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Abstract

The main contribution of this paper is to propose a new bootstrap method for statistics based
on high frequency returns. The new method exploits the local Gaussianity and the local constancy
of volatility of high frequency returns, two assumptions that can simplify inference in the high
frequency context, as recently explained by Mykland and Zhang (2009).

Our main contributions are as follows. First, we show that the local Gaussian bootstrap is first-
order consistent when used to estimate the distributions of realized volatility and realized betas.
Second, we show that the local Gaussian bootstrap matches accurately the first four cumulants of
realized volatility, implying that this method provides third-order refinements. This is in contrast
with the wild bootstrap of Gonçalves and Meddahi (2009), which is only second-order correct.
Third, we show that the local Gaussian bootstrap is able to provide second-order refinements
for the realized beta, which is also an improvement of the existing bootstrap results in Dovonon,
Gonçalves and Meddahi (2013) (where the pairs bootstrap was shown not to be second-order correct
under general stochastic volatility). Lastly, we provide Monte Carlo simulations and use empirical
data to compare the finite sample accuracy of our new bootstrap confidence intervals for integrated
volatility and integrated beta with the existing results.
JEL Classification: C15, C22, C58
Keywords: High frequency data, realized volatility, realized beta, bootstrap, Edgeworth expan-
sions.

1 Introduction

Realized measures of volatility have become extremely popular in the last decade as higher and higher

frequency returns are available. Despite the fact that these statistics are measured over large samples,

their finite sample distributions are not necessarily well approximated by their asymptotic mixed-

Gaussian distributions. This is especially true for realized statistics that are not robust to market

microstructure noise since in this case researchers usually face a trade-off between using large sample
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sizes and incurring in market microstructure biases. This has spurred interest in developing alternative

approximations based on the bootstrap. In particular, Gonçalves and Meddahi (2009) have recently

proposed bootstrap methods for realized volatility whereas Dovonon, Gonçalves and Meddahi (2013)

have studied the application of the bootstrap in the context of realized regressions.

The main contribution of this paper is to propose a new bootstrap method that exploits the local

Gaussianity framework described in Mykland and Zhang (2009, 2011). As these authors explain, one

useful way of thinking about inference in the context of realized measures is to assume that returns have

constant variance and are conditionally Gaussian over blocks of consecutive M observations. Roughly

speaking, a high frequency return of a given asset is equal in law to the product of its volatility (the

spot volatility) multiplied by a normal standard distribution. Mykland and Zhang (2009) show that

this local Gaussianity assumption is useful in deriving the asymptotic theory for the estimators used

in this literature by providing an analytic tool to find the asymptotic behaviour without calculations

being too cumbersome. This approach also has the advantage of yielding more efficient estimators by

varying the size of the block (see Mykland and Zhang (2009) and Mykland, Shephard and Sheppard

(2012).

The main idea of this paper is to see how and to what extent this local Gaussianity assumption

can be explored to generate a bootstrap approximation. In particular, we propose and analyze a new

bootstrap method that relies on the conditional local Gaussianity of intraday returns. The new method

(which we term the local Gaussian bootstrap) consists of dividing the original data into non-overlapping

blocks of M observations and then generating the bootstrap observations at each frequency within a

block by drawing a random draw from a normal distribution with mean zero and variance given by the

realized volatility over the corresponding block. Using Mykland and Zhang’s (2009) blocking approach,

one can act as if the instantaneous volatility is constant over a given block of consecutive observations.

In practice, the volatility of asset returns is highly persistent, especially over a daily horizon, implying

that it is at least locally nearly constant.

We focus on two realized measures in this paper: realized volatility and realized regression coeffi-

cients. The latter can be viewed as a smooth function of the realized covariance matrix. Our proposal

in this case is to generate bootstrap observations on the vector that collects the intraday returns that

enter the regression model by applying the same idea as in the univariate case. Specifically, we generate

bootstrap observations on the vector of variables of interest by drawing a random vector from a mul-

tivariate normal distribution with mean zero and covariance matrix given by the realized covariance

matrix computed over the corresponding block.

Our findings for realized volatility are as follows. When M is fixed, the local Gaussian bootstrap

is asymptotically correct but it does not offer any asymptotic refinements. More specifically, the first

four bootstrap cumulants of the t-statistic based on realized volatility and studentized with a variance

estimator that is based on a block size of M do not match the cumulants of the original t-statistic

to higher order (although they are consistent). Note that when M = 1, the new bootstrap method
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coincides with the wild bootstrap of Gonçalves and Meddahi (2009) based on aN (0, 1) external random

variable. As Gonçalves and Meddahi (2009) show, this is not an optimal choice, which is in line with our

results. Therefore, our result generalizes that of Gonçalves and Meddahi (2009) to the case of a fixed

M > 1. However, if the block length M → ∞ at rate o(h−1/2) (where h−1 denotes the sample size),

then the local Gaussian bootstrap is able to provide an asymptotic refinement. In particular, we show

that the first and third bootstrap cumulants of the t-statistic converge to the corresponding cumulants

at the rate o
(
h−1/2

)
, which implies that the local Gaussian bootstrap offers a second-order refinement.

In this case, the local Gaussian bootstrap is an alternative to the optimal two-point distribution wild

bootstrap proposed by Gonçalves and Meddahi (2009). More interestingly, we also show that the local

Gaussian bootstrap is able to match the second and fourth order cumulants through order o (h), which

implies that this method is able to provide a third-order asymptotic refinement. This is contrast to the

optimal wild bootstrap methods of Gonçalves and Meddahi (2009), which can not deliver third-order

asymptotic refinements.

For the realized regression estimator proposed by Mykland and Zhang (2009), the local Gaussian

bootstrap matches the cumulants of the t-statistics through order o
(
h−1/2

)
when M → ∞ at rate

o
(
h−1/2

)
. Thus, this method can promise second-order refinements. This is contrast with the pairs

bootstrap studied by Dovonon, Gonçalves and Meddahi (2013), which is only first-order correct.

Our Monte Carlo simulations suggest that the new bootstrap method we propose improves upon

the first-order asymptotic theory in finite samples and outperforms the existing bootstrap methods.

The rest of this paper is organized as follows. In the next section, we first introduce the setup,

our assumptions and describe the local Gaussian bootstrap. In Sections 3 and 4 we establish the

consistency of this method for realized volatility and realized beta, respectively. Section 5 contains

the higher-order asymptotic properties of the bootstrap cumulants. Section 6 contains simulations,

Section 7 contains one empirical application and Section 8 concludes. Three appendices are provided.

Appendix A contains the tables with simulation results whereas Appendix B and Appendix C contain

the proofs.

2 Framework and the local Gaussian bootstrap

The statistics of interest in this paper can be written as smooth functions of the realized multivariate

volatility matrix. Here we describe the theoretical framework for multivariate high frequency returns

and introduce the new bootstrap method we propose. Sections 3 and 4 will consider in detail the

theoretical properties of this method for the special cases of realized volatility and realized beta,

respectively.

We follow Mykland and Zhang (2009) and assume that the log-price process Xt =
(
X

(1)
t · · ·X

(d)
t

)′
of a d-dimensional vector of assets is defined on a probability space (Ω,F , P ) equipped with a filtration
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(Ft)t≥0. We model X as a Brownian semimartingale process that follows the equation,

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs, t ≥ 0, (1)

where µ = (µt)t≥0 is a d-dimensional predictable locally bounded drift vector, σ = (σt)t≥0 is an adapted

càdlàg d × d locally bounded spot covolatility matrix and W = (Wt)t≥0 is d-dimensional Brownian

motion.

We follow Barndorff-Nielsen et al. (2006) and assume that the spot covariance matrix Σt = σtσ
′
t is

invertible and satisfies the following assumption

Σt = Σ0 +

∫ t

0
asds+

∫ t

0
bsdWs +

∫ t

0
vsdZs, (2)

where a, b, and v are all adapted càdlàg processes, with a also being predictable and locally bounded,

and Z is a vector Brownian motion independent of W.

The representation in (1) and (2) is rather general as it allows for leverage and drift effects. As-

sumption 2 of Mykland and Zhang (2009) or equation (1) of Mykland and Zhang (2011) also impose a

Brownian semimartingale structure on the instantaneous covariance matrix Σ. Equation (2) rules out

jumps in volatility, but this can be relaxed (see Assumption H1 of Barndorff-Nielsen et al. (2006) for

a weaker assumption on Σ).

Suppose we observe X over a fixed time interval [0, 1] at regular time points ih, for i = 0, . . . , 1/h,

from which we compute 1/h intraday returns at frequency h,

yi ≡ Xih −X(i−1)h =

∫ ih

(i−1)h
µtdt+

∫ ih

(i−1)h
σtdWt, i = 1, . . . ,

1

h
, (3)

where we will let yki to denote the i-th intraday return on asset k , k = 1, . . . , d.

As equation (3) shows, the intraday returns yi depend on the drift µ, unfortunately when carrying

out inference for observations in a fixed time interval the process µt cannot be consistently estimated.

For most purposes it is only a nuisance parameter. To deal with this, Mykland and Zhang (2009)

propose to work with a new probability measure which is measure theoretically equivalent to P and

under which there is no drift (a statistical risk neutral measure). They pursue the analysis further and

propose an approximation measure Qh defined on the discretized observations Xih only, for which the

volatility is constant on each of the 1
Mh non overlapping blocks of size M . Since M is the number of

high frequency returns within a block, we have that M ≤ 1
h .

Specifically, under the approximate measure Qh, in each block j = 1, . . . , 1
Mh , we have,

yi =
1√
M
C(j)ηi+(j−1)M , ∀i ∈ ((j − 1)M, jM ] , (4)

where ηi+(j−1)M ∼ i.i.d.N(0, Id), Id is a d × d identity matrix and C(j) =
√
Mhσ(j−1)Mh, where C(j)

is such that C(j)C
′
(j) = Γ(j) ≡

∫ jMh
(j−1)Mh Σudu (see Mykland and Zhang (2009), p.1417 for a formal

definition of Qh).
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The true distribution is P , but we prefer to work with Qh since then calculations are much simpler.

Afterwards we adjust results back to P using the likelihood ratio (Radon-Nikodym derivative) dQh/dP .

Remark 1. As pointed out in Mykland and Zhang’s (2009) Theorem 3 and, in Mykland and Zhang’s

(2011) Theorem 1, the measure P and its approximation Qh are contiguous on the observables.

This is to say that for any sequenceAh of sets, P (Ah)→ 0 if and only ifQh(Ah)→ 0 (see Mykland

and Zhang (2012) p. 169 for more details). In particular, if an estimator is consistent under Qh,

it is also consistent under P . Rates of convergence (typically h−1/2) are also preserved, but the

asymptotic distribution may change (for instances of this, see Examples 3 and 5 of Mykland and

Zhang (2009). More specifically, when adjusting from Qh to P , the asymptotic variance of the

estimator is unchanged (due to the preservation of quadratic variation under limit operations),

while the asymptotic bias may change (see Remark 4 of Mykland and Zhang (2009)). It appears

that a given sequence Zh of martingales will have exactly the same asymptotic distribution

under Qh and P , when the Qh martingale part of the log likelihood ratio log(dP/dQh) has zero

asymptotic covariation with Zh. In this case, we do not need to adjust the distributional result

from Qh to P . Two important examples where this is true are the realized volatility and realized

beta which we will study in details in Sections 3 and 4.

Remark 2. In the particular case where the window length M increases with the sample size h−1

at rate o(h−1/2), there is also no contiguity adjustment (see Remark 2 of Mykland and Zhang

(2011)).

Next we introduce a new bootstrap method that exploits the structure of (4). In particular, we

mimic the original observed vector of returns, and we use the normality of the data and replace C(j) by

its estimate Ĉ(j), where Ĉ(j) is such that Ĉ(j)Ĉ
′
(j) =

M∑
i=1

yi+(j−1)My
′
i+(j−1)M = Γ̂(j). That is, we follow

the main idea of Mykland and Zhang (2009), and assume constant volatility within blocks. Then,

inside each block j of size M (j = 1, . . . , 1
Mh), we generate the M vector of returns as follows,

y∗i+(j−1)M =
1√
M
Ĉ(j)ηi+(j−1)M , 1 = 1, . . . ,M, (5)

where ηi+(j−1)M ∼ i.i.d.N(0, Id) across (i, j), and Id is a d× d identity matrix.

In this paper, and as usual in the bootstrap literature, P ∗ (E∗ and V ar∗) denotes the probability

measure (expected value and variance) induced by the bootstrap resampling, conditional on a real-

ization of the original time series. In addition, for a sequence of bootstrap statistics Z∗h, we write

Z∗h = oP ∗ (1) in probability, or Z∗h →P ∗ 0, as h → 0, in probability under P , if for any ε > 0, δ > 0,

limh→0 P [P ∗ (|Z∗h| > δ) > ε] = 0. Similarly, we write Z∗h = OP ∗ (1) as h → 0, in probability if for all

ε > 0 there exists a Mε <∞ such that limh→0 P [P ∗ (|Z∗h| > Mε) > ε] = 0. Finally, we write Z∗h →d∗ Z

as h → 0, in probability under P , if conditional on the sample, Z∗h weakly converges to Z under P ∗,

for all samples contained in a set with probability converging to one.

The following result is crucial in obtaining our bootstrap results.
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Theorem 2.1. Let Z∗h be a sequence of bootstrap statistics. Given the probability measure P and its

approximation Qh, we have that

Z∗h →P ∗ 0, as h → 0, in probability under P , if and only if Z∗h →P ∗ 0, as h → 0, in probability

under Qh.

Proof of Theorem 2.1 For any ε > 0, δ > 0, letting Ah ≡ {P ∗ (|Z∗h| > δ) > ε}, we have that

Z∗h →P ∗ 0, as h → 0, in probability under P , if for any ε > 0, δ > 0, limh→0 P (Ah) = 0. This is

equivalent to limh→0Qh (Ah) = 0, since P and Qh are contiguous (see Remark 1). It follows then that

Z∗h →P ∗ 0, as h→ 0, in probability under Qh. The inverse follows similarly.

Theorem 2.1 provides a theoretical justification to derive bootstrap consistency results under the

approximation measure Qh as well as under P . This simplifies the bootstrap inference. We will

subsequently rely on this theorem to establish the bootstrap consistency results.

3 Results for realized volatility

3.1 Existing asymptotic theory

To describe the asymptotic properties of realized volatility, we need to introduce some notation. For

any q > 0, define the realized q-th order power variation (cf. Remark 8 of Mykland and Zhang (2009))

as

Rq ≡Mh

1/Mh∑
j=1

(
RVj,M
Mh

)q/2
.

where RVj,M =
M∑
i=1

y2
i+(j−1)M is the realized volatility over the period [(j − 1)Mh, jMh] for j =

1, . . . , 1
Mh . Note that when q = 2, R2 = RV (realized volatility). Similarly, for any q > 0, define the

integrated power variation by

σq ≡
1∫

0

σqudu.

Mykland and Zhang (2009) show that 1
cM,q

Rq
P→ σq, where cM,q ≡ E

((
χ2
M
M

)q/2)
with χ2

M the

standard χ2 distribution with M degrees of freedom and

cM,q =

(
2

M

)q/2 Γ
(
q+M

2

)
Γ
(
M
2

) , (6)

where Γ is the Gamma function. Similarly, Mykland and Zhang (2009) provide a CLT result for Rq
with M fixed, whereas Mykland and Zhang (2011) allow M to go to infinity with the sample size h−1,

providedM is of order O(h−1/2). In particular, for q = 2, we have that under P and Qh, as the number
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of intraday observations increases to infinity,
√
h−1

(
R2 − σ2

)
√
V

d→ N(0, 1), (7)

where

V =
M
(
cM,4 − c2

M,2

)
c2
M,2

1∫
0

σ4
udu.

