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Abstract

The main contribution of this paper is to propose a bootstrap method for inference on
integrated volatility based on the pre-averaging approach of Jacod et al. (2009), where
the pre-averaging is done over all possible overlapping blocks of consecutive observations.
The overlapping nature of the pre-averaged returns implies that these are kn-dependent
with kn growing slowly with the sample size n. This motivates the application of a block-
wise bootstrap method. We show that the “blocks of blocks” bootstrap method suggested
by Politis and Romano (1992) (and further studied by Bühlmann and Künsch (1995)) is
valid only when volatility is constant. The failure of the blocks of blocks bootstrap is
due to the heterogeneity of the squared pre-averaged returns when volatility is stochastic.
To preserve both the dependence and the heterogeneity of squared pre-averaged returns,
we propose a novel procedure that combines the wild bootstrap with the blocks of blocks
bootstrap. We provide a proof of the first order asymptotic validity of this method for
percentile intervals. Our Monte Carlo simulations show that the wild blocks of blocks
bootstrap improves the finite sample properties of the existing first order asymptotic the-
ory. We use empirical work to illustrate its use in practice.
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1 Introduction

Estimation of integrated volatility is complicated by the existence of market microstructure

noise. This noise represents the discrepancy between the true efficient price of an asset and

its observed counterpart and is caused by a multitude of market microstructure effects (such

as bid-ask bounds, the discreteness of price changes and the existence of rounding errors, the

gradual response of prices to a block trade, the existence of data recording errors such as prices

entered as zero, misplaced decimal points, etc).

Realized volatility, computed as the sum of squared intraday returns, is not consistent for

integrated volatility under the presence of market microstructure noise. This has motivated

the development of alternative estimators. One popular method is the pre-averaging approach

first introduced by Podolskij and Vetter (2009) and further studied by Jacod et al. (2009).

The basic underlying idea consists of first averaging out the noise by computing pre-averaged

returns and then computing a realized volatility-like estimator using the pre-averaged returns.

Although the pre-averaged realized volatility estimator is consistent for integrated volatility,

its convergence rate is much slower than that of realized volatility and this can result in finite

sample distortions that persist even at very large sample sizes. For this reason, the bootstrap

is a useful alternative method of inference in this context.

In this paper, we propose a bootstrap method that can be used to estimate the distribution

and the variance of the pre-averaged realized volatility estimator of Jacod et al. (2009). Our

proposal is to resample the pre-averaged returns instead of resampling the original noisy returns.

To be valid, the bootstrap needs to mimic the dependence and heterogeneity properties of

the (squared) pre-averaged returns. When pre-averaging occurs over overlapping blocks of

returns, as in Jacod et al. (2009), the squared pre-averaged returns are kn-dependent, where

kn denotes the block length of the interval over which the pre-averaging is done and n denotes

the sample size. Since kn is proportional to
√
n, kn → ∞ as n → ∞, which implies that the

pre-averaged returns are strongly dependent. This suggests that a block bootstrap applied to

the pre-averaged returns is appropriate and its application amounts to a “blocks of blocks”

bootstrap, as proposed by Politis and Romano (1992) and further studied by Bühlmann and

Künsch (1995) (see also Künsch (1989)). Nevertheless, as we show here, such a bootstrap

scheme is only consistent in our setup when volatility is constant. The reason is that squared

pre-averaged returns are heterogenously distributed (in particular, their mean and variance are

time-varying) and this creates a bias term in the blocks of blocks bootstrap variance estimator

when volatility is stochastic. Thus, to handle both the dependence and heterogeneity of the

squared pre-averaged returns, we propose a novel bootstrap approach that combines the wild

bootstrap with the blocks of blocks bootstrap. We name this novel approach the wild blocks

of blocks bootstrap. Our main contribution is to show that this method consistently estimates
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the variance and the entire distribution of the pre-averaged estimator of Jacod et al. (2009).

The pre-averaging approach can also be implemented with non-overlapping intervals, as in

Podolskij and Vetter (2009). Gonçalves, Hounyo and Meddahi (2013) study the consistency of

the wild bootstrap for this estimator. The wild bootstrap exploits the asymptotic independence

of the pre-averaged returns when these are computed over non-overlapping intervals. This

method is no longer valid when overlapping intervals are used to compute pre-averaged returns

since these are strongly dependent. For this reason, a new bootstrap method is needed for

the Jacod et al.’s (2009) approach. Although the wild blocks of blocks bootstrap that we

propose here requires the choice of an additional tuning parameter (the block size), we suggest

an empirical procedure to select the block size that performs well in our simulations.

Other estimators of integrated volatility that are consistent under market microstructure

noise include the subsampling approach of Zhang et al. (2005) and the realized kernel estimator

of Barndorff-Nielsen et al. (2008) (the maximum likelihood-based estimator of Xiu (2010) is

also a recent addition to this literature). The bootstrap could also be useful for inference in the

context of these estimators. Indeed, Zhang et al. (2011) showed that the asymptotic normal

approximation is often inaccurate for the subsampling realized volatility estimator, whose finite

sample distribution is skewed and heavy tailed. They proposed Edgeworth corrections for this

estimator as a way to improve upon the standard normal approximation. Similarly, Bandi

and Russell (2011) discussed the limitations of asymptotic approximations in the context of

realized kernels and proposed an alternative solution. The main reason why we focus on the

pre-averaging approach here is that it naturally lends itself to the bootstrap. In particular,

we resample the pre-averaged returns instead of the individual returns and exploit the depen-

dence and heterogeneity properties of the pre-averaged returns to prove the consistency of the

bootstrap. In addition, the pre-averaging approach has some important advantages compared

to the preceding methods, for example it can easily estimate the integrated quarticity or other

functionals of volatility.

The rest of this paper is organized as follows. In the next section, we first introduce the

setup, our assumptions and review the existing asymptotic theory of Jacod et al. (2009). Section

3 contains the bootstrap results. In Section 3.1 we show that the blocks of blocks bootstrap

is consistent only when volatility is constant whereas Section 3.2 describes the wild blocks of

blocks bootstrap and shows its consistency under stochastic volatility and i.i.d. noise. Section

4 presents the simulation results whereas Section 5 contains an empirical application. Section

6 concludes. Two appendices are provided. Appendix A contains the tables with simulation

results whereas Appendix B is a mathematical appendix with the proofs.

A word on notation. In this paper, and as usual in the bootstrap literature, P ∗ (E∗ and

V ar∗) denotes the probability measure (expected value and variance) induced by the bootstrap

resampling, conditional on a realization of the original time series. In addition, for a sequence
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of bootstrap statistics Z∗n, we write Z∗n = oP ∗ (1) in probability, or Z∗n →P ∗
0, as n → ∞,

in probability, if for any ε > 0, δ > 0, limn→∞ P [P ∗ (|Z∗n| > δ) > ε] = 0. Similarly, we write

Z∗n = OP ∗ (1) as n → ∞, in probability if for all ε > 0 there exists a Mε < ∞ such that

limn→∞ P [P ∗ (|Z∗n| > Mε) > ε] = 0. Finally, we write Z∗n →d∗ Z as n → ∞, in probability, if

conditional on the sample, Z∗n weakly converges to Z under P ∗, for all samples contained in a

set with probability P converging to one.

