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Abstract

This paper establishes uniform consistency results for nonparametric kernel density and

regression estimators when time series regressors concerned are nonstationary null recurrent

Markov chains. Under suitable regularity conditions, we derive uniform convergence rates of the

estimators. Our results can be viewed as a nonstationary extension of some well-known uniform

consistency results for stationary time series.
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1 Introduction

In this paper, we consider kernel-based nonparametric density and regression estimators, and

present their uniform consistency results. The results provide theoretical justification for the use

of the estimators, and are also useful for deriving asymptotic results in various estimation and

testing problems. Previous studies focused mainly on the cases in which observed time series

satisfy some stationarity/ergodicity conditions, as found in Liero (1989), Roussas (1990), An-

drews (1995), Liebscher (1996), Masry (1996), Bosq (1998), Fan and Yao (2003), Ould-Säıd and

Cai (2005) and others. Most of these studies considered uniform convergence over fixed compact

sets. Recently, Hansen (2008) made significant progress towards establishing sharp uniform con-

vergence with sharp rates over unbounded sets for a general class of nonparametric functionals

when the time series are stationary and α-mixing. Kristensen (2009) extended Hansen’s result

to a heterogeneous dependent case with an α-mixing condition. By contrast, little work has

been done on uniform consistency of nonparametric kernel estimators for nonstationary time

series without any mixing condition.

Phillips and Park (1998) are among the first to study nonparametric estimation in an au-

toregression model with integrated regressors. They developed a local-time-based approach and

established asymptotic theory. Simultaneously but independently, Karlsen and Tjøstheim (1998,

2001) considered nonparametric kernel estimation in the nonstationary case in which time series

regressors are nonstationary null-recurrent Markov chains. These authors established various

asymptotic results. For the recent development of nonparametric and semiparametric estimation

in nonstationary time series and diffusion models, we refer to Karlsen, Myklebust and Tjøstheim

(2007, 2010), Bandi and Moloche (2008), Schienle (2008, 2011), Cai, Li and Park (2009), Wang

and Phillips (2009a, 2009b), Chen, Li and Zhang (2010), Chen, Gao and Li (2012) and the ref-

erences therein. In the field of model specification testing, Gao et al. (2009a, 2009b) presented

asymptotically consistent tests in both autoregression and co-integration cases. We also note

that supplement materials to Gao et al. (2009a, 2009b) provide brief discussions on uniform

weak consistency of a nonparametric kernel density estimator for the case where the time series

follows a random walk process.

This paper is the first to systematically study strong and weak uniform consistency results

for a class of nonparametric kernel density and regression estimators when the time series data

involved are nonstationary null-recurrent Markov chains. Our weak uniform consistency result

indicates a sharp rate of convergence of the order OP
(√ logn

nβLs(n)h

)
when the regressors are β-null

recurrent Markov processes (Ls is a slowly varying function defined in Section 2). This sharp

rate of convergence is in contrast to OP
(√ logn

nh

)
, which is a well-known uniform convergence

rate for nonparametric kernel estimators in the stationary time series case. Our strong uniform

consistency result indicates a rate of convergence of the order o
(

1√
nβ−ε0h

)
for some small 0 <

ε0 < β, where ε0 depends on the existence of moments of the process. This strong rate shall
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be close to the sharp weak convergence rate when ε0 is close to zero. The uniform consistency

results established in this paper not only strengthen existing pointwise consistency results given

in Karlsen and Tjøstheim (2001), but also extend some corresponding results in Hansen (2008)

for the stationary time series case. In a recent paper by Schienle (2011), under the null recurrent

setting, the uniform consistency for the nonparametric kernel estimator was established over a

compact set, which can be seen as a special case of our results.

The rest of the paper is organized as follows. Some basic definitions and results for Markov

chains are introduced in Section 2. The main convergence results are presented in Section

3. Applications of the main results to the density, Nadaraya-Watson, and local-linear kernel

estimators are given in Section 4. The conclusions are provided in Section 5. Some basic results

on Markov theory are summarized in Appendix A. All proofs are given in Appendix B.

2 Some basic results for Markov chains

Let {Xt, t ≥ 0} be a φ-irreducible Markov chain with its state space (E, E), transition probability

P (E × E → [0, 1]), where E is the sigma algebra on E, φ is a measure on (E, E), and P (x,A)

stands for the probability that the chain falls into a set A in the next period when the current

state is x. The φ-irreducibility means that there exists a nontrivial measure φ on (E, E) such

that each φ-positive set A is attainable from any point x in E with positive probability, that is,

∞∑
n=1

Pn(x,A) > 0, for any x ∈ E whenever φ(A) > 0. (2.1)

We assume that φ is maximal in the sense that if φ∗ is another irreducible measure, then φ∗ is

absolutely continuous with respect to φ. In this paper, we let E ⊂ R. Denote by E+ the class

of nonnegative measurable functions with φ-positive support. For a set B ∈ E , we write B ∈ E+

if 1B ∈ E+, where 1B is the indicator function of set B. A function η ∈ E+ is said to be a small

function if there exist a measure λ, a positive constant b and an integer m ≥ 1, so that

Pm ≥ bη ⊗ λ, (2.2)

where η ⊗ λ (x,A) = η (x)λ (A) for any x ∈ E, A ∈ E . If λ satisfies this inequality for some

η ∈ E+, b > 0 and m ≥ 1, then λ is called a small measure. A set B is small if an indicator

function 1B is a small function. By (2.2), Theorem 2.1, and Proposition 2.6 in Nummelin (1984),

we know that for a φ-irreducible Markov chain, there exists a minorization inequality, i.e., there

are a small function s, a probability measure ν and an integer m0 ≥ 1 such that Pm0 ≥ s ⊗ ν.

As argued in Karlsen and Tjøstheim (2001), it is not a severe restriction to assume m0 = 1.

Therefore, throughout this paper, we assume that the minorization inequality

P ≥ s⊗ ν (2.3)
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holds with ν(E) = 1, 0 ≤ s(x) ≤ 1 for any x ∈ E. We note that the extensions to general m0

are straightforward (with some involved notations/proofs), but are not treated in this paper.

To develop asymptotic results for the nonparametric estimators, we assume that the φ-

irreducible Markov chain {Xt} is Harris recurrent.

Definition 2.1. The chain {Xt} is Harris recurrent if, given a neighborhood Nv of v (v ∈ E)

with φ(Nv) > 0, {Xt} returns to Nv with probability one.

It is known that a Markov chain defined on a countable E which has a point of recurrence

(a point which the chain can reach within some finite time with probability one; also called

an atom) can be split into independent and identically distributed (i.i.d.) blocks (c.f., Chung,

1967). To see the idea of this i.i.d. blocking, note that by the Markov property, the behavior

of the chain after it reached the point of recurrence is independent of its previous history. The

chain is therefore said to be renewed or regenerated on every visit to the point of recurrence. By

splitting the chain by the regeneration times (when the chain reaches at the point of recurrence),

we can construct i.i.d. blocks. For a general Markov chain whose value space E is an uncountable

set (say, R), we cannot in general find an obvious point of recurrence. However, if the chain

possesses the property of Harris recurrence, we can still consider the decomposition of a partial

sum of the original Markov chain {Xt} into of i.i.d. block parts and remaining negligible parts

by using Nummelin’s (1984) method.

We here outline Nummelin’s decomposition method, while some more details are provided

in the Appendix A (see also Section 4.4 of Nummelin, 1984, or Sections 3.1-3.2 of Karlsen and

Tjøstheim, 2001). Now, let us introduce an auxiliary chain {Tt, t ≥ 0} where Tt is a random

variable whose value is only 0 or 1: given Xt = x, it takes the value 1 with probability s(x)

and 0 with 1− s (x), where s (x) is the small function given in (2.3). Under the condition (2.3),

we can let the time when Tt = 1 be a regeneration time of the augmented/compound chain

{(Xt, Tt) , t ≥ 0}, i.e., α = E × {1} be an atom of the chain (we can interpret that {(Xt, Tt)}

is initialized every time when Tt = 1, as explained into details in Appendix A). This chain

{(Xt, Tt)} is called a split chain (in the terminology of Nummelin 1984’s book), since it allows

us to split the original chain {Xt} into i.i.d. parts and the other negligible parts by the times

when Tt = 1. The distribution of {(Xt, Tt), t ≥ 0} is fully characterized by the initial distribution

λ of X0, the transition probability P of {Xt} and (s, ν) (see (A.1) in Appendix A).

To explicitly consider the i.i.d. decomposition of {Xt}, let us define stopping times as follows:

τk =
{ inf{t ≥ 0 : Tt = 1}, k = 0,

inf{t > τk−1 : Tt = 1}, k ≥ 1,

(2.4)
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and denote the total number of regenerations over the time interval [0, n] by N(n), that is,

N(n) =
{ max{k : τk ≤ n}, if τ0 ≤ n,

0, otherwise.

(2.5)

Let f be a real-valued function on R. By using these τ0, τ1, . . . and N (n), we can decompose a

sum
∑n

t=0 f(Xt) into three parts with a main one being a sum of i.i.d. random variables and

the other two being asymptotically negligible:

n∑
t=0

f(Xt) = Z0 +

N(n)∑
k=1

Zk + Z(n), (2.6)

where

Zk =



τ0∑
t=0

f(Xt), k = 0,

τk∑
t=τk−1+1

f(Xt), 1 ≤ k ≤ N(n),

n∑
t=τN(n)+1

f(Xt), k = (n).

We can check that {Zk, k ≥ 1} is a sequence of i.i.d. random variables (see Appendix A). In this

decomposition (2.6), N(n) plays a role as if it were the number of observations in a standard

stationary setting. It follows from Lemma 3.2 in Karlsen and Tjøstheim (2001) that Z0 and

Z(n), divided by N (n), converge to zero almost surely. We note that N(n) is stochastic in our

general Harris recurrent setting, which fully depends on the structure of the underlying {Xt}

and its realization. The stochastic growing rate of N(n) is generally unknown while it can be

controlled by a condition of the β-null recurrency presented in Definition 2.2 below, which we

impose for our subsequent convergence theorems.

As a notable property of a Harris recurrent Markov chain satisfying (2.3), we can find an

invariant measure of the chain in terms of s and ν. If we let

πs = νGs,ν , where Gs,ν =

∞∑
n=0

(P− s⊗ ν)n, (2.7)

then

πs = πsP, (2.8)

where νGs,ν (A) =
∫
ν (dx)Gs,ν (x,A) and πsP (A) =

∫
πs (dx)P (x,A) for any A ∈ E . This

implies that πs is an invariant measure of {Xt}. The formula (2.7) can be interpreted as a

natural extension of the standard stationary case, as explained in Appendix A (see also Section

5.2 of Nummelin, 1984, and Section 3.2 of Karlsen and Tjøstheim, 2001). This πs may not

be necessarily a finite measure. It is known that the Harris recurrence includes two sub-cases:

positive recurrence and null recurrence (c.f., Meyn and Tweedie, 2009). The former corresponds
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to the ergodicity with πs a finite measure, which can be normalized to a probability measure (an

ergodic process is strictly stationary if it is initialized by the invariant probability measure); and

the latter is the focus of this paper in which πs is not finite but only σ-finite. The concept of null

recurrence provides a general framework for nonstationary time series analyses. It is generally

uncertain if we can develop sensible asymptotic theory for nonstationary time series. However,

given the null recurrence condition, which allows for quite flexible time series dynamics, we can

develop asymptotic results. We note that our subsequent results are also applicable to positive

recurrent chains in which πs can be regarded as the probability measure and the growing rate

of N(n) is of the order n (see Remark 3.2).

In the standard stationary time series setting, various nonparametric estimators include

a component which estimates the invariant probability density, e.g., the denominator of a

Nadaraya-Watson regression estimator. In our general Harris recurrent (nonstationary) set-

ting, {Xt} does not necessarily have its invariant probability measure or probability density.

However, the density of πs, which we denote by ps, plays the same role as the invariant prob-

ability density in the standard setting: e.g., the denominator of our Nadaraya-Watson type

estimator can be seen as an estimator of ps upon suitable normalization (the invariant density

of the Harris Markov chain is unique up to a multiplicative constant; see Section 3.2 of Karlsen

and Tjøstheim, 2001). We note that the φ-irreducibility of the Markov chain has the following

implication for the invariant measure πs: φ is absolutely continuous with respect to πs (i.e.,

if φ (A) > 0 for any A ∈ E , then πs (A) =
∫
A ps (x) dx > 0; see Propositions 2.4 and 5.6 of

Nummelin, 1984).

The following definition imposes further restrictions on the behavior of the Markov chain.

Definition 2.2. A Markov chain {Xt} is β-null recurrent if there exist a small nonnegative

function f(·), an initial measure λ, a constant β ∈ (0, 1) and a slowly varying function Lf (·)

such that as n→∞

Eλ

[∑n

t=0
f(Xt)

]
∼ 1

Γ(1 + β)
nβLf (n), (2.9)

where Eλ stands for the expectation with initial distribution λ of X0, Γ(·) is the usual Gamma

function, an ∼ bn means that lim
n→∞

an
bn

= 1, and a function l(·) is called to be slowly varying (at

infinity) if

lim
x→∞

l (cx)

l(x)
= 1, for all c > 0.

For Lf in (2.9), some slowly varying function Ls can be chosen so that for any small function

f ,

Lf = Ls

∫
f (u)πs (du) , (2.10)

where this result is given as Lemma 3.1 of Karlsen and Tjøstheim (2001). Let N (n) be the

number of regenerations of the β-null recurrent Markov chain {Xt} as defined in (2.5). The
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β-null recurrence condition has the following implication for this N (n), which is important

for our subsequent analyses: given the minorization inequality (2.3), N (n) has the asymptotic

distribution:
N(n)

nβLs(n)

d−→Mβ(1), (2.11)

as n → ∞, where Mβ(1) is the Mittag-Leffler distribution with parameter β. The above result

is given as Theorem 3.2 of Karlsen and Tjøstheim (2001) (see also Lemma B.4 in Appendix A).

