the GSTAR
model - capable to parametrize the asymmetry in the tails of the transi-
tion equation by using a particular generalization of the logistic function. A
General-to-Specific modelling strategy is discussed in detail, with particular
emphasis on two different LM-type tests for the null of symmetric adjustment
towards a new regime and three diagnostic tests, whose power properties are
explored via Monte Carlo experiments. Four classical real datasets illustrate
the empirical properties of the GSTAR, jointly to a rolling forecasting exper-
iment to evaluate its point and density forecasting performances. In all the
cases, the dynamic asymmetry in the cycle is efficiently captured by the new
model. The GSTAR beats AR and STAR competitors in point forecasting,
while this superiority becomes less evident in density forecasting, specially if
robust measures are considered.
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1 Introduction

Many of the economic and natural sciences time series show asymmetric fluctua-

tions, see Tong (1990); Teräsvirta, Tjøstheim, and Granger (2010) inter alia. Sichel

(1993) gives a double definition of asymmetry in Business Cycle: the first - the

steepness - happens when contractions in the levels are steeper than expansions

(symmetry in the level axis); the second - the deepness - when the series undergoes

at an accelerating time until a minimum after which it starts to recover with high,

decreasing acceleration, until to smoothly recover the peak (symmetry in time axis).

When these two definitions are combined, we call this dynamic asymmetry.

Smooth transition autoregressions (STAR), originated by the pioneering contribu-

tion by Bacon and Watts (1971) in Biostatistics, then developed in time series by

Haggan and Ozaki (1981); Chan and Tong (1986) and Teräsvirta (1994), are cur-

rently one of the most simple and successful tools to model the nonlinear dynamics

in the conditional mean and/or variance. In particular, a logistic transition is com-

monly postulated when the series under consideration is assumed having asymmetric

oscillations from its conditional mean. We argue that, being the logistic function

reflectively symmetric by construction, the resulting logistic STAR does not match

the theoretical definition of dynamic asymmetry. In other words, the available mod-

els allow the econometrician, at the best, to answer to the question: Does the series

return to its original regime and when? Here, our objective is to answer to another,

more challenging question: Is the rate of change (if any) in the left tail of the lo-

gistic transition different with respect of the right tail and how much? As we will

show, an appropriate solution to this methodological question, per se interesting for

descriptive aims, improves the forecasting ability of STAR family.

The econometric literature provides two strategies: the first, proposed by Sollis,

Leybourne, and Newbold (1999) (SLN1), is to raise the STAR’s transition function

to an exponent using an idea by Nelder (1961); the second, suggested by Sollis,

Leybourne, and Newbold (2002) (SLN2) is to add a parameter inside the transi-
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tion function in such a way to control for the asymmetry of both the tails of the

transition function by simply using a Heaviside indicator. Both of these solutions

have been successfully applied to some classical macroeconomic series. Lundbergh

and Teräsvirta (2006) (LT) provides three diagnostic tests for the assessment of the

estimated asymmetric model for exchange rate with GARCH errors.

Unfortunately, both of these solutions present some criticality: Figure 1, panel (a)

clearly shows that in the SLN2 case, the transition function could be non-smooth;

on the other hand, the SLN1 and LT parametrization, plotted in panel (b) conveys

a smooth transition, but the effect of increasing of the asymmetry parameter could

translate just in a shift effect, if not properly restricted as stated in the same ar-

ticle; moreover, this parametrization does not provide an immediate description of

the behavior of each tail of the transition function (which is instead the beauty of

SLN2). Thus, the detection and assessment of the dynamic asymmetry in a sta-

tistically well-specified time series model seem still an open issue. This work nests

this strand of literature and represents a step ahead for what concerns the basic

parametrization of the STAR family.

The literature on point forecast combination and on evaluation of individual density

forecasts is nowadays established, see Timmermann (2006) and Corradi and Swanson

(2006). The literature on aggregation of more density forecasts is instead in a devel-

opment phase, and focuses on the so called scoring rules (or opinion pools), peculiar

functions enabling the forecaster to properly aggregate the set of conditional pre-

dictive density as well as more common measures as Mean Square Forecast Error et

similia do for point forecasts. Despite their dated origins in statistics, as documented

by Gneiting and Raftery (2007), scoring rules are becoming increasingly applied by

contemporaneous econometric literature only recently; see, inter alia, Mitchell and

Hall (2005); Kascha and Ravazzolo (2010); Geweke and Amisano (2011); Ravazzolo

and Vahey (2013) and therein mentioned literature. We contribute to this strand of

literature by investigating if dynamic asymmetry accounts for density combination.
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The next Section 2 applies to the classical STAR model a generalized version of the

logistic transition function with two parameters governing the the two tails of the

logistic sigmoid and a logarithmic/exponential rescaling able to preserve the smooth-

ness of the transition without requiring any restriction in the parameters. The re-

sulting Generalized STAR (GSTAR) model encloses the symmetric STAR, so we

modify the general-to-specific modeling procedure following Granger and Teräsvirta

(1993) (GT); this is done in Section 3. Two different LM-type tests for the null

hypothesis that the two tails of the transition function are reflexively symmetric - a

situation which is called dynamic symmetry for what follows - are built-up in Section

4: the first is a classical Score test on the two slope parameters, while the second

is modified version of the Taylor-expansion-based test by Luukkonen, Saikkonen,

and Teräsvirta (1988) (LST). Section 5 modifies three diagnostic tests originally in-

troduced by Eitrheim and Teräsvirta (1996) (ET). Section 6 provides a simulation

study according to which the SLT-type test seems less restrictive than the Score test.

Four different case studies on U.S. industrial production and unemployment rate,

International Sunspot Number and Canadian Lynx data are illustrated in Section 7,

jointly with a rolling forecasting exercise where both point and density forecasting

evaluation are investigated: in all these examples, the dynamic asymmetry is found

to be a non negligible feature to deal with.

2 The Model

Definition 1. Let be yt a realization of a time series observed at t = 1− p, 1− (p−

1), . . . ,−1, 0, 1, . . . , T−1, T . Then the univariate process {yt}Tt follows a GSTAR(p)

model if

yt = φ′zt + θ′ztG(γ, h(ck, st)) + εt, εt ∼ I.I.D.(0, σ2), (1)

G(γ, h(ck, st)) =

(
1 + exp

{
−

K∏
k=1

h
(
ck, st

)})−1

, (2)
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h(ck, st) =


γ−1

1 exp(γ1|st − ck| − 1) if γ1 > 0,

st − ck if γ1 = 0,

−γ−1
1 log(1− γ1|st − ck|) if γ1 < 0,

(3)

for (st − ck) > 0 (or, equivalently, h(c, st) > 1/2) and

h(ck, st) =


−γ−1

2 exp(γ2|st − ck| − 1) if γ2 > 0,

st − ck if γ2 = 0,

γ−1
2 log(1− γ2|st − ck|) if γ2 < 0,

(4)

for (st − ck) ≤ 0 (or, equivalently, h(ck, st) < 1/2), where yt is a dependent vari-

able, zt = (1, yt−1, . . . , yt−p)
′, φ = (φ0, φ1, . . . , φp)

′, θ = (θ0, θ1, . . . , θp)
′ are param-

eter vectors, the transition function G(·, ·, ·) is a continuous function in the vector

γ = (γ1, γ2) and in the function h(ck, st), which is strictly increasing in the tran-

sition variable st = yt−d, d > 0 is a delay parameter, and the K = {1, 2} location

parameter(s) ck.

In what follows we simplify the notation by denoting the kernel of the model cor-

responding to the k-esim location with ηk,t ≡ st − ck and by h(ηk,t) the associated

function, so that the general form of the transition function G(·) can be written as:

G(γ, h(ηk,t)) =

(
1 + exp

{
−

K∏
k=1

[
h
(
ηk,t
)
I(γ1≤0,γ2≤0) + h

(
ηk,t
)
I(γ1≤0,γ2>0)+

+ h
(
ηk,t
)
I(γ1>0,γ2≤0) + h

(
ηk,t
)
I(γ1>0,γ2>0)

]})−1

.