In practice, this result is infeasible since the asymptotic variance V depends on an unobserved quantity,

the integrated quarticity
1∫
0

σ4
udu. Mykland and Zhang (2009) propose a consistent estimator of V

(V̂ =
M(cM,4−c2M,2)

c2M,2

1
cM,4

R4), and together with (7), we have the feasible CLT (cf. Remark 8 of Mykland

and Zhang (2009)):

Th,M ≡

√
h−1

(
R2 − σ2

)
√
V̂

d→ N(0, 1).

Note that, when the block size M = 1, this result is equivalent to the CLT for realized volatility

derived by Barndorff-Nielsen and Shephard (2002). In particular, c1,2 = E
(
χ2

1

)
= 1, and c1,4 =

E
(
χ2

1

)2
= 3. Here, when M > 1, the realized volatility R2 using the blocking approach is the same

realized volatility studied by Barndorff-Nielsen and Shephard (2002), but the t-statistic is different

because V̂ changes with M . One advantage of the block-based estimator is to improve efficiency by

varying the size of the block (see for e.g. Mykland, Shephard and Sheppard (2012)).

3.2 Bootstrap consistency

Here we show that the new bootstrap method we proposed in Section 2 is consistent when applied to

realized volatility. Specifically, given (5) with d = 1, for j = 1, . . . , 1/Mh, we let

y∗i+(j−1)M =

√
RVj,M
M

ηi+(j−1)M , j = 1, . . . ,M, (8)

where ηi+(j−1)M ∼ i.i.d.N(0, 1) across (i, j). Note that this bootstrap method is related to the wild

bootstrap approach proposed by Gonçalves and Meddahi (2009). In particular, when M = 1 and

d = 1, it is equivalent to the wild bootstrap based on a standard normal external random variable.

We define the bootstrap realized volatility estimator as follows

R∗2 =

1/h∑
i=1

y∗2i =

1/Mh∑
j=1

RV ∗j,M ,

where RV ∗j,M =
M∑
i=1

y∗2i+(j−1)M . Letting

1

M

M∑
i=1

η2
i+(j−1)M ≡

χ2
j,M

M
,
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it follows that RV ∗j,M =
χ2
j,M

M RVj,M . We can easily show that

E∗ (R∗2) = cM,2R2,

and

V ∗ ≡ V ar∗
(
h−1/2R∗2

)
= M

(
cM,4 − c2

M,2

)
R4.

Hence, we propose the following consistent estimator of V ∗:

V̂
∗

= M
cM,4 − c2

M,2

cM,4

R∗4.

The bootstrap analogue of Th,M is given by

T ∗h,M ≡

√
h−1

(
R∗2 − cM,2R2

)
√
V̂ ∗

.

Theorem 3.1. Suppose (1), (2) and (8) hold. If M is fixed or M → ∞ as h → 0 such that M =

o
(
h−1/2

)
, then as h→ 0,

sup
x∈<

∣∣P ∗ (T ∗h,M ≤ x)− P (Th,M ≤ x)
∣∣→ 0,

in probability under Qh and under P .

Theorem 3.1 provides a theoretical justification for using the bootstrap distribution of T ∗h,M to

estimate the distribution of Th,M under the general context studied by Mykland and Zhang (2009)

which allow for the presence of drifts and leverage effects under P . This result also justifies the use of

the bootstrap for constructing the studentized bootstrap (percentile-t) intervals.

Note that, when M → ∞, such that M = o(h−1/2), V ∗ P→ V , we can also show that bootstrap

percentile intervals for integrated volatility are valid. This is in contrast to the optimal two-point wild

bootstrap proposed by Gonçalves and Meddahi (2009), which is only valid for percentile-t intervals.

4 Results for realized beta

4.1 Existing asymptotic theory and a new variance estimator

The goal of this section is to describe the realized beta in the context of Mykland and Zhang’s (2009)

blocking approach. In order to obtain a feasible CLT, we propose a consistent estimator of the variance

of the realized beta, which is a new estimator in this literature. To derive this result, we use the

approach of Dovonon, Gonçalves and Meddahi (2013) and suppose that σ is independent of W.1 Note

that contrary to Dovonon, Gonçalves and Meddahi (2013), we do not need here to suppose that µt = 0

(since under Qh high frequency returns have mean zero conditionally on σ).
1We make the assumption of no leverage for notational simplicity and because this allows us to easily compute the

moments of the intraday returns conditionally on the volatility path. The same arguments would follow under the
presence of leverage (for instance, by postulating a model for σt, as in Meddahi (2002)) but this would unnecessarily
complicate the notation without any gain in the intuition.
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For simplicity, we consider the bivariate case where d = 2 and look at results for assets k and l, whose

ith high frequency returns in the jth block will be written as yk,i+(j−1)M and yl,i+(j−1)M , respectively,

for i = 1, . . . ,M and j = 1, . . . , 1
Mh . It follows that under Qh, yl,i+(j−1)M = 1√

M
C1(j)η1,i+(j−1)M and

yk,i+(j−1)M = 1√
M
C21(j)η1,i+(j−1)M + 1√

M
C2(j)η2,i+(j−1)M , where

C(j) ≡
(
C1(j) 0

C21(j) C2(j)

)
=

√Γl(j) 0

Γlk(j)√
Γl(j)

√
Γk(j) −

Γ2
lk(j)

Γl(j)

 ,

ηi+(j−1)M ≡
(
η1,i+(j−1)M

η2,i+(j−1)M

)
∼ i.i.d.N(0, I2),

I2 is a 2× 2 identity matrix, Γlk(j) =
∫ jMh

(j−1)Mh Σlk (u) du, and when k = l, we write Γk(j) = Γkk(j).

Then, conditionally on Σ, we can write

yli = βlkiyki + ui, (9)

where independently across i = 1, . . . , 1/h, ui|yki ∼ N (0, Vi) , with Vi ≡ Γli −
Γ2
lki

Γki
, and βlki ≡ Γlki

Γki
,

where Γlki =
∫ ih

(i−1)h Σlk (u) du.

As Dovonon, Gonçalves and Meddahi (2013) argue, the conditional mean parameters of realized

regression models are heterogeneous under stochastic volatility. This heterogeneity justifies why the

pairs bootstrap method that they studied is not second-order accurate.

Under the approximation measure Qh for the observables in the jth block (j = 1, . . . , 1
Mh), the

regression (9) becomes

yl,i+(j−1)M = βlk(j)yk,i+(j−1)M + ui+(j−1)M , (10)

where ui+(j−1)M |yk,i+(j−1)M ∼i.i.d.N
(
0, V(j)

)
, for i = 1, . . . ,M , with V(j) ≡ 1

M

(
Γl(j) −

Γ2
lk(j)

Γk(j)

)
, and

βlk(j) ≡
Γlk(j)
Γk(j)

= 1
Mh

∫ jMh
(j−1)Mh βlk (u) du. This implies that the integrated beta is βlk = Mh

1/Mh∑
j=1

βlk(j) =∫ 1
0 βlk (u) du.

Let us denote by β̂lk(j) the ordinary least squares (OLS) estimator of βlk(j). Mykland and Zhang

(2009) proposed to use β̂lk defined as follows,

β̂lk = Mh

1/Mh∑
j=1

β̂lk(j) = Mh

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

yk,i+(j−1)Myl,i+(j−1)M

)
,

to estimate the integrated beta. Note that the realized beta estimator studied by Dovonon, Gonçalves

and Meddahi (2013) is a different statistic than ours. Here, the realized beta estimator β̂lk is not

directly a least squares estimator, but is the result of the average of β̂lk(j), the OLS estimators for each

block. Since under Qh, the volatility matrix is constant in each block j, we have that βlki = βlk(j),

for all i = 1, . . . ,M , implying consequently that the score is not heterogeneous and has mean zero.

This simplifies the asymptotic inference on βlk(j), and on βlk. Also note that contrary to what we have

observed in the case of realized volatility estimator, here when M = 1, the realized beta estimator
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using the blocking approach become

β̂lk = h

1/h∑
i=1

yl,i
yk,i

,

which is a different statistic than the statistic studied by Barndorff-Nielsen and Shephard (2004). But

when M = h−1, both estimators are equivalent. However, as Mykland and Zhang (2011) pointed out,

when M →∞ with the sample size h−1, the local approximation is good only when M = O(h−1/2). It

follows then that we are not confortable to contrast Mykland and Zhang (2009) block-based realized

beta estimator asymptotic results with those of Barndorff-Nielsen and Shephard (2004a).

Mykland and Zhang (2009) provide a CLT result for βlk. In particular, we have under P and Qh,

as the number of intraday observations increases to infinity (i.e. if h → 0), by using Section 4.2 of

Mykland and Zhang (2009),
√
h−1

(
β̂lk − βlk

)
√
Vβ

d→ N(0, 1), (11)

where

Vβ =


M
M−2

∫ 1
0

(
Σl(u)
Σk(u) − β

2
lk (u)

)
du, if M = O(1), as h→ 0 such that M > 2 (1+δ) for any δ > 0,∫ 1

0

(
Σl(u)
Σk(u) − β

2
lk (u)

)
du, if M →∞ as h→ 0 such that M = o(h−1/2),

In practice, this result is infeasible since the asymptotic variance Vβ depends on unobserved quantities.

Mykland and Zhang (2009) did not provide any consistent estimator of Vβ . One of our contributions is

to propose a consistent estimator of Vβ . To this end, we exploit the special structure of the regression

model. To find the asymptotic variance of realized regression estimator β̂lk, we can write
√
h−1

(
β̂lk − βlk

)
= M

√
h

1/Mh∑
j=1

(
β̂lk(j) − βlk(j)

)
.

Since β̂lk(j) are independent across j, it follows that

Vβ,h,M ≡ V ar
(√

h−1
(
β̂lk − βlk

))
= M2h

1/Mh∑
j=1

V ar
(
β̂lk(j) − βlk(j)

)
. (12)

To compute (12), note that from standard regression theory, we have that under Qh,

V ar
(
β̂lk(j) − βlk(j)

)
= E

( M∑
i=1

y2
k,i+(j−1)M

)−1
V(j),

which implies that

Vβ,h,M = M2h

1/Mh∑
j=1

E

( M∑
i=1

y2
k,i+(j−1)M

)−1
V(j). (13)

Note that we can contrast Vβ with equation (72) of Mykland and Zhang (2009). In fact, we can write

under Qh,
∑M

i=1 y
2
k,i+(j−1)M

d
=

Γk(j)
M

∑M
i=1 v

2
i+(j−1)M

d
=

Γk(j)
M χ2

j,M , where vi+(j−1)M ∼ i.i.d.N (0, 1), and

χ2
j,M follow the standard χ2 distribution with M degrees of freedom, and ‘ d=’ denotes equivalence

10



in distribution. Then for any integer M > 2 and conditionally on the volatility path, by using the

expectation of the inverse of a Chi square distribution we have,

E

( M∑
i=1

y2
k,i+(j−1)M

)−1
 = E

(
M

χ2
j,M

)
Γ−1
k(j) =

M

M − 2
Γ−1
k(j). (14)

It follows then that

Vβ,h,M =
M

M − 2

1/Mh∑
j=1

Mh

(
Γl(j)

Γk(j)
−
(

Γlk(j)

Γk(j)

)2
)
. (15)

By using the structure of (13), a natural consistent estimator of Vβ,h,M is

V̂β,h,M ≡M2h

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−1(
1

M − 1

M∑
i=1

û2
i+(j−1)M

)
, (16)

where ûi+(j−1)M = yl,i+(j−1)M − β̂lk(j)yk,i+(j−1)M (see Lemma C.5 and Lemma C.7 in the Appendix).

Together with the CLT result (11), we have under P and Qh the feasible result

Tβ,h,M ≡
√
h−1(β̂lk − βlk)√

V̂β,h,M

→d N (0, 1) .

4.2 Bootstrap consistency

Here we show that the new bootstrap method we proposed in Section 2 is consistent when applied to

realized betas. Specifically, given (5) with d = 2, for j = 1, . . . , 1/Mh, we generate the M vector of

returns as follows. For each i = 1, . . . ,M,

y∗i+(j−1)M =

(
y∗l,i+(j−1)M

y∗k,i+(j−1)M

)
=

1√
M


√

Γ̂l(j)η1,i+(j−1)M

Γ̂lk(j)√
Γ̂l(j)

η1,i+(j−1)M +

√
Γ̂k(j) −

Γ̂2
lk(j)

Γ̂l(j)
η2,i+(j−1)M

 , (17)

where Γ̂l(j) =
∑M

i=1 y
2
l,i+(j−1)M , Γ̂k(j) =

∑M
i=1 y

2
k,i+(j−1)M , Γ̂lk(j) =

∑M
i=1 yk,i+(j−1)Myl,i+(j−1)M ,

and(
η1,i+(j−1)M

η2,i+(j−1)M

)
∼ i.i.d.N(0, I2), I2 is a 2× 2 identity matrix.

Let β̂∗lk(j) denote the OLS bootstrap estimator from the regression of y∗l,i+(j−1)M on y∗k,i+(j−1)M

inside the block j. The bootstrap realized beta estimator is

β̂∗lk = Mh

1/Mh∑
j=1

β̂∗lk(j).

It is easy to check that β̂∗lk converges in probability (under P ∗) to

β̂lk = Mh

1/Mh∑
j=1

E∗

( M∑
i=1

y2∗
k,i+(j−1)M

)−1( M∑
i=1

y∗k,i+(j−1)My
∗
l,i+(j−1)M

) .

The bootstrap analogue of the regression error ui+(j−1)M in model (10) is thus u∗i+(j−1)M = y∗l,i+(j−1)M−
β̂lk(j)y

∗
k,i+(j−1)M , whereas the bootstrap OLS residuals are defined as û∗i+(j−1)M = y∗l,i+(j−1)M −

11



β̂∗lk(j)y
∗
k,i+(j−1)M . Thus, conditionally on the observed vector of returns yi+(j−1)M , it follows that

u∗i+(j−1)M |y
∗
k,i+(j−1)M ∼ i.i.d.N

(
0, V̂(j)

)
, for i = 1, . . . ,M , where

V̂(j) ≡
1

M

(
Γ̂l(j) −

Γ̂2
lk(j)

Γ̂k(j)

)
=

1

M

 M∑
i=1

y2
l,i+(j−1)M −

(∑M
i=1 yk,i+(j−1)Myl,i+(j−1)M

)2

∑M
i=1 y

2
k,i+(j−1)M

 .

We can show that

V ar∗
(√

h−1(β̂∗lk − β̂lk)
)

=
M − 1

M − 2
V̂β,h,M .

It follows then that a sufficient condition for the bootstrap to provide a consistent estimator of the

asymptotic variance of
√
h−1(β̂lk−βlk) is to allow M to go to infinity. In particular when M increases

with h−1 but at rate o(h−1/2) (so that there is no contiguity adjustment), the bootstrap can be used

to approximate the quantiles of the distribution of the root
√
h−1

(
β̂lk − βlk

)
,

thus justifying the construction of bootstrap percentile confidence intervals for βlk. Our next theorem

summarizes these results.