For a (strictly) stationary or positive recurrent process, we have β = 1. We next provide two

examples of 1
2 -null recurrent Markov process.

Example 2.1. Let a random walk process be defined as

Xt = Xt−1 + ut, t = 1, 2, · · · , X0 = 0, (2.12)

where {ut} is a sequence of i.i.d. random variables. Kallianpur and Robbins (1954) showed

that this random walk process is a 1
2 -null recurrent Markov chain under weak conditions on the

distribution of ut.

Example 2.2. Consider a parametric threshold autoregressive (TAR) model of the form

Xt = α1Xt−1I{Xt−1 ∈ C}+ α2Xt−1I{Xt−1 ∈ Cc}+ vt, (2.13)

where C is a compact subset of R, Cc is the complement of C, α2 = 1, −∞ < α1 < ∞, {vt} is

assumed to be i.i.d. with E[v1] = 0, 0 < E[v2
1] < ∞, E[v4

1] < ∞, and the distribution of {vt} is

absolutely continuous with respect to the Lebesgue measure with f(·) being its density function

satisfying infx∈S f(x) > 0 for all compact sets S. Recently, Gao, Tjøstheim and Yin (2013) have

shown that {Xt} generated by (2.13) is a 1
2 -null recurrent Markov chain.

3 Main results

Let {et} be a sequence of independent random variables and be independent of {Xt}. Define a

general nonparametric quantity of the form

Φn(x) =
1

N(n)h

n∑
t=0

L

(
Xt − x
h

)
et, (3.1)

where L(·) is a kernel function satisfying Assumption A2(i) below, h is a bandwidth and N(n)

is defined in (2.5). To derive uniform consistency results for this nonparametric quantity Φn(x)

defined by (3.1), we impose the following assumptions.

Assumption 1 (i) The invariant measure of the β-null recurrent Markov chain {Xt}, πs(·),

has a uniformly continuous density function ps(·) on E = R with supx∈R ps(x) <∞.
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(ii) For each z ∈ R, there exists a transition density p(1) satisfying P (z, dy) = p(1) (z, y) dy.

There exist some (sufficiently small) constants κ, δ ∈ (0, 1) such that for any z,
∫
I{y ∈ R :

p(1) (z, y) ≥ κ}dy ≥ δ (κ and δ are independent of z).

(iii) {et} is a sequence of independent random variables with E[et] = 0 and supt≥1 E[e2
t ] <∞,

and is independent of {Xt}.

Assumption 2 (i) The kernel function L(·) has compact support C(L), and satisfies a

Lipschitz-continuity condition: |L(x)− L(y)| ≤ CL |x− y| for all x, y ∈ C(L) and some constant

CL > 0.

(ii) For each x ∈ [−Tn, Tn], Nx = {z ∈ R : |x− z| ≤ 1} is a small set of the Markov chain

{Xt}, where Tn = n1−βL∗(n) and L∗(n) is a sequence of positive and slowly varying functions.

Remark 3.1. (i) Assumption 1(i) corresponds to the analogous conditions in the density

function estimation for the stationary time series case. It can be satisfied by a random walk

process {Xt} as in Example 2.1, whose invariant density function is ps(x) = 1, as argued in

Nummelin (1984, page 75).

Assumption 1(ii) might be seen as an unfamiliar condition on the transition density, but

it is satisfied by various types of processes, including ones in Examples 2.1 and 2.2 (given the

existence of the probability density of the error disturbances). An important implication of this

condition is that it regulates tail decay properties of the transition density. To see this point,

consider the following case in which the condition is violated:

supy∈R p
(1) (z, y)→ 0 as |z| → ∞, (3.2)

for example. If this holds true, we cannot find any super κ-level set of p(1) (z, ·) which is bounded

away from zero by δ (note that even when (3.2) is true, we can still find κ and δ, if they are

allowed to depend on z; but Assumption 1(ii) requires that κ and δ to be uniform over z). By

the fact that p(1) (z, ·) is the probability density, (3.2) means that the tail decay rate of p(1) (z, ·)

becomes slower as |z| → ∞ (in other words, the tail of the conditional distribution is relatively

thicker for larger |z|). If the degree of tail-thickness of the transition density is the same for all

z, we can check that Assumption 1(ii) is indeed satisfied.

Assumption 1(iii) allows for the case where the compound process {(Xt, et)} is not β-null

recurrent. While the β-null recurrency of the compound process seems often necessary for

obtaining sensible distribution theory of estimators as in Section 5 of Karlsen and Tjøstheim

(2001), we can work without it for the purpose here to derive uniform convergence rates. While

the independence between {et} and {Xt} greatly simplify our proofs, we can think of some ways

to relax it. One way is to suppose a certain dependence structure such as

et = σ(Xt)εt, (3.3)

where {εt} is a sequence of independent random variables and is independent of {Xt}, and

supx∈R |σ(x)| <∞. Although some form of heterogeneity is already allowed (i.e., e1, e2, . . . need
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not to be identically distributed), this (3.3) allows heterogeneity through the dependence on

Xt. We note that all the results stated in this and subsequent sections carry over to the case

with (3.3). Another way to relax the independence is to simply impose the β-null recurrency

condition on the compound process {(Xt, et)} or that of {(Xt, εt)} for the case of (3.3), under

which we can apply the Markov splitting technique to {(Xt, et)} or {(Xt, εt)} (this condition is

satisfied, for example, under the case where {et} or {εt} is an i.i.d. sequence and is independent

of the β-null recurrent chain {Xt}, while this case for {et} is covered by Assumption 1(iii)). As

another relaxation of Assumption 1(iii), we might be able to consider some time-series depen-

dence structure of {et} (say, stationarity and weak dependence, such as α-mixing), which is,

however, probably not trivial to work with (requiring some different conditions and/or resulting

in different convergence rates).

(ii) Assumption 2(i) is a commonly used condition on the kernel function. As discussed

in condition B2 in Section 5 of Karlsen and Tjøstheim (2001), Assumption 2(ii) is needed

in this kind of kernel estimation of null-recurrent time series. The small set requirement is

a weak condition when combined. For example, if {Xt} is an autoregressive process given by

Xt = g(Xt−1)+vt, a sufficient condition for the smallness ofNx is that g(·) is bounded on compact

sets and that {vt} has its density with respect to the Lebesgue measure which is strictly positive

on any compact set (c.f., Doukhan and Ghindés, 1980; pages 589-590 of Tjøstheim, 1990). We

can also find various other sufficient conditions in Section 2.3 of Nummelin (1984). We note

that the compact support condition of the kernel function is important in our setup since it is

associated with the small-set requirement (see the proof of Lemma B.2). While Hansen (2008)

allows for kernels whose support is unbounded and whose tail decay rate is fast enough (say, the

normal kernel), it is uncertain if we can work with such kernels.

Hansen (2008) considered uniform consistency for a nonparametric estimator of the form

Ψ∗(x) =
1

nh

n∑
t=1

L

(
Xt − x
h

)
Yt,

where {(Xt, Yt) : t ≥ 1} is stationary and α-mixing, and n is the sample size. He showed

both weak and strong uniform consistency results (Theorems 2-3). In Theorem 3.1 below, we

establish a weak uniform consistency result for the nonparametric quantity defined in (3.1),

which corresponds to Hansen’s Ψ∗(x).

Theorem 3.1. Suppose that Assumptions 1-2 hold, and that

1/h < nβ−ε0 for some ε0 ∈ (0, β) ,

supt≥1 E[|et|2p0 ] <∞ with some positive integer p0 >
2

ε0
− 1

2
.

(3.4)

Then, as n→∞ and h→ 0,

sup|x|≤Tn |Φn(x)| = OP

(√ log n

nβLs(n)h

)
, (3.5)
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where Tn = n1−βL∗(n) (defined in Assumption 2(ii)), and Ls is a slowly varying function

introduced in (2.10).

Remark 3.2. (i) Theorem 3.1 can be seen as a nonstationary (and null recurrent) extension

of the corresponding results in the stationary time series case. When β = 1 and Ls(·) is a

non-zero constant, the result (3.5) is reduced to a standard result in the stationary case (c.f.,

Theorem 2 in Hansen, 2008). Letting h ∼
(

logn
nβLs(n)

)1/5
, the right hand side (RHS) of (3.5) is(

logn
nβLs(n)

)2/5
, which is reduced to the optimal rate in the stationary case when β = 1 and Ls(·)

is a non-zero constant (c.f., Stone, 1980).

To compare our result (3.5) with Hansen’s (2008), consider an autoregressive Markov process

{Xt} described by Xt = aXt−1 +ut, where |a| < 1, {ut} is a sequence of i.i.d. error disturbances

whose probability density exists, and Xt−1 and ut are independent. We also assume that {et}

is i.i.d. and independent of {Xt}. Then, we can check that {(Xt, et)} is geometrically strong

(α) mixing satisfying Hansen (2008)’s condition (c.f., Section 2.4 of Doukhan, 1994). At the

same time, this Markov process {Xt} satisfies the minorizaton inequality (2.3) (this can be

verified under several weak conditions on the density of ut; see Example 3.1 of Karlsen and

Tjøstheim, 2001), and 1/N (n) = OP (1/n) with β = 1 and Ls(·) is a non-zero constant. In this

example, given the geometric decay rate of α-mixing coefficients, Theorem 2 in Hansen (2008)

tells us that Φn(x) = OP

(
1
nh

∑n
t=0 L

(
Xt−x
h

)
et

)
has the sharp convergence rate of OP

(√
logn
nh

)
under fairly weak moment and bandwidth conditions, say, it suffices to have the existence of

the first-order moment of et and (log n)/nh → 0. On the other hand, for such a sharp rate of

Φn(x), our Theorem 3.1 requires the existence of higher-order moments (in particular when we

want to have a weaker bandwidth condition, 1/h < nβ−ε0 with a smaller ε0). This contrast is

due to the fact that our proof relies on the Markov properties of {Xt}, but does not utilize its

mixing properties, meaning that in our theorem, the fast decay rate of the mixing coefficients

does not help to improve moment/bandwidth conditions or convergence rates (we note that the

same remark on the comparison between Hansen (2008)’s results and ours also applies to the

subsequent theorems). While our results may be less sharp than Hansen (2008)’s for stationary

and mixing processes, they can cover null recurrent processes, which are nonstationary and are

not in the scope of Hansen (2008)’s theorems.

(ii) The condition in (3.4) indicates that there exists a trade-off between the bandwidth

condition and the moment condition on {et}. As ε0 decreases (the bandwidth condition becomes

weaker), we need a stronger moment condition on {et}.

(iii) If β = 1
2 with a non-zero constant Ls(·), for example (see the random walk process

defined in Example 2.1), the rate of convergence in (3.5) is OP

(√
logn√
nh

)
, which is in contrast to

OP

(√
logn
nh

)
for the stationary time series case. This slower convergence rate occurs since the

amount of time spent by a 1
2 -null recurrent process around any particular point is of order

√
n

rather than n for the stationary case.

10



The next theorem provides a strong uniform rate of convergence under slightly different

conditions on the bandwidth and the moment of {et}.

Theorem 3.2. Suppose that Assumptions 1-2 hold, and that

1/h < nβδ−ε0 for some ε0 ∈ (0, βδ) and some δ ∈ (0, 1) ,

supt≥1 E[|et|2m0 ] <∞ with some positive integer m0 >
3− ε0

β (1− δ)
− 1

2
.

(3.6)

Then, as n→∞ and h→ 0,

sup|x|≤Tn |Φn(x)| = o
( 1√

nβ−ε0h

)
a.s., (3.7)

where Tn is defined in Assumption 2(ii).

Remark 3.3. (i) The result (3.7) can be seen as an extension of some existing results for the

stationary time series case (c.f., Theorem 3 of Hansen, 2008). The rate of convergence in (3.7)

is very close to the sharp rate obtained in Theorem 3.1 when ε0 is close to zero. We note that as

in the previous theorem, we can see a trade-off between the bandwidth and moment conditions

(m0 has to be larger for smaller ε0 in (3.6)).

(ii) The requirement for m0 is not easy to compare with that for p0 of Theorem 3.1, since the

convergence rates of Φn(x), as well as the imposed bandwidth conditions, are different between

two theorems. However, given (almost) the same bandwidth rate, Theorem 3.2 generally requires

a stronger moment condition than Theorem 3.1, which seems to be a price for obtaining an almost

sure result. To see this point, suppose that one selects some ε and a bandwidth h satisfying

1/h < nβ−ε (3.8)

in Theorem 3.1. Then, by having δ close to 1 in the bandwidth condition of Theorem 3.2, we can

say that (3.8) is approximately satisfied, but this leads to a larger value of m0 in (3.6) (typically

than p0), i.e., as δ → 1, m0 →∞.

(iii) The parameter δ ∈ (0, 1) is involved in our bandwidth condition 1/h < nβδ−ε0 . Unlike

the case in Theorem 3.1, this sort of parameter seems necessary for controlling the shrinking rate

of h and obtaining the rate in (3.7). Our condition is similar to ones imposed in Karlsen and

Tjøstheim (2001). For example, their strong consistency result (Theorem 5.2, page 406) requires

that 1/h < nβδm−ε, where the existence of the 2m-order moment is assumed and δm ∈ (0, 1/2]

is a certain parameter which depends up on m (c.f., a bandwidth condition C6 on page 260 of

Karlsen, Myklebust and Tjøstheim, 2007). Unlike Karlsen and Tjøstheim’s δm, our δ can be an

arbitrary value in (0, 1) (given m0 sufficiently large), allowing for a more flexible choice of the

bandwidth h.
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4 Applications in density and regression estimation

In this section, we consider estimating the invariant density and regression functions. We first

investigate the following object:

p̂n(x) =
1

N(n)h

n∑
t=0

K

(
Xt − x
h

)
, (4.1)

where K(·) is a kernel function. This can be regarded as an estimator of the invariant density

function. The quantity N (n) is unobservable and p̂n(x) is an infeasible estimator. However,

convergence properties of p̂n(x) have important implications for characterizing those of some

observable quantity (see Remark 4.1(ii) below). We derive weak and strong uniform convergence

rates of p̂n(x) with the following additional conditions imposed:

Assumption 3 (i) ps(x) is thrice continuously differentiable with supx∈R[|p′s(x)|+ |p′′s(x)|+

|p′′′s (x)|] ≤ Cp for some Cp ∈ (0,∞).