(5)

Equation (3) (equation (4)) models the higher (lower) tail of the probability func-

tion, so allowing for the asymmetric behavior introduced by the slope parameter γ1

(γ2) which controls the velocity of the transition. The case in which h(ηk,t) = ηk,t

implies that the function nests a one-parameter symmetric logistic STAR model with

slope γ1 = γ2 = γ. When γ1, γ2 > 0 (γ1, γ2 < 0), h(ηk,t) is an exponential (logarith-
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mic) rescaling which increases more quickly (more slowly) than a standard logistic

function. Model (1) can be generalized to other distributions of exponential family.

The Indicator functions in (5) stress that slope parameters are not constrained, as in

the classical STAR model (whereas the positiveness of the slope parameter was an

identifying condition). When γ → +∞, both the models nests an indicator function

I(st>c), in which case the model become a (Self Exciting) Threshold Autoregression

(SETAR), see Tong (1983); on the other side, they nest a straight line around 1/2

for each st when γ → −∞.

The Generalized Logistic is plotted in Figure 2: the resulting sigmoid is clearly con-

sistent with the Sichel (1993) definition of dynamic asymmetry (see, e.g., the case

in which γ1 = −2 and γ2 = 4) and maintains the global slope of the transition func-

tion unchanged with respect to the traditional LSTAR one, so that no additional

identification restriction is needed with respect to the traditional STAR model.

Remark 1. The model described in this section is the time series variant of the

original generalized logistic model proposed by Stukel (1988), which differs for the

definition of z = (x1, . . . , xN)′, for {xi}Ni=1 being N exogenous regressors, and conse-

quently, ηt = φ′z.

Remark 2. The GLSTAR model described by equation (1)-(4) nests a linear AR

model for γ = 0 if h(ηt) is modified as follows:

h(ηt)
EZC =


γ−1

1 exp(γ1|ηt| − 1) if γ1 > 0,

0 if γ1 = 0,

−γ−1
1 log(1− γ1|ηt|) if γ1 < 0,

(6)

for ηt ≥ 0 (µ > 1/2) and

h(ηt)
EZC =


−γ−1

2 exp(γ2|ηt| − 1) if γ2 > 0,

0 if γ2 = 0,

γ−1
2 log(1− γ2|ηt|) if γ2 < 0,

(7)
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for ηt < 0 (µ < 1/2). The label "EZC" distinguishes this version from the the

original Stukel’ s generalized logistic function for exposition matter. This special

case is necessary in order to build a test for the null of linearity against of dynamic

asymmetry, see next Section 4.

Remark 3. As in the traditional STAR, the process {εt}Tt is assumed to be a mar-

tingale difference sequence with respect to the history of the time series up to time t

- 1, denoted as Ωt−1 = [yt−1, . . . , yt−p], i.e., E[εt|Ωt−1] = 0. This is sufficient to built

up tests based on artificial regressions as demonstrated in Davidson and McKinnon

(1990) and has important consequence for applied aims, in what the "All-in-One"

test discussed in Section 4 and the three diagnostic tests discussed in Section 5 can

still be meaningful if the normality test reject this hypothesis. For expositional

purposes, we restrict the conditional variance of the process {εt}Tt to be constant,

E[ε2t |Ωt−1] = σ2. Moreover the parameter vectors φ and θ are assumed to not change

in time and the number of regimes is assumed to not exceed K = 2. However, these

restriction could be relaxed and tested, see Section 5.

Remark 4. As in the traditional STAR, if process is characterized by G(0, h(ηt)
EZC),

we assume Q(z) = zp − φ1z
p−1 − · · · − φp = 0 has its roots inside the unit circle,

since this implies that the model is stationary and ergodic under the null hypothesis

of linearity.

We now discuss three relevant cases of GSTAR model.

Example 1. If K = 1, the parameters φ + θG(γ, c, st) change monotonically as a

function of st from φ to φ+ θ. The corresponding transition function is:

G(γ, h(η1t)) =
(

1 + exp
{
−
[
h(η1,t)I(γ1≤0,γ2≤0) + h(η1,t)I(γ1≤0,γ2>0)+h(η1,t)I(γ1>0,γ2≤0)+

+ h(η1,t)I(γ1>0,γ2>0)

]})−1

,

(8)

with h(η1,t) corresponding to (3) and (4).
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Example 2. When K = 2 and c1 6= c2 = c, the model (1) nests the following STAR

model with second order Generalized Logistic (GLSTAR2) function:

G(γ, h(ηt)) = 1− exp
{
− h(η2,t)

}
, (9)

where:

h(η2,t) =


γ−1

1 exp(γ1|(st − c1)(st − c2)| − 1) if γ1 > 0,

(st − c1)(st − c2) if γ1 = 0,

−γ−1
1 log(1− γ1|(st − c)(st − c2)|) if γ1 < 0,

(10)

for (st − c)2 > 0 (or, equivalently, h(ηt) > 1/2) and

h(η2,t) =


−γ−1

2 exp(γ2|(st − c)(st − c2)| − 1) if γ2 > 0,

(st − c)(st − c2) if γ2 = 0,

γ−1
2 log(1− γ2|(st − c1)(st − c2)|2) if γ2 < 0,

(11)

for (st − c1)(st − c2) < 0 (or, equivalently, h(η2,t) < 1/2), whith ηt ≡ ηt = (st −

c1)(st−c2). Figure 3 shows the transition function for a set of different combinations

of γ1 for fixed γ2 (upper panel) and viceversa (lower panel).

Example 3. A particular case of GLSTAR2 holds when K = 2 and c1 = c2 = c, in

which case the model (1) nests an exponential generalized exponential autoregressive

(GESTAR) model, which is defined as in (9) - (11), apart the fact that h(η2,t) =

(st − c)2 if γ1 = 0 for (st − c)2 > 0 and γ2 = 0 for (st − c)2 ≤ 0 In this case, the

parameters φ+ θG(·) change asymmetrically at some (undefined) point where the

function reaches its own minimum.

A simulated example of GLSTAR model (in both Stukel’ s and EZC’ s versions),

jointly with its symmetric Teräsvirta (1994) counterpart, is shown in Figure 4. For

each of these three models, we used two different specifications, which differ for

the location parameter c. As easy seen in panel (a), the Stukel and EZC model

coincides; the associated transition functions versus time plotted in panel (b) and
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versus ordered ηt in panel (c) confirm this finding; on the other hand, the plot of

h(ηt) versus ordered ηt in panel (d) is more informative with respect to the effect

of the different kind of asymmetry in the process: h(ηt)
EZC is a 45◦ angle straight

line, while the rescaling effect is visible in the Stukel’ s h(ηt) parametrization.

3 Modelling Strategy and Estimation

According to GT, the investigator should always be interested in testing whether

a linear AR(p) representation is adequate when building a GSTAR model. If the

answer is negative, then the second step will be the selection of a nonlinear sym-

metric model. Then, the issue of testing for dynamic symmetry hypothesis arises as

further step, when finding good specifications of STAR models becomes too difficult

or whenever suggested by the economic theory. The resulting General-to-Specific

modelling strategy consists in the following 7 steps:

1. Specify a linear autoregressive model.

2. Test linearity for different values of d, and if rejected, determining d in (2) or

(9).

3. Choose between LSTAR, LSTAR2 or ESTAR by the Teräsvirta’s rule.

4. Test the symmetry of the tails transition function according to the result in

Step 3.

5. If the hypothesis of symmetry is rejected, estimate the GSTAR model with

the most appropriate transition function given by step 3.

6. Evaluate the new parametrization by some diagnostic tests.

7. Use the estimated GSTAR model for forecasting aims.

The autoregressive order p is selected according to Bayesian Information Criterion

(Schwarz, 1978), which is combined with the result with a portmanteau test for
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serial correlation in order to avoid a wrong rejection of symmetry hypothesis. This

is due to the fact that the GSTAR model requires a lower autoregressive order with

respect to its symmetric counterpart.