Theorem 4.1. Consider DGP (1), (2) and suppose (17) holds. Then conditionally on σ, as h → 0,

under Qh and P , the following hold

a)

V ∗β,h,M ≡ V ar∗
(√

h−1(β̂∗lk − β̂lk)
)

P→
{ M−1

M−2Vβ, if M = O(1), as h→ 0 such that M > 2 (1+δ) for any δ > 0,

Vβ, if M →∞ as h→ 0 such that M = o(h−1/2),

b) supx∈R

∣∣∣P ∗ (√h−1
(
β̂∗lk − β̂lk

)
≤ x

)
− P

(√
h−1

(
β̂lk − βlk

))∣∣∣ P→ 0, as h → 0 such that M =

o
(
h−1/2

)
.

Part (a) of Theorem 4.1 shows that the bootstrap variance estimator is not consistent for Vβ when

the block size M is finite. But when the realized betas become an efficient estimator of integrated

betas (i.e. if M →∞), we can use the bootstrap variance of
√
h−1(β̂∗lk − β̂lk) to consistently estimate

the covariance matrix V ∗β . Results in part (b) imply that the bootstrap realized beta estimator has a

first order asymptotic normal distribution with mean zero and covariance matrix Vβ . This is in line

with the existing results in the cross section regression context, where the wild bootstrap and the pairs

bootstrap variance estimator of the least squares estimator are robust to heteroskedasticity in the error

term.

Bootstrap percentile intervals do not promise asymptotic refinements. Next, we propose a consistent

bootstrap variance estimator that allows us to form bootstrap percentile-t intervals. More specifically,

12



we can show that the following bootstrap variance estimator consistently estimates V ∗β,h,M :

V̂ ∗β,h,M ≡M2h

1/Mh∑
j=1

(
M∑
i=1

y∗2k,i+(j−1)M

)−1(
1

M − 1

M∑
i=1

û∗2i+(j−1)M

)
. (18)

Our proposal is to use this estimator to construct the bootstrap t-statistic, associated with the bootstrap

realized regression coefficient β̂∗lk,

T ∗β,h,M ≡

√
h−1

(
β̂∗lk − β̂lk

)
√
V̂ ∗β,h,M

, (19)

the bootstrap analogue of Tβ,h,M .

Theorem 4.2. Consider DGP (1), (2) and suppose (17) holds. Let M > 4 (2+δ) for any δ > 0 such

that M is fixed or M → ∞ as h → 0 such that M = o
(
h−1/2

)
, conditionally on σ, as h → 0, the

following hold.

T ∗β,h,M ≡

√
h−1

(
β̂∗lk − β̂lk

)
√
V̂ ∗β,h,M

→d∗ N (0, 1) , in probability, under Qh and P.

Note that when the block size M is finite the bootstrap is also first order asymptotically valid

when applied to the t-statistic T ∗β,h,M (defined in (19)), as our Theorem 4.2 proves. This first order

asymptotic validity occurs despite the fact that V ∗β,h,M does not consistently estimate Vβ when M is

fixed. The key aspect is that we studentize the bootstrap OLS estimator with V̂ ∗β,h,M (defined in (18)),

a consistent estimator of V ∗β,h,M , implying that the asymptotic variance of the bootstrap t-statistic is

one.

5 Higher-order properties

In this section, we investigate the asymptotic higher order properties of the bootstrap cumulants.

Section 5.1 considers the case of realized volatility whereas Section 5.2 considers realized beta. The

ability of the bootstrap to accurately match the cumulants of the statistic of interest is a first step to

showing that the bootstrap offers an asymptotic refinement.

The results in this section are derived under the assumption of zero drift and no leverage (i.e.

W is assumed independent of Σ). As in Dovonon, Gonçalves and Meddahi (2013), a nonzero drift

changes the expressions of the cumulants derived here. The no leverage assumption is mathematically

convenient as it allows us to condition on the path of volatility when computing the cumulants of our

statistics. Allowing for leverage is a difficult but promising extension of the results derived here.

We introduce some notation. For any statistics Th and T ∗h , we write κj (Th) to denote the jth order

cumulant of Th and κ∗j (T ∗h ) to denote the corresponding bootstrap cumulant. For j = 1 and 3, κj
denotes the coefficient of the terms of order O

(√
h
)
of the asymptotic expansion of κj (Th), whereas

13



for j = 2 and 4, κj denotes the coefficients of the terms of order O (h). The bootstrap coefficients κ∗j,h
are defined similarly.

5.1 Higher order cumulants of realized volatility

Let σq,p ≡ σq

(σp)
q/p , for any q, p > 0, and Rq,p ≡ Rq

(Rp)q/p
. We make the following assumption.

Assumption H. The log price process follows (1) with µt = 0 and σt is independent of Wt, where the

volatility σ is a càdlàg process, bounded away from zero, and satisfies the following regularity

condition:

lim
h→0

h(1/2)

1/h∑
i=1

∣∣σrηi − σrξ1∣∣ = 0,

for some r > 0 and for any ηi and such that 0 ≤ ξ1 ≤ η1 ≤ h ≤ ξ2 ≤ η2 ≤ 2h ≤ . . . ≤ ξ1/h ≤
η1/h ≤ 1

Assumption H is stronger than required to prove the central limit theorem for Rq in Mykland

and Zhang (2009), but it is a convenient assumption to derive the cumulants expansions of Th,M
and T ∗h,M . Specifically, under Assumption H, Barndorff-Nielsen and Shephard (2004b) show that for

any q > 0, σqh − σq = o(
√
h), where σqh = h1−q/2

1/h∑
s=1

(
sh∫

(s−1)h

σ2
udu

)q/2
. Under Qh, we have shown

that for any positive integer M ≥ 1, σqh,M ≡ (Mh)1−q/2
1/Mh∑
j=1

(
σ2
j,M

)q/2
= σqh (see proof of Theorem

B.1 in Appendix B). It follows that under Qh and Assumption H, σqh,M − σq = o(
√
h) and similarly

Rq − cM,qσq = oP (
√
h), (this result also holds under Qh), a result on which we subsequently rely on to

establish the cumulants expansion of Th,M and T ∗h,M .

The following result states our main findings for realized volatility.

Proposition 5.1. Consider DGP (1) and suppose (8) holds. Under Assumption H, conditionally on

σ and under Qh, and P, it follows that

i) lim
h→0

κ∗1,h,M − κ1 =

(
cM,6

(cM,4)
3/2 − 1

)(
−A1,M

2 σ6,4

)
, which is nonzero if M is finite, and it is zero if

M = o(h−1/2), as h→ 0.

ii)

lim
h→0

κ∗2,h,M − κ2 =

(
cM,8

(cM,4)2 − 1

)
(C1,M −A2,M )σ8,4 +

(
(cM,6)2

(cM,4)3 − 1

)(
7

4
A2

1,Mσ
2
6,4

)
,

which is nonzero if M is finite and it is zero if M = o(h−1/2), as h→ 0.

iii) lim
h→0

κ∗3,h,M − κ3 =

(
cM,6

(cM,4)
3/2 − 1

)
(B1,M − 3A1,M )σ6,4, which is nonzero if M is finite, and it is

zero if M = o(h−1/2), as h→ 0.
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iv)

lim
h→0

κ∗4,h,M − κ4 =

(
cM,6

(cM,4)3/2
− 1

)(
B2,M + 3C1,M − 6A2

2,M

)
σ8,4

+

(
(cM,6)2

(cM,4)3 − 1

)(
18A1,M

2 − 6A1,MB1,M

)
σ2

6,4

which is nonzero if M is finite and it is zero if M = o(h−1/2), as h→ 0.

Here, A1,M , A2,M , C1,M , C4,M , C6,M , and C8,M are given in Lemma B.2.

Proposition 5.1 shows that the cumulants of Th,M and T ∗h,M do not agree when the block size M

is fixed, implying that the bootstrap does not provide a higher-order asymptotic refinement for finite

values of M . Nevertheless, when M →∞ at a rate o(h−1/2) the bootstrap matches the first and third

order cumulants through order O
(
h−1/2

)
, which implies that it provides a second-order refinement,

i.e. the bootstrap distribution P ∗
(
T ∗h,M ≤ x

)
consistently estimates P (Th,M ≤ x) with an error that

vanishes as o
(
h−1/2

)
(assuming the corresponding Edgeworth expansions exist). 2 This is in contrast

with the first-order asymptotic Gaussian distribution whose error converges as O
(
h−1/2

)
. Note that

Gonçalves and Meddahi (2009) also proposed a choice of the external random variable for their wild

bootstrap method which delivers second-order refinements. Our results for the bootstrap method based

on the local Gaussianity are new. We will compare the two methods in the simulation section.

Parts (ii) and (iv) of Proposition 5.1 show that the new bootstrap method we propose is able to

match the second and fourth order cumulants of Th,M whenM →∞ as h→ 0 providedM = o
(
h−1/2

)
.

These results imply that the bootstrap distribution of
∣∣∣T ∗h,M ∣∣∣ consistently estimate the distribution of

|Th,M | through order O (h), in which case the bootstrap offers a third order asymptotic refinement (this

again assumes that the corresponding Edgeworth expansions exist, something we have not attempted

to prove in this paper). If this is the case, then the local Gaussian bootstrap will deliver symmetric

percentile−t intervals for integrated volatility with coverage probabilities that converge to zero at

the rate o (h) . In contrast, the coverage probability implied by the asymptotic theory-based intervals

converge to the desired nominal level at the rate O (h) . The potential for the local Gaussian bootstrap

intervals to yield third-order asymptotic refinements is particularly interesting because Gonçalves and

Meddahi (2009) show that their wild bootstrap method is not able to deliver such refinements. Thus,

our method is an improvement not only of the Gaussian asymptotic distribution but also of the best

existing bootstrap methods.

Remark 3 One reason why the local Gaussian bootstrap is not able to match cumulants when M is

finite is that the equation
cM,q

(cM,p)
q/p = 1 does not always have an integer solution when q, p ≥ 1.

2We do not prove the validity of our Edgeworth expansions. Such a result would be a valuable contribution in
itself, which we defer for future research. Here our focus is on using formal expansions to explain the superior finite
sample properties of the bootstrap theoretically. See Mammen (1993), Davidson and Flachaire (2001) and Gonçalves
and Meddahi (2009) for a similar approach.
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For instance, the equation
cM,6

(cM,4)
3/2 = 1 gives M = −1

4 as solution. However, we always have

lim
M→∞

cM,q

(cM,p)
q/p = 1. This is the reason why the local Gaussian bootstrap is able to match

cumulants when M →∞ (but not when M is finite).

5.2 Higher order cumulants of realized beta

In this section, we provide the first and third order cumulants of realized beta. These cumulants enter

the Edgeworth expansions of the one-sided distribution functions of Tβ,h,M and T ∗β,h,M , P ∗
(
T ∗β,h,M ≤ x

)
and P (Tβ,h,M ≤ x), respectively.

Proposition 5.2. Suppose (1), (2) and (17) hold. Conditionally on Σ, under Qh and P , if M is fixed

or M →∞ as h→ 0 such that M = o
(
h−1/2

)
, then as h→ 0,

i) limh→0 κ
∗
1,β,h,M − κ1,β = 0.

ii) limh→0 κ
∗
3,β,h,M − κ3,β = 0.

Proposition 5.2 shows that the cumulants of Tβ,h,M and T ∗β,h,M agree through order O
(√

h
)
, which

implies that the error of the bootstrap approximation P ∗
(
T ∗β,h,M ≤ x

)
to the distribution of Tβ,h,M

is of order o
(√

h
)
. Since the normal approximation has an error of the order O

(√
h
)
, this implies

that the local Gaussian bootstrap is second-order correct. This result is an improvement over the

bootstrap results in Dovonon, Gonçalves and Meddahi (2013), who showed that the pairs bootstrap is

not second-order correct in the general case of stochastic volatility.

6 Monte Carlo results

In this section we assess by Monte Carlo simulation the accuracy of the feasible asymptotic theory

approach of Mykland and Zhang (2009). We find that this approach leads to important coverage

probability distortions when returns are not sampled too frequently. We also compare the finite sample

performance of the new local Gaussian bootstrap method with the existing bootstrap method for

realized volatility proposed by Gonçalves and Meddahi (2009).

For integrated volatility, we consider two data generating processes in our simulations. First,

following Zhang, Mykland and Aït-Sahalia (2005), we use the one-factor stochastic volatility (SV1F)

model of Heston (1993) as our data-generating process, i.e.

dXt = (µ− νt/2) dt+ σtdBt,

and

dνt = κ (α− νt) dt+ γ (νt)
1/2 dWt,
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where νt = σ2
t , B and W are two Brownian motions, and we assume Corr(B,W ) = ρ. The parameter

values are all annualized. In particular, we let µ = 0.05/252, κ = 5/252, α = 0.04/252, γ = 0.05/252,

ρ = −0.5.

We also consider the two-factor stochastic volatility (SV2F) model analyzed by Barndorff-Nielsen

et al. (2008) and also by Gonçalves and Meddahi (2009), where 3

dXt = µdt+ σtdBt,

σt = s-exp (β0,+β1τ1t + β2τ2t) ,

dτ1t = α1τ1tdt+ dB1t,

dτ2t = α2τ2tdt+ (1 + φτ2t) dB2t,

corr (dWt, dB1t) = ϕ1, corr (dWt, dB2t) = ϕ2.

We follow Huang and Tauchen (2005) and set µ = 0.03, β0 = −1.2, β1 = 0.04, β2 = 1.5, α1 = −0.00137,

α2 = −1.386, φ = 0.25, ϕ1 = ϕ2 = −0.3. We initialize the two factors at the start of each interval by

drawing the persistent factor from its unconditional distribution, τ10 ∼ N
(

0, −1
2α1

)
and by starting the

strongly mean-reverting factor at zero.

For integrated beta, the design of our Monte Carlo study follows that of Barndorff-Nielsen and

Shephard (2004a), and Dovonon Gonçalves and Meddahi (2013). In particular, we assume that

dX (t) = σ (t) dW (t), with σ (t)σ′ (t) = Σ (t), where

Σ (t) =

(
Σ11 (t) Σ12 (t)
Σ21 (t) Σ22 (t)

)
=

(
σ2

1 (t) σ12 (t)
σ21 (t) σ2

2 (t)

)
,

and σ12 (t) = σ1 (t)σ2 (t) ρ (t) . As Barndorff-Nielsen and Shephard (2004a), we let σ2
1 (t) = σ

2(1)
1 (t) +

σ
2(2)
1 (t), where for s = 1, 2, dσ2(s)

1 (t) = −λs(σ2(s)
1 (t) − ξs)dt + ωsσ

(s)
1 (t)

√
λsdbs(t), where bi is the i-th

component of a vector of standard Brownian motions, independent from W . We let λ1 = 0.0429,

ξ1 = 0.110, ω1 = 1.346, λ2 = 3.74, ξ2 = 0.398, and ω2 = 1.346. Our model for σ2
2(t) is the

GARCH(1,1) diffusion studied by Andersen and Bollerslev (1998): dσ2
2(t) = −0.035(σ2

2(t)−0.636)dt+

0.236σ2
2(t)db3(t). Finally, we follow Barndorff-Nielsen and Shephard (2004), and let ρ(t) = (e2x(t) −

1)/(e2x(t) + 1), where x follows the GARCH diffusion: dx(t) = −0.03(x(t)− 0.64)dt+ 0.118x(t)db4(t).

We simulate data for the unit interval [0, 1]. The observed log-price process X is generated using

an Euler scheme. We then construct the h-horizon returns yi ≡ Xih−X(i−1)h based on samples of size

1/h.