(ii) The kernel function K(·) is a symmetric probability density function, and satisfies As-

sumption 2 with K = L.

Theorem 4.1. Suppose that Assumptions 1-3 hold.

(i) If the bandwidth satisfies 1/h < nβ−ε0 for some ε0 ∈ (0, β), then, as n→∞ and h→ 0,

sup|x|≤Tn |p̂n(x)− ps(x)| = OP
(
h2
)

+OP

(√ log n

nβLs(n)h

)
. (4.2)

(ii) If the bandwidth satisfies 1/h < nβδ−ε0 for some ε0 ∈ (0, βδ) and some δ ∈ (0, 1), then,

as n→∞ and h→ 0,

sup|x|≤Tn |p̂n(x)− ps(x)| = O(h2) + o
( 1√

nβ−ε0h

)
a.s. (4.3)

Remark 4.1. (i) This theorem can be seen as a nonstationary extension of Theorem 5.3 in

Fan and Yao (2003) and Theorems 6 and 7 in Hansen (2008). The bandwidth condition for the

probability-convergence result (i) of Theorem 4.1 is slightly weaker than that for the almost sure

result (ii), which is also the case in Hansen (2008)’s theorems. Karlsen and Tjøstheim (2001,

Theorem 5.1) obtained the strong pointwise consistency of p̂n(x) for the null recurrent time

series case, with imposing

n(β/2)−ε0h→∞ for ε0 ∈ (0, β/2) .

Our strong uniform consistency result, Theorem 4.1(ii), not only weakens Karlsen and Tjøstheim

(2001)’s bandwidth condition (our δ is allowed to be arbitrary as long as it is in (0, 1)), but also

strengthens the pointwise consistency to the uniform consistency with possible rates.

(ii) As stated above, p̂n(x) may be thought of as a sort of theoretical object due to the

unobservability of N (n). However, we note that N(n) is linked to an observable hitting time.

12



To see this, let C∗ ∈ E+ and NC∗(n) =
∑n

t=0 I {Xt ∈ C∗}, the number of times that the process

is visiting C∗ up to the time t = n. By Lemma 3.2 in Karlsen and Tjøstheim (2001), NC∗(n)

satisfies
NC∗(n)

N(n)
→ πsIC∗ a.s. (4.4)

Let

p̂C∗
n (x) =

1

NC∗(n)h

n∑
t=0

K

(
Xt − x
h

)
,

and then observe that

p̂C∗
n (x) =

N(n)

NC∗(n)

[
1

N(n)h

∑n

t=0
K

(
Xt − x
h

)]
=

N(n)

NC∗(n)
p̂n(x). (4.5)

In this case, by (4.2)-(4.5) with the assumption that πsIC∗ > 0, we have

sup|x|≤Tn

∣∣∣p̂C∗
n (x)− ps(x)/(πsIC∗)

∣∣∣ = OP
(
h2
)

+OP

(√ log n

nβLs(n)h

)
(4.6)

and

sup|x|≤Tn

∣∣∣p̂C∗
n (x)− ps(x)/(πsIC∗)

∣∣∣ = O(h2) + o
( 1√

nβ−ε0h

)
a.s. (4.7)

We next consider a nonlinear nonstationary regression model:

Yt = m(Xt) + et, (4.8)

where 0 ≤ t ≤ n, {Xt} is a β-null recurrent Markov chain, {et} is a sequence of independent

errors with E[e1] = 0 and 0 < E[e2
1] <∞, m(·) is an unknown function, and {et} is independent

of {Xt}. This sort of nonlinear cointegration model has been studied by several authors. For

example, Karlsen, Myklebust and Tjøstheim (2007), and Wang and Phillips (2009a) considered

the Nadaraya-Watson (NW) estimator of the form

m̂(x) =

n∑
t=0

wn,t(x)Yt, (4.9)

where

wn,t (x) = K

(
Xt − x
h

)/∑n

s=0
K

(
Xs − x
h

)
,

and they obtained asymptotic distributions for m̂(x) using different methods. As an application

of Theorems 3.1 and 3.2, we provide both the weak and strong uniform consistency results for

the NW estimator m̂n(x).

Theorem 4.2. Suppose that Assumptions 1-3 hold. Let

δn = inf |x|≤Tn ps(x) > 0, and ρi,n = sup|x|≤Tn
∣∣(di/dxi)m(x)

∣∣ /δn for i = 1, 2, (4.10)

and suppose also that δ−1
n h2 = o (1).

13



(i) If the conditions in (3.4) of Theorem 3.1 are satisfied, and δ−1
n

(√
logn

nβLs(n)h

)
= o (1),

then, as n→∞ and h→ 0,

sup
|x|≤Tn

|m̂n(x)−m(x)| = OP

( [
δ−1
n + ρ1,nh

]√ log n

nβLs(n)h
+ [ρ1,n + ρ2,n]h2

)
. (4.11)

(ii) If the conditions in (3.6) of Theorem 3.2 are satisfied, and δ−1
n√

nβ−ε0h
= O (1), then, as

n→∞ and h→ 0,

sup
|x|≤Tn

|m̂n(x)−m(x)| = o
(δ−1

n + ρ1,nh√
nβ−ε0h

)
+O([ρ1,n + ρ2,n]h2) a.s. (4.12)

Remark 4.2. (i) The conditions imposed for the establishment of Theorem 4.2 are reasonable

and justifiable. The condition of δ−1
n h2 = o (1) can be easily verified when the regressor {Xt} is

a process as in Example 2.1 or Example 2.2. We can check ps(x) ≡ 1 in the first example, and

ps(x)→ 1 as |x| → ∞ in the second one. For the consistency, the components involving ρi,n on

the RHS of (4.11) and (4.12) have to shrink to zero, which imposes certain restrictions on the

functional form of m(·). Several classes of functional forms of m(·) are included as long as m(x)

is of the form m(x) = O
(
|x|1+ζ

)
for some 0 < ζ < 1 when x is large enough. In particular,

when m(x) = a + bx and {Xt} is generated by a data generating process in Example 2.1 or

Example 2.2, the rates on the RHS of (4.11) and (4.12) are reduced to OP

(√
logn

nβLs(n)h
+ h2

)
and o

(
1√

nβ−ε0h

)
+ O(h2), respectively, which do not involve the penalty terms δn and ρi,n. In

contrast, the convergence rates in Theorems 8 and 9 of Hansen (2008) are also penalized by

δn (the component due to the invariant density ps (·)) but not by ρi,n (the ones due to m (·)).

This is because he supposes the uniform boundedness of m (x) ps (x), which is reasonable since

ps (·) is the probability density in the stationary case. If we work with this sort of boundedness,

we can also write our convergence rates without ρi,n. However, as discussed above, in our null

recurrent case, ps (x) is not generally a probability density and the boundedness of m (x) ps (x)

is not likely to be satisfied. From this reason, our theorems are written with using ρi,n.

(ii) Theorem 4.2 can be viewed as a nonstationary extension of Theorem 3.3 in Bosq (1998)

and Theorems 8 and 9 in Hansen (2008) for the stationary time series regression case. When

{Xt} is a random walk as in Example 2.1, it is easy to check that (4.11) and (4.12) hold with

δn = 1, β = 1
2 and Ls(·) being a positive constant.

We finally consider local linear estimation of m(·) and present both weak and strong uniform

consistency results of a proposed estimator. As in Fan and Gijbels (1996), we define our local

linear estimator of m(x) as

m̃n(x) =

n∑
t=0

w̃n,t(x)Yt, (4.13)
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where

w̃n,t(x) =

1

h
K

(
Xt − x
h

)[
Sn,2(x)−

(
Xt − x
h

)
Sn,1(x)

]
∑n

s=0

1

h
K

(
Xs − x
h

)[
Sn,2(x)−

(
Xs − x
h

)
Sn,1(x)

] ,
Sn,j(x) =

1

N(n)h

∑n

s=0
K

(
Xs − x
h

)(
Xs − x
h

)j
for j = 1, 2.

The following theorem can be seen as a nonstationary extension of Theorems 10 and 11 in

Hansen (2008) for the stationary time series case.

Theorem 4.3. Suppose that the conditions of Theorem 4.2 hold. Let δn and ρ2,n be quantities

defined in (4.10), and suppose also that δ−1
n h = o (1).

(i) If the conditions in (3.4) of Theorem 3.1 are satisfied, and δ−1
n

(√
logn

nβLs(n)h

)
= o (1), then

as n→∞ and h→ 0,

sup
|x|≤Tn

|m̃n(x)−m(x)| = OP

(
δ−1
n

√
log n

nβLs(n)h

)
+OP (ρ2,nδ

−1
n h2). (4.14)

(ii) If the conditions in (3.6) of Theorem 3.2 are satisfied, and δ−1
n√

nβ−ε0h
= O (1), then, as

n→∞ and h→ 0,

sup
|x|≤Tn

|m̃n(x)−m(x)| = o
( δ−1

n√
nβ−ε0h

)
+O(ρ2,nδ

−1
n h2) a.s. (4.15)

Remark 4.3. (i) Comparing to (4.11) and (4.12) in the NW estimation case, we do not have

a term involving ρ1,n in (4.14) and (4.15). This is due to the first-order bias correction property

of the local linear method. The penalty associated with the h2 components is strengthened

to ρ2,nδ
−1
n here (instead of ρ2,n in (4.11) and (4.12)). This is because, roughly speaking, the

denominator of the weight w̃n,t(x) converges to the product of p2
s (x) and some constant. In

conjunction with this, the required bandwidth condition here (δ−1
n h = o (1)) is slightly stronger

than the condition of Theorem 4.2 (δ−1
n h2 = o (1)). These sorts of stronger requirements in the

local linear estimation can be also observed in Hansen (2008).

(ii) Note that Assumption 1(iii) does not allow for the autoregression case with Xt = Yt−1

in (4.8) since it requires the independence between {Xt} and {et}. However, if the functional

form of m(·) and the sequence {et} are chosen such that {Yt} is a β-null recurrent Markov chain,

then we can still verify the conclusions of Theorems 4.2 and 4.3 under some modified conditions.

For example, if {et} is a sequence of independent and bounded random variables or we have

{(Yt, et)} a β-null recurrent Markov chain, almost all the proofs remain the same, requiring only

minor modifications.
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5 Conclusions

We have established several results of both weak and strong uniform convergence with rates

for some commonly used nonparametric estimators in the case where the regressors are non-

stationary null recurrent time series. Our main results have extended some existing uniform

consistency results from the stationary case to the nonstationary case. In particular, we have

obtained a sharp rate of convergence in the weak uniform consistency case. The established

results are expected to be useful in deriving asymptotic theory for semiparametric estimation

and specification testing for nonstationary null recurrent time series.

Note that in this paper, we have considered only the case where {Xt} is univariate. If

{Xt} is multivariate and satisfies the Harris recurrent condition, we can still apply our Markov

splitting technique and derive some corresponding uniform convergence rate. However, it is not

necessarily easy to check such a condition for the multivariate case. For example, if {Xt} is a

multivariate random walk, it may be transient. We refer to Schienle (2008, 2011), and Cai, Li

and Park (2009) for the case where multivariate nonstationary regressors are involved.
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Appendix A: Useful results in Markov theory

To make this paper more self-contained, we review some useful terms and facts of Markov theory

in this Appendix. More details on the Markov splitting method and related results, can be found

in Sections 4.4 and 5.2 of Nummelin (1984) and Section 3 of Karlsen and Tjøstheim (2001).

Throughout the Appendices, we use Pr and E to stand for unconditional probabilities and

expectation of the Markov chain, as well as those of the (augmented) split chain. We often write

Eλ for the expectation with the initial distribution λ of X0. When λ = δx, we write Ex instead

of Eδx , which is the conditional expectation of the (split) chain given X0 = x. When the split

chain in the atom α = E× {1} (i.e., X0 = x for arbitrary x ∈ E and T0 = 1), we write Eα.

Let {Xt, t ≥ 0} be a Markov chain with its state space (E, E), the transition probability

P(E × E → [0, 1]), and φ be a measure on (E, E). As stated in Section 2, we assume that {Xt}

is a φ-irreducible Harris recurrent Markov chain. Throughout this Appendix and subsequent

proofs, we often use the following notations and definitions. Let η be a nonnegative measurable
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function and λ be a measure on (E, E). We define a kernel η ⊗ λ (E× E → R) as

η ⊗ λ(x,A) = η(x)λ(A), (x,A) ∈ (E, E).

For a kernel K, we define the function Kη, the measure λK, and the number λη as

Kη(x) =

∫
K(x, dy)η(y), λK(A) =

∫
λ(dx)K(x,A), λη =

∫
λ(dx)η(x).

The convolution of two kernels K1 and K2 is defined as

K1K2(v,A) =

∫
K1(v, dy)K2(y,A),

which creates a new kernel: E× E → R.

As outlined in Section 2, we will apply the so-called Markov chain splitting method to

prove our asymptotic results. In this method, the minorization inequality (2.3), P ≥ s ⊗ ν

(with ν(E) = 1, 0 ≤ s(x) ≤ 1), plays an important role, under which we can consider the

decomposition of the chain into i.i.d. main parts and the other asymptotically negligible parts.

We now provide the details on the construction of the split chain {(Xt, Tt)}. As stated in

Section 2, we let {Tt} be an auxiliary chain, and each Tt be a random variable which takes

Tt = 1 with probability s (x) and Tt = 0 with 1− s (x) given Xt = x. Define

Q(x,A) = (1− s(x))−1(P(x,A)− s(x)ν(A))I(s(x) < 1) + 1A(x)I(s(x) = 1).