For what concerns the Step 4, the dynamic symmetry hypothesis is tested by two

different LM-type tests. In the first test the series is assumed to follow a STAR

model, so that testing for symmetry is a second step with respect to testing for

linearity. Hence, we will refer to this test as "Two-Step test". In the second test we

do not assume any prior of the nonlinearity of the series, so that it enclose all steps

from 2) to 5) of the General-to-Specific modelling strategy above mentioned; hence,

the use of the label "All-in-one" to distinguish it from the different null hypothesis

of "Two-Step" test. The choice of what test to use depends on the needs of the

investigator1. Our experience suggests to perform the "All-in-One" test should be

used if the investigator wants to be conservative against evidence of asymmetric dy-

namics, while the "Two-Step" tends to not reject the null unless extreme situations

(see Section 7 for details). Both the tests will be discussed in the next Section 4.

The choice of the delay parameter d and the choice of the transition function can

be done with the same procedure adopted in Tsay (1989) and Teräsvirta (1994).

Following Leybourne, Newbold, and Vougas (1998), estimation is done by concen-

trating the Sum of Square Residuals function with respect to θ and φ, that is

minimizing:

SSR =
T∑
t=1

(
yt − ψ̂′x′t

)2

, (12)

where:

ψ̂ = [φ̂, θ̂] =

( T∑
t=1

x′t(γ, c)xt(γ, c)

)−1( T∑
t=1

x′t(γ, c)yt

)
, (13)

and

xt(γ̂, ĉ) =
[
z, z′tG(γ̂, h(ĉ, st)

]
. (14)

1Our simulation study shows that the two tests behave differently in terms of empirical power.
See Section 6 for details.
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This is possible because if γ and c are known and fixed, the GSTAR model is linear

in θ and φ, which can be easy computed via conditional OLS. In a such a way, the

nonlinear least square minimization problem, otherwise necessary, more demanding

in terms of parameters to estimate and not available in closed-form, reduces to a

minimization on three (four) parameters, and is solved via a grid search over γ1, γ2,

c (c1, c2 in case of GLSTAR2).

In our applications, both γ1 and γ2 are chosen between a minimum value of -10 and

a maximum of 10 with rate 0.5 in the first three examples (-150 and 150 with rate

15 in the fourth one); the grid for parameter c1 (c2) is the set of values computed

between the 10th and 90th percentile of st with rate computed as the difference of

the two and divided for an arbitrarily high number (here, 200).

The one-step forecast is immediately available if knowing the nonlinear function in

what, by least-square criterion, E(εt+1|It) = 0, It = yt−i, i ≥ 1 in (1). The multi-

step ahead forecast is not available in closed form and requires numerical integration.

Hence at t+1, we generate, 1, . . . ,m, . . . ,M draws conditionally on the estimated

parameters and obtain the forecast yt+1 ∼ f(yt+1|It); in turn, this is collected to

draw, at t + 2, the forecast yt+2 ∼ f(yt + 2|It, y(m)
t+1), and so on until, at t + h,the

forecast yt+h|t = f(t+ h|It, y(m)
t+1 , . . . , y

(m)
t+h−1) is obtained and then evaluated as:

ŷt+h =
1

M

M∑
m=1

ŷ
(m)
t+h|t (15)

4 Testing for Dynamic Symmetry

In this section we discuss two LM-type test for the null of dynamic symmetry ac-

cording to the General-to-Specific strategy stated in the previous section 3. The

"Two-Step" test, illustrated in Subsection 4.1, is an adaptation for time series of

the original Stukel’ s parametrization. On the other side, the "All-in-One" test,

derived in Subsection 4.2, takes the idea by LST to linearize the G(γ, h(ηEZCt )) by
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third-order Taylor expansion of G(·), which leads to an augmented artificial model

which in turn can be investigated by a classical χ2 or F -test. This is due to the fact

that the Information matrix is the same as in GT2.

4.1 "Two-Step" Test

Consider the general formulation (1)-(2). Then, the null hypothesis of no logarithmic

(exponential) deviations from the logistic transition in systems (1)-(8) or (1)-(11)

can be tested by setting the following hypotheses testing system:

H0i : (γ1, γ2) = (0, 0) vs H1i : (γ1, γ2) 6= (0, 0), i = 1, 2, 3 , (16)

with subscript i indicating the type of underlining transition function, namely i = 1

for generalized logistic (eq. (5)), i = 2 for generalized second order logistic (eq. (9))

and i = 3 for the generalized exponential one.

This hypothesis system requires a simple score test. Let denote by Ξ = [φ,θ,γ, c]

the hyper-parameter vector of the model, so that the log-likelihood function of the

T observations can be denoted by Lt(zt,Ξ) and the score vector by qt(zt,Ξ) =∑
t q(zt,Ξ) = ∂Lt(zt,Ξ)/∂Ξ evaluated at (θ0,φ0,0, c0). Then, standard results

lead to the following log-likelihood function:

Lt(zt,Ξ) = const+
T

2
lnσ2 − 1

2
σ2
∑
t

(yt − φ′zt − θ′ztG)2

= const+
T

2
lnσ2 − 1

2
σ2
∑
t

u2
t (Ξ),

(17)

with const denoting a constant and ut the model’s residual, and to the score:

qt(zt,Ξ) =
∑
t

q(zt,Ξ) =
∂Lt(zt,Ξ)

∂Ξ
=

1

σ2

∑
t

ut(Ξ)kt , (18)

2See GT, pp. 64-5, adjust the notation for an autoregressive framework and notice that we only
modify the definition of nonlinear part ft = f(wt;ψ), which does not vary the general result.
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where

kt =
∂ut(Ξ)

∂Ξ
= (zt, ztG,θ

′ztGγ1 ,θ
′ztGγ2 ,θ

′ztGt,c), (19)

with Gt,γ1 = ∂G/∂γ1, Gt,γ2 = ∂G/∂γ2, and Gc = ∂G/∂γc being defined in Appendix

A.1.

Under H0, the test statistic is:

S1(Ξ)LM =
1

σ̂2
û′H(H′H−H′Z(Z′Z)−1Z′H)−1H′û, (20)

where û = [û1, . . . ûT ]′, Z = (z′1, . . . , z
′
T)′, H = [(h0

1)′, . . . , (h0
T)′]′, with (h0

t )′ = kG
t ,

kG
t denoting the sub-vector [θ′ztGγ1,θ

′ztGγ2,θ
′ztGc]

′ and n = dim(kG
t ). Under

H0, statistic S1 is asymptotically distributed as a χ2
n. Just minor modifications are

needed in notation of kt and qt in case of GLSTAR2 model due to an additional c

parameter with respect to the GLSTAR.

4.2 "All-in-One" Test

Consider (2) with G(γ, h(ηEZCt ))|γ=0 and define τ = (τ1, τ2)′, where τ1 = (φ0,φ
′)′,

τ2 = γ. Let τ̂1 the LS estimator of τ1 under H0 : γ = 0, τ̂ = (τ ′1,0
′)′. Moreover,

let zt(τ ) = ∂εt
∂τ

and ẑt = zt(τ̂ ) = (ẑ1,t, ẑ2,t), where the partition conforms to that of

τ . Then the general form of LM statistic is:

S2(Ξ)LM =
1

σ̂2
û′Ẑ2(Ẑ′2Ẑ2 − Ẑ′2Ẑ1(Ẑ′1Ẑ1)−1Ẑ′1Ẑ2)−1Ẑ′2û, (21)

where û is previously defined, σ̂2 = 1
T

∑T
1 û

2
t and ût = yt−τ̂ ′1zt, Ẑi = (ẑi1, . . . , ẑit, . . . , ẑiT)′,

i = {1, 2}, t = 1, . . . , T . When the model is an GLSTAR, ẑ1,t = −zt = −(1, yt−1, . . . , yt−p)
′

while ẑ2t ≡ ∂2ut
∂γ∂γ′

∣∣
γ=0

= −1
2

{
θ20[yt(yt−d)]− cytθ′zt + θ′2ztytyt−d

}
, where d is the de-

lay parameter. The change in the definition of z2t is not significant in terms of LM

stastistic build-up. This implies that no change of treatment with respect to the

original parametrization is needed. In particular, in order to circumvent the Davies
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(1977)’ s problem of unidentification of nuisance parameters θ0 and θ̄ = [θ1, . . . , θp]
′

under the null hypothesis, the same LST approach can be used. The linearized

GLSTAR model

yt = φ′zt + θ′ztT3

[
h
(
ηk,t
)
I(γ1≤0,γ2≤0) + h

(
ηk,t
)
I(γ1≤0,γ2>0) + h

(
ηk,t
)
I(γ1>0,γ2≤0)

+ h
(
ηk,t
)
I(γ1>0,γ2>0)

]
+ ε′t ,

(22)

leads to the following auxiliary regression for testing linearity and symmetry:

ût = ẑ′1tβ̃1 +

p∑
j=1

β2jyt−jyt−d +

p∑
j=1

β3jyt−jy
2
t−d +

p∑
j=1

β4jyt−jy
3
t−d + vt , (23)

where vt is a N.I.D.(0, σ2) process, β̃1 = (β10,β
′
1)′, β10 = φ0 − (c/4)θ0, β1 =

φ − (c/4)θ + (1/4)θ0ed, ed = (0, 0, . . . , 0, 1, 0, . . . , 0)′ with the d-th element equal

to unit and T3(G) = f1G + f3G
3 is the third-order Taylor expansion of G(Ξ) at

γ = 0, f1 = ∂G(Ξ)/∂Ξ
∣∣
γ=0

and f3 = (1/6)∂3G(Ξ)/∂Ξ
∣∣
γ=0

, G(Ξ) being defined in

previous section. The null hypothesis is

H0 : β2j = β3j = β4j = 0 j = 1, . . . , p, (24)

The test statistic:

LM1 = (SSR0 − SSR)/σ̂v
2 , (25)

with SSR0 and SSR denoting the sum of squared estimated residuals from the esti-

mated auxiliary regression (23) and under the null and alternative, respectively and

σ2
v = (1/T )SSR, has an asymptotic χ2

3p distribution under H0.

If the model is an GESTAR(p), then ẑ1 = −zt as in the generalized logistic case,

while ẑ2,t = −2θ′2zty
2
t−2 − 2θ20y

2
t−d + 4cθ′2wtyt−d − 2c2θ′2ztyt + 4cθ20yt−d − 2c2θ20 =

2ẑESTAR2,t , where ESTAR denotes the vector ẑ2,t for the ESTAR model. That is, the

vector ẑ2,t of the generalized ESTAR model is found to be two times the symmetric
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one. The corresponding auxiliary regression is

ε̂t = β̃′1ẑ1 + β′2ztyt−d + β′3zty
2
t−d + v′t , (26)

where v′t is a N.I.D.(0, σ2) error term and β̃1 = (β10,β
′
1)′, with β10 = φ0− c2θ0 and

β1 = φ − c2θ + 2cθ0ed; moreover β2 = 2cθ − θ0ed and β3 = −θ. Thus the null

hypothesis of linearity is

H ′0 : β2 = β3 = 0, (27)

which can be tested by the test statistic:

LM2 = (SSR0 − SSR)/σ̂2
v1, (28)

where SSR0 and SSR are the sum of squared residuals from (26) under the null and

the alternative respectively, σ̂2
v1 = (1/T )SSR. When the null is true, the statistic

(28) is asymptotically χ2
p distributed.

5 Evaluation

For what concerns the diagnostics, the new parametrization can be applied directly

to the three tests developed by ET, which will be discussed in detail.

5.1 Serial independence

Consider the general additive model (1), where:

εt = a′vt + ut =

q∑
j=1

ajL
jεt + ut, ut ∼ I.I.D.(0, σ2), (29)

with Lj denoting the lag operator, vt = (ut−1, . . . , ut−q)
′, a = (a1, . . . , aq)

′, aq 6=

0. Under the assumption of stationarity and ergodicity (see Section 2), the null

hypothesis of serial independence is H0 : a = 0. By pre-multiplying eq. (2) by
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1−
∑q

j=1 ajL
j we get:

yt =
∑
j

ajL
jyt + φ′zt −

∑
j

ajL
jφ′zt + θ′ztG(·)−

∑
j

ajθ
′G(·) + εt , (30)

hence, assuming the necessary initial values y0, y−1, . . . , y−(p+q)+1 fixed, the pseudo

normal loglikelihood for t = 1, . . . , T is:

Lt = constant+
1

2
lnσ2 − ε2t

2σ2
,

εt = yt −
∑
j

ajL
jyt − φ′zt +

∑
j

ajL
jφ′zt − θ′G(zt−j,Ξ) +

∑
j

ajθ
′G(zt−j,Ξ) .

(31)

Consistently with the model initial assumptions, the information matrix is block

diagonal, hence we can consider σ2 fixed for the rest of the derivations. So we have:

∂Lt
∂aj

=
εt
σ2

[yt−j − φ′zt−j − θ′G(zt−j,Ξ)] (32)

∂Lt
∂Ξ

=
εt
σ2

[
θ′zt

∂G(zt−j,Ξ)

∂Ξ
−
∑
j

ajθ
′∂G(zt−j,Ξ)

∂Ξ

]
. (33)

Under H0, consistent estimators of (32) - (33) are:

∂L̂t
∂at

∣∣∣∣
H0

=
1

σ2
ûtv̂t

∂L̂t
∂Ξt

∣∣∣∣
H0

= − 1

σ2
ûtẑt , (34)

where ût = (v̂t−1, . . . , v̂t−q)′, v̂t−j = yt−j −φ′zt−j − θ′G(zt−j, Ξ̂), j = 1, . . . , q, Ξ̂ is

the QMLE of Ξ and ẑt = ∂G(zt,Ξ̂)

∂Ξ̂
= kGt = [θ′ztGγ1,θ

′ztGγ2,θ
′ztGγc]. The resulting

LM statistic is:

LM =
1

σ̂

(
û′tv̂t

){
v̂′tv̂t − v̂′tẑt

(
ẑtẑ
′
t

)−1

ẑ′tv̂t

}−1(
v̂′ût

)
, (35)

with σ̂2 = 1
T

∑
t u

2
t . Under the null hypothesis, statistics (35) is asymptotically χ2

q

distributed. The partial derivatives of G(·) are shown in Appendix A.1. Another
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possibility is to use the same three-step procedure for carrying an F -test:

1. Estimate the GSTR model under the assumption of uncorrelated errors and

compute the residual sum of squares SSR0 =
∑T

t=1 û
2
t .

2. Regress ût on v̂t, zt, ztĜ(zt−d), Ĝγ1, Ĝγ2, Ĝc (eventually Ĝc2 in case of

GLSTR2) and compute SSR;

3. Compute the test statistic FLM = SSR0−SSR
q

/ SSR
T−n−q , where n = dim(ẑt)

The F−statistics is preferable to the χ2 statistics which may suffer from size prob-

lems when the number of lags is high and time series is short, so that the estimated

residuals can be non-orthogonal to the gradient vector ẑt. In this case ET sug-

gests to add an extra-step to the step (i), consisting in regressing the estimated

errors to zt, zt, ztĜ(zt−j), Ĝγ1, Ĝγ2, Ĝc; the resulting errors ũt is used to derive the

SSR1 =
∑T

t=1 ũ
2
t .