Tables 1 and 2 give the actual rates of 95% confidence intervals of integrated volatility and integrated

beta, computed over 10,000 replications. Results are presented for six different samples sizes: 1/h 1152,

576, 288, 96, 48, and 12, corresponding to “1.25-minute”, “2.5-minute”, “5-minute”, “15-minute”, “half-

hour” and “2-hour” returns. In Table 1, for each sample size we have computed the coverage rate by
3The function s-exp is the usual exponential function with a linear growth function splined in at high values of its

argument: s-exp(x) = exp(x) if x ≤ x0 and s-exp(x) = exp(x0)√
x0−x20+x2

if x > xo, with x0 = log(1.5).
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varying the block size, whereas in Table 2 we summarize results by selecting the optimal block size.

We also report results for confidence intervals based on a logarithmic version of the statistic Th,M and

its bootstrap version.

In our simulations, bootstrap intervals use 999 bootstrap replications for each of the 10,000 Monte

Carlo replications. We consider the studentized (percentile-t) symmetric bootstrap confidence interval

method computed at the 95% level.

As for all blocking methods, to implement our bootstrap methods, we need to choose the block

size M . We follow Politis and Romano (1999) and Hounyo, Gonçalves and Meddahi (2013) and use

the Minimum Volatility Method. Here we describe the algorithm we employ for a two-sided confidence

interval.

Algorithm: Choice of the block size M by minimizing confidence interval volatility

(i) ForM = Msmall toM = Mbig compute a bootstrap interval for the parameter of interest (integrated

volatility or integrated beta) at the desired confidence level, this resulting in endpoints ICM,low

and ICM,up.

(ii) For each M compute the volatility index V IM as the standard deviation of the interval endpoints

in a neighborhood of M . More specifically, for a smaller integer l, let V IM equal to the stan-

dard deviation of the endpoints {ICM−l,low, . . . , ICM+l,low} plus the standard deviation of the

endpoints {ICM−l,up, . . . , ICM+l,up}, i.e.

V IM ≡

√√√√ 1

2l + 1

l∑
i=−l

(
ICM+i,low − ¯IC low

)2
+

√√√√ 1

2l + 1

l∑
i=−l

(
ICM+i,up − ¯ICup

)2
,

where ¯IC low = 1
2l+1

∑l
i=−l ICM+i,low and ¯ICup = 1

2l+1

∑l
i=−l ICM+i,up.

(iii) Pick the value M∗ corresponding to the smallest volatility index and report {ICM∗,low, ICM∗,up}
as the final confidence interval.

One might ask what is a selection of reasonable Msmall and Mbig? In our experience, for a sample

size 1/h = 1152, the choices Msmall = 1 and Mbig = 12 usually suffice, for the samples sizes : 1/h =

1152, 576, 288, 96, and 48, we have used Msmall = 1 and Mbig = 12. For results in Table 2, we

used l = 2 in our simulations. Some initial simulations (not recorded here) showed that the actual

coverage rate of the confidence intervals using the bootstrap is not sensitive to reasonable choice of l,

in particular, for l = 1, 2, 3.

Starting with integrated volatility, the Monte Carlo results in Tables 1 and 2 show that for both

models (SV1F and SV2F), the asymptotic intervals tend to undercover. The degree of undercoverage

is especially large, when sampling is not too frequent. It is also larger for the raw statistics than

for the log-based statistics. The SV2F model exhibits overall larger coverage distortions than the
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SV1F model, for all sample sizes. When M = 1, the Gaussian bootstrap method is equivalent to

the wild bootstrap of Gonçalves and Meddahi (2009) that uses the normal distribution as external

random variable. One can see that the bootstrap replicates their simulations results. In particular,

the Gaussian bootstrap intervals tend to overcover across all models. The actual coverage probabilities

of the confidence intervals using the Gaussian bootstrap are typically monotonically decreasing in M ,

and does not tend to decrease very fast in M for larger values of sample size.

A comparison of the local Gaussian bootstrap with the best existing bootstrap methods for realized

volatility4 shows that, for smaller samples sizes, the confidence intervals based on Gaussian bootstrap

are conservative, yielding coverage rates larger than 95% for the SV1F model. The confidence intervals

tend to be closer to the desired nominal level for the SV2F than the best bootstrap proposed by

Gonçalves and Meddahi (2009). For instance, for SV1F model, the Gaussian bootstrap covers 96.51%

of the time when h−1 = 12 whereas the best bootstrap of Gonçalves and Meddahi (2009) does only

87.42%. These rates decrease to 93.21% and 80.42% for the SV2F model, respectively.

We also consider intervals based on the i.i.d. bootstrap studied by Gonçalves and Meddahi (2009).

Despite the fact that the i.i.d. bootstrap does not theoretically provide an asymptotic refinement for

two-sided symmetric confidence intervals, it performs well.

While none of the intervals discussed here (bootstrap or asymptotic theory-based) allow for M =

h−1, we have also studied this setup which is nevertheless an obvious interest in practice. For the

SV1F model, results are not very sensitive to the choice of the block size, whereas for the SV2F model

coverage rates for intervals using a very large value of block size (M = h−1 ) are systematically much

lower than 95% even for the largest sample sizes. When M = h−1, the realized volatility R2 using the

blocking approach is the same realized volatility studied by Barndorff-Nielsen and Shephard (2002),

but the estimator of integrated quarticity using the blocking approach is h−1+2
h−1 R2

2. This means that

asymptotically we replace
∫ 1

0 σ
4
t dt by

(∫ 1
0 σ

2
t dt
)2

, which is only valid under constant volatility. By

Cauchy-Schwarz inequality, we have
(∫ 1

0 σ
2
t dt
)2
≤
∫ 1

0 σ
4
t dt, it follows then that we underestimated

the asymptotic variance of the realized volatility estimator. This explains the poor performance of

the theory based on the blocking approach when the block size is too large. This also confirms the

theoretical prediction, which require M = O(
√
h−1) for a good approximation for the probability

measure P .

For realized beta, we see that intervals based on the feasible asymptotic procedure using Mykland

and Zhang’s (2009) blocking approach and the bootstrap tend to be similar for larger sample sizes

whereas, at the smaller sample sizes, intervals based on the asymptotic normal distribution are quite

severely distorted. For instance, the coverage rate for the feasible asymptotic theory of Mykland and

Zhang (2009) when h−1 = 12 (cf. h−1 = 48) is only equal to 88.49% (92.86%), whereas it is equal

to 95.17% (94.84%), for the Gaussian bootstrap (the corresponding symmetric interval based on the
4The wild bootstrap based on Proposition 4.5 of Gonçalves and Meddahi (2009).

19



pairs bootstrap of Dovonon Gonçalves and Meddahi (2013) yields a coverage rate of 93.59% (93.96%),

better than Mykland and Zhang (2009) but worse than the Gaussian bootstrap interval). Our Monte

Carlo results also confirm that for a good approximation, a very large block size is not recommended.

Overall, all methods behave similarly for larger sample sizes, in particular the coverage rate tends

to be closer to the desired nominal level. The Gaussian bootstrap performance is quite remarkable and

outperforms the existing methods, especially for smaller samples sizes (h−1 = 12 and 48).

7 Empirical results

As a brief illustration, in this section we implement the local Gaussian bootstrap method with real

high-frequency financial intraday data, and compare it to the existing feasible asymptotic procedure of

Mykland and Zhang (2009). The data consists of transaction log prices of General Electric (GE) shares

carried out on the New York Stock Exchange (NYSE) in August 2011. Before analyzing the data we

have cleaned the data. For each day, we consider data from the regular exchange opening hours from

time stamped between 9:30 a.m. till 4 p.m. Our procedure for cleaning data is exactly identical to

that used by Barndorff-Nielsen et al. (2008). We detail in Appendix A the cleaning we carried out on

the data.

We implemented the realized volatility estimator of Mykland and Zhang (2009) on returns recorded

every S transactions, where S is selected each day so that there are 96 observations a day. This means

that on average these returns are recorded roughly every 15 minutes. Table 3 in the Appendix provides

the number of transactions per day, and the sample size used. Typically each interval corresponds to

about 131 transactions.

This choice is motivated by the empirical study of Hansen and Lunde (2006), who investigate

30 stocks of the Dow Jones Industrial Average, in particular they have presented detailed work for

the GE shares. They suggest to use 10 to 15 minutes horizon for liquid assets to avoid the market

microstructure noise effect.

Hence the main assumptions underlying the validity of the Mykland and Zhang (2009) block-based

method and our new bootstrap method are roughly satisfied and we feel comfortable to implement

them on this data.

To implement the realized volatility estimator, we need to choose the block size M . We use the

Minimum Volatility Method described above to choose M .

We consider bootstrap percentile-t intervals, computed at the 95% level. The results are displayed

in Figure 1 in the appendix in terms of daily 95% confidence intervals (CIs) for integrated volatility.

Two types of intervals are presented: our proposed new local Gaussian bootstrap method , and the the

feasible asymptotic theory using Mykland and Zhang (2009) blocking approach. The realized volatility

estimate R2 is in the center of both confidence intervals by construction. A comparison of the local

Gaussian bootstrap intervals with the intervals based on the feasible asymptotic theory using Mykland
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and Zhang (2009) block-based approach suggests that the both types of intervals tend to be similar.

The width of these intervals varies through time. However there are instances where the bootstrap

intervals are wider than the asymptotic theory-based interval. These days often correspond to days

with large estimate of volatility. We have asked whether it will be due to jumps. At this end we

have implemented the jumps test using blocked bipower variation of Mykland, Shephard and Sheppard

(2012). We have found no evidence of jumps at 5% significance level for these two days. The figures

also show a lot of variability in the daily estimate of integrated volatility.

8 Conclusion

This paper proposes a new bootstrap method for statistics that are smooth functions of the realized

multivariate volatility matrix based on Mykland and Zhang’s (2009) blocking approach. We show how

and to what extent the local Gaussianity assumption can be explored to generate a bootstrap approxi-

mation. We use Monte Carlo simulations and derive higher order expansions for cumulants to compare

the accuracy of the bootstrap and the normal approximations at estimating confidence intervals for

integrated volatility and integrated beta. Based on these expansions, we show that at second order the

bootstrap matches the cumulants of realized betas-based t-statistics whereas it provides a third-order

asymptotic refinement for realized volatility. This is an improvement of the existing bootstrap results.

Our new bootstrap method also generalizes the wild bootstrap of Gonçalves and Meddahi (2009).

Monte Carlo simulations suggest that the Gaussian bootstrap improves upon the first-order asymp-

totic theory in finite samples and outperform the existing bootstrap methods for realized volatility and

realized betas. An important extension is to prove the validity of the Edgeworth expansions derived

here. Another promising extension is to use the bootstrap method for volatility estimator (multipower

variation) using the blocking approach in presence of jumps.

Appendix A

This appendix is organized as follows. First, we details the cleaning we carried out on the data. Second,

we report simulation results. Finally we report empirical results.

Data Cleaning

In line with Barndorff-Nielsen et al. (2009) we perform the following data cleaning steps:

(i) Delete entries outside the 9:30pm and 4pm time window.

(ii) Delete entries with a quote or transaction price equal to be zero.

(iii) Delete all entries with negative prices or quotes.

(iv) Delete all entries with negative spreads.
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(v) Delete entries whenever the price is outside the interval [bid− 2 ∗ spread ; ask + 2 ∗ spread].

(vi) Delete all entries with the spread greater or equal than 50 times the median spread of that day.

(vii) Delete all entries with the price greater or equal than 5 times the median mid-quote of that day.

(viii) Delete all entries with the mid-quote greater or equal than 10 times the mean absolute deviation

from the local median mid-quote.

(ix) Delete all entries with the price greater or equal than 10 times the mean absolute deviation from

the local median mid-quote.

We report in Table 1 below, the actual coverage rates for the feasible asymptotic theory approach

and for our bootstrap methods. In Table 2 we summarize results using the optimal block size by

minimizing confidence interval volatility. Table 3 provides some statistics of GE shares in August

2011.
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Table 1: Coverage rates of nominal 95% CI for integrated volatility and integrated beta

Integrated volatility Integrated beta
—————————————————————————————————– —————————-

SV1F SV2F
————————————— —————————————

Raw Log Raw Log Raw
—————– —————– —————– —————– —————–

M CLT Boot CLT Boot CLT Boot CLT Boot M CLT Boot

1/h = 12

1 85.44 98.49 90.08 97.86 80.38 96.62 86.17 96.24 2 83.66 95.88
2 85.56 97.31 90.31 96.80 80.43 94.70 86.27 94.73 3 87.63 95.03
3 85.71 96.46 90.84 96.08 80.34 93.77 85.89 93.70 4 89.14 94.83
4 85.88 96.20 90.97 95.93 80.34 92.88 85.52 92.89 6 90.67 94.49
12 86.11 94.84 91.27 94.87 77.66 88.89 81.65 86.97 12 90.44 93.63

1/h = 48

1 92.04 98.55 93.51 97.71 88.28 97.09 90.93 96.67 3 92.40 95.88
2 92.10 97.28 93.59 96.50 88.13 95.63 91.08 95.48 4 92.69 95.34
4 92.20 96.40 93.80 95.80 88.16 94.55 91.10 94.53 8 92.93 94.69
8 92.33 95.60 93.88 95.18 87.89 93.32 90.33 93.20 12 92.67 93.78
48 92.74 95.06 94.22 95.04 81.83 86.63 82.92 84.57 48 91.63 92.43

1/h = 96

1 93.35 97.94 94.09 97.10 90.20 97.06 92.10 96.66 3 92.62 95.57
2 93.43 96.78 93.99 96.06 90.37 95.84 92.24 95.67 4 93.13 95.00
4 93.47 95.78 94.03 95.61 90.46 94.70 92.09 94.83 8 93.83 94.84
8 93.50 95.26 94.09 95.32 90.07 93.81 91.75 94.01 12 93.77 94.57
96 93.42 94.80 94.35 94.87 81.93 84.61 82.79 83.60 96 91.94 92.35

1/h = 288

1 94.57 97.09 94.61 96.25 93.39 97.44 93.96 96.76 3 93.87 95.79
2 94.56 96.00 94.61 95.67 93.51 96.35 93.95 95.95 4 94.72 95.64
4 94.62 95.48 94.67 95.36 93.50 95.57 93.98 95.28 8 94.95 95.43
8 94.55 95.26 94.81 95.19 93.43 95.06 93.82 94.75 12 94.66 94.99

288 94.46 94.78 94.84 94.99 82.43 83.86 83.34 83.53 288 90.04 90.32

1/h = 576

1 94.53 96.12 94.75 95.84 94.19 96.96 94.49 96.52 3 93.94 95.62
2 94.57 95.53 94.68 95.41 94.17 96.23 94.52 95.78 4 94.46 95.40
4 94.74 95.15 94.70 95.16 94.32 95.59 94.56 95.45 8 94.58 94.87
8 94.67 95.08 94.72 94.96 94.22 95.38 94.46 95.16 12 94.53 94.88

576 94.58 94.85 94.76 94.92 82.01 82.37 82.05 82.32 576 87.07 87.07

1/h = 1152

1 95.06 96.06 95.16 95.70 94.51 96.52 94.47 95.95 3 94.78 95.93
2 95.13 95.68 95.20 95.65 94.53 95.79 94.47 95.42 4 94.92 95.48
4 95.05 95.49 95.20 95.31 94.42 95.21 94.50 95.11 8 94.88 95.13
8 95.15 95.47 95.18 95.20 94.39 95.03 94.47 94.85 12 94.95 94.87

1152 94.86 94.97 94.83 94.91 82.60 82.73 82.85 82.89 1152 81.68 81.62

Notes: CLT-intervals based on the Normal; Boot-intervals based on our proposed new local Gaussian boot-
strap; M is the block size used to compute confidence intervals. 10,000 Monte Carlo trials with 999 bootstrap
replications each.
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Table 3: Summary statistics

Days Trans n S
1 Aug 11303 96 118
2 Aug 13873 96 145
3 Aug 13205 96 138
4 Aug 16443 96 172
5 Aug 16212 96 169
8 Aug 18107 96 189
9 Aug 18184 96 190
10 Aug 15826 96 165
11 Aug 15148 96 158
12 Aug 12432 96 130
15 Aug 12042 96 126
16 Aug 10128 96 106
17 Aug 9104 96 95
18 Aug 15102 96 158
19 Aug 11468 96 120
22 Aug 10236 96 107
23 Aug 11518 96 120
24 Aug 10429 96 109
25 Aug 9794 96 102
26 Aug 9007 96 94
29 Aug 10721 96 112
30 Aug 9131 96 96
31 Aug 10724 96 112

“Trans” denotes the number of transactions, n the sample size used to compute the realized volatility, and sampling of
every S’th transaction price, so the period over which returns are calculated is roughly 15 minutes.