Then, the transition probability P(x,A) can be decomposed as

P(x,A) = (1− s(x))Q(x,A) + s(x)ν(A).

When the minorization inequality (2.3) holds, we can easily verify that Q is a transition proba-

bility. As 0 ≤ s(x) ≤ 1 and ν(E) = 1, P can be seen as a mixture of the transition probability Q

and the measure ν. This means that Xt+1 moves according to Q if Tt = 0, which happens with

probability 1−s (x), and it moves according to ν if Tt = 1, which happens with probability s (x).

We here note that ν is independent of x, and therefore, the behavior of (Xt+1, Xt+2, . . . ) after

the occurrence of Tt = 1 is independent of the previous history; in other words, {Xt} regenerates

(is initialized) every time when Tt = 1 (or ν) is chosen. From these arguments, we can see that

the dynamics of {(Xt, Tt)} is, equipped with the initial distribution λ of X0, fully determined

by P and (s, ν). That is, we can write

Pr (X0 ∈ A) = λ (A) ,

Pr (Tt = y |Xt, Xt−1, . . . , Tt−1, Tt−2, . . . ) = s (Xt) y + (1− s (Xt)) (1− y) , t ≥ 0,

Pr (Xt ∈ A |Xt−1, Xt−2, . . . , Tt−1, Tt−2, . . . ) = ν (A)Tt−1 + Q(Xt−1,A) (1− Tt−1) , t ≥ 1,

(A.1)
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where y ∈ {0, 1}.

For computing some (conditional) expectations of {Xt} and several other objects, it is useful

to define the following stopping times:

τ = min{t ≥ 0 : Tt = 1}, (A.2)

Sα = min{t ≥ 1 : Tt = 1}. (A.3)

We note that τ = τ0 (defined in (2.4)), and that by the recurrent property of the chain, we have

τ <∞ and Sα <∞ almost surely. For any set A ∈ E , let

πs (A) = Eα

[∑Sα

n=1
I (Xn ∈ A)

]
. (A.4)

The measure πs is identical to the invariant measure object defined in (2.7). The RHS of (A.4)

is the expected number of visits of {Xt} to A between two consecutive occurrences of the event

{Tt = 1}. It can be written as in (2.7), πs (A) = νGs,ν (A), since, given T0 = 1 (or equivalently

(X0, T0) ∈ α), the behavior of X1 is determined by ν and the probability that the split chain

subsequently does not fall into the atom α is calculated based on Gs,ν =
∑∞

n=0(P− s⊗ ν)n, i.e.,

Eα

[∑Sα

n=1
I (Xn ∈ A)

]
= Eα

[∑∞

n=1
I (Xn ∈ A) I (Sα ≥ n)

]
=
∑∞

n=1
ν (dx) (P− s⊗ ν)n−1 (x,A)

=
∑∞

n=0
ν (dx) (P− s⊗ ν)n (x,A) =

∫
ν (dx)Gs,ν (x,A) . (A.5)

We can also interpret (A.4) as a null recurrent analogue of the following stationary case:

π̃s (A) = E[I(X̃n ∈ A)],

where {X̃n} is a strictly stationary process with its stationary probability measure π̃s. By noting

the i.i.d. property of the blocks and the fact that (Xτk−1
, Tτk−1

) ∈ α, we also have

Eα

[∑Sα

t=1
I (Xt ∈ A)

]
= E

[∑τk

t=τk−1+1
I (Xt ∈ A)

]
= Eν

[∑τ

t=0
I (Xt ∈ A)

]
, (A.6)

for any k ≥ 1.

Now, let g be a πs-integrable function on R, i.e., πsg =
∫
πs(dz)g(z) < ∞. Analogously to

(A.5), we can see that

Ez
[∑τ

t=0
g(Xt)

]
= Ez

[∑τk

t=τk−1+1
g(Xt)

]
= Gs,νg(z). (A.7)

For details of this, we refer to page 379 of Karlsen and Tjøstheim (2001). This, together with

the definition of πs in (2.7), implies

πsg =

∫
g(z)πs(dz) =

∫ (∫
g(z)Gs,ν(x, dz)

)
ν(dx)

=

∫ (∫
Gs,ν(x, dz)g(z)

)
ν(dx) =

∫
Gs,νg(x)ν(dx)

=

∫
Ex
[∑τ

t=0
g(Xt)

]
ν(dx) = Eν

[∑τ

t=0
g(Xt)

]
(A.8)
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The expressions of (A.7) and (A.8) are often used in subsequent proofs (we will also write∫
Gs,νg(x)ν(dx) = νGs,νg in the sequel, following the notations presented above).

Appendix B: Proofs of main results

To prove the main results in Sections 3 and 4, we use the following four lemmas.

Lemma B.1. Suppose that {Xt} is a β-null recurrent Markov chain, and Assumptions 1(i)-(ii)
and 2 are satisfied. Let

Lh,x(Xt) =
1

h
L

(
Xt − x
h

)
. (B.1)

Then, it holds that uniformly for x ∈
[
−n1−βL∗(n), n1−βL∗(n)

]
,

E

[(∑τk

t=τk−1+1
|Lh,x(Xt)|

)2m
]
≤Mh−2m+1, (B.2)

for any integer m ≥ 1, where M is some positive constant which depends on m but is independent
of k, h and x.

Proof. The following arguments are similar to those in the proof of Lemma 5.2 of Karlsen and

Tjøstheim (2001). By the i.i.d. property of the blocks of the split chain, (A.1) and (A.6), we

have

E

[(∑τk

t=τk−1+1
|Lh,x(Xt)|

)2m
]

= Eν

[(∑τ

t=0
|Lh,x(Xt)|

)2m
]

= Eν

[{∑∞

t=0
[
∏t−1
s=0I(Ts = 0)] |Lh,x(Xt)|

}2m
]
≤ Eν

[{∑∞

t=0
Bt |Lh,x(Xt)|

}2m
]
, (B.3)

where B0 = 1 and Bt =
∏t−1
s=0 I(Ts = 0). The first equality on the left-hand side (LHS) of (B.3)

holds by the same arguments as those for (A.6), and the second equality holds by the definition

of τ .

Let N+ be the set of positive integers, and

Λ2m,j = {l = (l1, · · · , lj) ∈ (N+)j :
∑j

k=1
lk = 2m}, for j = 1, . . . , 2m.

Then, we can write

Eν

[{∑∞

t=0
BtLh,x(Xt)

}2m
]

=
∑2m

j=1

∑
l∈Λ2m,j

(2m)!

l1! · · · lj !
Eν [L̃j,l(x)], (B.4)

where

L̃j,l(x) =
∑∞

t1=0

∑∞

t2=t1+1
· · ·
∑∞

tj=tj−1+1
Bt1Bt2 · · · Btj |Lh,x(Xt1)|l1 |Lh,x(Xt2)|l2 · · · |Lh,x(Xtj )|lj .

To find the bound of Eν [L̃j,l(x)], we first consider the case of j ≥ 2. Following calculations

in Karlsen and Tjøstheim (2001, pp. 403-404) (see also its working paper version with more

details, pp. 52-53, Karlsen and Tjøstheim, 1998), we have

Eν [L̃j,l(x)] = νGs,ν |Lh,x|l1 Gs,ν |Lh,x|l2 · · ·Gs,ν |Lh,x|lj , (B.5)
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where 2 ≤ j ≤ 2m, l ∈ Λ2m,j and Gs,ν is defined in (2.7).

Observe that for 2 ≤ k ≤ j,

Gs,ν |Lh,x|lk (y) = Ey
[∑τ

t=0
|Lh,x(Xt)|lk

]
≤ h−lk supz∈R |1 + L (z)|lk Ey

[∑τ

t=0
1Nx(Xt)

]
≤Mj,l(k)h−lk , (B.6)

where Nx = {z ∈ R : |x− z| ≤ 1}, 1Nx(z) is an indicator function (= 1 if z ∈ Nx; = 0 otherwise),

and the first inequality holds for h small enough (since the support of L is compact), and the

last inequality holds by Lemma B.2 with some positive constant Mj,l(k) independent of x.

Meanwhile, by Assumptions 1(i) and 2(i), there exists a positive constant Mj,l(1), indepen-

dent of x, such that

νGs,ν |Lh,x|l1 = πs|Lh,x|l1 = h−l1
∫
R

∣∣∣∣L(u− xh
)∣∣∣∣l1 ps (u) du

= h−l1+1

∫
R
|L (r) |l1ps (rh+ x) dr ≤Mj,l(1)h−l1+1, (B.7)

where the first equality holds by (A.8) and the last equality holds with Mj,l(1) =
∫
R |L (r) |l1dr×

supx∈R ps(x)(<∞).

In view of (B.6) and (B.7), we have for l ∈ Λ2m,j and j ≥ 2,

Eν [L̃j,l(x)] ≤
(∏j

k=2Mj,l(k)h−lk
)(

νGs,ν |Lh,x|l1
)

≤
(∏j

k=1Mj,l(k)
)
h

(
−
∑j

k=1lk

)
+1

=
(∏j

k=1Mj,l(k)
)
h−2m+1. (B.8)

For the case of j = 1, by (B.7), we have

Eν [L̃j,l(x)] ≤ νGs,ν ĨL2m
h,x

= πsL
2m
h,x ≤M1,l(1)h−2m+1. (B.9)

where M1,l(1) is a positive constant independent of x.

Letting

M =
∑2m

j=1

∑
l∈Λ2m,j

(2m)!

l1! · · · lj !
Mj,l with Mj,l =

∏j

k=1
Mj,l(k),

by (B.4), (B.8) and (B.9), we have shown that (B.2) holds. �

Lemma B.2. Suppose that {Xt} is a β-null recurrent Markov chain, and Assumptions 1(i)-(ii)
and 2 are satisfied. Then, it holds that uniformly for x ∈

[
−n1−βL∗(n), n1−βL∗(n)

]
,

Ey
[∑τ

t=0
1Nx(Xt)

]
≤ M̃,

where Nx = {z ∈ R : |x− z| ≤ 1} for each x ∈ R as defined in Assumption 2(ii), and M̃ is some
positive constant which is independent of x and y.
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Proof. To derive the uniform moment bound, we consider a regeneration scheme with the set

Nx as a hitting set for each x. That is, when the process hits Nx regeneration may happen (but

hitting Nx does not necessarily imply regeneration). For each x, we let {(Xt, T̃x,t)}t≥0 be a split

chain and α̃x = Nx × {1}, and define the following (stopping) times when regeneration occurs:

τ̃x,0 = min{t ≥ 0 : T̃x,t = 1}, τ̃x,k = min{t ≥ τ̃x,k−1 : T̃x,t = 1} for k ≥ 1.

This regeneration scheme with Nx can be constructed in a manner similar to that in Example

of 3.1 of Karlsen and Tjøstheim (2001) by finding a small function s̃x ∈ [0, 1] and a probability

measure ν̃x satisfying the following minorization inequality:

P ≥ s̃x ⊗ ν̃x, (B.10)

for each x. To check the existence of s̃x and ν̃x, let ρx,0 (y) = (1/2) infz∈Nx p
(1) (z, y) and

ax =
∫
ρx,0 (y) dy (≤ 1/2). Then, we have

P (z, dy) ≥ ax1Nx(z)a−1
x ρx,0 (y) dy.

By setting s̃x (z) = ax1Nx(z) and ν̃x (dy) = a−1
x ρx,0 (y) dy, we have 0 ≤ s̃x (z) ≤ 1 and

∫
ν̃x (dy) =

1, which confirms the minorization inequality (B.10).

We note that for any x, the auxiliary process {T̃x,t} of this split chain is independent of

another auxiliary process {Tt} of the split chain {(Xt, Tt)}, conditionally on (any realization of)

the process {Xt}, where transition dynamics of {(Xt, Tt, T̃x,t)} can be described in the same way

as those of {(Xt, Tt)} in (A.1).

Note also that by the condition on the transition density in Assumption 1(i), we have

infx∈R ax = infx∈R

∫
ρx,0 (y) dy ≥ κδ/2 = q ∈ (0, 1)

and therefore,

infx∈R infz∈Nx s̃x (z) ≥ κδ/2, (B.11)

for any x and z.

Now, we derive the desired moment bound by using the regeneration scheme with the hitting

set Nx. To this end, let

sx,0 = min{t ≥ 0 : Xt ∈ Nx}, sx,k = min {t > sx,k−1 : Xt ∈ Nx} for k ≥ 1.