5.2 No remaining asymmetry

As in the symmetric STAR model, we are interested to detect possible misspecifica-

tion. In this case there are two plausible issues to investigate: neglected (additive)

nonlinearity and, in our case, neglected asymmetry. Consider the additive GSTAR

model:

yt = φ′zt + θ′ztG1(γ, h(ηt)
(1)) + π′ztG2(γ, h(ηt)

(2),EZC) + ut, (36)

with ut ∼ I.I.D. (0, σ2). The null of neglected asymmetry is:

H0 : h(ηt)
(2),EZC = 0 vs H0 : h(ηt)

(2),EZC 6= 0. (37)

If γ is found being not null, the investigator can easily check if the additive nonlinear

part is significant. The EZC version of h(ηt) is necessary in order to nest the
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discussion to ET framework. We assume that, under H0, Ξ can be consistently

estimated by QML. Similarly to the symmetric case, it should be noticed that the

model is not identified under H0, so that the Taylor expansion of the G(·) suggested

by LST can be used in order to circumvent this problem. In this case, we assume

G2(·) as generalized logistic and replace it with its third-order Taylor expansion

about h(γ)(2) = 0. This implies:

T2 = g20 + g21yt−l + g22y
2
t−l + g23y

3
t−l , (38)

where g2j, j = 0, 1, 2, 3, 4 are functions of γ(2) such that g20 = g21 = g22 = g23 = 0

for γ(2) = 0, consistently with the definition of hγ(st). By re-parametrizing, the

model (36) became:

yt = β′0zt + θ′ztG1(·) + β′1z̃tyt−l + β′2z̃ty
2
t−l + β′3z̃ty

3
t−l + rt , (39)

where z̃t = (yt−1, . . . , yt−p)
′. The null hypothesis of no additive nonlinearity is

H0 : β1 = β2 = β3 = 0, and, as in the symmetric case, under H0, rt = ut. The LM

statistics distributes as a χ2(3p). As in the symmetric case, the test preserves power

also against generalized exponential transition. Since there are no modifications

in the statistical assumptions concerning the errors distribution, the asymptotic

theory is the same of the symmetric STAR case. The test statistic is (21) with

ẑt = (zt, ztĜ(·), Ĝγ1, Ĝγ2, Ĝc)
′ (or Ĝc1, Ĝc2 in case of GLSTR2), whereas vt =

(z̃′tyt−l, z̃
′
ty

2
t−l, z̃

′
ty

3
t−l)

′. As in the symmetric STAR model, the test is implemented

with the same procedure for serial correlation, the F-test has (3p) and (T − n− 3p)

degrees of freedom and the Teräsvirta rule can be applied to (39) in order to select

the form of the transition. If this selection is not desirable, a polynomial expansion

of (36) can be performed to build up an omnibus test, but in this case, a rejection

of the null of no additive nonlinearity will not give any qualitative information, that

is why we do not take in consideration this scenario.
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5.3 Parameter constancy

Consider the model:

yt = φ(t)′z̄t + θ(t)′z̃tG(γ, h(ηt)) + ut, ut ∼ I.I.D. (0, σ2) , (40)

with z̄t denoting the k ≤ p + 1 element of zt for which the corresponding element

of φ is not assumed zero a priori, z̃t is the same (l × 1)′ for the element of θ.

Let φ̃ and θ̃ denote the equivalent (k + 1) and (l + 1) parameter vectors, φ(t) =

φ̃ + λ1Gj(t;γ, h(ηt)
(1)), and θ(t) = θ̃ + λ2Gj(t;γ, h(ηt)

(2)) with λ1 and λ2 being a

(k × 1) and (l × 1) vectors respectively. Then the null of parameter constancy in

(40) is

H0 : Gj(t;γ, h(ηt)) ≡ 0 (or ≡ const). (41)

Three forms for Gj can be considered:

G1(t;γ, h(c, st)) = (1 + exp{−h(ηGLt )})−1 with

ηGLt ≡ t− c ,

G2(t;γ, h(c, st)) = 1 + exp{−h(ηGEt )} with

ηGEt ≡ (t− c)2 ,

G3(t;γ, h(c, st)) = (1 + exp{−h(ηCt )})−1 with

ηCt ≡ (t3 + c12t
2 + c11t+ c10)

(42)

The null of parameter constancy is H0 : γ = 0. Notice that in this case the model

is identified also in case of γ < 0, so that the only identifying restriction is that

γ 6= 0. G1 and G2 are the Generalized Logistic and Exponential smooth transition

of the change in parameters, while G3 is a cubic function which allows for both

monotonically and non-monotonically changing parameters and can be seen as a

general case of G1 and G2 when building up a test. As suggested by the literature,
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we use a third-order Taylor expansion of G3 about γ = 0:

T3(t;γ, h(ηt)) =
1

4
h(γ)(t3 + c12t

2 + c11t+ c10) +R(t,γ, h(ηt)). (43)

in order to approximate φ(t) and θ(t) in (40) using (43). This yields to:

yt = β′
0(z̄t) + β′

1(tz̄t) + β′
2(t2z̄t) + β′

3(t3z̄t)+

+ {β′
4(z̃t) + β′

5(tz̃t) + β′
6(t2z̃t) + β′

7(t3z̃t)}G(t;γ, h(ηt)) + r∗t ,

(44)

where r∗t = ut + R(t;γ, h(ηt)). Under H0, r∗t = ut. In (44), βj = h(ηt)β̄, j =

1, . . . , 7, hence the null hypothesis in terms of (44) becomes H0 : βj = 0, j =

1, . . . , 7. Consequently, the locally approximated pseudo normal log-likelihood under

H0 (ignoring R) is

Lt = const− 1

2
lnσ2 − 1

2
σ2[yt − β′

0wt − β′
1(tw̄t)− β′

2(t2w̄t)− β′
3(t3w̄t)−

−{β′
4(w̃t) + β′

5(tw̃t) + β′
6(t2w̃t) + β′

7(t3w̃t)}G(yt−d;γ, h(ηt)]
2.

(45)

The partial derivatives are:

∂Lt
∂βj

=
1

σ2
ut(t

jw̄t), j=0, . . . , 3, (46)

∂Lt
∂βj

=
1

σ2
ut(t

jw̃t)G(yt−d;γ, h(ηt)), j=4, . . . , 7, (47)

∂Lt
∂γ1

=
1

σ2
ut{β′

4(w̃t) + β′
5(tw̃t) + β′

6(t2w̃t) + β′
7(t3w̃t)}Gγ1 , (48)

∂Lt
∂γ2

=
1

σ2
ut{β′

4(w̃t) + β′
5(tw̃t) + β′

6(t2w̃t) + β′
7(t3w̃t)}Gγ2 , (49)

∂Lt
∂c

=
1

σ2
ut{β′

4(w̃t) + β′
5(tw̃t) + β′

6(t2w̃t) + β′
7(t3w̃t)}Gc , (50)

where Gγ1 , Gγ2 , Gc are the derivatives of G(yt−d,γ, h(ηt)) with respect to γ1, γ2 and

c. With this notation, the estimators of ∂Lt
∂γ1

, ∂Lt
∂γ2

and ∂Lt
∂c

are ∂L̂t
∂γ1

= 1
σ̂2utĜγ1 ,

∂L̂t
∂γ2

=

1
σ̂2utĜγ2 ,

∂L̂t
∂c

= 1
σ̂2utĜc respectively, so that: ẑt = (1, z̄′t, z̃

′
tĜ(yt−d; ·), Ĝγ1 , Ĝγ2 , Ĝγc)

′

and ût = (tz̄′t, t
2z̄′t, t

3z̄′t, tz̃
′
tĜ(yt−d, ·), t2z̃′tĜ(yt−d, ·), t3z̃′tĜ(yt−d, ·)). Like in the sym-
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metric scenario, underH0, the statistic (35) has a χ2 distribution with 3(k+l) degrees

of freedom and the equivalent F -distribution has 3(k+ l) and T−4(k+ l)−2 degrees

of freedom (the stastistic is denoted LM3). The following rule is used: if H1 is (40)

with transition function G3, then (35) is based on (44) assuming β3 = 0 and β7 = 0

(statistic LM2) and, if the same alternative hypothesis has the transition function

G2, the test is based on (44), assuming β2 = β3 = 0 and β6 = β7 = 0 (statistic

LM2).