2 Setup, assumptions and review of existing results

2.1 Setup and assumptions

Let X denote the latent efficient log-price process defined on a probability space (Ω0,F0, P 0)

equipped with a filtration (F0
t )t≥0 . We model X as a Brownian semimartingale process defined

by the equation

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs, t ≥ 0, (1)

where a = (at)t≥0 is an adapted càdlàg drift process, σ = (σt)t≥0 is an adapted càdlàg volatility

process and W = (Wt)t≥0 a standard Brownian motion.

The object of interest is the quadratic variation of X, i.e. the process

Ct =

∫ t

0

σ2
sds,

also known as the integrated volatility. Without loss of generality, we let t = 1 and define

C1 =
∫ 1

0
σ2
sds as the integrated volatility of X over a given time interval [0, 1], which we think

of as a given day.

The presence of market frictions such as price discreteness, rounding errors, bid-ask spreads,

gradual response of prices to block trades, etc, prevent us from observing the true efficient price

process X. Instead, we observe a noisy price process Y , observed at time points t = i
n

for

i = 0, . . . , n, given by

Yt = Xt + εt,

where εt represents the noise term that collects all the market microstructure effects.

In order to make both X and Y measurable with respect to the filtration, we define a new

probability space
(
Ω, (Ft)t≥0 , P

)
, which accommodates both processes. To this end, we follow

Jacod et al. (2009) and assume one has a second space
(
Ω1, (F1

t )t≥0 , P
1
)
, where Ω1 denotes

R[0,1] and F1 the product Borel-σ-field on Ω1. Next, let Qt be a probability measure on R
(Qt is the marginal distribution of εt). P

1 denotes the product measure ⊗t∈[0,1]Qt. The filtered

probability space
(
Ω, (Ft)t≥0 , P

)
on which the process Y lives is then defined with Ω = Ω0×Ω1,

F = F0 ×F1, Ft =
⋂
s>tF0

s ×F1
s , and P = P 0 ⊗ P 1.
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We assume that εt is centered and independent, conditionally on the efficient price process

X. In addition, we assume that the conditional variance of εt is càdlàg. Assumption 1 below

collects these assumptions.

Assumption 1.

(i) E (εt|X) = 0 and εt and εs are independent for all t 6= s, conditionally on X.

(ii) αt = E (ε2t |X) is càdlàg and E (ε8t ) <∞.

Assumption 1 amounts to Assumption (K) in Jacod et al. (2009). As they explain, this

assumption is rather general, allowing for time varying variances of the noise and dependence

between X and ε. See Jacod et al. (2009) for particular examples of market microstructure

noise that satisfy Assumption 1.

2.2 The pre-averaged estimator and its asymptotic theory

We observe Y at regular time points i
n
, for i = 0, . . . , n, from which we compute n intraday

returns at frequency 1
n
,

ri ≡ Y i
n
− Y i−1

n
, i = 1, . . . , n.

Given that Y = X + ε, we can write

ri =
(
X i

n
−X i−1

n

)
+
(
ε i
n
− ε i−1

n

)
≡rei + ∆εi,

where rei = X i
n
− X i−1

n
denotes the 1

n
-frequency return on the efficient price process. Under

Assumption 1, the order of magnitude of ∆εi ≡ ε i
n
− ε i−1

n
is OP (1) . In contrast, rei is (condi-

tionally on the path of σ and a) independent and heteroskedastic with (conditional) variance

given by
∫ i/n
(i−1)/n σ

2
sds. Thus, its order of magnitude is OP

(
n−1/2

)
. This decomposition shows

that the noise completely dominates the observed return process as n→∞, implying that the

usual realized volatility estimator is biased and inconsistent. See Zhang et al. (2005) and Bandi

and Russell (2008).

To describe the Jacod et al. (2009) pre-averaging approach, let kn be a sequence of integers

which will denote the window length over which the pre-averaging of returns is done. Similarly,

let g be a weighting function on [0, 1] such that g (0) = g (1) = 0 and
1∫
0

g (s)2 ds > 0, and assume

g is continuous and piecewise continuously differentiable with a piecewise Lipschitz derivative

g′. An example of a function that satisfies these restrictions is g (x) = min (x, 1− x) .

We introduce the following additional notation. Let

φ1 (s) =

1∫
s

g′ (u) g′ (u− s) du and φ2 (s) =

1∫
s

g (u) g (u− s) du,
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and for i = 1, 2, let ψi = φi (0) . For instance, for g (x) = min (x, 1− x), we have that ψ1 = 1

and ψ2 = 1/12.

For i = 0, . . . , n−kn+1, the pre-averaged returns Ȳi are obtained by computing the weighted

sum of all consecutive 1
n
-horizon returns over each block of size kn,

Ȳi =
kn∑
j=1

g

(
j

kn

)
ri+j.

The effect of pre-averaging is to reduce the impact of the noise in the pre-averaged return.

Specifically, as shown by Vetter (2008),

X̄i =
kn∑
j=1

g

(
j

kn

)(
X i+j

n
−X i+j−1

n

)
= OP

(√
kn
n

)
,

and

ε̄i =
kn∑
j=1

g

(
j

kn

)(
ε i+j
n
− ε i+j−1

n

)
= OP

(
1√
kn

)
.

Thus, the impact of the noise is reduced the larger kn is. To get the efficient n−1/4 rate of

convergence, Jacod et al. (2009) propose to choose a sequence of integers kn such that the

following assumption holds.

Assumption 2. For θ ∈ (0,∞), we have that

kn√
n

= θ + o
(
n−1/4

)
. (2)

This choice implies that the orders of the two terms (X̄i and ε̄i) are balanced and equal to

OP

(
n−1/4

)
. An example that satisfies (2) is kn = [θ

√
n].

Based on the pre-averaged returns Ȳi, Jacod et al. (2009) propose the following estimator

of integrated volatility,

PRVn =
1

ψ2kn

n−kn+1∑
i=0

Ȳ 2
i −

ψ1

2nθ2ψ2

n∑
i=1

r2i , (3)

where ψ1 and ψ2 are as defined above.

The first term in (3) is an average of realized volatility-like estimators based on pre-averaged

returns of length kn whereas the second term is a bias correction term. As discussed in Jacod

et al. (2009), this bias term does not contribute to the asymptotic variance of PRVn.

In order to give the central limit theorem for PRVn, we introduce the following numbers

that are associated with g,

Φij =

1∫
0

φi (s)φj (s) ds, and Ψij = −
1∫

0

sφi (s)φj (s) ds.
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For the simple function g (x) = min (x, 1− x), Φ11 = 1/6, Φ12 = 1/96 and Φ22 = 151/80640.