At time sx,0 or sx,k, the process may regenerate or may not (these are simply stopping times when

the process hits Nx). By using these stopping times, we can obtain the following decomposition:

Ey
[∑τ

t=0
1Nx(Xt)

]
=
∑∞

i=0
Ey
[∑τ

t=0
1Nx(Xt)

∣∣∣ τ̃x,0 = sx,i

]
Ey [I {τ̃x,0 = sx,i}] , (B.12)

where we below derive bounds of components of the summands on the RHS.
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For any i ≥ 0, we have the following bound:

Ey
[∑τ

t=0
1Nx(Xt)

∣∣∣ τ̃x,0 = sx,i

]
≤ Ey

[∑∞

t=0
1Nx(Xt)I {t ≤ τ}

∣∣∣ τ̃x,0 = sx,i

]
= Ey

[∑τ̃x,0

t=0
1Nx(Xt)

∣∣∣∣ τ̃x,0 = sx,i

]
+ Ey

[∑∞

t=τ̃x,0+1
1Nx(Xt)I {t ≤ τ}

∣∣∣∣ τ̃x,0 = sx,i

]
≤ (1 + i) + Eα̃x

[∑∞

k=0

∑τ̃x,k+1

t=τ̃x,k+1
1Nx(Xt)I (τ̃x,k < τ)

]
= (1 + i) + Eα̃x

[∑∞

k=0
I (τ̃x,k < τ)Eα̃x

[∑τ̃x,k+1

t=τ̃x,k+1
1Nx(Xt)

∣∣∣∣ {(Xt, T̃x,t) : t ≤ τ̃x,k}
]]

= (1 + i) +
∑∞

k=0
Eα̃x [I (τ̃x,k < τ)]× Eα̃x

[∑τ̃x,k+1

t=τ̃x,k+1
1Nx(Xt)

]
= (1 + i) +

∑∞

k=0
Eα̃x [I (τ̃x,k < τ)]× Eν̃x

[∑τ̃x,0

t=0
1Nx(Xt)

]
, (B.13)

where the equality in the fourth line follows from the law of iterated expectations, the equality

in the fifth line holds by the fact that the event {τ̃x,k < t} is F
(X,T̃x)
x,τ̃x,k

-measurable (since τ̃x,k

is a stopping time) and the independence of τ̃x,k and τ conditionally on F
(X,T̃x)
x,t (F

(X,T̃x)
x,t =

σ[{(Xs, T̃x,s) : s ≤ t}] and FXt = σ[{Xs : s ≤ t}], filtrations generated by {(Xs, T̃x,s)} and {Xs},

respectively). We can verify the following results:

Eα̃x [I (τ̃x,k < τ)] ≤ (1/2)k (1− q)−1 for any k ≥ 0, (B.14)

and

Eν̃x

[∑τ̃x,0

t=0
1Nx(Xt)

]
= a−1

x Eν̃x

[∑τ̃x,0

t=0
ax1Nx(Xt)

]
= a−1

x Eν̃x

[∑τ̃x,0

t=0
s̃x(Xt)

]
= a−1

x ≤ q−1, (B.15)

where the proof of the former result (B.14) will be provided later, and (B.15) holds since

Eν̃x

[∑τ̃x,0

t=0
s̃x(Xt)

]
= 1,

which follows from the arguments on page 379 of Karlsen and Tjøstheim (2001). From these,

we have

Ey
[∑τ

t=0
1Nx(Xt)

∣∣∣ τ̃x,0 = sx,i

]
≤ (1 + i) + [(1− q) q]−1

∑∞

k=0
(1/2)k ≤ i+ c̃, (B.16)

for any i ≥ 0, with some 0 < c̃ < ∞ (independent of i, x and y). We also have the following

bound:

Ey [I {τ̃x,0 = sx,i}] = Ey
[
Ey
[
I {τ̃x,0 = sx,i}|X0 = y, {Xt}t≥0

]]
= Ey

[∏i−1
k=0(1− s̃x (Xsk))× s̃x

(
Xτ̃x,0

)]
≤
[
supz∈Nx (1− s̃x (z))

]i × supz∈Nx s̃x (z) ≤ (1− q)i , (B.17)

for any i ≥ 0.

24



By (B.12), (B.16) and (B.17), we can now obtain the desired result:

Ey
[∑τ

t=0
1Nx(Xt)

]
≤
∑∞

i=0
(i+ c̃) (1− q)i = M̃ <∞,

where the majorant side is independent of x and y. To complete the proof, we next give the

detailed verification of (B.14).

Proof of (B.14). For any k, we have

Eα̃x [I (τ̃x,k < τ)] = Eα̃x

[∑∞

l=1
I (τ̃x,k = l) I (τ > l)

]
=
∑∞

l=1
Eα̃x [E [I (τ̃x,k = l) I (τ > l) | {Xt : t ≤ l}]]

=
∑∞

l=1
Eα̃x [Eα̃x [I (τ̃x,k = l) | {Xt : t ≤ l}]× Eα̃x [I (τ > l) | {Xt : t ≤ l}]]

≤
∑

k≤l<∞
Eα̃x

[
E
[
I (τ̃x,k = l) | (X0, T̃x,0) ∈ α̃x, {Xt : t ≤ l}

]]
=
∑

k≤l<∞
Eα̃x

[∏k−1

m=1
s̃x
(
Xτ̃x,m

)
×
∏

t6=τ̃x,1,...,τ̃x,k−1,l
[1− s̃x (Xt)]× s̃x (Xl)

]
=
∑

k≤l<∞

[
supz∈Nx (1− s̃x (z))

]l−k−1 ×
[
supz∈Nx s̃x (z)

]k
≤
∑

k≤l<∞
(1− q)l−k+1 × (1/2)k ≤ (1/2)k

∑∞

l=0
(1− q)l = (1/2)k / (1− q) , (B.18)

where the third equality holds since I (τ̃x,k = l) and I (τ > l) are independent conditionally on

{Xt : t ≤ l} ∈ FXx,l (note that {τ̃x,k = l} and {τ > l} are Fx,l-measurable since τ̃x,k and τ are

stopping times, where Fx,t = σ{(Xs, Ts, T̃x,s) : s ≤ t}). To see the validity of the equality in the

fifth line, note that {τ̃x,k = l} (conditionally on (X0, T̃x,0) ∈ α̃x and the history {Xt : t ≤ l}) is

the event that “T̃x,t = 1” happens (k − 1) times for 1 ≤ t < l and it also happens at t = l, and

its (conditional) probability is bounded as

E
[
I (τ̃x,k = l) |(X0, T̃x,0) ∈ α̃x, {Xt : t ≤ l}

]
≤ [supz∈E (1− s̃ (z))]l−k−1 [supz∈E s̃ (z)]k+1 .

The last two inequalities on the RHS of (B.18) hold by the construction of s̃x (z) and by the

lower bound (B.11). Now, the proof is completed. �

Lemma B.3. Suppose that {Xt} is a β-null recurrent Markov chain, and Assumptions 1-2 are
satisfied. Then, it holds that uniformly for x ∈

[
−n1−βL∗(n), n1−βL∗(n)

]
,

E

[(∑τk

t=τk−1+1
Lh,x(Xt)et

)2m
]
≤ M̄h−2m+1,

for any integer m ≥ 1, where Lh,x is defined in (B.1), M̄ is some positive constant which depends
on m but is independent of k, h and k.
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Proof. Let Ce = max{1, supt≥1E [|et|] , supt≥1E[|et|2], . . . , supt≥1E[|et|2m]}. Then, look at

E
[(∑τk

t=τk−1+1
Lh,x(Xt)et

)2m ]
= E

[ ∑
0≤l1,l2,...,lτk−τk−1

≤2m,

l1+l2+···+lτk−τk−1
=2m

(2m)!

l1!l2! · · · lτk−τk−1
!

×
∣∣Lh,x(Xτk−1+1)eτk−1+1

∣∣l1 ∣∣Lh,x(Xτk−1+2)eτk−1+2

∣∣l2 · · · |Lh,x(Xτk)eτk |
lτk−τk−1

]
= E

[ ∑
0≤l1,l2,...,lτk−τk−1

≤2m,

l1+l2+···+lτk−τk−1
=2m

(2m)!

l1!l2! · · · lτk−τk−1
!
E
[
|eτk−1+1|l1 |eτk−1+2|l2 · · · |eτk |

lτk−τk−1

∣∣∣ {(Xt, Tt)}
]

×
∣∣Lh,x(Xτk−1+1)

∣∣l1 ∣∣Lh,x(Xτk−1+2)
∣∣l2 · · · |Lh,x(Xτk)|lτk−τk−1

]
≤ C2m

e E
[ ∑

0≤l1,l2,...,lτk−τk−1
≤2m,

l1+l2+···+lτk−τk−1
=2m

(2m)!

l1!l2! · · · lτk−τk−1
!

×
∣∣Lh,x(Xτk−1+1)

∣∣l1 ∣∣Lh,x(Xτk−1+2)
∣∣l2 · · · |Lh,x(Xτk)|lτk−τk−1

]
= C2m

e E
[(∑τk

t=τk−1+1
|Lh,x(Xt)|

)2m ]
≤ C2m

e Mh−2m+1,

where the equalities use the multinomial theorem and the law of iterated expectations. The last

inequality uses the result (B.2) of Lemma B.1, while the inequality in the fifth line uses

E[ |eτk−1+1|l1 |eτk−1+2|l2 · · · |eτk |
lτk−τk−1

∣∣∣ {(Xt, Tt)}] ≤ C2m
e ,

which holds since {et} is independent of {(Xt, Tt)}, {et} is an independent sequence, and l1 +

l2 + · · ·+ lτk−τk−1
= 2m. Now, by setting M̄ = C2m

e M , we obtain the desired result. �

Lemma B.4. Let {Xt} be a β-null recurrent Markov process. Then, it holds that

limn→∞ Pr

{
C1 <

N(n)

nβLs(n)
≤ C2

}
= 1, (B.19)

for two positive constants C1 < C2. Furthermore,

Pr
{
nβ−ε < N(n) < nβ+ε infinitely often

}
= 1, for any ε > 0. (B.20)

Proof. We here provide only the proof of (B.19). The second assertion (B.20) is given as a

part of Lemma 3.4 of Karlsen and Tjøstheim (2001).

By the definition of the Mittag-Leffler distribution (c.f., Lin, 1998), for any small δ > 0,

there exist two positive constants 0 < C1 < C2 <∞ such that

Pr {C1 < Mβ(1) ≤ C2} ≥ 1− δ/2. (B.21)

The convergence result (A.8) implies that for n large enough,

Pr{ N(n)
nβLs(n)

≤ C2} − Pr{Mβ(1) ≤ C2} ≥ −δ/4, (B.22)

Pr{ N(n)
nβLs(n)

≤ C1} − Pr{Mβ(1) ≤ C1} ≤ δ/4. (B.23)
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Now, equations (B.21)-(B.23) imply for large enough n,

Pr{C1 <
N(n)

nβLs(n)
≤ C2} =

[
Pr{ N(n)

nβLs(n)
≤ C2} − Pr{Mβ(1) ≤ C2}

]
−
[
Pr{ N(n)

nβLs(n)
≤ C1} − Pr{Mβ(1) ≤ C1}

]
+ Pr {C1 < Mβ(1) ≤ C2} ≥ 1− δ,

which leads to the desired result (B.19). �

Given Lemmas B.1-B.4, we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1.

Let

ηn =
√

(log n)/[nβLs(n)h] and η̄n = η × ηn, (B.24)

where η > 0 is a positive constant, and also let

Γt(x) =
1

h
L

(
Xt − x
h

)
et.

For the desired result, it is sufficient to show that for n and η large enough,

Pr
{

sup|x|≤Tn

∣∣∣ 1
N(n)

∑n

t=0
Γt(x)

∣∣∣ > 3η̄n

}
can be made arbitrarily small. (B.25)

To show this, we consider the following event:

Jn(β) =
{
C1n

βLs(n) ≤ N(n) ≤ C2n
βLs(n)

}
,

where C1 and C2 are constants defined in Lemma B.4. By an inclusion relation, we have{
sup|x|≤Tn

∣∣∣ 1
N(n)

∑n

t=0
Γt(x)

∣∣∣ > 3η̄n

}
⊂
{(

sup|x|≤Tn

∣∣∣ 1
N(n)

∑n

t=0
Γt(x)

∣∣∣ > 3η̄n

)
∩ Jn(β)

}
∪ Jcn(β). (B.26)

Therefore, by the result (B.19) in Lemma B.4, it is sufficient to show that for n and η large

enough,

Pr
{(

sup|x|≤Tn

∣∣∣ 1
N(n)

∑n

t=0
Γt(x)

∣∣∣ > 3η̄n

)
∩ Jn(β)

}
can be made arbitrarily small. (B.27)

To verify this result, we consider a finite covering of the set {x : |x| ≤ Tn}, i.e., a finite

number of sets {Sj}Q(n)
i=1 , such that each Sj is an open ball in R with center si and radius rn,

Qn is the number of these sets, and {x : |x| ≤ Tn} ⊂
⋃Q(n)
j=1 Sj , where we let

rn = n(β/2)−1
[
h3 (log n)Ls(n)

]1/2
and Qn = [Tn/rn] + 1. (B.28)

By this definition, we can bound Qn as

C3L∗(n) [(log n)Ls(n)]−1/2 h−3/2n2−(3/2)β

≤ Qn ≤ C4L∗(n) [(log n)Ls(n)]−1/2 h−3/2n2−(3/2)β, (B.29)

27



with constant C3, C4 > 0, since Tn = n1−βL∗ (n).

By using the covering {Sj}Q(n)
i=1 , we can obtain the following decomposition:

sup
|x|≤Tn

∣∣∣∣ 1

N(n)

∑n

t=0
Γt(x)

∣∣∣∣ ≤ max
1≤j≤Qn

sup
x∈Sj

1

N(n)

∑n

t=0
|Γt(x)− Γt(sj)|

+ max
1≤j≤Qn

∣∣∣∣ 1

N(n)

∑n

t=0
Γt(sj)

∣∣∣∣ . (B.30)

We next derive the bounds of the first and second terms on the RHS of (B.30). As for the first

term, by Assumption 2(i), we have∣∣∣∣L(Xt − x
h

)
− L

(
Xt − sj

h

)∣∣∣∣ ≤ CL ∣∣∣∣sj − xh

∣∣∣∣ ≤ CL rnh , (B.31)

for any x ∈ Si. This, together with the definition of rn in (B.28), implies that in the event

Jn(β),

max
1≤j≤Q(n)

sup
x∈Sj

1

N(n)

∑n

t=0
|Γt(x)− Γt(sj)| ≤

1

N(n)

∑n

t=0
|et| × CL

rn
h2

= OP (nrn/N (n)h2) = OP (
√

(log n) /nβLs(n)h). (B.32)

In view of (B.30) and (B.32), for the result (B.27), it suffices to show that

Pr
{(

max1≤j≤Qn

∣∣∣ 1
N(n)

∑n

t=0
Γt(sj)

∣∣∣ > 3η̄n

)
∩ Jn(β)

}
can be made arbitrarily small, (B.33)

for n and η large enough.