6 Simulation Study

6.1 Simulation design

A Monte Carlo simulation experiment is settled in order to investigate the empir-

ical properties of the proposed asymmetry tests. We consider two different data

generating processes (DGP):

y
(i)
1,t = 0.4y

(i)
1,t−1 − 0.25y

(i)
1,t−2 + (0.02− 0.9y

(i)
1,t−1 + 0.795y1,t−2)

(s)G(i)(Ξ) + ε
(s)
1,t , (51)

and

y
(i)
2,t = 0.8y

(i)
2,t−1 − 0.7y

(i)
2,t−2 + (0.01− 0.9y

(i)
2,t−1 + 0.795y

(i)
2,t−2)G

(i)(Ξ) + ε
(s)
2,t , (52)

where

G(i)(Ξ) =
(

1 + exp
{
− h(ηt)

(i)I(γ1<0,γ2<0) + h(ηt)
(i)I(γ1>0,γ2<0) + h(ηt)

(i)I(γ1<0,γ2>0)+

+ h(ηt)
(i)I(γ1>0,γ2>0)

]})−1

,

(53)

with ε
(i)
t ∼ N(0, 1), i = {1, . . . , I} denoting the i-esim simulation of the process

{yt}Tt=1 with s = yt−1, c = 1
T
y

(i)
t , I = 1, 000.
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y
(i)
2,t (henceforth "DGP 1") is an additive nonlinear model with accentuated nonlinear

behavior, due to the high autoregressive parameters driving G(Ξ) and the low ones

driving the linear part; this can be the case of a macroeconomic indicator affected

by an unexpected shocks affecting the whole dynamics. On the other hand, y(i)
2,t

(henceforth "DGP 2") describes a more balanced scenario.

In order to simulate the function h(ηt) we use a set of values of vector γ. The same

different combinations of (γ1, γ2) of the two symmetry tests has been used to investi-

gate the empirical size and the empirical power of the three diagnostic test described

in Section 5. These combinations allow us to investigate: i) the different cases of

null, medium and extreme asymmetry respectively; ii) the effect of having different

kinds of asymmetry, due to the different signs in the two γ-s. Moreover, we con-

sider three different hypotheses for T and the size α, namely T = {100, 300, 1000}

and α = {1%, 5%, 10%}. For each DGP we explore the possibility of both types

of different functional form of asymmetry in G(·) and compute the corresponding

statistics (25) - (28), jointly to the "Two-Step" test hypothesis corresponding to

statistics (20). In this experiment, the first 100 simulations have been discarded in

order to avoid the initialization effect.

For what concerns the three diagnostic tests, in the error autocorrelation test we as-

sumed the errors of the generating process followed an AR(1) process ut = ρut−1 +ε,

ε ∼ NID(0, 1) and ρ = {0.2, 0.4}. In the test for no additive asymmetry we added to

the previously described DGP a generalized logistic function G2(γ
(2), h(c, yt−1)) with

coefficients π0 = 0.01, π2 = −1.8, π3 = 1.6, γ(2) = (γ3, γ4) = {(5, 2), (50, 20), (500, 200)}

and γ(1) fixed at (120,70); this ensures that the behavior of the additive component

remains isolated from the second; our experience shows that if higher parameter are

set, the inversion become problematic. For the test for parameter constancy, the

coefficients has been simulated according to a generalized logistic smooth change

with λ1 = (0, 0.4,−0.25)′ and λ2 = (0.2,−0.9,−0.795)′. All these devices should

make our simulation exercise comparable to the ET results.
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6.2 Results

The results of the "All-in-one" and "Two-step" tests discussed in Section 4 for single

DGP 1 and DGP 2 are reported in Table 1 and Table 2, respectively. Several findings

can be easily noticed: first, the two tests have good and similar size properties. Only

in large samples the two models behave in a slightly different way because of the

statistics LM2 , being its size in for DGP 1 (0.0735 at a nominal size 5%) slightly

oversized with respect to DGP 2 (0.0391), while statistics LM1 and the "Two-Step"

test are more consistent.

Second, both the tests react similarly to different DGPs: the statistics LM1 is

more powerful of LM2, regardless to the DGP 2 as sample size grows, although the

empirical power is similar for moderate asymmetry and T=100. The "Two-Step"

test makes an exception: under DGP1, the power of S1 is very similar to LM1 and

LM2, while, under DGP 2, the S1 power is full when one of the slopes is 0 and the

other is positive (see rows 4, 6 or 10 and 12 in Table 2). An important difference

between the two scenarios is the change is scale of the empirical power under DGP

2; for example, when T=300, LM1 statistic passes from 0.99 to 0.13 for α = 5%.

This implies that the detection of a dynamic asymmetric movement of the series

when the underlining process is not unambiguously nonlinear remains critical.

Third, both the tests are quite sensitive to different couples of (γ1, γ2) with respect

to signs and scale: the empirical power of both tests tends to decline while γ has

opposite signs. In particular, for γ1 < 0, the power decays up to one third (see the

case of γ = (50, 10) for α = %5 in statistic LM2 at DGP1). In any case, all the

statistics requires high slopes (500, 100 and similar) to get power in low sample.

Heuristically, this is justified with the fact that the Stukel’ s function approximates

a near-to-linear function for extreme negative slopes, implying the possibility of a

missed dynamic asymmetry problem. This argument will be actively invoked in our

empirical applications in Section 7.

With reference to diagnostic tests, the results reported in Table 3 and Table 4 deliver
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a similar picture: on one hand, all the tests have good empirical size properties for

both the DGP used. Some caveat are required to interpret the empirical power

properties: under DGP 1, all the tests have good power, in particular for serial

correlation test; the test of no additive asymmetry and parameter constancy are

characterized by a duality: when the two slopes are high, that is γ = (500, 200),

the power is extreme, while it decays for low-medium asymmetry (0.21 vs 1.00 at

α = 5%, T=100 in no additive asymmetry test, 0.44 vs 0.87 for LM2 statistic at

the same nominal and sample size for parameter constancy). On the other hand,

under DGP 2, the change in scale of the power is evident only for the parameter

constancy test; interestingly, the test for no serial correlation is more powerful. Thus,

we are substantially confident in the use of diagnostic tests in empirical analysis,

conditionally on high dynamic asymmetry.

7 Illustrations

7.1 Data and Methods

In this section the GSTAR model is applied to four time series, namely: the U.S.

index of industrial production and unemployment (IP and UN, respectively); the

yearly average of daily International Sunspot Number (YSSN), and the Canadian

Lynx data (LYNX). We consider also the monthly average of Sunspot Number from

January 1850 to December 2013 (1962 observations) for which three different kinds of

data transformations are compared to link our model to the existing literature: the

logarithmic (logMSSN), square root (sqrtMSSN) and the growth rate (DLMSSN);

in this case, the Kalman-smoothed version of the series is available and necessary

to avoid inversion problems due to the high noise. Further informations on the

dataset can be found in Table 5. The data and the resulting (multiple) transition

function(s), plotted versus time are reported in Figure 5, while the same transitions

plotted versus the selected transition variable are shown in Figure 6.
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The out-of-sample predictive properties of the estimated models are investigated

via rolling forecast experiment, according to which the series yt is divided in a "pre-

forecast" period (going from time {1 . . . t}) from which the model is estimated and

the h-step-ahead forecast are computed and compared with the "test" period, going

from time {T s . . . T} where T s = t+h; this allows to measure T −T s−h+ 1 out-of-

sample forecasts. Let denote the corresponding realization of the series as yt, ysT and

yT , as well as the corresponding density forecasts as ft, f sT and fT . Since our interest

lies in short-run forecasting we consider h = {1, 3, 6, 12}. The point predictive

performances of the model j are investigated by four different measures: the mean

forecast error (MFE), the symmetric mean absolute percentage error (sMAPE), the

median relative absolute error (mRAE) and the root mean square forecast error

(RMSFE)3:

MFEj,h =
1

T − h− T s + 1

T−h∑
t=T s

(
yt+h − ŷjt+h|t

)
(54)

sMAPEj,h =
100|yt+h − ŷjt+h|
0.5(yt+h − ŷjt+h|t)

(55)

mRAEj,h =
|yt+h − ŷjt+h|
|yt+h − ŷ(1)

t+h|
, with (1) indexing the benchmark model; (56)

RMSFEj,h =
1

T − h− T s + 1

T−h∑
t=T s

(
yt+h − ŷjt+h|t

)2

(57)

In a similar fashion, four different scoring rules are used for aggregate the T − T s−

h+ 1 density forecasts produced by the same forecasting exercise4:
3In particular, sMAPE and mRAE are recommended when the series is known to present

volatility effects or skewness, two features often associated to nonlinearity; see the discussion in
Tashman (2000).