Under Assumption 1 and (kn, θ) satisfying (2), Jacod et al. (2009) show that as n→∞,

n1/4
(
PRVn −

∫ 1

0
σ2
sds
)

√
V

→st N(0, 1), (4)

where →st denotes stable convergence, and

V =
4

ψ2
2

∫ 1

0

(
Φ22θσ

4
s + 2Φ12

σ2
sαs
θ

+ Φ11
α2
s

θ3

)
ds

is the conditional variance of PRVn. To estimate V consistently, Jacod et al. (2009) propose

V̂n =
4Φ22

3θψ4
2

n−kn+1∑
i=0

Y
4

i +
4

nθ3

(
Φ12

ψ3
2

− Φ22ψ1

ψ4
2

) n−2kn+1∑
i=0

Y
2

i

i+2kn−1∑
j=i+kn

r2j

+
1

nθ3

(
Φ11

ψ2
2

− 2
Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

) n−2kn+1∑
i=0

r2i r
2
i+2. (5)

Together with the CLT result (4), we have that

Tn ≡
n1/4

(
PRVn −

∫ 1

0
σ2
sds
)

√
V̂n

→st N(0, 1).

We can use this feasible asymptotic distribution result to build confidence intervals for inte-

grated volatility. In particular, a two-sided feasible 100(1 − α)% level interval for
∫ 1

0
σ2
sds is

given by:

ICFeas,1−α =

(
PRVn − z1−α/2n−1/4

√
V̂n, PRVn + z1−α/2n

−1/4
√
V̂n

)
,

where z1−α/2 is such that Φ
(
z1−α/2

)
= 1−α/2, and Φ (·) is the cumulative distribution function

of the standard normal distribution. For instance, z0.975 = 1.96 when α = 0.05.

3 The bootstrap

The goal of this section is to propose a bootstrap method that can be used to consistently es-

timate the distribution of n1/4
(
PRVn −

∫ 1

0
σ2
sds
)

. This justifies the construction of bootstrap

percentile confidence intervals for integrated volatility. Although such intervals do not promise

asymptotic refinements over confidence intervals based on the asymptotic mixed normal ap-

proximation (given by ICFeas,1−α), they avoid the need to explicitly estimate the asymptotic

variance of the pre-averaged estimator. When the variance estimator is hard to compute (as

it is the case here), it is not always clear that estimating the variance is beneficial in small

samples. Thus, bootstrap percentile intervals are a very attractive method in these cases.

Gonçalves and Meddahi (2009) proposed bootstrap methods for realized volatility in the
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absence of market microstructure noise. In their ideal setting, intraday returns ri are (con-

ditionally on the volatility path) independent, but possibly heteroskedastic due to stochastic

volatility, thus motivating the use of a wild bootstrap method.

When intraday returns are contaminated by market microstructure noise, they are no longer

conditionally independent, as in Gonçalves and Meddahi (2009). This implies that the wild

bootstrap is no longer valid when applied to ri. Instead, a block bootstrap method applied to

the intraday returns would seem appropriate.

One complication arises in this context: the statistic of interest is not symmetric in the

observations and the block bootstrap generates blocks of observations that are conditionally

independent. In particular, since the first term in PRVn is an average of the squared pre-

averaged returns Ȳ 2
i , it depends on all the products of intraday returns inside blocks of size

kn. If we generate block bootstrap intraday returns, these will be independent between blocks,

implying that the bootstrap statistic may look at many pairs of intraday returns that are

independent in the bootstrap world. This not only renders the analysis very complicated

but can induce biases in the bootstrap estimator. To avoid this problem when dealing with

statistics that are not symmetric in the underlying observations, Künsch (1989), Politis and

Romano (1992) and Bühlmann and Künsch (1995) studied the “blocks of blocks” bootstrap,

where one applies the block bootstrap to appropriately pre-specified blocks of observations. In

our context, the blocks of blocks bootstrap consists of applying a traditional block bootstrap

to the squared pre-averaged returns Ȳ 2
i . As we will see next, this approach is asymptotically

valid only when volatility is constant. The reason is that when volatility is stochastic, squared

pre-averaged returns are not only dependent but also heterogeneous. The block bootstrap does

not capture this heterogeneity unless volatility is constant1. In order to capture both the time

dependence and the heterogeneity in Ȳ 2
i , we propose a novel bootstrap procedure that combines

the wild bootstrap with the block bootstrap.

Although the consistent estimator of integrated volatility is PRVn, only the first term in

PRVn drives the variance of the limiting distribution of PRVn. In particular, as Jacod et al.

(2009) have shown, the second term is a bias correction term which does not contribute to

the asymptotic variance (it only ensures that the estimator is well centered at the integrated

volatility). For this reason, our proposal is to bootstrap only the first contribution to PRVn,

P̃RV n =
1

ψ2kn

n−kn+1∑
i=0

Ȳ 2
i .

This statistic depends only on the pre-averaged returns, to which we apply a particular boot-

strap scheme. More specifically, let
{
Ȳ ∗i : i = 0, 1, . . . , n− kn + 1

}
denote a bootstrap sample

1See Gonçalves and White (2002) for a discussion of the impact of mean heterogeneity on the validity of the
block bootstrap for the sample mean.
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from
{
Ȳi : i = 0, 1, . . . , n− kn + 1

}
. The bootstrap analogue of P̃RV n is

P̃RV
∗
n =

1

ψ2kn

n−kn+1∑
i=0

Ȳ ∗2i .

Since we do not incorporate a bias correction term in the bootstrap world, we center P̃RV
∗
n

around E∗
(
P̃RV

∗
n

)
. Thus, we use the bootstrap distribution of n1/4

(
P̃RV

∗
n − E∗

(
P̃RV

∗
n

))
as an estimator of the distribution of n1/4

(
PRVn −

∫ 1

0
σ2
sds
)
.

Next, we consider the blocks of blocks bootstrap approach applied to P̃RV n and show that

it is asymptotically invalid when volatility is time-varying. This motivates a new bootstrap

method that combines the wild bootstrap with the block bootstrap, which we study in the last

subsection.

3.1 The blocks of blocks bootstrap

To describe this approach, let Nn = n−kn + 2 denote the total number of pre-averaged returns

and let bn denote the block size. We suppose that Nn = Jn ·bn, so that Jn denotes the number of

blocks of size bn one needs to draw to get Nn = n−kn+2 bootstrap observations. The blocks of

blocks bootstrap generates a bootstrap resample
{
Ȳ ∗i−1 : i = 1, . . . , Nn

}
by applying the moving

blocks bootstrap of Künsch (1989) to the scaled pre-averaged returns
{
Ȳi−1 : i = 1, . . . , Nn

}
.

Letting I1, . . . , IJn be i.i.d. random variables distributed uniformly on {0, 1, . . . , Nn − bn},
we set

Ȳ ∗i−1+(j−1)bn = Ȳi−1+Ij for 1 ≤ j ≤ Jn and 1 ≤ i ≤ bn.

The bootstrap analogue of P̃RV n is

P̃RV
∗
n =

1

ψ2kn

Nn∑
i=1

Ȳ ∗2i−1 =
1

Jn

Jn∑
j=1

 1

bn

bn∑
i=1

Nn

kn

1

ψ2

Ȳ 2
Ij+i−1︸ ︷︷ ︸

≡ZIj+i

 ,

where we let Zi ≡ Nn
kn

1
ψ2
Ȳ 2
i−1. Note that in our setup, Ȳi = X̄i + ε̄i = OP

(
n−1/4

)
given that

kn is such that kn/
√
n = θ + o

(
n−1/4

)
. This implies that Ȳ 2

i−1 = OP

(
n−1/2

)
and therefore

Zi = n−kn+2
kn

1
ψ2
Ȳ 2
i−1 is OP (1).