To verify (B.33), we consider the decomposition based on the split chain {(Xt, Tt)} as in

(2.6). Define

Zk(sj) =



∑τ0

t=0
|Γt(sj)|, k = 0,∑τk

t=τk−1+1
|Γt(sj)|, k ≥ 1,∑n

t=τN(n)+1
|Γt(sj)|, k = (n),

(B.34)

where Γt(x) = 1
hL
(
Xt−sj
h

)
et = Lh,sj (Xt)et, and {τk}k≥0 is the stopping times as defined in

(2.4). Then, we have∣∣∣∣ 1

N(n)

∑n

t=0
Γt(sj)

∣∣∣∣ ≤ 1

N(n)
Z0(sj) +

1

N(n)

∑N(n)

k=1
Zk (sj) +

1

N(n)
Z(n)(sj). (B.35)

We next investigate properties of the three terms on RHS of (B.35) separately.

We first consider the second term on the RHS of (B.35) and verify that for n and η large

enough,

Pr

{(
max1≤j≤Qn

∣∣∣∣ 1
N(n)

∑N(n)

k=1
Zk(sj)

∣∣∣∣ > η̄n

)
∩ Jn(β)

}
can be made arbitrarily small.

(B.36)
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To this end, we claim that {Zk(sj)}k≥1 is a sequence of independent random variables, which

follows from Assumption 1(iii) and the fact that {Xt}τkt=τk−1+1 and {Xt}
τk̄
t=τk̄−1+1 are independent

for different k and k̄.

Define

Z̄k(sj) = Zk(sj)I(|Zk(sj)| < κn) and Z̃k(sj) = Zk(sj)− Z̄k(sj), (B.37)

where {κn} is a deterministic sequence of real numbers defined by

κn =
√
ηh−1+1/2p0

[
Qnn

βLs(n)
]1/2p0

. (B.38)

By these definitions, we can write

Zk(sj) = Z̄k(sj) + Z̃k(sj) = (Z̄k(sj)− E[Z̄k(sj)]) + (Z̃k(sj)− E[Z̃k(sj)]),

since E [Zk(sj)] = 0, which follows from the independence between {et} and {Xt} and the

mean-zero property of {et}. This decomposition leads to

Pr

{(
max1≤j≤Qn

∣∣∣∣ 1
N(n)

∑N(n)

k=1
Zk(sj)

∣∣∣∣ > η̄n

)
∩ Jn(β)

}
≤ Pr

{(
max1≤j≤Qn

∣∣∣∣ 1
N(n)

∑N(n)

k=1
(Z̄k(sj)− E[Z̄k(sj)])

∣∣∣∣ > η̄n/2

)
∩ Jn(β)

}
+ Pr

{(
max1≤j≤Qn

∣∣∣∣ 1
N(n)

∑N(n)

k=1
(Z̃k(sj)− E[Z̃k(sj)])

∣∣∣∣ > η̄n/2

)
∩ Jn(β)

}
. (B.39)

We use the Bernstein inequality for deriving the convergence of the first term on the RHS

of (B.39). To do so, we note that {Z̄k(sj)−E[Z̄k(sj)]} is an independent sequence of zero-mean

random variables, satisfying

|Z̄k(sj)− E
[
Z̄k(sj)

]
| ≤ 2κn, uniformly over k and j, (B.40)

and

Var
[
Z̄k(sj)

]
= E

[
Z̄2
k(sj)

]
− {E

[
Z̄k(sj)

]
}2 ≤ E

[
Z̄2
k(sj)

]
≤ 2E

[
Z2
k(sj)

]
≤M1h

−1, (B.41)

where M1 is independent of k and j (the last inequality follows form Lemma B.3). From (B.41),

for any q ≥ 1, we have uniformly for 1 ≤ j ≤ Qn,∑q

k=1
Var[Z̄k(sj)] ≤M1qh

−1. (B.42)

Recalling the definitions of η̄n and κn, the upper bound of Qn, and the condition (1/h) < nβ−ε0

in Assumption 2(iii), we have

hκnη̄n = h×√ηh−1+1/2p0

[
Qnn

βLs(n)
]1/2p0

× η
√

(log n) /[nβLs(n)h]

≤ η3/2 ×
[
C4L∗(n) (log n)−1/2 (Ls(n))1/2

]1/2p0 √
(log n) /Ls(n)× n(−2p0ε0−ε0+4)/4p0 .

Therefore, by the property of slowly varying functions, we can easily see that

hκnη̄n = η3/2 × o (1) , (B.43)
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since −2p0ε0 − ε0 + 4 < 0⇐⇒ p0 > (2/ε0)− (1/2).

Given (B.40), (B.42) and (B.43), we use the Bernstein inequality for independent random

variables (page 102, van der Vaart and Wellner, 1996). That is, for some C1, C2 ∈ (0,∞) given

in Lemma B.4, we have

Pr

{(
max1≤j≤Qn

∣∣∣∣ 1
N(n)

∑N(n)

k=1

(
Z̄k(sj)− E

[
Z̄k(sj)

])∣∣∣∣ > η̄n/2

)
∩ Jn(β)

}
≤
∑Qn

j=1

∑C2nβLs(n)

q=C1nβLs(n)
Pr
{∣∣∣q−1

∑q

k=1

(
Z̄k(sj)− E

[
Z̄k(sj)

])∣∣∣ > η̄n/2
}

≤
∑Qn

j=1

∑C2nβLs(n)

q=C1nβLs(n)
2 exp

{
− q2(η̄n/2)2

2
∑q

k=1Var
[
Z̄k(sj)

]
+ (2/3) (2κn) q(η̄n/2)

}

≤
∑Qn

j=1

∑C2nβLs(n)

q=C1nβLs(n)
2 exp

{
− q(η̄n/2)2h

2M1 + (2/3)hκnη̄n

}
≤ Qn

∑C2nβLs(n)

q=C1nβLs(n)
2 exp

{
−qη

2 (log n) /[4nβLs(n)]

2M1 + η3/2 × o (1)

}
≤ Qn × C2n

βLs(n)× 2 exp
{
− (1/4) η1/2 × q (log n) /nβLs(n)

}∣∣∣
q=C1nβLs(n)

≤ Qn × C2n
βLs(n)× 2× n−(C1/4)η1/2 → 0 as n→∞, (B.44)

where the convergence in the last line holds for η large enough since the growing rate of Qn is

at most of polynomial order of n.

We now investigate the second term on the RHS of (B.39), using the Markov inequality. To

do so, notice that by Lemma B.3 and (B.37),

E[|Z̃k(sj)|] = E [|Zk(sj)I(|Zk(sj)| ≥ κn)|] ≤ E[|Zk(sj)|2p0 κ−2p0+1
n ] ≤ CZ̃ (hκn)−2p0+1 ,

for some positive constant CZ̃ which is independent of k and j. Therefore, for n large enough,

we have

E[|Z̃k(sj)|] ≤ CZ̃ (hκn)−2p0+1 ≤ CZ̃η
−p0+1/2 × C−1+1/2p0

3 [(log n) /Ls (n) (L∗(n))2/3]1/2−1/4p0

×h(1/2)−1/4p0n−(4−β)(2p0−1)/4p0 ≤ η̄n/6, (B.45)

where the second inequality uses the lower bound of Qn (given in (B.29)), and the last inequality

holds (for n large enough) since η̄n = η (log n)1/2 [nβLs(n)h
]−1/2

,

(1/2)− 1/4p0 > 0 and (4− β) (2p0 − 1) /4p0 > β/2,

for any positive integer p0 ≥ 1 and β ∈ [0, 1]. The inequality (B.45) implies that

Pr{|Z̃k(sj)− E[Z̃k(sj)]| > η̄n/2} ≤ Pr{|Z̃k(sj)| > η̄n/3}

≤ Pr {|Zk(sj)| ≥ κn} ≤ E[|Zk(sj)|2p0 ]κ−2p0
n ≤M2h

−2p0+1κ−2p0
n ,

for some M2 (independent of j, k and n), where the second inequality follows from the definition

of Z̃k(sj); the third follows from the Markov inequality, and the last follows from the result of
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Lemma B.3. Using this inequality, we can obtain the following bound:

Pr

{(
max1≤j≤Qn

∣∣∣∣ 1
N(n)

∑N(n)

k=1
(Z̃k(sj)− E[Z̃k(sj)])

∣∣∣∣ > η̄n/2

)
∩ Jn(β)

}
≤ Pr

{
max1≤j≤Qn max1≤k≤C2nβLs(n) |Z̃k(sj)− E[Z̃k(sj)]| > η̄n/2

}
≤
∑Qn

j=1

∑C2nβLs(n)

k=1
Pr
{
|Z̃k(sj)− E[Z̃k(sj)]| > η̄n/2

}
≤ Qn × C2n

βLs(n)×M2h
−2p0+1κ−2p0

n = C2M2η
−p0 , (B.46)

where the last equality follows from the definition of κn in (B.38). By letting η large enough,

the majorant side can be made arbitrarily close to zero. Now, (B.39), (B.44) and (B.46) implies

the desired result (B.36).

Finally, we consider the two edge terms on the RHS of (B.35): Z0(sj)/N(n) and Z(n)(sj)/N(n).

For the former, observe that

E[|Z0 (sj)|2p0 ] ≤ (CeL̄)2p0

h2p0

∫
Ey

[{∑τ

t=0
1Nsj (Xt)

}2p0
]
λ (dy)

= O
(
h−2p0

)
×
∫

Ey

[{∑∞

t=0
Bt1Nsj (Xt)

}2p0
]
λ (dy)

= O
(
h−2p0

)
×
∑2p0

r=1

∑
l∈Λ2p0,r

(2p0)!

l1! · · · lr!

∫
Ey[Ĩr(x)]λ (dy) , (B.47)

where λ is the initial distribution of X0, the inequality holds by the same arguments as in the

proof of B.3 (the independence between {(Xt, Tt)} and {et} are used and Ce defined in that

proof), the two equalities hold with Bt and Λ2p0,r as defined in the proof of Lemma B.1, and

Ĩr(x) =
∑∞

t1=0

∑∞

t2=t1+1
· · ·
∑∞

tr=tr−1+1
Bt1Bt2 · · · Btr1Nsj (Xt1) 1Nsj (Xt2) · · · 1Nsj (Xtr) .

Given (B.47), by arguments analogous to those in the proof of Lemma B.1 (with the aid of the

result of Lemma B.2), as well as by the fact that λ is a (probability) measure, we have

E[|Z0 (sj)|2p0 ] ≤ M̄0h
−2p0 ,

for some constant M̄0 which depends on p0 but is independent of h and sj , and thus

max1≤j≤Q(n) E[|Z0(sj)|2p0 ] ≤ M̄0h
−2p0 , (B.48)

Then, by Lemma B.4 and the Markov inequality with this result (B.48), we have

Pr
{(

1
N(n) max1≤j≤Qn |Z0(sj)| > η̄n

)
∩ Jn(β)

}
≤
∑Qn

j=1
Pr
{

1
C1nβLs(n)

|Z0(sj)| > η̄n

}
≤
∑Qn

j=1

E[|Z0(sj)|2p0 ]

[C1nβLs(n)η̄n]
2p0

= O
( Qnh

−2p0

[nβLs(n)η̄n]
2p0

)
= O

( L∗(n)n2−(3/2)ε0−p0ε0

η2p0 [Ls(n) (log n)]p0+1/2

)
= o(1),

(B.49)

where the equalities use the bound of Qn in (B.29) and the condition that (1/h) < nβ−ε0 , and

the last convergence result holds for any η > 0 since 2−(3/2) ε0−p0ε0 < 0⇔ p0 > (2/ε0)−(3/2),

which is implied by the stated condition p0 > (2/ε0)− (1/2).
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To investigate the component Z(n)(sj)/N(n), we note that∑n

t=τN(n)+1
|Γt(sj)| ≤

∑τN(n)+1

t=τN(n)+1
|Γt(sj)|, (B.50)

since n ≤ τN(n)+1. This, together with Lemma B.3, implies that

max1≤j≤Qn E[
∣∣Z(n)(sj)

∣∣2p0 ] ≤ max1≤j≤Qn E

[(∑τN(n)+1

t=τN(n)+1
Lh,x(Xt)et

)2p0
]

= O(h−2p0+1).

In the same way as for deriving (B.49), we can obtain

Pr
{(

1
N(n) max1≤j≤Qn |Z(n)(sj)| > η̄n

)
∩ Jn(β)

}
= o(1). (B.51)

In view of (B.35), (B.36), (B.49) and (B.51), we have proved the result (B.33), completing

the proof of Theorem 3.1. �

Proof of Theorem 3.2.

Let

η∗n = 1/
√
nβ−ε0h and η̄∗n = η∗n × η, (B.52)

where η is an arbitrary positive constant, and Γt(x) be defined as in the proof of Theorem 3.1.

Define J∗n(β) as the following event:

J∗n(β) = {nβ−ξ1ε0 � N(n)� nβ+ξ1ε0},

where ξ1 ∈ (0, 1) is a positive constant which is chosen later, and the symbol “an � bn” means

that lim
n→∞

an
bn

= 0. By (B.20) of Lemma B.4, in order to prove (3.7), it suffices to show that for

any η > 0,

Pr
{(

sup|x|≤Tn

∣∣∣ 1
N(n)

∑n

t=0
Γt(x)

∣∣∣ > 3η̄∗n

)
∩ J∗n(β), infinitely often

}
= 0. (B.53)

As in the proof of Theorem 3.1, we construct a finite number of subsets {S∗j }
Un
j=1 such that

{x : |x| ≤ Tn} ⊂
⋃Un
j=1 S

∗
j , each S∗j is centered at s∗i with radius r∗n, where Un is the number of

these subsets, and

r∗n = nβ−ξ1ε0
h2

n
× η∗n and Un = [Tn/r∗n] + 1. (B.54)

From this definition, we have

C5L∗ (n)h−3/2n2−(3/2)β+ξ1ε0−(1/2)ε0 ≤ Un ≤ C6L∗ (n)h−3/2n2−(3/2)β+ξ1ε0−(1/2)ε0 , (B.55)

for some constants 0 < C5 < C6 <∞.