4The scoring rules here considered are just a fraction of the many nowadays available. The
choice of the scores has been done for easy of treatment and does not imply any preference.
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• the logarithmic score (LogS) (Good, 1952):

LogSj,h =
1

T − h− T s + 1

T−h∑
t=T s

logf̂ jt+h|t (58)

corresponding to a Kullback-Liebler distance from the true density; models

with higher LogS are preferred.

• The quadratic score (Brier, 1950), somehow the equivalent of the MSFE in

point forecasting, is defined as:

QSRj,h =
1

T − h− T s + 1

T−h∑
t=T s

K∑
k=i

(f jt+h|t − dkt)
2 (59)

where dkt = 1 if k = t and 0 otherwise; models with lower QSR are preferred.

• The (aggregate) continuous-ranked probability (CRPS) score (Epstein, 1969),

equivalent to the sMAPE, is defined as:

CRPSj,h =
1

T − h− T s + 1

T−h∑
t=T s

(
|ft+h − f̂ jt+h|t| − 0.5|ft+h − f ′t+h|

)
, (60)

where f and f ′ are independent random draws from the predictive density and

ft+h|t the observed value; models with lower CRPS are preferred.

• Finally, the quantile score (qS) (Cervera and Munoz, 1996) can be obtained if

f jt+h|t is replaced in (58) by a predictive α-level quantile qαt+h|t (and the loga-

rithmic function removed); this score is used in risk analysis because provide

information about deviations from the true tail of the distribution.

Finally the p-values of the Giacomini and White (2006) test for equal predictive

ability are reported for completeness of analysis.
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7.2 Results

Tables 6 and 7 report the results of the General-to-Specific modelling strategy dis-

cussed in Section 3, and specifically: the descriptive analysis of the series, using basic

statistics and a battery of test for normality via Jarque-Brera test (JB), ARCH-effect

(via Engle’s test), serial uncorrelation via Durbin-Watson test (DW), identical dis-

tribution via Kolmogorov-Smirnov test (KS) and the t-statistics of the Dikey-Fuller

test augmented with two lags and constant as deterministic kernel (ADF) in the

first panel; the result of the LST linearity test, the selected model according to

the Teräsvirta rule and two symmetry tests introduced in Section 4 (second panel);

parameter estimates and HAC standard errors of the selected GSTAR model with

its equivalent STAR specification, for which the possibility of multiple regimes has

been taken in consideration (third panel); the diagnostic tests (fourth panel). The

rolling forecasting exercise is shown in Table 8.

Several facts arises: (i) first, the dynamic asymmetry here introduced is never re-

jected if a GSTAR model is assumed, as the "All-in-One" test suggests; however,

the "Two-Step" approach, which strictly follows the original Stukel’s methodology

changes this result; this seems reasonable at least for case of UN. This is not the

case of monthly sunspots series, for which the "Two-Step" test, although still not

able to reject the null for the selected model, starts to reject if different data and

models are used5. (ii) The GSTAR transition function differs from its symmetric

equivalent and this holds also when the two estimated slopes are very similar. In

particular, Figure 5, panels (a), (c) and (d), shows that the estimated asymmetric

G(γ, st, c) functions tends to concentrate in the upper part of the of the space of

continuum of states (between 0.5 and 1); on the other side, in panel (b) of the same

figure, the estimated GLSTAR transition for UN (where γ1 = γ2 = 0.001) reduces

of 30% from the full [0, 1] range (from 1950 to 1980) to a [0.2, 0.9] range (after first

1980s), allowing to reproduce the cyclical movements of the data and their change
5The results, not shown here, can be provided upon request.
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in scale better than the traditional parametrization. The differences between tran-

sition functions are still more evident in Figure 6.

(iii) The GSTAR(p) specification allows the modeller to gain in terms of parsimony,

since in all the examples the dynamics of the series is found being well replicated

by using just one asymmetric transition, while the same does not hold for its sym-

metric counterpart. This is immediately evident in the LYNX example, where an

autoregressive order 7 is sufficient to pass all the diagnostic tests, whereas more lags

was required by previous literature6 and monthly sunspot data enforces this finding.

(iv) Coherently with the logarithmic (exponential) rescaling imposed by h-functions

(3) - (4) and with the evidence from application of SETAR and STAR models ob-

tained by previous studies, the GSTAR model is sensitive to changes in scale, so

that a further transformation tends to over-smoothing (exacerbate) the nonlinear

dynamics of the process if further transformations are applied. In this sense, Figure

7 is almost self-explanatory.

(v) The dynamic asymmetry is an important feature to take in account for fore-

casting aims: in particular, according to mRAE, the GSTAR model beats almost

always its symmetric counterpart, while, in terms of RMSFE, the GSTAR wins in

many forecast horizons of YSSN and LYNX and at longest horizons of UN; similar

evidence is provided by MFE criterion: the new model prevails in two cases (UN and

YSSN) whereas at very short term, the AR is still a good model for IP and LYNX.

The superiority is less evident if considering sMAE: the two nonlinear specification

almost equivalent for IP, while, for other three cases the MR-STAR prevails with a

factor of less than 0.1%.

(vi) The results of density forecasting are quite more challenging. In particular, ac-

cording to LogS, the GSTAR wins for UN, while AR does for IP and shot horizons

of YSSN and MR-STAR for LYNX. The GSTAR returns to outperform if QSR is

used, beating its competitors for YSSN and LYNX and at long horizons of IP and
6Tong (1977) and Teräsvirta (1994) suggested p=11.
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UN. Differently, the CRPS conveys a clear superiority of MR-STAR, which win in

almost all cases, with the exception of YSSN and short-run horizons of IP (where

AR better). The qSα enforces this result by providing evidence in favor linear spec-

ifications with the only exception of IP, and STAR being still the second best for IP

and UN.

(vii) Finally, according to the results for Giacomini and White (2006) test, there

is evidence of significant improvement in prediction until h=6 if a GSTAR(p) is

considered with respect to a linear AR specification.

8 Conclusions

The Generalized Logistic function is applied to STAR family as simple, statisti-

cally feasible way to capture the dynamic asymmetry in the conditional mean of a

time series. The resulting GSTAR model ensures the smoothness of the transition

function by construction without requiring further efforts for what concerns identifi-

cation and estimation, is able to characterize some of the most prominent examples

of nonlinear time series also when the estimated asymmetry coefficients are very

similar and presents good point forecasting properties.

The results of density forecasting exercise confirm - and possibly enforce - the Kascha

and Ravazzolo (2010) evidence that the relation between highest LogS and lower

RMSFE is not one-to-one. In addiction to this, we find that such a relation breaks

under CRPS and reverts under qSα. This means that dynamic asymmetric models

are superior to traditional STARs if classical measures are used and not dissimilar

if robust measures are. In any case, nonlinear specifications remains preferable to

linear ones.