We can easily show that

E∗
(
P̃RV

∗
n

)
=

1

Jn

Jn∑
j=1

E∗

(
1

bn

bn∑
i=1

ZIj+i

)
=

1

Nn − bn + 1

Nn−bn∑
j=0

(
1

bn

bn∑
i=1

Zj+i

)
.
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Similarly,

V ∗n ≡ V ar∗
(
n1/4P̃RV

∗
n

)
=
√
nE∗

( 1

Jn

Jn∑
j=1

1

bn

bn∑
i=1

(
ZIj+i − E∗

(
P̃RV

∗
n

)))2


=
√
n

1

Jn
E∗

(
1

bn

bn∑
i=1

(
ZI1+i − E∗

(
P̃RV

∗
n

)))2

=
√
n
bn
Nn

1

Nn − bn + 1

Nn−bn∑
j=0

(
1

bn

bn∑
i=1

(
Zj+i − E∗

(
P̃RV

∗
n

)))2

. (6)

Our next result studies the convergence of V ∗n when bn = (p+ 1) kn, for p ≥ 1.

Lemma 3.1 Suppose Assumption 1 holds and kn → ∞ as n → ∞ such that Assumption 2

holds. Let V ∗n ≡ V ar∗
(
n1/4P̃RV

∗
n

)
denote the moving blocks bootstrap variance of n1/4P̃RV

∗
n

based on a block length equal to bn. Then,

a) If bn = (p+ 1) kn →∞ and p ≥ 1 is fixed,

p lim
n→∞

V ∗n = Vp +Bp,

where

Vp =

∫ 1

0

γ2 (p)t dt

with

γ2 (p)t =
4

ψ2
2

[(
Φ22 +

1

p+ 1
Ψ22

)
θσ4

t + 2

(
Φ12 +

1

p+ 1
Ψ12

)
σ2
tαt
θ

+

(
Φ11 +

1

p+ 1
Ψ11

)
α2
t

θ3

]
,

and

Bp = θ (p+ 1)

[∫ 1

0

(
σ2
t +

ψ1

θ2ψ2

αt

)2

dt−
(∫ 1

0

(
σ2
t +

ψ1

θ2ψ2

αt

)
dt

)2
]
.

b) When σ is constant, Bp = 0 for any p ≥ 1.

c) If p→∞ (i.e. bn/kn = p+1→∞) such that bn/n→ 0, then Vp → V ≡ limn→∞ V ar
(
n1/4PRVn

)
,

so that p limn→∞ V
∗
n = V if σ is constant and p limn→∞ V

∗
n =∞ otherwise.

Part a) of Lemma 3.1 shows that when the bootstrap block size bn is a fixed proportion of

the pre-averaging block size kn, the blocks of blocks bootstrap variance converges in probability

to Vp + Bp, where Bp is a bias term due to the fact that volatility is time-varying. When σ is

constant, Bp is equal to zero for any value of p. If p→∞ (i.e. if bn/kn →∞ as n→∞), then

Vp → V , the asymptotic variance of n1/4PRVn. Therefore, under this condition and assuming

that σ is constant, we obtain the consistency of V ∗n towards V . If σ is stochastic and p → ∞,

then V ∗n diverges to infinity since Bp →∞ as p→∞.
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Lemma 3.1 shows that the blocks of blocks bootstrap is consistent for the variance of PRVn

only under constant volatility and if we let the bootstrap block size bn grow at a faster rate

than the pre-averaging block size kn. This result is related to a consistency result of the blocks

of blocks bootstrap established in Bühlmann and Künsch (1995). As they showed, when the

statistic of interest is an average of smooth functions of blocks of consecutive stationary strong

mixing observations of size kn, where kn tends to infinity, the crucial condition for the block

bootstrap to be valid is that the block size bn grows at a faster rate than kn. This is because

the blocks over kn observations (which in our case correspond to the pre-averaged returns)

are strongly dependent for |i− j| ≤ kn, where kn → ∞, and bn must be large enough to

capture this dependence. Bühlmann and Künsch (1995) consider observations generated from

a stationary strong mixing process and therefore they do not find any bias problem related to

heterogeneity. Nevertheless, this becomes a problem in our context when volatility is stochastic.

Therefore, a different bootstrap method is required to handle both the time dependence and

the heterogeneity of pre-averaged returns.

3.2 The wild blocks of blocks bootstrap

In this section, we propose and study the consistency of a novel bootstrap method for pre-

averaged returns based on overlapping blocks of kn intraday returns. It combines the blocks

of blocks bootstrap with the wild bootstrap and in this manner gets rid of the bias term Bp

associated with the blocks of blocks bootstrap variance V ∗n in (6).

As in the previous section, for p ≥ 1, let bn = (p+ 1) kn, and assume that Jn is such that

Jn · bn = Nn. Let η1, . . . , ηJn be i.i.d. random variables whose distribution is independent of

the original sample. Denote by µ∗q = E∗
(
ηqj
)

its q-th order moments. For j = 1, . . . , Jn, let

B̄j =
1

bn

bn∑
i=1

Ȳ 2
i−1+(j−1)bn

denote the block average of the squared pre-averaged returns Ȳ 2
i−1+(j−1)bn for block j. We then

generate the bootstrap pre-averaged squared returns as follows,

Ȳ ∗2i−1+(j−1)bn = B̄j+1 +
(
Ȳ 2
i−1+(j−1)bn − B̄j+1

)
ηj, for 1 ≤ j ≤ Jn − 1 and for 1 ≤ i ≤ bn. (7)

For the last block j = Jn, B̄j+1 is not available and therefore we let

Ȳ ∗2i−1+(j−1)bn = B̄j +
(
Ȳ 2
i−1+(j−1)bn − B̄j

)
ηj, for 1 ≤ i ≤ bn. (8)

Our method is related to the wild bootstrap approach of Wu (1986) and Liu (1988). More

specifically, in Wu (1986) and Liu (1988), the statistic of interest is X̄n, where Xi is indepen-

dently but heterogeneously distributed with mean µi and variance σ2
i . Their wild bootstrap

11



generates X∗i as

X∗i = X̄n +
(
Xi − X̄n

)
ηi, for 1 ≤ i ≤ n,

where ηi is i.i.d. (0, 1). Liu (1988) shows that the bootstrap distribution of
√
n
(
X̄∗n − X̄n

)
is

consistent for the distribution of
√
n
(
X̄n − µ̄n

)
, where µ̄n = n−1

∑n
i=1 µi, provided

1
n

∑n
i=1 (µi − µ̄n)2 → 0 (and some other regularity conditions).

Our bootstrap method can be seen as a generalization of the wild bootstrap of Wu (1986)

and Liu (1988) to the kn-dependent case. In particular, here the statistic of interest is an

average of blocks of observations of size kn,

P̃RV n =
1

Nn

Nn∑
i=1

Zi,

where Zi ≡ Nn
kn

1
ψ2
Ȳ 2
i−1 has time-varying moments and is kn-dependent (conditionally on X), i.e.

Zi is independent of Zj for all |i− j| > kn.