Figure 1: 95% Confidence Intervals (CI’s) for the daily σ2, for each regular exchange opening days in August 2011,
calculated using the asymptotic theory of Mykland and Zhang (CI’s with bars), and the new wild bootstrap
method (CI’s with lines). The realized volatility estimator is the middle of all CI’s by construction. Days on
the x-axis.
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Appendix B

This appendix concerns only the case where d = 1 (i.e. when the parameter of interest is the integrated
volatility). We organized this appendix as follows. First, we introduce some notation. Second, we state
Lemmas B.1 and B.2, Theorems B.1 and B.2 and their proofs useful for proofs for the theorem 3.1
and proposition 5.1 presented in the main text. These results are used to obtain the formal Edgeworth
expansions through order O(h) for realized volatility. Finally, we prove the Theorem 3.1 and the
Propositions 5.1.

Notation

To make for greater comparability, and in order to use some existing results, we have kept the
notation from Gonçalves and Meddahi (2009) whenever possible. We introduce some notation, recall

that, for any q > 0, σq ≡
1∫
0

σqudu, and let σqh,M ≡Mh
1/Mh∑
j=1

(
σ2
j,M

Mh

)q/2
, where σ2

j,M ≡
jMh∫

(j−1)Mh

σ2
udu. We

let σq,p ≡ σq

(σp)
q/p , when σq is replaced with σqh,M we write σq,p,h,M , and Rq ≡ Mh

1/Mh∑
j=1

(
RVj,M
Mh

)q/2
,

where RVj,M =
M∑
i=1

y2
i+(j−1)M . We also let Rq,p ≡ Rq

(Rp)q/p
. Recall that cM,q ≡ E

((
χ2
M
M

)q/2)
with

χ2
M the standard χ2 distribution with M degrees of freedom. Note that cM,2 = 1, cM,4 = M+2

M ,
cM,6 = (M+2)(M+4)

M2 and cM,8 = (M+2)(M+4)(M+6)
M3 . It follows by using the definition of cM,q gives in

equation (6) and this property of the Gamma function, for all x > 0, Γ (x+ 1) = xΓ (x).
We follow Gonçalves and Meddahi (2009) and we write

Th,M = Sh,M

(
V̂

Vh,M

)−1/2

= Sh,M

(
1 +
√
hUh,M

)−1/2
,

where

Sh,M =

√
h−1

(
R2 − cM,2σ2

)
√
Vh,M

and Uh,M ≡

√
h−1

(
V̂ − Vh,M

)
Vh,M

,

and Vh,M = V ar
(√

h−1R2

)
= M

(
cM,4 − c2

M,2

)
σ4
h,M . The proof of Lemma B.1 below relies heavily

on the fact that, for any q > 0,
∣∣∣RVj,M ∣∣∣q/2 − cM,q

∣∣∣σ2
j,M

∣∣∣q/2 are conditionally on σ independent with

zero mean since RVj,M = σ2
j,M

χ2
j,M

M where
χ2
j,M

M ≡

M∑
i=1

η2
(j−1)M+i

M and ηi ∼ i.i.d. N(0, 1). We rewrite
R2 − cM,2σ2 and V̂ − Vh,M as follows

R2 − cM,2σ2 =

1/Mh∑
j=1

(
RVj,M − cM,2σ

2
j,M

)
,

V̂ − Vh,M = M

(
cM,4 − c2

M,2

cM,4

)
(Mh)−1

1/Mh∑
j=1

(
RV 2

j,M − cM,4σ
4
j,M

)
.

Similarly for the bootstrap, we let T ∗h,M = S∗h,M

(
1 +
√
hU∗h,M

)−1/2
, where S∗h,M =

√
h−1(R∗2−cM,2R2)√

V ∗
,

U∗h,M ≡
√
h−1(V̂

∗−V ∗)
V ∗ and V ∗ = V ar∗

(
n1/2R∗2

)
.
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Finally, note that throughout we will use
∑

i 6=j 6=k =
∑

i 6=j ,i 6=k,j 6=k, to denote a sum where all indices
differ, e.g.

Lemma B.1. Suppose (1) holds, conditionally on σ, and under Qh for any q > 0, and any M ≥ 1

such that M ≈ cn−α with α ∈ [0, 1/2), we have

a1) E
(∣∣∣RVj,M ∣∣∣q/2) = cM,q

∣∣∣σ2
j,M

∣∣∣q/2,
a2) Vh,M ≡ V ar

(√
h−1R2

)
= M

(
cM,4 − c2

M,2

)
σ4
h,M ,

a3) E
[(
R2 − cM,2σ2

)3
]

= (Mh)2
(
cM,6 − 3cM,2cM,4 + 2c3

M,2

)
σ6
h,M ,

a4)

E

[(
R2 − cM,2σ2

)4
]

= 3 (Mh)2 (cM,4 − c2
M,2

)2 (
σ4
h,M

)2

+ (Mh)3 (cM,8 − 3cM,2cM,6 + 12c2
M,2cM,4 − 6c4

M,2 − 3c2
M,4

)
σ8
h,M ,

a5)

E
[(
R2 − cM,2σ2

)(
V̂ − Vh,M

)]
= M

(
cM,4 − c2

M,2

cM,4

)
(Mh) (cM,6 − cM,2cM,4)σ6

h,M ,

a6) E
[(
R2 − cM,2σ2

)2 (
V̂ − Vh,M

)]
= M

(
cM,4−c2M,2

cM,4

)
(Mh)2

[
cM,8 − c2

M,4

−2cM,2cM,6 + c2
M,2cM,4

]
σ8
h,M ,

a7)

E

[(
R2 − cM,2σ2

)3 (
V̂ − Vh,M

)]
= 3M (Mh)2

(
cM,4 − c2

M,2

)2
(cM,6 − cM,2cM,4)

cM,4

(
σ4
h,M

)(
σ4
h,M

)
+ 384h3σ10

h,M

= 3M (Mh)2

(
cM,4 − c2

M,2

)2
(cM,6 − cM,2cM,4)

cM,4

(
σ4
h,M

)(
σ4
h,M

)
+ O

(
h3
)
as h→ 0,

a8) E
[(
R2 − cM,2σ2

)4 (
V̂ − Vh,M

)]
=

(Mh)3M
cM,4−c2M,2

cM,4

 4
(
cM,6 − 3cM,2cM,4 + 2c3

M,2

)
(cM,6 − cM,2cM,4)

(
σ6
h,M

)2

+6
(
cM,8 − c2

M,4 − 2cM,2cM,6 + 2c2
M,2cM,4

)(
cM,4 − c2

M,2

)(
σ4
h,M

)(
σ8
h,M

)


+O
(
h4
)
as h→ 0,

a9) E
[(
R2 − cM,2σ2

)(
V̂ − Vh,M

)2
]

= O
(
h2
)
as h→ 0,
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a10) E
[(
R2 − cM,2σ2

)2 (
V̂ − Vh,M

)2
]

=

(Mh)2M
(cM,4−c2M,2)

2

c2M,4

((
cM,4 − c2

M,2

)(
cM,8 − c2

M,4

)(
σ4
h,M

)(
σ8
h,M

)
+ 2 (cM,6 − cM,2cM,4)2

(
σ6
h,M

)2
)

+O
(
h3
)
as h→ 0,

a11) E
[(
R2 − cM,2σ2

)3 (
V̂ − Vh,M

)2
]

= O
(
h3
)
as h→ 0,

a12) E
[(
R2 − cM,2σ2

)4 (
V̂ − Vh,M

)2
]

=

(Mh)3M
(cM,4−c2M,2)

2

c2M,4

 3
(
cM,4 − c2

M,2

)2 (
cM,8 − c2

M,4

)(
σ4
h,M

)2 (
σ8
h,M

)
+12

(
cM,4 − c2

M,2

)2
(cM,6 − cM,2cM,4)2

(
σ6
h,M

)2 (
σ4
h,M

)


+O
(
h4
)
as h→ 0.

Lemma B.2. Suppose (1) holds, conditionally on σ, and under Qh for anyM ≥ 1 such thatM ≈ ch−α
with α ∈ (1/2, 1], we have

E (Sh,M ) = 0,

E
(
S2
h,M

)
= 1,

E
(
S3
h,M

)
=
√
hB1,Mσ6,4,h,M ,

E
(
S4
h,M

)
= 3 + hB2,Mσ8,4,h,M ,

E (Sh,MUh,M ) = A1,Mσ6,4,h,M ,

E
(
S2
h,MUh,M

)
=
√
hA2,Mσ8,4,h,M ,

and as h→ 0 we have,

E
(
S3
h,MUh,M

)
= A3,Mσ6,4,h,M +O (h) ,

E
(
S4
h,MUh,M

)
=
√
h[D1,Mσ8,4,h,M +D2,Mσ

2
6,4,h,M ] +O

(
h3/2

)
,

E
(
Sh,MU

2
h,M

)
= O

(
h1/2

)
,

E
(
S3
h,MU

2
h,M

)
= O

(
h1/2

)
,

E
(
S2
h,MU

2
h,M

)
= [C1,Mσ8,4,h,M + C2,Mσ

2
6,4,h,M ] +O (h) ,

E
(
S4
h,MU

2
h,M

)
= [E1,Mσ8,4,h,M + E2,Mσ

2
6,4,h,M ] +O (h) ,
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where,

A1,M =
1√
M

cM,6 − cM,2cM,4

cM,4

(
cM,4 − c2

M,2

)1/2
=

2
√

2

M
,

B1,M =
√
M

(
cM,6 − 3cM,2cM,4 + 2c3

M,2

)
(
cM,4 − c2

M,2

)3/2
= 2
√

2,

A2,M =
cM,8 − c2

M,4 − 2cM,2cM,6 + 2c2
M,2cM,4

cM,4

(
cM,4 − c2

M,2

) =
12

M
,

B2,M = M
cM,8 − 4cM,2cM,6 + 12c2

M,2cM,4 − 6c4
M,2 − 3c2

M,4(
cM,4 − c2

M,2

)2 = 12,

C1,M =
cM,8 − c2

M,4

c2
M,4M

=
24 + 8M

M2 (2 +M)
,

with A3,M = 3A1,M , C2,M = 2A2
1,M , D1,M = 6A2,M , D2,M = 4A1,MB1,M , E1,M = 3C1,M and

E2,M = 12A2
1,M .

Remark 4 The bootstrap analogue of Lemma B.1 replaces RVj,M with RV ∗j,M , σ2
j,M with RVj,M , and

σqh,M with Rq, the bootstrap analogue of Lemma B.2 replaces σq,p,h,M with Rq,p.

Theorem B.1. (Cumulants of Th,M) Consider DGP (1) and suppose assumption H holds. Then for
any q > 0, and any M ≥ 1 such that M ≈ ch−α with α ∈ [0, 1/2), σqh,M = σqh and σq−σqh,M = oP (

√
h),

conditionally on σ and under Qh, it follows that as h→ 0,

κ1 (Th,M ) =
√
hκ1 + o(h) with κ1 = −

A1,M

2
σ6,4;

κ2 (Th,M ) = 1 + hκ2 + o(h) with κ2 = (C1,M −A2,M )σ8,4 +
7

4
A2

1,Mσ
2
6,4;

κ3 (Th,M ) =
√
hκ3 + o(h) with κ3 = (B1,M − 3A1,M )σ6,4;

κ4 (Th,M ) = hκ4 + o(h) with κ4 =
(
B2,M + 3C1,M − 6A2

2,M

)
σ8,4 +

(
18A1,M

2 − 6A1,MB1,M

)
σ2

6,4.

Note that A1,M , A2,M , B1,M , B2,M , and C1,M , are as in Lemma B.2, and A3,M = 3A1,M , C2,M =

2A2
1,M , D1,M = 6A2,M , D2,M = 4A1,MB1,M , E1,M = 3C1,M and E2,M = 12A2

1,M .

Theorem B.2. ( Bootstrap Cumulants of T ∗h,M) Consider DGP (1) and suppose (5) holds. Let
M ≥ 1 such that M ≈ ch−α with α ∈ [0, 1/2), under assumption H, conditionally on σ, it follows that
as h→ 0

κ∗1
(
T ∗h,M

)
=
√
hκ∗1,h,M + o(h) with κ∗1,h,M = −

A1,M

2
R6,4;

κ∗2
(
T ∗h,M

)
= 1 + hκ∗2,h,M + o(h) with κ∗2,h,M = (C1,M −A2,M )R8,4 +

7

4
A2

1,MR
2
6,4;

κ∗3
(
T ∗h,M

)
=
√
hκ∗3,h,M + o(h) with κ∗3,h,M = (B1,M − 3A1,M )R6,4;

κ∗4
(
T ∗h,M

)
= hκ∗4,h,M + o(h) with κ∗4,h,M =

(
B2,M + 3C1,M − 6A2

2,M

)
R8,4 +

(
18A1,M

2 − 6A1,MB1,M

)
R2

6,4.

Note that A1,M , A2,M , B1,M , B2,M , and C1,M , are as in Lemma B.2, and A3,M = 3A1,M , C2,M =

2A2
1,M , D1,M = 6A2,M , D2,M = 4A1,MB1,M , E1,M = 3C1,M and E2,M = 12A2

1,M .
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Proof of Lemma B.1 a1) follows from RVj,M =
M∑
i=1

y2
(j−1)M+i =

χ2
j,M

M σ2
j,M , where

χ2
j,M

M ≡

M∑
i=1

η2
(j−1)M+i

M

and ηi ∼ i.i.d. N(0, 1). For a2) note that R2 =
∑1/Mh

j=1 RVj,M , where RVj,M is conditional on σ inde-

pendent with V ar (RVj,M ) =
(
cM,4 − c2

M,2

)
σ4
j,M , with σ4

j,M =
(
σ2
j,M

)2
. It follows that,

V ar
(√

h−1R2

)
= h−1

1/Mh∑
j=1

V ar (RVj,M )

= h−1
(
cM,4 − c2

M,2

) 1/Mh∑
j=1

σ4
j,M

= M
(
cM,4 − c2

M,2

)
σ4
h,M .