The GSTAR model is feasible of several developments, first of all for what concerns

modelling the conditional variance in long samples (Gonzáles-Rivera, 1998; Amado

and Teräsvirta, 2013; Silvennoinen and Teräsvirta, 2013) and multiple time series
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analysis, see Rothman, van Dijk, and Franses (2001); Milas and Rothman (2008)

and Camacho (2004) for an economic examples and Hubrich and Teräsvirta (2013)

for a survey. The properties of the GSTAR in non-stationary time series is still

unknown and constitutes an important issue for financial applications; Kapetanios,

Shin, and Snell (2003), Vougas (2006) and Addo, Billio, and Guégan (2014) dis-

cuss this problem in a traditional STAR and MT-STAR framework and provide a

basis to start with. Finally, the dynamic asymmetry here introduced has been mod-

elled by implicitly assuming autoregressive structure. Wecker (1981), and Brännäs

and De Gooijer (1994, 2004) provide interesting asymmetric moving-average models

which can be compared and possibly merged with GSTAR features.
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A Appendix

A.1 Mathematical derivations

A.1.1 Preliminar notation

Let denote Gt = G(Ξ), Ξ = [γ1, γ2, c] or [γ1, γ2, c1, c2] in case of GLSTR1 and

GESTAR (GESTR). Then we can re-define G(Ξ) as:

G{i}(Ξ) = [1 + g(f {i}(Ξ))]j,

f {GLSTR}(Ξ) = −[h(ηLt )I(γ1≤0,γ2≤0) + h(ηLt )I(γ1≤0,γ2>0) + h(ηLt )I(γ1>0,γ2≤0) + h(ηLt )I(γ1>0,γ2>0)],

f {GLSTR2}(Ξ) = −[h(η2L
t )I(γ1≤0,γ2≤0) + h(η2L

t )I(γ1≤0,γ2>0) + h(η2L
t )I(γ1>0,γ2≤0) + h(η2L

t )I(γ1>0,γ2>0)],

f {GESTR}(Ξ) = −[h(ηEt )I(γ1≤0,γ2≤0) + h(ηEt )I(γ1≤0,γ2>0) + h(ηEt )I(γ1>0,γ2≤0) + h(ηEt )I(γ1>0,γ2>0)],

with i = {L, 2L,E}, denoting the Logistic, Double Logistic and Exponential parametriza-

tion, j = {1;−1}, with j = 1 only if f(Ξ) = fGESTR(Ξ), ηLt = st − c, η2L
t =

(st − c1)(st − c2), ηLt = (st − c)2. Moreover, let f ′(Ξ) = −[h′(ηt)I(γ1≤0,γ2≤0) +

h′(ηt)I(γ1≤0,γ2>0) + h′(ηt)I(γ1>0,γ2≤0) + h′(ηt)I(γ1>0,γ2>0)] define the first derivative of

f(Ξ) and D = 1 + g(Ξ) denote the denominator of the fraction which is the result

of the computation of the second derivatives so that:

D2 = 1 + g(Ξ)2 + 2g(Ξ),

g{i}(Ξ)2 = 1 + exp{−2(h(η
{i}
t )I(γ1≤0,γ2≤0) + h(η

{i}
t )I(γ1≤0,γ2>0) + h(η

{i}
t )I(γ1>0,γ2≤0)+

+ h(η
{i}
t )I(γ1>0,γ2>0))}+ 2 exp{h(η

{i}
t )I(γ1≤0,γ2≤0) + h(η

{i}
t )I(γ1≤0,γ2>0)+

+ h(η
{i}
t )I(γ1>0,γ2≤0) + h(η

{i}
t )I(γ1>0,γ2>0)},

A.1.2 LSTR1 case

When the transition equation is a Generalized Logistic, we have the following deriva-

tives:
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(i)

Gγ1(Ξ) = −g
′(f(Ξ)) · f ′(Ξ)

D2
(61)

where:

h′(ηt)I(ηt>0) =
∂

∂γ1

h(γ) =


− 1
γ2
1
· exp(|ηt| − 1)(|ηt| − 1) if γ1 > 0

0 if γ1 = 0

− 1
γ2
1
· ln(1− γ1|ηt|) + |ηt|

1−γ1|ηt|) if γ1 < 0

(62)

and

h′(ηt)I(ηt≤0) =


0 if γ2 > 0

0 if γ2 = 0

0 if γ2 < 0

(63)

(ii) Gγ2(·) : equal to (61) but with

h′(ηt)I(ηt>0) =
∂

∂γ2

h(γ) =


0 if γ1 > 0

0 if γ1 = 0

0 if γ1 < 0

(64)

and

h′(ηt)I(ηt≤0) =


1
γ2

exp(1− γ2|ηt|) · ( 1
γ2

+ |ηt|) if γ2 > 0

0 if γ2 = 0

− 1
γ2

[
1
γ2

ln(γ2|ηt| − 1) + |ηt|
γ2|ηt|−1

]
if γ2 < 0

(65)

(iii) Gc(·) : equal to (61) but with

f ′(Ξ) = h(ηt)I(ηt≤0) + h(ηt)I(ηt>0) (66)

A.1.3 LSTR2 case

When the transition equation is a (Generalized) Double Logistic as in model (??),

we have the following derivatives:
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(i) Gγ1(·) equal to equation (61) with: f {i}(Ξ) = f {GLSTR2}(Ξ) = −[h(η2L
t )I(γ1≤0,γ2≤0)+

h(η2L
t )I(γ1≤0,γ2>0)+h(η2L

t )I(γ1>0,γ2≤0)+h(η2L
t )I(γ1>0,γ2>0)], g{GLSTR2} = exp{f {GLSTR2}(Ξ)},

h′(η2L
t )I(η2L

t >0) and h′(η2L
t )I(η2L

t ≤0) equal to systems (62) and (63).

(ii) Gγ2(·) : equal to equation (61) with: f {GLSTR2}(Ξ) and g{GLSTR2}(Ξ) above

defined as in case (i) and h′(η2L
t )I(η2L

t ≥0) and h′(η2L
t )I(η2L

t <0) equal to systems

(64) and (65) respectively.

(iii) Gc1(·): equal to equation (61) with: f {GLSTR2}(Ξ) and g{GLSTR2}(Ξ) defined

as in case (i) and

f ′(Ξ) = h′(η2L
t )I(η2L

t ≤0)(st − c2) + h′(η2L
t )I(η2L

t >0)(st − c2) (67)

(iv) Gc2(·): equal to equation (61) with: f {GLSTR2}(Ξ) and g{GLSTR2}(Ξ) defined

as in case i) and

f ′(Ξ) = h′(η2L
t )I(η2L

t ≤0)(st − c1) + h′(η2L
t )I(η2L

t >0)(st − c1) (68)

A.1.4 ESTR case

When the transition equation is an exponential as in model (??), we have: f {ESTR}(Ξ) =

−[h(ηEt )I(γ1≤0,γ2≤0)+h(ηEt )I(γ1≤0,γ2>0)+h(ηEt )I(γ1>0,γ2≤0)+h(ηEt )I(γ1>0,γ2>0)], g{ESTR}(Ξ) =

− exp{f {E}}, hence the following derivatives:

(i) Gγ1(·) = f {ESTR}∗
′(Ξ) with: f ′(Ξ) = −[h(ηEt )I(ηEt ≤0)(st−c)2+h′(ηEt )I(ηEt ≤0)(st−

c)2), h′(ηEt )I(ηEt >0] and h′(ηEt )I(ηEt ≤0) being the same of systems (62) and (63).

(ii) Gγ2(·): same as Gγ1(·) with h′(ηEt )I(ηEt >0] and h′(ηEt )I(ηEt ≤0) being the same of

systems (64) and (65).

(iii) Gc(·) = f {ESTR}∗
′
(Ξ) with f ′(Ξ) = h′(ηEt )I(ηEt ≤0)(2c) + h′(ηEt )I(ηEt >0)(2c), with

h′(ηEt )I(ηEt >0] and h′(ηEt )I(ηEt ≤0) being the same of systems (64) and (65).
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A.2 Tables and Graphs

Figure 1: Transition function for different parametrizations of Asymmetric STAR.

(a) Sollis et al. (2002)
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Figure 2: The Generalized Logistic function.
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Figure 4: An example of GLSTAR model.
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Figure 5: Estimated transition function for (MR)STAR and GSTAR specifications.
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Figure 6: Estimated transition functions vs transition variable.
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Figure 7: Monthly SSN: estimated transition functions for different data transformations.
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