To preserve the serial dependence, we divide the data into Jn non-overlapping blocks of

size bn and generate the bootstrap observations within a given block j using the same external

random variable ηj. This preserves the dependence within each block. When there is no

dependence, we can take bn = 1, in which case our bootstrap method amounts to Liu’s wild

bootstrap with one difference: instead of centering each bootstrap observation Z∗i around the

overall mean P̃RV n, we center Z∗i around Zi+1. The reason for the new centering is that

µi in our context does not satisfy Liu’s condition 1
n

∑n
i=1 (µi − µ̄n)2 → 0 (unless volatility is

constant). Hence centering around P̃RV n does not work here. Instead, we show that centering

around Zi+1 yields an asymptotically valid bootstrap method for P̃RV n even when volatility

is stochastic.

The bootstrap data generating process (7) and (8) yields a bootstrap sample
{
Ȳ ∗20 , . . . , Ȳ ∗2Nn−1

}
which we use to compute

PRV ∗n =
1

ψ2kn

Nn∑
i=1

Ȳ ∗2i−1,

the wild blocks of blocks bootstrap analogue of P̃RV n. Let

B̄∗j =
1

bn

bn∑
i=1

Ȳ ∗2i−1+(j−1)bn

be the bootstrap analogue of B̄j. Given (7), we have that for j = 1, . . . , Jn − 1,

B̄∗j = B̄j+1 +
(
B̄j − B̄j+1

)
ηj,

12



whereas from (8), B̄∗j = B̄j for j = Jn. This implies that we can write

PRV ∗n =
bn
ψ2kn

Jn∑
j=1

1

bn

bn∑
i=1

Ȳ ∗2i−1+(j−1)bn =
bn
ψ2kn

Jn−1∑
j=1

B̄∗j +
bn
ψ2kn

B̄∗Jn

=
bn
ψ2kn

Jn−1∑
j=1

[
B̄j+1 +

(
B̄j − B̄j+1

)
ηj
]

+
bn
ψ2kn

B̄Jn .

We can now easily obtain the bootstrap mean and variance of PRV ∗n . In particular,

E∗ (PRV ∗n ) =
bn
ψ2kn

(
Jn−1∑
j=1

B̄j+1 + B̄Jn

)
+

bn
ψ2kn

Jn−1∑
j=1

(
B̄j − B̄j+1

)
E∗ (ηj) ,

and

V ∗n ≡ V ar∗
(
n1/4PRV ∗n

)
=
n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

(
B̄j − B̄j+1

)2
V ar∗ (ηj) .

Our next result studies the convergence of V ∗n when bn = (p+ 1) kn and p is either fixed such

that p ≥ 1, or p→∞.

Lemma 3.2 Suppose Assumption 1 holds and kn → ∞ as n → ∞ such that Assumption

2 holds. Let V ∗n ≡ V ar∗
(
n1/4PRV ∗n

)
denote the wild blocks of blocks bootstrap variance of

n1/4PRV ∗n based on a block length equal to bn and external random variables ηj ∼ i.i.d. with

mean E∗ (ηj) and variance V ar∗ (ηj) . Then,

a) If bn = (p+ 1) kn →∞ and p is fixed,

p lim
n→∞

V ∗n = 2V ar∗ (ηj)Vp +OP

(
1

p

)
,

where Vp is as defined in Lemma 3.1.

b) If p → ∞ (i.e. bn/kn = p + 1 → ∞) such that bn/n → 0 and V ar∗ (ηj) = 1/2, then

Vp → V ≡ limn→∞ V ar
(
n1/4PRVn

)
so that p limn→∞ V

∗
n = V.

This result shows that if we let bn grow faster than kn and V ar∗ (ηj) = 1/2, the wild

blocks bootstrap variance estimator is consistent for the asymptotic variance of PRVn under

Assumptions 1 and 2. Given the consistency of the bootstrap variance estimator, we can now

prove the consistency of the bootstrap distribution of n1/4 (PRV ∗n − E∗ (PRV ∗n )).

Theorem 3.1 Suppose Assumption 1 holds and kn → ∞ as n → ∞ such that Assumption 2

holds. Let PRV ∗n be the pre-averaged realized volatility estimator based on a block length equal

to bn and an external random variable ηj ∼ i.i.d. (E∗ (ηj) , V ar
∗ (ηj)) such that V ar∗ (ηj) = 1

2
,
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and for any δ > 0 E∗ |ηj|2+δ ≤ ∆ < ∞. If bn is such that bn = (p+ 1) kn, bn/n → 0 and

p→∞, then

sup
x∈R

∣∣∣∣P ∗ (n1/4 (PRV ∗n − E∗ (PRV ∗n )) ≤ x
)
− P

(
n1/4

(
PRVn −

∫ 1

0

σ2
sds

)
≤ x

)∣∣∣∣→P 0 as n→∞.

4 Monte Carlo results

In this section, we compare the finite sample performance of the bootstrap with the feasible

asymptotic theory for confidence intervals of integrated volatility.

We consider two data generating processes in our simulations. First, following Zhang et

al. (2005), we use the one-factor stochastic volatility (SV1F) model of Heston (1993) as our

data-generating process, i.e.

dXt = (µ− νt/2) dt+ σtdBt,

and

dνt = κ (α− νt) dt+ γ (νt)
1/2 dWt,

where νt = σ2
t , and we assume Corr(B,W ) = ρ. The parameter values are all annualized. In

particular, we let µ = 0.05/252, κ = 5/252, α = 0.04/252, γ = 0.05/252, ρ = −0.5. The size

of the market microstructure noise is an important parameter. We follow Barndorff-Nielsen et

al. (2008) and model the noise magnitude as ξ2 = ω2/
√∫ 1

0
σ4
sds. We fix ξ2 equal to 0.0001,

0.001 and 0.01 and let ω2 = ξ2
√∫ 1

0
σ4
sds. These values are motivated by the empirical study

of Hansen and Lunde (2006), who investigate 30 stocks of the Dow Jones Industrial Average.

We also consider the two-factor stochastic volatility (SV2F) model analyzed by Barndorff-

Nielsen et al. (2008), where 2

dXt = µdt+ σtdBt,

σt = s-exp (β0 + β1τ1t + β2τ2t) ,

dτ1t = α1τ1tdt+ dB1t,

dτ2t = α2τ2tdt+ (1 + φτ2t) dB2t,

corr (dWt, dB1t) = ϕ1, corr (dWt, dB2t) = ϕ2.

We follow Huang and Tauchen (2005) and set µ = 0.03, β0 = −1.2, β1 = 0.04, β2 = 1.5,

α1 = −0.00137, α2 = −1.386, φ = 0.25, ϕ1 = ϕ2 = −0.3. We initialize the two factors at the

start of each interval by drawing the persistent factor from its unconditional distribution, τ10 ∼
N
(

0, −1
2α1

)
, and by starting the stronlgly mean-reverting factor at zero.

2The function s-exp is the usual exponential function with a linear growth function splined in at high values

of its argument: s-exp(x) = exp(x) if x ≤ x0 and s-exp(x) = exp(x0)√
x0−x2

0+x2
if x > xo, with x0 = log(1.5).
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We simulate data for the unit interval [0, 1] and normalize one second to be 1/23400, so that

[0, 1] is thought to span 6.5 hours. The observed Y process is generated using an Euler scheme.