To prove the remaining results we follow the same structure of proofs as Gonçalves and Meddahi
(2009). Here cM,4 plays the role of µq = E (|η|q), where η ∼ i.i.d. N(0, 1) in Gonçalves and Meddahi
(2009) and RVj,M plays the role of r2

i in Gonçalves and Meddahi (2009).
Proof of Lemma B.2 Results follow immediately by using Lemma B.1 given the definitions of Sh,M ,
Uh,M .
Proof of Theorem B.1 The first four cumulants of Th,M are given by (e.g., Hall, 1992, p.42):

κ1 (Th,M ) = E (Th,M ) ,
κ2 (Th,M ) = E

(
T 2
h,M

)
− (E (Th,M ))2,

κ3 (Th,M ) = E
(
T 3
h,M

)
− 3E

(
T 2
h,M

)
E (Th,M ) + 2(E (Th,M ))3,

κ4 (Th,M ) = E
(
T 4
h,M

)
− 4E

(
T 3
h,M

)
E (Th,M )− 3(E

(
T 2
h,M

)
)2 + 12E

(
T 2
h,M

)
(E (Th,M ))2

− 6(E (Th,M ))4.

Our goal is to identify the terms of order up to O(h) in the asymptotic expansions of these four
cumulants. We will first provide asymptotic expansions through order O(h) for the first four moments
of Th,M by using a Taylor expansion. For a fixed value k, a second-order Taylor expansion of f(x) =

(1 +x)−k/2 around 0 yields f(x) = 1− k
2x+ k

4 (k2 + 1)x2 +O(x3). We have that for any fixed integer k,

T kh,M = Skh,M

(
1 +
√
hUh,M

)−k/2
+O(h3/2),

= Skh,M −
k

2

√
hSkh,MUh,M +

k

4
(
k

2
+ 1)hSh,MU

2
h,M +O(h3/2).

For k = 1, · · · , 4, the moments of T kh,M up to order O(h3/2) are given by

E (Th,M ) = 0−
√
h

2
E (Sh,MUh,M ) +

3

8
hE
(
Sh,MU

2
h,M

)
E
(
T 2
h,M

)
= 1−

√
hE
(
S2
h,MUh,M

)
+ hE

(
S2
h,MU

2
h,M

)
E
(
T 3
h,M

)
= E

(
S3
h,M

)
−
√
h

3

2
E
(
S3
h,MUh,M

)
+

15

8
hE
(
S3
h,MU

2
h,M

)
E
(
T 4
h,M

)
= E

(
S4
h,M

)
− 2
√
hE
(
S4
h,MUh,M

)
+ 3hE

(
S4
h,MU

2
h,M

)
.

where we used E (Sh,M ) = 0, and E
(
S2
h,M

)
= 1. By Lemma B.2 in Appendix B, we have that
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E (Th,M ) =
√
h

(
−
A1,M

2
σ6,4,h

)
+O(h3/2),

E
(
T 2
h,M

)
= 1 +

√
h
(
(C1,M −A2,M )σ8,4 + C2,Mσ

2
6,4,h

)
+O(h2)

E
(
T 3
h,M

)
=
√
h

((
B1,M −

3

2
A3,M

)
σ6,4,h

)
+O(h3/2)

E
(
T 4
h,M

)
= 3 + h

(
(B2,M − 2D1,M + 3E1,M )σ8,4,h + (3E2,M − 2D2,M )σ2

6,4,h

)
+O(h2).

Thus κ1 (Th,M ) =
√
h
(
−A1,M

2 σ6,4,h

)
+O(h3/2) =

√
h
(
−A1,M

2 σ6,4

)
+ o(h3/2), since under Assumption

H, Barndorff-Nielsen and Shephard (2004b) showed that σq − h1−q/2
1/h∑
s=1

(
sh∫

(s−1)h

σ2
udu

)q/2
= oP (

√
h).

Next we show that underQh, and given the defininion of σqh,M , we have σqh,M = h1−q/2
1/h∑
s=1

(
sh∫

(s−1)h

σ2
udu

)q/2
.

Note that, for any positive integer M , given the definitions of σqh,M and σ2
j,M , we can write

σqh,M = (Mh)1−q/2
1/Mh∑
j=1

(
σ2
j,M

)q/2

= (Mh)1−q/2
1/Mh∑
j=1

 jMh∫
(j−1)Mh

σ2
udu


q/2

,

using the fact that under Qh, we have σ2
j,M ≡

jMh∫
(j−1)Mh

σ2
udu = Mhσ2

(j−1)Mh > 0, it follows that

σqh,M = (Mh)1−q/2
1/Mh∑
j=1

(
Mhσ2

(j−1)Mh

)q/2
= (Mh)1−q/2

1/Mh∑
j=1

M q/2
(
hσ2

(j−1)Mh

)q/2
= h1−q/2

1/Mh∑
j=1

M
(
hσ2

(j−1)Mh

)q/2
= h1−q/2

1/Mh∑
j=1

M∑
i=1

(
hσ2

(j−1)Mh

)q/2

= h1−q/2
1/Mh∑
j=1

M∑
i=1

 ((j−1)M+i)h∫
((j−1)M+i−1)h

σ2
udu


q/2

= h1−q/2
1/h∑
s=1

 sh∫
(s−1)h

σ2
udu


q/2

.
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Thus σqh,M = σqh, this proves the first result. The remaining results follow similarly.
Proof of Theorem B.2 See the proof of Theorem B.1 and Remark 4.

Proofs of Theorem 3.1, and Proposition 5.1.

Proof of Theorem 3.1 Given that Th,M
d→ N(0, 1), it suffices that T ∗h,M

d∗→ N(0, 1) in probability
under Qh. Let

H∗h,M =

√
h−1 (R∗2 − E∗ (R∗2))√

V ∗
,

and note that

T ∗h,M = H∗h,M

√
V ∗

V̂ ∗
.

The proof contains two steps.
Step 1 We show that H∗h,M

d∗→ N(0, 1) in probability under Qh.

Step 2 We show that V̂ ∗ P
∗
→ V ∗ in probability under Qh.

For step 1, we can write

H∗h,M =

1/Mh∑
j=1

z∗j ,

where

z∗j =

√
h−1

(
RV ∗j,M − E∗

(
RV ∗j,M

))
√
V ∗

with E∗
(

1/Mh∑
j=1

z∗j

)
= 0, and V ar∗

(
1/Mh∑
j=1

z∗j

)
= 1.

Since z∗1 , . . . , z∗1/Mh are conditionally independent, by the Berry-Esseen bound, for some small δ > 0

and for some constant C > 0 (which changes from line to line),

sup
x∈<

∣∣P ∗ (H∗h,M ≤ x)− Φ (x)
∣∣ ≤ C 1/Mh∑

j=1

E∗
∣∣z∗j ∣∣2+δ

,

which converges to zero in probability for any M ≥ 1 such that M ≈ ch−α with α ∈ [0, 1/2), as h→ 0.
Indeed, we have that

1/Mh∑
j=1

E∗
∣∣z∗j ∣∣2+δ

=

1/Mh∑
j=1

E∗

∣∣∣∣∣∣
√
h−1

(
RV ∗j,M − E∗

(
RV ∗j,M

))
√
V ∗

∣∣∣∣∣∣
2+δ

≤ 2V ∗−
(2+δ)

2 h
−(2+δ)

2

1/Mh∑
j=1

E∗
∣∣RV ∗j,M ∣∣2+δ

= 2V ∗−
(2+δ)

2 h
−(2+δ)

2 E∗

∣∣∣∣∣∣∣∣∣
M∑
i=1

η2
(j−1)M+i

M

∣∣∣∣∣∣∣∣∣
2+δ

1/Mh∑
j=1

∣∣RVj,M ∣∣2+δ
,
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where the inequality follows from the Cr and the Jensen inequalities. Then, given the definitions of
cM,2(2+δ) and R2(2+δ), we can write

1/Mh∑
j=1

E∗
∣∣z∗j ∣∣2+δ ≤ 2V ∗−

(2+δ)
2 cM,2(2+δ)M

1+δh
δ
2R2(2+δ)

≤ CV ∗−
(2+δ)

2 c2
M,2(2+δ)h

δ
2
−α(1+δ) 1

cM,2(2+δ)
R2(2+δ)

= Op

(
h
δ
2
−α(1+δ)c2

M,2(2+δ)

)
= op (1) .

Note that for any δ > 0 and α ∈ [0, 1/2) we have δ
2 − α(1 + δ) > 0. Results follow since as h → 0,

V ∗
P→ 2σ4 > 0, and we have 1

cM,2(2+δ)
R2(2+δ)

P→ σ2(2+δ) = O (1), and cM,2(2+δ) → 1.

For step 2, we show that Bias∗
(
V̂ ∗
)
Qh→ 0 and V ar∗

(
V̂ ∗
)
Qh→ 0.

We have that

Bias∗
(
V̂ ∗
)

= E∗
(
V̂ ∗
)
− V ∗

= M

(
cM,4 − c2

M,2

cM,4

)
(Mh)−1

1/Mh∑
j=1

E∗
(
RV 2∗

j,M − cM,4RV
2
j,M

)
= 0,

we also have,

V ar∗
(
V̂ ∗
)

= E∗
(
V̂ ∗ − V ∗

)2
−
(
E∗
(
V̂ ∗ − V ∗

))2

= M2

(
cM,4 − c2

M,2

cM,4

)2

(Mh)−2E∗

1/Mh∑
j=1

(
RV 2∗

j,M − cM,4RV
2
j,M

)2

= M2

(
cM,4 − c2

M,2

cM,4

)2

(Mh)−2
1/Mh∑
j=1

RV 4
j,ME

∗

(χ2
j,M

M

)2

− cM,4

2

,

then, given the definitions of cM,2, cM,4, cM,8 and R8, we can write

V ar∗
(
V̂ ∗
)

= M2

(
cM,4 − c2

M,2

cM,4

)2

(Mh)−2 (cM,8 − c2
M,4

) 1/Mh∑
j=1

RV 4
j,M

= M2

(
cM,4 − c2

M,2

cM,4

)2

(Mh)
(
cM,8 − c2

M,4

)
R8

= h

(
2M

M + 2

)2 (M + 2) (M + 4) (M + 6)−M (M + 2)2

M2
R8

= OQh (Mh)

= oQh (1) asMh→ 0.

Finally results follow in probability under P , by using Theorem 2.1.
Proof of Proposition 5.1 This follows from Theorem B.1 and B.2, given that conditionally on σ
for any q > 0, 1

cM,q
Rq → σq in probability under Qh and P (see Section 4.1 of Myklang and Zhang
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(2009)). For any p, q > 1, lim
M→∞

cM,q

(cM,p)
q/p = 1.

Appendix C

This appendix concerns the multivariate case where the parameter of interest is the integrated beta.

Appendix C.1. Asymptotic expansions of the cumulants of Tβ,h,M

Notation

We introduce some notation.

Tβ,h,M = Sβ,h,M

(
V̂β

Vβ,h,M

)−1/2

= Sβ,h,M

(
1 +
√
hUh,M

)−1/2
,

where

Sβ,h,M =

√
h−1

(
β̂lk − βlk

)
√
Vβ,h,M

and Uβ,h,M ≡

√
h−1

(
V̂β,h,M − Vβ,h,M

)
Vβ,h,M

,

and Vβ,h,M ≡ V ar
(√

h−1
(
β̂lk − βlk

))
= M

M−2

1/Mh∑
j=1

Mh

(
Γl(j)
Γk(j)

−
(

Γlk(j)
Γk(j)

)2
)
. We let

U1,β,h,M ≡

√
h−1

1/Mh∑
j=1

(
V1,(j) − E

(
V1,(j)

))
Vβ,h,M

and U2,β,h,M ≡

√
h−1

1/Mh∑
j=1

(
V2,(j) − E

(
V2,(j)

))
Vβ,h,M

,

where

V1,(j) =
M2h

M − 1

(
M∑
i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

u2
i+(j−1)M

)
, and

V2,(j) =
M2h

M − 1

(
M∑
i=1

y2
k,i+(j−1)M

)−2( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)2

.

We also let for any q > M , Rβ,q ≡ Mh
1/Mh∑
j=1

(
M
M−1

) q
2 1
bM,qcM−1,q

(
Γ̂l(j)

Γ̂k(j)
−
(

Γ̂
lk(j)

Γ̂k(j)

)2
) q

2

, where the

definition of cM,q is given in equation (6), and for any q > M , we have bM,q ≡ E

((
M
χ2
M

) q
2

)
=(

M
2

) q
2

Γ(M2 −
q
2)

Γ(M2 )
, where χ2

M is the standard χ2 distribution with M degrees of freedom. Note that

bM,2 = M
M−2 , bM,4 = M2

(M−2)(M−4) , and bM,6 = M3

(M−2)(M−4)(M−6) . It follows by using the definition of
bM,q and this property of the Gamma function, for all x > 0, Γ (x+ 1) = xΓ (x). Finally we denote by
yk(j) =

(
yk,1+(j−1)M , · · · , yk,Mj

)′, the M returns of asset k observed within the block j.

Similarly for the bootstrap, we let T ∗β,h,M = S∗β,h,M

(
1 +
√
hU∗β,h,M

)−1/2
, where S∗β,h,M =

√
h−1(β̂∗lk−β̂lk)√

V ∗β
,
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U∗β,h,M ≡
√
h−1(V̂ ∗β,h,M−V

∗
β,h,M)

V ∗β,h,M
and V ∗β,h,M = V ar∗

(√
h−1(β̂∗lk − β̂lk)

)
. We also let

U∗1,β,h,M ≡

√
h−1

1/Mh∑
j=1

(
V ∗1,(j) − E

∗
(
V ∗1,(j)

))
V ∗β,h,M

and U∗2,β,h,M ≡

√
h−1

1/Mh∑
j=1

(
V ∗2,(j) − E

(
V ∗2,(j)

))
V ∗β,h,M

where
V ∗1,(j) ≡

M2h
M−1

(∑M
i=1 y

∗2
k,i+(j−1)M

)−1 (∑M
i=1 u

∗2
i+(j−1)M

)
and

V ∗2,(j) ≡
M2h
M−1

(∑M
i=1 y

∗2
k,i+(j−1)M

)−2 (∑M
i=1 y

∗
k,i+(j−1)Mu

∗
i+(j−1)M

)2
.

Finally we let y∗k(j) =
(
y∗k,1+(j−1)M , · · · , y

∗
k,Mj

)′
.

Auxiliary Lemmas

Lemma C.3. Suppose (1) and (2) hold. Then, we have that

V̂β,h,M =

1/Mh∑
j=1

V1,(j) −
1/Mh∑
j=1

V2,(j).

Lemma C.4. Suppose (1) and (2) hold with W independent of Σ. Then, conditionally on Σ, and
under Qh, we have for any integer M such that M ≈ ch−α with α ∈ [0, 1/2),

a1) E
(
V1,(j)

)
= M3h

(M−1)(M−2)

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
)
, for M > 2;

a2) E
(
V 2

1,(j)

)
= M5(M+2)

(M−1)2(M−2)(M−4)
h2

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
)2

, for M > 4;

a3) E
(
V2,(j)

)
= M2h

(M−1)(M−2)

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
)
, for M > 2;

a4) E
(
V 2

2,(j)

)
= 3M4

(M−1)2(M−2)(M−4)
h2

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
)2

, for M > 4;

a5) E
(
V1,(j)V2,(j)

)
= M4(M+2)

(M−1)2(M−2)(M−4)
h2

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
)2

, for M > 4;

a6) V ar
(
V1,(j)

)
= 4M5

(M−1)(M−2)2(M−4)
h2

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
)2

, for M > 4;

a7) V ar
(
V2,(j)

)
= 2M4

(M−1)(M−2)2(M−4)
h2

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
)2

, for M > 4;

a8) Cov
(
V1,(j), V2,(j)

)
= 4M4

(M−1)(M−2)2(M−4)
h2

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
)2

, for M > 4;

a9) V ar
(
V1,(j) − V2,(j)

)
= 2M5(2M−3)

(M−1)(M−2)2(M−4)
h2

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
)2

, for M > 4.