Similarly to the derivation in (B.30), we have

sup
|x|≤Tn

∣∣∣∣ 1

N(n)

∑n

t=0
Γt(x)

∣∣∣∣ ≤ max
1≤j≤Un

sup
x∈S∗

j

1

N(n)

∑n

t=0

∣∣Γt(x)− Γt(s
∗
j )
∣∣

+ max
1≤j≤Un

∣∣∣∣ 1

N(n)

∑n

t=0
Γt(s

∗
j )

∣∣∣∣ = Πn,1 + Πn,2. (B.56)
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The first component Πn,1 can be bounded as

Πn,1 ≤
1

N (n)

∑n

t=0
|et| × CL

r∗n
h2

=
nβ−ξ1ε0

N (n)
×Oa.s. (η∗n) = oa.s. (η

∗
n) in J∗n(β), (B.57)

which follows from the fact that
∑n

t=0 |et| = Oa.s. (n) (by the strong law of large numbers), the

definition of r∗n in (B.54), and (B.20) in Lemma B.4. We next consider the component Πn,2.

Here, we again apply the independence-decomposition and truncation techniques as in the proof

of Theorem 3.1. Let Zk be defined as in (B.34). Then, we have

Πn,2 ≤ max
1≤j≤Un

1

N(n)

∣∣Z0(s∗j )
∣∣+ max

1≤j≤Un

1

N(n)

∣∣∣∣∑N(n)

k=1
Zk(s

∗
j )

∣∣∣∣+ max
1≤j≤Un

1

N(n)

∣∣Z(n)(s
∗
j )
∣∣ . (B.58)

We subsequently show that for any η > 0 (recall that η̄∗n = η∗n × η),∑∞

n=1
Pr

{(
max1≤j≤Un

∣∣∣∣ 1
N(n)

∑N(n)

k=1
Zk(s

∗
j )

∣∣∣∣ > η̄∗n

)
∩ J∗n(β)

}
<∞, (B.59)∑∞

n=1
Pr
{(

max1≤j≤Un
1

N(n) |Z0(s∗j )| > η̄∗n

)
∩ J∗n(β)

}
<∞, (B.60)∑∞

n=1
Pr
{(

max1≤j≤Un
1

N(n) |Z(n)(s
∗
j )| > η̄∗n

)
∩ J∗n(β)

}
<∞, (B.61)

These three results, together with the Borel-Cantelli lemma, (B.56) and (B.57), imply the desired

result (B.53). We complete the proof by verifying (B.59)-(B.61), respectively.

Proof of (B.59). Let

Ẑk(s
∗
j ) = Zk(s

∗
j )I
(
|Zk(s∗j )| < κ∗n

)
, Zk(s

∗
j ) = Zk(s

∗
j )− Ẑk(s∗j ), (B.62)

and {κ∗n} be a sequence of positive real numbers defined by

κ∗n =
[
n(1+c)Unn

β+ξ1ε0h−2m0+1
]1/2m0

, (B.63)

where c is a positive constant (which can be very close to zero). Given (B.62), we have

Pr

{(
max1≤j≤Un

∣∣∣∣ 1
N(n)

∑N(n)

k=1
Zk(s

∗
j )

∣∣∣∣ > η̄∗n

)
∩ J∗n(β)

}
≤ Pr

{(
max1≤j≤Un

∣∣∣∣ 1
N(n)

∑N(n)

k=1

(
Ẑk(s

∗
j )− E[Ẑk(s

∗
j )]
)∣∣∣∣ > η̄∗n/2

)
∩ J∗n(β)

}
+ Pr

{(
max1≤j≤Un

∣∣∣∣ 1
N(n)

∑N(n)

k=1

(
Zk(s

∗
j )− E[Zk(s

∗
j )]
)∣∣∣∣ > η̄∗n/2

)
∩ J∗n(β)

}
. (B.64)

We first show the convergence of the first term on the RHS of (B.64) by using the Bernstein

inequality. For this, note that by the previous arguments in the proof of Theorem 3.1, {Ẑk(s∗j )}

is a sequence of i.i.d. random variables, |Ẑk(s∗j )| is bounded by 2κ∗n, and the variance bound is

given by ∑q

k=1
Var[Ẑk(s

∗
j )] ≤M3qh

−1,

for any q ≥ 1 with some constant M3 > 0 (independent of j and n). By the definitions of η̄∗n

and κ∗n, the upper bound of Un and the condition that 1/h < nβδ−ε0 , we have

hκ∗nη̄
∗
n = h×

[
n(1+c)Unn

β+ξ1ε0h−2m0+1
]1/2m0

× η
√

1/(nβ−ε0h)

≤ η × [C6L∗ (n)]1/2m0 n[3−ε0−(1/2)β(1−δ)−β(1−δ)m0+c+2ξ1ε0]/2m0 .
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Since it is supposed that m0 >
3−ε0
β(1−δ) −

1
2 , we can let ξ1 > 0 and c > 0 small enough such that

m0 >
3−ε0
β(1−δ) −

1

2
+ c+2ξ1ε0

β(1−δ) ,

which is equivalent to

3− ε0 − (1/2)β (1− δ)− β (1− δ)m0 + c+ 2ξ1ε0 < 0

Therefore, given such a choice of (ξ1, c), it holds that

hκ∗nη̄
∗
n = η × o (1) .

Then, by the Bernstein inequality,

∑∞

n=1
Pr

{(
max1≤j≤Un

∣∣∣∣ 1
N(n)

∑N(n)

k=1
(Ẑk(s

∗
j )− E[Ẑk(s

∗
j )])

∣∣∣∣ > η̄∗n/2

)
∩ J∗n(β)

}
≤
∑∞

n=1

∑Un

j=1

∑nβ+ξ1ε0

q=nβ−ξ1ε0
Pr
{∣∣∣q−1

∑q

k=1
(Ẑk(s

∗
j )− E[Ẑk(s

∗
j )])
∣∣∣ > η̄∗n/2

}
≤
∑∞

n=1

∑Un

j=1

∑nβ+ξ1ε0

q=nβ−ξ1ε0
2 exp

{
− q2(η̄∗n/2)2

2
∑q

k=1Var[Ẑk(s
∗
j )] + (2/3) (2κ∗n) q(η̄∗n/2)

}

≤
∑∞

n=1

∑Un

j=1

∑nβ+ξ1ε0

q=nβ−ξ1ε0
2 exp

{
− q(η̄∗n/2)2h

2M3 + (2/3)κ∗nη̄
∗
nh

}
=
∑∞

n=1
Un
∑nβ+ξ1ε0

q=nβ−ξ1ε0
2 exp

{
− qη2/[4nβ−ε0 ]

2M3 + η × o (1)

}
≤
∑∞

n=1
Un × nβ+ξ1ε0 × 2 exp

{
−[η2/(9M3)]q/nβ−ε0

}∣∣∣
q=nβ−ξ1ε0

≤
∑∞

n=1
Un × nβ+ξ1ε0 × 2 exp

{
−[η2/(9M3)]n(1−ξ1)ε0

}
→ 0, (B.65)

where the equality in the fifth line holds for sufficiently large n, and the last convergence holds

for any η > 0 since the growing rate of Un is at most of polynomial order of n and ξ1 ∈ (0, 1).

To check the convergence of the second term on the RHS of (B.64), we note the moment

bound:

E
[
Zk(s

∗
j )
]

= E
[
Zk(s

∗
j )I
(
|Zk(s∗j )| ≥ κ∗n

)]
≤ CZ (hκ∗n)−2m0+1 ,

where CZ is some positive constant, whose existence is due to Lemma B.3. This implies

E
[
Zk(s

∗
j )
]
≤ CZ (hκ∗n)−2m0+1

≤ [C5L∗ (n)](−1+1/2m0) h−(1/2)+1/4m0n−[3−(1/2)ε0−(1/2)β+c+2ξ1ε0](1−1/2m0)

≤ η̄∗n/6(= ηh−1/2n−(β−ε0)/2/6) (B.66)

where the second inequality uses the lower bound of Un given in (B.55), and the third inequality

holds since

[3− (1/2) ε0 − (1/2)β + c+ 2ξ1ε0] (1− 1/2m0) > (β − ε0) /2⇔ m0 >
1
2 + β−ε0

4(3−β+c+2ξ1ε0) ,
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which is always satisfied for m0 ≥ 1 (since 1
8 >

β−ε0
4(3−β+c+2ξ1ε0)). Using (B.66) and the Markov

inequality, we have

Pr
{
|Zk(s∗j )− E[Zk(s

∗
j )]| > η̄∗n/2

}
≤ Pr

{
|Zk(s∗j )| > η̄∗n/3

}
≤ Pr

{
|Zk(s∗j )| ≥ κ∗n

}
≤ E[|Zk(s∗j )|2m0 ](κ∗n)−2m0 ≤M4h

−2m0+1(κ∗n)−2m0 ,

uniformly over j, k, where the last inequality holds uses

E[|Zk(s∗j )|2m0 ] ≤M4h
−2m0+1, (B.67)

for some positive constant M4 (independent of j, k and n), which follows from Lemma B.3.

Therefore,∑∞

n=1
Pr

{(
max1≤j≤U(n)

∣∣∣∣ 1
N(n)

∑N(n)

k=1

(
Zk(s

∗
j )− E[Zk(s

∗
j )]
)∣∣∣∣ > η̄∗n/2

)
∩ J∗n(β)

}
≤
∑∞

n=1
Pr
{

max1≤j≤U(n) max1≤k≤nβ+ξ1ε0

∣∣Zk(s∗j )− E[Zk(s
∗
j )]
∣∣ > η̄∗n/2

}
≤
∑∞

n=1

∑
Un

j=1

∑nβ+ξ1ε0

k=1
Pr
{∣∣Zk(s∗j )− E[Zk(s

∗
j )]
∣∣ > η̄∗n/2

}
≤
∑∞

n=1
Un × nβ+ξ1ε0 ×M4h

−2m0+1(κ∗n)−2m0 = M4

∑∞

n=1
n−(1+c) <∞, (B.68)

for any arbitrary η > 0. By (B.64), (B.65) and (B.68), we now have obtained the desired result

(B.59).

Proofs of (B.60) and (B.61). We derive the convergence properties of the two edge

terms on the RHS of (B.58). By the same arguments as those for deriving (B.48), we have

max1≤j≤U(n) E[|Z0(s∗j )|2m0 ] ≤ M̃0h
−2m0 ,

for some positive constant M̃0. Given this, similarly to the derivation of (B.49), we have∑∞

n=1
Pr
{(

1
N(n) max1≤j≤Un |Z0(s∗j )| > η̄∗n

)
∩ J∗n(β)

}
≤
∑∞

n=1

∑Un

j=1
Pr
{

1
nβ−ξ1ε0

|Z0(s∗j )| > η̄∗n

}
≤
∑∞

n=1

∑Un

j=1

E[|Z0(s∗j )|2m0 ]

(η̄∗nn
β−ξ1ε0)

2m0

≤
∑∞

n=1

UnM̃0h
−2m0

(η̄∗nn
β−ξ1ε0)

2m0
≤ C6

η2m0

∑∞

n=1
L∗ (n)n(1/2)(1+3βδ)−2ε0+ξ1ε0−m0[β(1−δ)+2ε0(1−ξ1)] <∞,

(B.69)

where the inequalities use the bound of Un in (B.55) and the condition that (1/h) < nβδ−ε0 ,

and the last inequality can be verified by the stated condition m0 >
3−ε0
β(1−δ) −

1

2
= 3−ε0−β(1−δ)/2

β(1−δ)

and 2ε0 (1− ξ1) > 0 since

(1/2) (1 + 3βδ)− 2ε0 + ξ1ε0 −m0 [β (1− δ) + 2ε0 (1− ξ1)] < −1

⇔ m0 >
3− ε0 − β (1− δ) /2
β (1− δ) + 2ε0 (1− ξ1)

+
− (3/2) + β [(1/2) + δ]− ε0 (1− ξ1)

β (1− δ) + 2ε0 (1− ξ1)︸ ︷︷ ︸
<0

.

Now, we have obtained the desired result (B.60).

We can verify (B.61) by arguments similar to those for deriving (B.51) and (B.69), and thus

omit details for brevity. The proof of Theorem 3.2 is now completed. �
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Proof of Theorem 4.1.

Similarly to the decomposition of (B.35) in the proof of Theorem 3.1, we have

p̂n(x) =
1

N(n)

∑N(n)

k=1
Vk(x) +

1

N(n)
V0(x) +

1

N(n)
V(n)(x), (B.70)

where Vk(x) = 1
h

∑τk
t=τk−1+1K

(
Xt−x
h

)
. Note that {Vk(x), k ≥ 1} is a sequence of i.i.d. random

functions of x. Then, we have

p̂n(x)− ps(x) =
1

N(n)

∑N(n)

k=1
(Vk(x)− E[V1(x)]) + (E[V1(x)]− ps(x))

+
1

N(n)
V0(x) +

1

N(n)
V(n)(x). (B.71)

We next consider the four terms on the RHS of (B.71) separately.

Applying Lemma B.1 to Vk(x), and following the same argument as in the proof of Theorem

3.1, given 1/h < nβ−ε0 , we can prove

sup
|x|≤Tn

∣∣∣∣ 1

N(n)

∑N(n)

k=1
(Vk(x)− E[V1(x)])

∣∣∣∣ = OP (
√

(log n) /nβLs(n)h). (B.72)

Similarly, following the same argument as in the proof of Theorem 3.2, we can also obtain

sup
|x|≤Tn

∣∣∣∣ 1

N(n)

∑N(n)

k=1
(Vk(x)− E[V1(x)])

∣∣∣∣ = o(1/
√
nβ−ε0h) a.s., (B.73)

under the stated condition 1/h < nβδ−ε0 .