We then construct the 1
n
-horizon returns ri ≡ Yi/n − Y(i−1)/n based on samples of size n.

We use two different values of θ: θ = 1/3, as in Jacod et al. (2009), and θ = 1, as in

Christensen, Kinnebrock and Podolskij (2010). The latter value corresponds to a conservative

choice of kn. We also follow the literature and use the weight function g (x) = min (x, 1− x) to

compute the pre-averaged returns.

In order to reduce finite sample biases associated with Riemann integrals, we follow Jacod

et al. (2009) and Hautsch and Podolskij (2013) and use the finite sample adjustments version

of the pre-averaged realized volatility estimator,

PRV a
n =

(
1− ψkn1

2nθ2ψkn2

)−1(
n

n− kn + 2

1

ψkn2 kn

n−kn+1∑
i=0

Ȳ 2
i −

ψkn1
2nθ2ψkn2

n∑
i=1

r2i

)
,

where ψkn1 = kn
kn∑
i=1

(
g
(

i
kn

)
− g

(
i−1
kn

))2
and ψkn2 = 1

kn

kn∑
i=1

g2
(

i
kn

)
. Similarly, V̂n as defined in

(5) replaces Φ11, Φ12 and Φ22 by their Riemann approximations,

Φkn
11 = kn

(
kn∑
i=1

(
φkn1 (j)

)2 − 1

2

(
φkn1 (0)

)2)
, Φkn

12 =
1

kn

(
kn∑
i=1

φkn1 (j)φkn2 (j)− 1

2
φkn1 (0)φkn2 (0)

)
, and

Φkn
22 =

1

k3n

(
kn∑
i=1

(
φkn2 (j)

)2 − 1

2

(
φkn2 (0)

)2)
,

where

φkn1 (j) = kn

kn−1∑
i=j+1

(
g

(
i− 1

kn

)
− g

(
i

kn

))(
g

(
i− j − 1

kn

)
− g

(
i− j
kn

))
, and

φkn2 (j) =
kn−1∑
i=j+1

g

(
i

kn

)
− g

(
i− j
kn

)
.

Tables 1 and 2 give the actual rates of 95% confidence intervals of integrated volatility

for the SV1F and the SV2F models, respectively, computed over 10,000 replications. Results

are presented for eight different samples sizes: n = 23400, 11700, 7800, 4680, 1560, 780, 390

and 195, corresponding to “1-second”, “2-second”, “3-second”, “5-second”, “15-second”, “30-

second”, “1-minute” and “2-minute” frequencies.

In our simulations, bootstrap intervals use 999 bootstrap replications for each of the 10,000

Monte Carlo replications. We consider the bootstrap percentile method computed at the 95%

level. To generate the bootstrap data we use the following external random variables ηj ∼ i.i.d.

N (0, 1/2). The choice of the bootstrap block size is critical. We follow Politis, Romano and

Wolf (1999) and use the Minimum Volatility Method to choose the bootstrap block. Details of
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the algorithm are given in Appendix A.

For the two models, all intervals tend to undercover. The degree of undercoverage is es-

pecially large for smaller values of n, when sampling is not too frequent. The SV2F model

exhibits overall larger coverage distortions than the SV1F model, for all sample sizes. Results

are sensitive to the value of the tuning parameter θ. When θ = 1/3, larger market microstruc-

ture effects induce larger coverage distortions. In particular, the coverage distortions are very

important when ξ2 = 0.01 in comparison to the case where market microstructure effects are

moderate or negligible (ξ2 = 0.001 and ξ2 = 0.0001). This reflects the fact that for this value

of θ, kn is not sufficiently large to allow pre-averaging to remove the market microstructure

bias. The pre-averaged estimator is biased in finite samples and this explains the finite sample

distortions. In contrast, for the conservative choice of kn, results are not very sensitive to the

noise magnitude. The reason is that the larger is the block size over which the pre-averaging is

done, the smaller is the impact of the noise.

In all cases, the bootstrap outperforms the existing first order asymptotic theory. As ex-

pected, the average chosen block size is larger for larger sample sizes, but our results show that

it is not sensitive to the noise magnitude. This is because the noise magnitude is almost irrel-

evant for the intensity of the autocorrelation of the square pre-averaged returns (as confirmed

by simulations not reported here).

5 Empirical results

In this section, we implement the wild blocks of blocks bootstrap on high frequency data and

compare it to the existing feasible asymptotic procedure of Jacod et al. (2009). The data

consists of transaction log prices of General Electric (GE) shares carried out on the New York

Stock Exchange (NYSE) in October 2011. Our procedure for cleaning the data is exactly

identical to that used by Barndorff-Nielsen et al. (2008) (for further details see Barndorff-

Nielsen et al. (2009)). For each day, we consider data from the regular exchange opening hours

from time stamped between 9:30 a.m. until 4 p.m.

We implement the pre-averaged realized volatility estimator of Jacod et al. (2009) on returns

recorded every S transactions, where S is selected each day so that there are approximately

1493 observations a day. This means that on average these returns are recorded roughly every

15 seconds. Table 3 in Appendix A provides the number of transactions per day and the sample

size for the pre-averaged returns.

To implement the pre-averaged realized volatility estimator, we select the tunning parameter

θ by following the conservative rule (θ = 1, implying that kn =
√
n). To choose the block size

bn, we follow Politis, Romano and Wolf (1999) and use the Minimum Volatility Method (see

Appendix A for details).
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Figure 1 in Appendix A shows daily 95% confidence intervals (CIs) for integrated volatility

using both methods, the wild blocks of blocks bootstrap and the existing feasible asymptotic

procedure of Jacod et al. (2009). The confidence intervals based on the bootstrap method

are usually wider than the confidence intervals using the feasible asymptotic theory.3 This

is especially true in periods with large volatility. To gain further insight on the behavior of

our intervals for these periods, we implemented the test for jumps of Barndorff- Nielsen and

Shephard (2006) using a moderate sample size (2-minute sampling intervals). It turns out

that these days often correspond to days on which there is evidence for jumps (in particular

for the 13, 17, 20 and 26 of October 2011). Since neither of the two types of intervals are

valid in the presence of jumps, further analysis should be pursued for these particular days.

In particular, we should rely on estimation methods that are robust to jumps such as the pre-

averaged multipower variation method proposed by Podolskij and Vetter (2009) or the quantile

estimation method of Christensen, Oomen, and Podolskij (2010).

6 Conclusion

In this paper, we propose the bootstrap as a method of inference for integrated volatility in the

context of the pre-averaged realized volatility estimator proposed by Jacod et al. (2009). We

show that the “blocks of blocks” bootstrap method suggested by Politis and Romano (1992) is

valid in this context only when volatility is constant. This is due to the heterogeneity of the

squared pre-averaged returns when volatility is stochastic.

To simultaneously handle the dependence and heterogeneity of the pre-averaged returns, we

propose a novel bootstrap procedure that combines the wild and the blocks of blocks bootstrap.

We provide a set of conditions under which this method is asymptotically valid to first order.