Lemma C.5. Suppose (1) and (2) hold with W independent of Σ. Then, conditionally on Σ, and
under Qh, let M > 4 such that M ≈ ch−α with α ∈ [0, 1/2),

35



a1) E
(
V̂β,h,M

)
= Vβ,h,M ;

a2) V ar
(
V̂β,h,M

)
= 2M4(2M−3)

(M−1)(M−2)2(M−4)
h

(
Mh

1/Mh∑
j=1

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
)2
)
;

a3) V̂β,h,M − Vβ,h,M → 0 in probability;

a4) Vβ,h,M → Vβ.

Lemma C.6. Suppose (1) and (2) hold with W independent of Σ. Then, conditionally on Σ, and
under Qh, we have for any integer M such that M ≈ ch−α with α ∈ [0, 1/2),

a1) E
(
Sβ,h,M

)
= 0;

a2) E
(
S2
β,h,M

)
= 1;

a3) E
(
S3
β,h,M

)
= 0;

a4) E
(
Sβ,h,MU1,β,h,M

)
= 0;

a5) E
(
Sβ,h,MU2,β,h,M

)
= 0;

a6) E
(
S3
β,h,MU1,β,h,M

)
= 0;

a7) E
(
S3
β,h,MU2,β,h,M

)
= 0.

Lemma C.7. Suppose (1) and (2) hold with W independent of Σ. Then, conditionally on Σ, and
under Qh, we have for any integer M such that M ≈ ch−α with α ∈ [0, 1/2),

a1) (Γ̂k(j))
−1
∑M

i=1 û
2
i+(j−1)M =

Γ̂l(j)

Γ̂k(j)
−
(

Γ̂
lk(j)

Γ̂k(j)

)2

;

a2) E

(
Γ̂l(j)

Γ̂k(j)
−
(

Γ̂
lk(j)

Γ̂k(j)

)2
) q

2

=
(
M−1
M

) q
2 bM,qcM−1,q

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
) q

2

, for M > q;

a3) Rβ,q ≡ Mh
1/Mh∑
j=1

(
M

q
2

(M−1)
q
2 bM,qcM−1,q

)(
Γ̂l(j)

Γ̂k(j)
−
(

Γ̂
lk(j)

Γ̂k(j)

)2
) q

2

−Mh
1/Mh∑
j=1

(
Γl(j)
Γk(j)

−
(

Γ
lk(j)

Γk(j)

)2
) q

2

→ 0

in probability under Qh and P , for any M > q (1+δ) , for some δ > 0;

a4) V̂β,h,M − Vβ,h,M → 0 in probability under Qh and P , for any M > 2 (1+δ) , for some δ > 0.

Proof of Lemma C.3. Given the definition of V̂β,h,M in the text (see Equation (16)), and the
definition of ûi+(j−1)M = yl,i+(j−1)M − β̂lk(j)yk,i+(j−1)M , we can write

V̂β,h,M = M2h

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−1(
1

M − 1

M∑
i=1

(
yl,i+(j−1)M − β̂lk(j)yk,i+(j−1)M

)2
)

=
M2h

M − 1

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

(
ui+(j−1)M −

(
β̂lk(j) − βlk(j)

)
yk,i+(j−1)M

)2
)
,
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where we used the definition of yl,i+(j−1)M see Equation (16). Adding and subtracting appropriately,
it follows that

V̂β,h,M =
M2h

M − 1

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−1(( M∑
i=1

u2
i+(j−1)M

)
+
(
β̂lk(j) − βlk(j)

)2
)

− 2
M2h

M − 1

1/Mh∑
j=1

(
β̂lk(j) − βlk(j)

)( M∑
i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)

=
M2h

M − 1

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

u2
i+(j−1)M

)

− M2h

M − 1

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−2( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)2

=

1/Mh∑
j=1

V1,(j) −
1/Mh∑
j=1

V2,(j),

where we used
(
β̂lk(j) − βlk(j)

)
=
(∑M

i=1 y
2
k,i+(j−1)M

)−1 (∑M
i=1 yk,i+(j−1)Mui+(j−1)M

)
.

Proof of Lemma C.4 part a1). Given the definition of V1,(j), the law of iterated expectations and
the fact that ui+(j−1)M |yk(j) ∼ i.i.d.N

(
0, V(j)

)
, we can write

E
(
V1,(j)

)
= E

(
E
(
V1,(j)|yk(j)

))
=

M2h

M − 1
E

E
( M∑

i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

u2
i+(j−1)M

) |yk(j)


=

M2h

M − 1
E

( M∑
i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

E
(
u2
i+(j−1)M |yk(j)

))
=

M3h

M − 1
V(j)E

( M∑
i=1

y2
k,i+(j−1)M

)−1
 ,

then given equation (14) in the text and by replacing V(j) by 1
M

(
Γl(j) −

Γ2
lk(j)

Γk(j)

)
, we have that

E
(
V1,(j)

)
=

M3h

(M − 1) (M − 2)

 Γl(j)

Γk(j)
−

(
Γlk(j)

Γk(j)

)2
 .

Proof of Lemma C.4 part a2). Given the definition of V1,(j) and the law of iterated expectations,
we can write

E
(
V 2

1,(j)

)
= E

(
E
(
V 2

1,(j)|yk(j)

))
=

M4h2

(M − 1)2
E

E
( M∑

i=1

y2
k,i+(j−1)M

)−2( M∑
i=1

u2
i+(j−1)M

)2
 |yk(j)


=

M4h

(M − 1)2
V 2

(j)E

( M∑
i=1

y2
k,i+(j−1)M

)−2

E

 M∑
i=1

(
ui+(j−1)M√

V(j)

)2

|yk(j)

2 .
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Note that since ui+(j−1)M |yk(j) ∼ i.i.d.N
(
0, V(j)

)
, E

(∑M
i=1

(
ui+(j−1)M√

V(j)

)2

|yk(j)

)2

= E
(
χ2
j,M

)2
=

M (M + 2) where χ2
j,M follow the standard χ2 distribution with M degrees of freedom. Then we have

E
(
V 2

1,(j)

)
=
M5 (M + 2)h

(M − 1)2
V 2

(j)E

( M∑
i=1

y2
k,i+(j−1)M

)−2
 ,

then given the fact that
∑M

i=1 y
2
k,i+(j−1)M

d
=

Γk(j)
M χ2

j,M , where ‘ d=’ denotes equivalence in distribution,

by using the second moment of an inverse of χ2 distribution, we have E
(

1
χ2
j,M

)2

= 1
(M−2)(M−4) , and

by replacing V(j) by 1
M

(
Γl(j) −

Γ2
lk(j)

Γk(j)

)
it follows that

E
(
V 2

1,(j)

)
=

M5 (M + 2)

(M − 1)2 (M − 2) (M − 4)
h2

(
Γl(j)

Γk(j)
−
(

Γlk(j)

Γk(j)

)2
)2

.

Proof of Lemma C.4 part a3). Given the definition of V1,(j), the law of iterated expectations and
the fact that ui+(j−1)M |yk(j) ∼ i.i.d.N

(
0, V(j)

)
. we can write

E
(
V2,(j)

)
= E

(
E
(
V2,(j)|yk(j)

))
=

M2h

M − 1
E

E
( M∑

i=1

y2
k,i+(j−1)M

)−2( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)2
 |yk(j)


=

M2h

M − 1
E

( M∑
i=1

y2
k,i+(j−1)M

)−2( M∑
i=1

y2
k,i+(j−1)ME

(
u2
i+(j−1)M |yk(j)

))
=

M2h

M − 1
V(j)E

( M∑
i=1

y2
k,i+(j−1)M

)−1
 ,

then using equation (14) in the text and replacing V(j) by 1
M

(
Γl(j) −

Γ2
lk(j)

Γk(j)

)
yields

E
(
V2,(j)

)
=

M2h

(M − 1) (M − 2)

 Γl(j)

Γk(j)
−

(
Γlk(j)

Γk(j)

)2
 .

Proof of Lemma C.4 part a4). Given the definition of V2,(j) and the law of iterated expectations,
we can write

E
(
V 2

2,(j)

)
= E

(
E
(
V 2

2,(j)|yk(j)

))
=

M4h2

(M − 1)2
E

( M∑
i=1

y2
k,i+(j−1)M

)−4

E

(
M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)4

|yk(j)


≡ M4h2

(M − 1)2
E

( M∑
i=1

y2
k,i+(j−1)M

)−4

A

 .

Then using the conditional independence and mean zero property of yk,i+(j−1)Mui+(j−1)M we have that
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A ≡ E

( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)4

|yk(j)


=

M∑
i=1

E
(
y4
k,i+(j−1)Mu

4
i+(j−1)M |yk(j)

)
+ 3

∑
i 6=s

E
(
y2
k,i+(j−1)Mu

2
i+(j−1)M |yk(j)

)
E
(
y2
k,s+(j−1)Mu

2
s+(j−1)M |yk(j)

)

= 3V 2
(j)

 M∑
i=1

y4
k,i+(j−1)M +

∑
i 6=s

y2
k,i+(j−1)My

2
k,s+(j−1)M


= 3V 2

(j)

(
M∑
i=1

y4
k,i+(j−1)M

)2

,

thus we can write

E
(
V 2

2,(j)

)
=

M4h2

(M − 1)2
3V 2

(j)E

( M∑
i=1

y2
k,i+(j−1)M

)−2
 ,

result follows similarly where we use the same arguments as in the proof of Lemma C.4 part a2).
Proof of Lemma C.4 part a5). The proof follows similarly as parts a2) and a4) of Lemma C.4 and
therefore we omit the details.
Proof of Lemma C.5 part a1). Given the definitions of V̂β,h,M , V1,(j), V2,(j) and by using Lemma
C.3 and part 1 of Lemma C.4, we can write

E
(
V̂β,h,M

)
= E

1/Mh∑
j=1

V1,(j)

− E
1/Mh∑

j=1

V2,(j)


=

1/Mh∑
j=1

E
(
V1,(j)

)
−

1/Mh∑
j=1

E
(
V1,(j)

)
=

M3h

(M − 1) (M − 2)

1/Mh∑
j=1

(
Γl(j)

Γk(j)
−
(

Γlk(j)

Γk(j)

)2
)
− M2h

(M − 1) (M − 2)

1/Mh∑
j=1

(
Γl(j)

Γk(j)
−
(

Γlk(j)

Γk(j)

)2
)

=
M

M − 1
Vβ,h,M −

1

M − 1
Vβ,h,M

= Vβ,h,M .

Proof of Lemma C.5 part a2). Given the definitions of V̂β,h,M , V1,(j), V2,(j) and Lemma C.3, we
can write

V ar
(
V̂β,h,M

)
= V ar

1/Mh∑
j=1

V1,(j)

+ V ar

1/Mh∑
j=1

V2,(j)

− 2Cov

1/Mh∑
j=1

V1,(j),

1/Mh∑
j=1

V2,(j)

 ,

given the fact that ui+(j−1)M |yk(j) ∼ i.i.d.N
(
0, V(j)

)
, we have V1,(j) and V2,(j) are conditionally inde-

pendent given yk(j), V1,(j) and V2,(t) are conditionally independent for all t 6= j given yk(j). It follows
that
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V ar
(
V̂β,h,M

)
=

1/Mh∑
j=1

(
E
(
V 2

1,(j)

)
− E

(
V1,(j)

)2)
+
(
E
(
V 2

2,(j)

)
− E

(
V2,(j)

)2)

− 2

1/Mh∑
j=1

(
E
(
V2,(j)V2,(j)

)
− E

(
V1,(j)

)
E
(
V2,(j)

))
,

finally results follow given Lemma C.4.
Proof of Lemma C.5 part a3). Results follow directly given Lemma C.4 parts a1) and a2) since
E
(
V̂β,h,M − Vβ,h,M

)
= 0 and V ar

(
V̂β,h,M − Vβ,h,M

)
→ 0 as h→ 0 provide that Mh→ 0

Proof of Lemma C.5 part a4). This result follows from the boundedness of Σk(u), Σl(u) and the
Reimann integrable of Σkl(u) for any k, l = 1 · · · d.
Proof of Lemma C.6 part a1). Given the definition of Sβ,h,M we can write

E (Sβ,h,M ) =

√
h−1M√
Vβ,h,M

M∑
i=1

E
( (

β̂lk(j) − βlk(j)
))

= 0,

where the last equality use the unbiased property of OLS estimator β̂lk(j).
Proof of Lemma C.6 part a2). Given the definitions of Sβ,h,M and Vβ,h,M we can have that

V ar (Sβ,h,M ) =
1

Vβ,h,M
V ar

(√
h
(
β̂lk − βlk

))
= 1.

Proof of Lemma C.6 part a3). Given the definition of Sβ,h,M and the fact that we can write
√
h
(
β̂lk − βlk

)
as follows

√
h
(
β̂lk − βlk

)
= M

√
h

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)
,

it follows that

E
(
S3
β,h,M

)
=
M3h3/2

V
3/2
β,h,M

E

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)3

,

then using the fact that ui+(j−1)M |yk(j) ∼ i.i.d.N
(
0, V(j)

)
, we have that

E
(
S3
β,h,M

)
=

M3h3/2

V
3/2
β,h,M

E

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−3( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)3


=
M3h3/2

V
3/2
β,h,M

E

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−3( M∑
i=1

y3
k,i+(j−1)ME

(
u3
i+(j−1)M |yk(j)

))
= 0.

Proof of Lemma C.6 part a4). We start the proof by introducing this notation, which is relevant
only for part a4) of Lemma C.6. We let B = E (Sβ,h,MU1,β,h,M ), then given the definitions of Sβ,h,M ,
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U1,β,h,M and using the fact that ui+(j−1)M |yk(j) ∼ i.i.d.N
(
0, V(j)

)
, we can write

B =
M3h

(M − 1)V
3/2
β,h,M

1/Mh∑
j=1

E

( M∑
i=1

y2
k,i+(j−1)M

)−2( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)(
M∑
i=1

u2
i+(j−1)M

)
− M

V
3/2
β,h,M

1/Mh∑
j=1

E
(
V1,(j)

)
E

( M∑
i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

) ,

using the law of iterated expectations and again the fact that ui+(j−1)M |yk(j) ∼ i.i.d.N
(
0, V(j)

)
, results

follow.
Proof of Lemma C.3 part a5). Given the definitions of Sβ,h,M , U2,β,h,M and using the fact that
ui+(j−1)M |yk(j) ∼ i.i.d.N

(
0, V(j)

)
, we can write

E
(
Sβ,h,MU2,β,h,M

)
=

M3h3/2

(M − 1)V
3/2
β,h,M

E

1/Mh∑
j=1

(
M∑
i=1

y2
k,i+(j−1)M

)−3( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

)3


− M

V
3/2
β,h,M

1/Mh∑
j=1

E
(
V2,(j)

)
E

( M∑
i=1

y2
k,i+(j−1)M

)−1( M∑
i=1

yk,i+(j−1)Mui+(j−1)M

) ,

then results follow by using the law of iterated expectations and again the fact that ui+(j−1)M |yk(j) ∼
i.i.d.N

(
0, V(j)

)
.