We next consider the second term on the RHS of (B.71). By using (A.7) and (A.8) in

Appendix A, and the Taylor expansion, we have

E [Vk(x)] = E

[∑τk

t=τk−1+1

1

h
K

(
Xt − x
h

)]
= Eν

[∑τ

t=0

1

h
K

(
Xt − x
h

)]
=

∫
1

h
K

(
u− x
h

)
νGs,ν(du) =

∫
1

h
K

(
u− x
h

)
πs(du)

=

∫
K (u) ps(x+ hu)du = ps(x) + p′s(x)h

∫
uK(u)du

+ p′′s(x)h2

∫
u2K(u)du+

∫
(hu)3 p′′′s (x̃)K(u)du,

where Gs,ν and πs are defined in (2.7), and x̃ is on the line segment connecting x to x+ hu (x̃

may depend on u and h). This then implies that

supx∈R |E [Vk(x)]− ps(x)|

≤ h2 supx∈R
∣∣p′′s(x)

∣∣ ∫ u2K(u)du+ h3 supx∈R
∣∣p′′′s (x)

∣∣ ∫ u3K(u)du = O
(
h2
)
. (B.74)

The convergence of the last two terms on the RHS of (B.71) can be proved by the same

arguments as those for the corresponding terms in the proofs of Theorems 3.1 and 3.2. For the

case where 1/h < nβ−ε0 , following the proofs of (B.49) and (B.51), we can in the same way

verify that the two last terms are OP (
√

(log n) /nβLs(n)h). Given 1/h < nβδ−ε0 , we can verify

the two terms are o(1/
√
nβ−ε0h) a.s. analogously to the proofs of (B.60) and (B.61). Given

these, we now have verified the desired results (4.2) and (4.3). �
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Proof of Theorem 4.2.

Here, we only prove the a.s. convergence result (4.12) with the help of Theorem 3.2. The proof

of the probability-convergence result (4.11) can be done quite analogously by using Theorem

3.1, and is thus omitted for brevity.

By the definition of m̂n(x), we can write

m̂n(x) =
∑n

t=0
wn,t(x)et +

∑n

t=0
wn,t(x)m(Xt).

By Theorem 3.2 and (4.3) of Theorem 4.1, we have

sup|x|≤Tn

∣∣∣∣ 1

N(n)h

∑n

t=0
K

(
Xt − x
h

)
et

∣∣∣∣ = o(1/
√
nβ−ε0h) a.s.,

sup|x|≤Tn

∣∣∣∣ 1

N(n)h

∑n

t=0
K

(
Xt − x
h

)
− ps(x)

∣∣∣∣ = O(h2) + o(1/
√
nβ−ε0h) a.s.,

respectively. These two, together with the definition of δn = inf |x|≤Tn ps(x), imply that

sup|x|≤Tn

∣∣∣∑n

t=0
wn,t(x)et

∣∣∣
= sup|x|≤Tn

∣∣∣ 1

(1/N(n)h)
n∑
t=0

K
(
Xt−x
h

)
∣∣∣× ∣∣∣ (1/N(n)h)

∑n

t=0
K
(
Xt−x
h

)
et

∣∣∣
≤ sup|x|≤Tn

1

ps(x) + oa.s. (1)
× sup|x|≤Tn

∣∣∣ (1/N(n)h)
∑n

t=0
K
(
Xt−x
h

)
et

∣∣∣ = o(δ−1
n /
√
nβ−ε0h) a.s.

(B.75)

On the other hand, by using the Taylor expansion, we have

∑n

t=0
wn,t(x)m(Xt)−m(x) =

1

p̂s(x)

[
1

N(n)h

∑n

t=0
K

(
Xt − x
h

)
m(Xt)−m(x)p̂s(x)

]
=

1

p̂s(x)

1

N(n)h

∑n

t=0
K

(
Xt − x
h

)
[m(Xt)−m(x)]

=
m′(x)h

p̂s(x)

1

N(n)h

∑n

t=0
K

(
Xt − x
h

)(
Xt − x
h

)
+

h2

2p̂s(x)

1

N(n)h

∑n

t=0
m′′(x+ ϑt(Xt − x))K

(
Xt − x
h

)(
Xt − x
h

)2

= Ξn,1(x) + Ξn,2(x), (B.76)

for some 0 ≤ ϑt ≤ 1.

By using the fact that
∫
uK(u)du = 0, we can verify

sup|x|≤Tn

∣∣∣ 1

N(n)h

∑n

t=0
K

(
Xt − x
h

)(
Xt − x
h

) ∣∣∣ = O(h) + o(1/
√
nβ−ε0h) a.s., (B.77)

whose proof is quite analogous to the proof of Theorem 4.1, and is omitted for brevity. Therefore,

we have

sup|x|≤Tn |Ξn,1(x)| = ρ1,nh
[
O(h) + o(1/

√
nβ−ε0h)

]
a.s. (B.78)
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By using analogous arguments to those in the proof of Theorem 4.1 with the fact that∫
u3K (u) du = 0, we also have

sup|x|≤Tn

∣∣∣∣∣ 1

N(n)h

∑n

t=0
K

(
Xt − x
h

)(
Xt − x
h

)2

− ps(x)

∫
u2K (u) du

∣∣∣∣∣
= O(h2) + o(1/

√
nβ−ε0h) a.s., (B.79)

and therefore,

sup|x|≤Tn |Ξn,2(x)|

≤ h2
sup|x|≤Tn |m

′′(x)|
2p̂s(x)

× sup|x|≤Tn
1

N(n)h

∑n

t=0
K

(
Xt − x
h

)(
Xt − x
h

)2

︸ ︷︷ ︸
=Oa.s.(1)

= O
(
ρ2,nh

2
)
a.s.

(B.80)

By the definition of m̂n(x) and (B.75)-(B.80), we can obtain

|m̂n(x)−m (x)| ≤ sup|x|≤Tn

∣∣∣∑n

t=0
wn,t(x)et

∣∣∣+ sup|x|≤Tn |Ξn,1(x)|+ sup|x|≤Tn |Ξn,2(x)|

= o(1/δn
√
nβ−ε0h) + ρ1,nh

[
O(h) + o(1/

√
nβ−ε0h)

]
+O

(
ρ2,nh

2
)

= o([δ−1
n + ρ1,nh]/

√
nβ−ε0h) +O([ρ1,n + ρ2,n]h2) a.s.,

which is the desired result (4.12). Now, the proof is completed. �

Proof of Theorem 4.3.

We only prove (4.15) since the proof of (4.14) is analogous. By the definition of m̃n(x), we can

write

m̃n(x) =
∑n

t=0
w̃n,t(x)et +

∑n

t=0
w̃n,t(x)m(Xt).

We next consider the two terms on the RHS of the above equation separately. To do so, recall

that

Sn,j(x) =
1

N(n)h

∑n

t=0
K

(
Xt − x
h

)(
Xt − x
h

)j
for j = 0, 1, 2. Then, by Theorem 4.1, and (B.77) and (B.79) in the proof of Theorem 4.2, we

have uniformly over |x| ≤ Tn,

Sn,0(x) = ps(x) +O(h2) + o(1/
√
nβ−ε0h) a.s., (B.81)

Sn,1(x) = O(h) + o(1/
√
nβ−ε0h) a.s., (B.82)

Sn,2(x) = ps(x)µ2 +O(h2) + o(1/
√
nβ−ε0h) a.s., (B.83)

where µ2 =
∫∞
−∞ x

2K(x)dx.

By arguments analogous to those in the proof of Theorem 4.1, we also have uniformly over

|x| ≤ Tn,

1

N(n)h

∑n

t=0

∣∣∣∣∣
(
Xt − x
h

)j
K

(
Xt − x
h

)∣∣∣∣∣ = ps(x)

∫ ∣∣ujK (u)
∣∣ du+O(h) + o(1/

√
nβ−ε0h) a.s.,

(B.84)
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for j = 2, 3.

Given these preparations, we may show that∑n

t=0
w̃n,t(x)et = o(δ−1

n /
√
nβ−ε0h) a.s., (B.85)∑n

t=0
w̃n,t(x)m(Xt) = O(ρ2,nδ

−1
n h2) a.s., (B.86)

whose proofs are provided below. These two convergence results imply the conclusion of the

theorem (4.15) as desired.

Proof of (B.85). Recalling the definitions of w̃n,t(x) and Sn,j(x), we can write

∑n

t=0
w̃n,t(x)et =

[ 1
N(n)h

∑n
t=0K

(
Xt−x
h

)
et]Sn,2(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

+
[ 1
N(n)h

∑n
t=0K

(
Xt−x
h

) (
Xt−x
h

)
et]Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

.

By applying Theorem 3.2 with L (u) = K (u)uj , we have as n→∞,

sup
|x|≤Tn

∣∣∣∣∣ 1

N(n)h

∑n

t=0
K

(
Xt − x
h

)(
Xt − x
h

)j
et

∣∣∣∣∣ = o(1/
√
nβ−ε0h) a.s., (B.87)

for j = 1, 2. Let bn,0(x) = Sn,0(x)− ps(x) and bn,2(x) = Sn,2(x)− ps(x)µ2. Note that

inf |x|≤Tn
∣∣p−1
s (x)bn,j (x)

∣∣ = o (1) for j = 0, 2, inf |x|≤Tn
∣∣p−1
s (x)Sn,1(x)

∣∣ = o (1) ,

by (B.81)–(B.83). Then, using (B.87), we have

sup
|x|≤Tn

∣∣∣∣∣ [
1

N(n)h

∑n
t=0K

(
Xt−x
h

)
et]Sn,2(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

∣∣∣∣∣ = sup
|x|≤Tn

∣∣∣∣∣ [ 1
N(n)h

∑n
t=0K

(
Xt−x
h

)
et][ps(x)µ2 + bn,2 (x)]

[ps(x) + bn,0 (x)] [ps(x)µ2 + bn,2 (x)] + S2
n,1(x)

∣∣∣∣∣
= sup
|x|≤Tn

∣∣∣∣∣ [p−1
s (x) 1

N(n)h

∑n
t=0K

(
Xt−x
h

)
et][µ2 + p−1

s (x)bn,2 (x)][
1 + p−1

s (x)bn,0 (x)
] [
µ2 + p−1

s (x)bn,2 (x)
]

+ p−2
s (x)S2

n,1(x)

∣∣∣∣∣ = o(δ−1
n /
√
nβ−ε0h) a.s.,

(B.88)

and

sup
|x|≤Tn

∣∣∣∣∣ [
1

N(n)h

∑n
t=0

(
Xt−x
h

)
K
(
Xt−x
h

)
et]Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

∣∣∣∣∣
= sup
|x|≤Tn

∣∣∣∣∣ [p−1
s (x) 1

N(n)h

∑n
t=0

(
Xt−x
h

)
K
(
Xt−x
h

)
et]p

−1
s (x)Sn,1(x)[

1 + p−1
s (x)bn,0 (x)

] [
µ2 + p−1

s (x)bn,2 (x)
]

+ p−2
s (x)S2

n,1(x)

∣∣∣∣∣ = o(δ−1
n /
√
nβ−ε0h) a.s.,

(B.89)

which lead to the desired result (B.85).

Proof of (B.86). Let

K̃x,h (Xt) =
1

h
K

(
Xt − x
h

)[
Sn,2(x)−

(
Xt − x
h

)
Sn,1(x)

]
.

Then, look at

∑n

t=0
w̃n,t(x)m(Xt)−m(x) =

1
N(n)h

∑n
t=0 K̃x,h (Xt) [m(Xt)−m(x)]

Sn,0(x)Sn,2(x)− S2
n,1(x)

.
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The denominator of the RHS can be written as

[
Sn,0(x)Sn,2(x)− S2

n,1(x)
]−1

=
p−2
s (x)[

1 + p−1
s (x)bn,0 (x)

] [
µ2 + p−1

s (x)bn,2 (x)
]

+ p−2
s (x)S2

n,1(x)
= O(δ−2

n ) a.s.,

uniformly over |x| ≤ Tn, where the last equality uses (B.81)-(B.83) and δn = inf |x|≤Tn ps(x). We

next look at the numerator:

sup|x|≤Tn

∣∣∣∣ 1

N(n)

∑n

t=0
K̃x,h (Xt) [m(Xt)−m(x)]

∣∣∣∣
= sup|x|≤Tn

1

N(n)

∣∣∣∣m′(x)
∑n

t=0
(Xt − x) K̃x,h (Xt) +

1

2

∑n

t=0
m′′(x+ ϑ′t(Xt − x)) (Xt − x)2 K̃x,h (Xt)

∣∣∣∣
≤ sup|x|≤Tn

∣∣m′′(x)
∣∣× sup|x|≤Tn

1

2N(n)

∑n

t=0
(Xt − x)2

∣∣∣K̃x,h (Xt)
∣∣∣

= sup|x|≤Tn
∣∣m′′(x)

∣∣× 1

2N(n)

∑n

t=0
(Xt − x)2

∣∣∣∣1hK
(
Xt − x
h

)[
Sn,2(x)−

(
Xt − x
h

)
Sn,1(x)

]∣∣∣∣
≤ sup|x|≤Tn

∣∣m′′(x)
∣∣× h2

2

{
1

N(n)h

∑n

t=0

∣∣∣∣∣
(
Xt − x
h

)2

K

(
Xt − x
h

)∣∣∣∣∣ |Sn,2(x)|

+
1

N(n)h

∑n

t=0

∣∣∣∣∣
(
Xt − x
h

)3

K

(
Xt − x
h

)∣∣∣∣∣ |Sn,1(x)|

}
= sup|x|≤Tn

∣∣m′′(x)
∣∣×O (h2

)
where the first equality holds by the Taylor expansion and the continuity of m′′(·) with 0 ≤ ϑ′t ≤

1, the inequality in the third line uses the fact that
∑n

t=0 (Xt − x) K̃x,h (Xt) = 0, and the last

equality uses the results (B.82)-(B.84). Therefore,

sup|x|≤Tn

∣∣∣∑n

t=0
w̃n,t(x)m(Xt)−m(x)

∣∣∣ = O(δ−2
n )× sup|x|≤Tn

∣∣m′′(x)
∣∣×O (h2

)
= O(ρ2,nδ

−1
n h2) a.s.,

obtaining the result (B.86). Now, the proof of (4.15) is completed. �
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