Our Monte Carlo simulations show that the wild blocks of blocks bootstrap improves the finite

sample properties of the existing first order asymptotic theory. The empirical results suggest

that this bootstrap method is generally more accurate than the existing feasible approach of

Jacod et al. (2009). In future work, we plan to generalize the wild blocks of blocks bootstrap

for inference on multivariate integrated volatility as considered by Christensen, Kinnebrock and

Podolskij (2010). Bootstrap variance-covariances matrices are naturally positive semi-definite,

which is very important for empirical applications.

3Nevertheless, as our Monte Carlo simulations showed, the latter typically have undercoverage problems
whereas the bootstrap intervals have coverage rates closer to the desired level. Therefore if the goal is to control
the coverage probability, shorter intervals are not necessarily better. The figures also show a lot of variability
in the daily estimate of integrated volatility.
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Appendix A: Simulation and empirical results

Here we describe the Minimum Volatility Method algorithm of Politis, Romano and Wolf (1999,

Chapter 9) for choosing the block size bn for a two-sided confidence interval.

Algorithm: Choice of the bootstrap block size by minimizing confidence interval volatility

(i) For b = bsmall to b = bbig compute a bootstrap interval for IV at the desired confidence

level, this resulting in endpoints ICb,low and ICb,up.

(ii) For each b compute the volatility index V Ib as the standard deviation of the interval

endpoints in a neighborhood of b. More specifically, for a smaller integer d, let V Ib equal

to the standard deviation of the endpoints {ICb−d,low, . . . , ICb+d,low} plus the standard

deviation of the endpoints {ICb−d,up, . . . , ICb+d,up}, i.e.

V Ib ≡

√√√√ 1

2d+ 1

d∑
i=−d

(
ICb+i,low − ¯IC low

)2
+

√√√√ 1

2d+ 1

d∑
i=−d

(
ICb+i,up − ¯ICup

)2
,

where ¯IC low = 1
2d+1

∑d
i=−d ICb+i,low and ¯ICup = 1

2d+1

∑d
i=−d ICb+i,up.

(iii) Pick the value b∗ corresponding to the smallest volatility index and report {ICb∗,low, ICb∗,up}
as the final confidence interval.

To make the algorithm more computationally efficient, we have skipped a number of b values

in regular fashion between bsmall and bbig. We have considered only the values of b such that

b = pkn where p is a fixed integer. We employ bsmall = 2kn, bbig = min(θNn
4
, 12kn) and d = 2.

Tables 1 and 2 report the actual coverage rates for the feasible asymptotic theory approach

and for our bootstrap methods using the optimal block size by minimizing confidence interval

volatility. In Table 3 we provide some statistics of GE shares in January 2011.
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Table 1: Coverage rates of nominal 95% intervals using θ = 1/3

SV1F SV2F
n CLT Boot Avg. block size CLT Boot Avg. block size

ξ2 = 0.0001
195 90.89 91.02 11.75 88.60 90.09 11.73
390 91.52 91.74 21.09 90.32 90.98 22.16
780 92.88 93.41 32.63 91.40 92.94 34.31
1560 93.86 94.01 65.50 92.62 93.71 68.58
4680 94.32 94.43 144.69 93.94 94.43 143.98
7800 94.68 94.72 172.40 94.19 95.02 179.48
11700 94.60 94.87 220.48 94.17 95.14 224.81
23400 94.80 94.93 319.21 94.68 95.10 319.67

ξ2 = 0.001
195 90.77 90.88 11.68 88.20 90.07 11.80
390 91.14 91.43 20.71 89.31 90.21 21.78
780 92.26 93.50 32.33 90.80 92.54 34.24
1560 93.40 94.12 65.11 92.61 94.85 69.73
4680 94.46 95.07 140.71 93.65 95.20 151.50
7800 94.14 95.24 174.08 94.05 95.35 172.34
11700 94.23 95.13 219.74 93.98 95.45 222.15
23400 94.47 95.04 323.09 94.50 95.23 312.43

ξ2 = 0.01
195 83.11 88.51 11.73 80.96 87.79 11.56
390 84.45 91.16 20.68 83.91 89.98 21.81
780 86.48 91.92 31.67 85.89 91.96 32.09
1560 87.97 93.10 64.84 88.02 93.61 62.08
4680 91.13 94.17 144.19 90.76 94.12 142.92
7800 91.92 94.91 170.45 91.45 94.26 170.06
11700 92.20 94.52 216.41 92.19 94.61 215.82
23400 92.87 94.85 323.29 92.88 95.12 315.95

Notes: CLT-intervals based on the Normal; Boot-intervals based on the bootstrap. 10,000 Monte
Carlo trials with 999 bootstrap replications each.
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Table 2: Coverage rates of nominal 95% intervals using θ = 1

SV1F SV2F
n CLT Boot Avg. block size CLT Boot Avg. block size

ξ2 = 0.0001
195 89.48 90.10 35.90 84.50 87.12 36.27
390 91.41 94.30 65.86 86.63 91.47 65.86
780 92.81 94.98 132.22 88.71 92.10 124.99
1560 93.57 95.13 262.24 90.39 93.92 235.76
4680 94.19 95.45 517.12 91.50 94.20 451.02
7800 94.27 95.12 682.52 92.76 95.00 594.68
11700 94.06 95.50 804.62 93.15 94.81 713.17
23400 94.39 95.48 1210.69 93.80 94.90 1063.81

ξ2 = 0.001
195 89.05 92.19 35.90 84.41 87.60 35.92
390 91.31 94.63 65.78 86.90 91.86 66.06
780 92.96 94.76 132.78 88.57 92.80 124.15
1560 93.66 95.37 265.00 90.34 94.30 237.96
4680 94.12 95.52 514.43 92.03 94.51 458.33
7800 94.21 95.16 688.04 92.32 94.88 582.40
11700 94.17 95.18 806.15 92.98 95.01 719.93
23400 94.35 95.11 1210.23 93.80 94.86 1062.43

ξ2 = 0.01
195 88.42 92.18 35.81 84.07 88.62 35.97
390 90.51 94.60 66.44 86.58 91.31 66.16
780 92.17 95.12 132.58 88.52 92.87 125.22
1560 93.35 95.15 264.96 90.01 94.40 243.92
4680 93.77 95.60 515.74 91.72 95.23 471.10
7800 94.28 95.72 671.84 92.76 95.20 593.08
11700 94.16 95.24 808.00 93.03 95.40 732.35
23400 94.26 95.18 1197.28 93.70 95.31 1081.40

Notes: CLT-intervals based on the Normal; Boot-intervals based on the bootstrap. 10,000 Monte
Carlo trials with 999 bootstrap replications each.
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Table 3: Summary statistics

Days Trans S n
3 Oct 12613 9 1402
4 Oct 13782 9 1532
5 Oct 10628 7 1519
6 Oct 9991 7 1428
7 Oct 9785 7 1398
10 Oct 10660 7 1523
11 Oct 8588 6 1432
12 Oct 11160 7 1595
13 Oct 8649 6 1442
14 Oct 9261 6 1544
17 Oct 8530 6 1422
18 Oct 8751 6 1459
19 Oct 9023 6 1504
20 Oct 9251 6 1542
21 Oct 12513 8 1565
24 Oct 11642 8 1456
25 Oct 10919 8 1365
26 Oct 9249 6 1542
27 Oct 14598 9 1622
28 Oct 9405 6 1568
31 Oct 8871 6 1500

“Trans” denotes the number of transactions, n is the sample size used to calculate the pre-averaged
realized volatility, we have sampled every Sth transaction price, so the period over which returns are
calculated is roughly 15 seconds.