The proof of the remaining results (Lemma C.6 part a6) and part a7)) follow similarly and therefore
we omit the details.
Proof of Lemma C.7 part a1). Given the definition of ûi+(j−1)M , we can write

(Γ̂k(j))
−1

M∑
i=1

û2
i+(j−1)M =

1

Γ̂k(j)

M∑
i=1

(
yl,i+(j−1)M − β̂lk(j)yk,i+(j−1)M

)2

=
1

Γ̂k(j)

M∑
i=1

(
y2
l,i+(j−1)M − 2β̂lk(j)yl,i+(j−1)Myk,i+(j−1)M + β̂2

lk(j)y
2
k,i+(j−1)M

)
=

1

Γ̂k(j)

(
M∑
i=1

y2
l,i+(j−1)M − 2β̂lk(j)

M∑
i=1

yl,i+(j−1)Myk,i+(j−1)M + β̂2
lk(j)

M∑
i=1

y2
k,i+(j−1)M

)
,

thus results follow by replacing β̂lk(j) =
Γ̂
lk(j)

Γ̂k(j)
.

Proof of Lemma C.7 part a2). Given the definitions of Γ̂l(j), Γ̂k(j) and Γ̂lk(j) and using part a1) of
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Lemma C.7, we can write

E

 Γ̂l(j)

Γ̂k(j)

−

(
Γ̂lk(j)

Γ̂k(j)

)2


q
2

= E

(∑M
i=1 û

2
i+(j−1)M

Γ̂k(j)

) q
2

= E

( M∑
i=1

y2
k,i+(j−1)M

)− q
2

E

(
M∑
i=1

û2
i+(j−1)M

) q
2

|yk(j)


= E

( M∑
i=1

y2
k,i+(j−1)M

)− q
2

V
q
2

(j)E

( M∑
i=1

û2
i+(j−1)M

V(j)

) q
2

|yk(j)

 ,

where we use the law of iterated expectations and the fact that ui+(j−1)M |yk(j) ∼ i.i.d.N
(
0, V(j)

)
.

Then given the definition of cM,q, we can write

E

( M∑
i=1

û2
i+(j−1)M

V(j)

) q
2

|yk(j)

 = E
((
χ2
j,M

) q
2

)
= (M − 1)

q
2 cM−1,q,

it follows then that,

E

 Γ̂l(j)

Γ̂k(j)

−

(
Γ̂lk(j)

Γ̂k(j)

)2


q
2

= E

(∑M
i=1 û

2
i+(j−1)M

Γ̂k(j)

) q
2

= (M − 1)
q
2 cM−1,qV

q
2

(j)E

( M∑
i=1

y2
k,i+(j−1)M

)− q
2


= (M − 1)

q
2 cM−1,qV

q
2

(j)Γ
− q

2

k(j)E

( M

χ2
j,M

) q
2


=

(
M − 1

M

) q
2

bM,qcM−1,q

 Γl(j)

Γk(j)
−

(
Γlk(j)

Γk(j)

)2


q
2

;

where bM,q = E

((
M
χ2
j,M

) q
2

)
, for M > q.

Proof of Lemma C.7 part a3). We verify the moments conditions of the Weak Law of Large Num-

bers for independent and nonidentically distributed on zj ≡ M
q
2

(M−1)
q
2 bM,qcM−1,q

(
Γ̂l(j)

Γ̂k(j)
−
(

Γ̂
lk(j)

Γ̂k(j)

)2
) q

2

,

j = 1, . . . , 1
Mh . By using part a2) of Lemma C.7, for any δ > 0, and conditionally on σ, we can write

E |zj |1+δ =

(
M − 1

M

) δq
2 bM,(1+δ)q

bM,q

cM−1,(1+δ)q

cM−1,q

 Γl(j)

Γk(j)
−

(
Γlk(j)

Γk(j)

)2


(1+δ)q
2

<∞

since Σ is an adapted càdlàg spot covolatility matrix and locally bounded and invertible (in particular,
Γk(j) > 0), moreover in the case where M →∞, as h→ 0 (i.e. M ≈ ch−α with α ∈ (0, 1/2) ) we have
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(
M−1
M

) δq
2
bM,(1+δ)q
bM,q

cM−1,(1+δ)q

cM−1,q
→ 1.

Proof of Lemma C.7 part a4). Result follows directly given the definition of V̂β,h,M , Vβ,h,M and
part a3) of Lemma C.7, where we let q = 2.

Remark 5 The bootstrap analogue of Lemma C.3 and C.4 replace V1(j) with V ∗1(j), V2(j), the bootstrap
analogue of Lemma C.5 replaces V̂β,h,M with V̂ ∗β,h,M , Vβ,h,M with V ∗β,h,M , Γl(j) with Γ̂l(j), Γk(j)

with Γ̂k(j), and Γlk(j) with Γ̂lk(j); whereas the bootstrap analogue of Lemma C.6 replaces Sβ,h,M
with S∗β,h,M , U1,β,h,M with U∗1,β,h,M and U2,β,h,M with U∗2,β,h,M .

Lemma C.8. Suppose (1) and (2) hold with W independent of Σ. Then, conditionally on Σ, we have
for any integer M such that M ≈ ch−α with α ∈ [0, 1/2), and for some small δ > 0,

a1) E∗
(∑M

i=1 y
2∗
k,i+(j−1)M

)−2(2+δ)
= bM,4(2+δ)Γ̂

−2(2+δ)
k(j) , for M > 4 (2 + δ);

a2) E∗
(∣∣∣∑M

i=1 y
∗
k,i+(j−1)Mu

∗
i+(j−1)M

∣∣∣2(2+δ)
)
≤ µ2

2(2+δ)M
2+δΓ̂2+δ

k(j)V̂
2+δ

(j) ;

Proof of Lemma C.8 part a1). Given the definition of y∗k,i+(j−1)M , we can write,
∑M

i=1 y
2∗
k,i+(j−1)M

d
=

Γ̂k(j)
M

∑M
i=1 v

2
i+(j−1)M

d
=

Γ̂k(j)
M χ2

j,M , where vi+(j−1)M ∼ i.i.d.N (0, 1), and χ2
j,M follow the standard χ2

distribution with M degrees of freedom. Then for any integer M > 4 (2 + δ), we have that,

E

(
M∑
i=1

y2
k,i+(j−1)M

)−2(2+δ)

= E

(
M

χ2
j,M

)2(2+δ)

Γ̂
−2(2+δ)
k(j) = bM,4(2+δ)Γ̂

−2(2+δ)
k(j) .

Proof of Lemma C.8 part a2). Indeed by using the Cr inequality, the law of iterated expectations
and the fact that u∗i+(j−1)M |y

∗
k(j) ∼ i.i.d.N

(
0, V̂(j)

)
, we can write for any δ > 0,

E∗

∣∣∣∣∣
M∑
i=1

y∗k,i+(j−1)Mu
∗
i+(j−1)M

∣∣∣∣∣
2(2+δ)

 ≤ M3+2δ
M∑
i=1

E∗
∣∣∣y∗k,i+(j−1)Mu

∗
i+(j−1)M

∣∣∣2(2+δ)

= M3+2δ
M∑
i=1

E∗
(
y
∗2(2+δ)
k,i+(j−1)ME

∗
(
u
∗2(2+δ)
i+(j−1)M |y

∗
k(j)

))
= µ2

2(2+δ)M
2+δΓ̂2+δ

k(j)V̂
2+δ

(j) ,

where the last equality follows since y2∗
k,i+(j−1)M

d
=

Γk(j)
M v2

i+(j−1)M , where vi+(j−1)M ∼ i.i.d.N (0, 1) and

µ2(2+δ) = E |v|2(2+δ).
Proof of proposition 5.2. As in Theorem B.1, the first and third cumulants of Tβ,h,M are given by

κ1(Tβ,h,M ) = E(Tβ,h,M ),

κ3(Tβ,h,M ) = E(T 3
β,h,M )− 3E(T 2

β,h,M )E(Tβ,h,M ) + 2[E(Tβ,h,M )]3.

Here, our goal is to identify the terms of order up to O(
√
h) of the asymptotic expansions of these

two cumulants. We will first provide asymptotic expansions through order O(
√
h) for the first three

moments of Tβ,h,M . Note that for a given fixed value of k, a first-order Taylor expansion of f(x) =

(1 + x)−k/2 around 0 yields f(x) = 1− k
2x+O(x2). We have for any fixed integer k, We have that for
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any fixed integer k,

T kβ,h,M = Skβ,h,M

(
1 +
√
hUβ,h,M

)−k/2
,

= Skβ,h,M −
k

2

√
hSkβ,h,MUβ,h,M +O(h)

= Skβ,h,M −
k

2

√
hSkβ,h,MU1,β,h,M +

k

2

√
hSkβ,h,MU2,β,h,M +O(h).

For k = 1, · · · , 3, the moments of T kβ,h,M up to order O(h) are given by

E (Tβ,h,M ) = E (Sβ,h,M )−
√
h

2
E (Sβ,h,MU1,β,h,M ) +

√
h

2
E (Sβ,h,MU2,β,h,M )

E
(
T 2
β,h,M

)
= E

(
S2
β,h,M

)
−
√
hE
(
S2
β,h,MU1,β,h,M

)
+
√
hE
(
S2
β,h,MU2,β,h,M

)
E
(
T 3
β,h,M

)
= E

(
S3
β,h,M

)
−
√
h

3

2
E
(
S3
β,h,MU1,β,h,M

)
+
√
h

3

2
E
(
S3
β,h,MU2,β,h,M

)
.

Given Lemma C.6, we have that

E (Tβ,h,M ) = 0

E
(
T 2
β,h,M

)
= 1−

√
hE
(
S2
β,h,MU1,β,h,M

)
+
√
hE
(
S2
β,h,MU2,β,h,M

)
E
(
T 3
β,h,M

)
= 0.

It follows that κ1(Tβ,h,M ) = 0 and κ3(Tβ,h,M ) = 0.
Proof of Theorem 4.1 For part a), the proof follows the same steps as the proof of Vβ,h,M which
we explain in the main text, in particular, given the definition of β̂∗lk, we have that

V ∗β,h,M = V ar∗
(√

h−1(β̂∗lk − β̂lk)
)

= M2h

1/Mh∑
j=1

V ar∗
(
β̂∗lk(j) − β̂lk(j)

)

= M2h

1/Mh∑
j=1

E∗

( M∑
i=1

y2∗
k,i+(j−1)M

)−1
 V̂(j)

=
M2h

M − 2

1/Mh∑
j=1

 Γ̂l(j)

Γ̂k(j)

−

(
Γ̂lk(j)

Γ̂k(j)

)2


=
M − 1

M − 2
V̂β,h,M ,

then results follows, given Lemma C.5 or part a4) of Lemma C.7.

For part b), we have
√
h−1(β̂∗lk − β̂lk) =

1/Mh∑
j=1

z∗j,β, where

z∗j,β = M
√
h

(
M∑
i=1

y∗2k,i+(j−1)M

)−1( M∑
i=1

y∗k,i+(j−1)Mu
∗
i+(j−1)M

)
.
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Note that E∗
(
z∗j,β

)
= 0, and that

V ar∗

1/Mh∑
j=1

z∗j

 = V ∗β,h,M
P→ Vβ,

by part a) moreover, since z∗1 , . . . , z∗1/Mh are conditionally independent, by the Berry-Esseen bound,
for some small δ > 0 and for some constant C > 0,

sup
x∈<

∣∣∣∣P ∗ (√h−1(β̂∗lk − β̂lk) ≤ x
)
− Φ

(
x

Vβ

)∣∣∣∣ ≤ C 1/Mh∑
j=1

E∗
∣∣z∗j ∣∣2+δ

,

Next, we show that
1/Mh∑
j=1

E∗
∣∣∣z∗j ∣∣∣2+δ

= op (1). We have that

1/Mh∑
j=1

E∗
∣∣z∗j,β∣∣2+δ

=
(
M
√
h
)2+δ

1/Mh∑
j=1

E∗

( M∑
i=1

y∗2k,i+(j−1)M

)−(2+δ) ∣∣∣∣∣
M∑
i=1

y∗k,i+(j−1)Mu
∗
i+(j−1)M

∣∣∣∣∣
2+δ


≡
(
M
√
h
)2+δ

1/Mh∑
j=1

E∗
(
A∗jB

∗
j

)
,

it follows then by using Cauchy-Schwarz inequality that

E∗
(
A∗jB

∗
j

)
≤

√√√√( M∑
i=1

y∗2k,i+(j−1)M

)−2(2+δ)
√√√√√E∗

∣∣∣∣∣
M∑
i=1

y∗k,i+(j−1)Mu
∗
i+(j−1)M

∣∣∣∣∣
2(2+δ)


≤ µ2(2+δ)b

1
2

M,4(2+δ)M
1+ δ

2 Γ̂
− 2+δ

2

k(j) V̂
2+δ
2

(j)

= µ2(2+δ)b
1
2

M,4(2+δ)

 Γ̂l(j)

Γ̂k(j)

−

(
Γ̂lk(j)

Γ̂k(j)

)2
 2+δ

2

,

where the second inequatily used part a1) and a2) of Lemma C.8 and µ2(2+δ) = E |v|2(2+δ) with
v ∼ N (0, 1). Finally, given the definition of Rβ,2+δ and the fact that M ≈ ch−α, we can write

1/Mh∑
j=1

E∗
∣∣z∗j,β∣∣2+δ ≤ µ2(2+δ)b

1
2

M,4(2+δ)M
2+δh1+ δ

2

1/Mh∑
j=1

 Γ̂l(j)

Γ̂k(j)

−

(
Γ̂lk(j)

Γ̂k(j)

)2
 2+δ

2

= µ2(2+δ)b
1
2

M,4(2+δ)

(
M − 1

M

) 2+δ
2

bM,2+δcM−1,2+δM
1+δh

δ
2Rβ,2+δ

= Op

(
h
δ
2
−α(1+δ)b

1
2

M,4(2+δ)

(
M − 1

M

) 2+δ
2

bM,2+δcM−1,2+δ

)
= op (1) .

Since for any δ > 0, such that α ∈ [0, 1/2) we have δ
2 − α(1 + δ) > 0, and µ2(2+δ) = E |v|2(2+δ) ≤ ∆ <

∞ where v ∼ N (0, 1), moreover as h → 0, cM−1,2+δ → 1, bM,4(2+δ) → 1, bM,2+δ → 1 and by using
Lemma C.7 we have Rβ,2+δ = OP (1).
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Proof of Theorem 4.2 Let

H∗β,h,M =

√
h−1(β̂∗lk − β̂lk)√

V ∗β,h,M

,

and note that

T ∗β,h,M = H∗β,h,M

√√√√V ∗β,h,M

V̂ ∗β,h,M
,

where V̂ ∗β,h,M is defined in the main text. Theorem 4.1 proved that H∗β,h,M
d∗→ N(0, 1) in probability.

Thus, it suffices to show that V̂ ∗β,h,M − V ∗β,h,M
P ∗→ 0 in probability under Qh and P . In particular, we

show that (1) Bias∗
(
V̂ ∗β,h,M

)
= 0, and (2) V ar∗

(
V̂ ∗β,h,M

)
P→ 0. Results follows directly by using the

bootstrap analogue of parts a1), a2) and a3) of Lemma C.5.
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