Figure 1: 95% Confidence Intervals (CI’s) for the daily IV, for each regular exchange opening days

in October 2011, calculated using the asymptotic theory of Jacod et al. (2009) (CI’s with

bars), and the wild blocks of blocks bootstrap method (CI’s with lines). The pre-averaging

realized volatility estimator is the middle of all CI’s by construction. Days on the x-axis.
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Appendix B: Proofs

As in Jacod et al. (2009), we assume throughout this Appendix that the processes a, σ and
X are bounded processes satisfying (1) with a and σ adapted càdlàg processes. As Jacod et
al. (2009) explain, this assumption simplifies the mathematical derivations without loss of
generality (by a standard localization procedure detailed in Jacod (2008)). Formally, we derive
our results under the following assumption.

Assumption 3. X satisfies equation (1) with a and σ adapted càdlàg processes such that a, σ,
and X are bounded processes (implying that α is also bounded).

Notation

In the following, K denotes a constant which changes from line to line. Moreover, we follow
Jacod et al. (2009) and use the following additional notation. We let

X̄i =
kn∑
j=1

g

(
j

kn

)(
X i+j

n
−X i+j−1

n

)
, ε̄i =

kn∑
j=1

g

(
j

kn

)(
ε i+j
n
− ε i+j−1

n

)
,

and note that Ȳi = X̄i + ε̄i. In addition, we let

ci =
kn∑
j=1

g

(
j

kn

)2 ∫ i+j
n

i+j−1
n

σ2
t dt;

Ai = E
(
ε̄2i |X

)
=

kn−1∑
j=0

(
g

(
j + 1

kn

)
− g

(
j

kn

))2

α(i+j)/n; and

Ỹi = Ȳ 2
i − Ai − ci.

Following Jacod et al. (2009), we also introduce the following random variables. For j =
1, . . . , Jn, we let

η (p)j =
1

θψ2

√
n
ζ(p)(j−1)(p+1)kn

, with ζ (p)j =

j+(p+1)kn−1∑
i=j

Ỹi,

where p ≥ 1 is a fixed integer; η (p)j is the normalized sum of squared pre-averaged returns Ỹi
over a block of size bn = (p+ 1) kn. Note that η (p)j is measurable with respect to Fnj(p+1)kn

,

the sigma algebra generated by all F0
j(p+1)kn/n

-measurable random variables plus all variables

Ys, with s < j (p+ 1) kn. Finally, we let

β(p)i = sup
s,t∈[ in ,

i+(p+1)kn
n ] (|as − at|+ |σs − σt|+ |αs − αt|) , (9)

and

γ2(p)t =
4

ψ2
2

((
Φ22 +

1

p+ 1
Ψ22

)
θσ4

t + 2

(
Φ12 +

1

p+ 1
Ψ12

)
σ2
tαt
θ

+

(
Φ11 +

1

p+ 1
Ψ11

)
α2
t

θ3

)
.

(10)
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Our bootstrap estimators depend crucially on

B̄j ≡
1

bn

bn∑
i=1

Ȳ 2
i−1+(j−1)bn =

1

bn

jbn−1∑
i=(j−1)bn

Ȳ 2
i , for j = 1, . . . , Jn,

where Jn = Nn/bn is the number of non-overlapping blocks of size bn out of Nn = n − kn + 2
observations on pre-averaged returns.

Our first result is instrumental in proving our bootstrap results.

Lemma B.1 Suppose Assumptions 2 and 3 hold. Then, for all integer p ≥ 1, and each q > 0,
we have that

a1) 1√
n
E
(∑Jn

j=1 β (p)q(j−1)(p+1)kn

)
→ 0.

a2) 1√
n

∑Jn
j=1 β (p)q(j−1)(p+1)kn

→P 0.

a3) 1√
n
E
(∑Jn

j=1E
(
β (p)q(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
→ 0.

a4) 1√
n

∑Jn
j=1E

(
β (p)q(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
→P 0.

a5) 1√
n

∑Jn
j=1E

(
β (2p+ 1)q(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
→P 0.

a6) 1√
n

∑Jn
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
→P 0.

a7) 1√
n

∑Jn
j=1

√
E
(
β (2p+ 1)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
→P 0.

Proof of Lemma B.1. Part a1). Given the definition of β (p)(j−1)(p+1)kn
we can write

β (p)(j−1)(p+1)kn
≤ sup

s,t∈[ (j−1)(p+1)kn
n

,
(j−1)(p+1)kn+(p+1)kn

n ] (|as − at|)

+ sup
s,t∈[ (j−1)(p+1)kn

n
,
(j−1)(p+1)kn+(p+1)kn

n ] (|σs − σt|)

+ sup
s,t∈[ (j−1)(p+1)kn

n
,
(j−1)(p+1)kn+(p+1)kn

n ] (|αs − αt|)

≡ Γ (a, p)(j−1)(p+1)kn
+ Γ (σ, p)(j−1)(p+1)kn

+ Γ (α, p)(j−1)(p+1)kn
.

Given that Γ (a, p)(j−1)(p+1)kn
,Γ (σ, p)(j−1)(p+1)kn

and Γ (α, p)(j−1)(p+1)kn
are strictly positive, for

any q > 0, using the c-r inequality, we can write

β (p)q(j−1)(p+1)kn
≤ K

(
Γ (σ, p)q(j−1)(p+1)kn

+ Γ (a, p)q(j−1)(p+1)kn
+ Γ (α, p)q(j−1)(p+1)kn

)
.
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It follows that

n−1/2E

(
Jn∑
j=1

β (p)q(j−1)(p+1)kn

)
≤ Kn−1/2E

(
Jn∑
j=1

Γ (σ, p)q(j−1)(p+1)kn

)

+Kn−1/2E

(
Jn∑
j=1

Γ (a, p)q(j−1)(p+1)kn

)

+Kn−1/2E

(
Jn∑
j=1

Γ (α, p)q(j−1)(p+1)kn

)
= o (1) ,

where we use Lemma 5.3 of Jacod, Podolskij and Vetter (2010) to show that each of the terms
above are o (1) (given that a, σ and α are càdlàg bounded processes).

Proof of Lemma B.1. Part a2). Note that given the result of part a1) of Lemma B.1,

it is sufficient to show that 1
n
E
(∑Jn

j=1 β (p)q(j−1)(p+1)kn

)2
→ 0. By the c-r inequality,

1

n
E

(
Jn∑
j=1

β (p)q(j−1)(p+1)kn

)2

≤ Jn
n
E

(
Jn∑
j=1

β (p)2q(j−1)(p+1)kn

)
≤ K

1√
n
E

(
Jn∑
j=1

β (p)2q(j−1)(p+1)kn

)
,

which is o (1) by part a1) of Lemma B.1 and given that Jn = O (
√
n) .

Proof of Lemma B.1. Part a3). Given the law of iterated expectations, the result
follows directly from part a1) of Lemma B.1.

Proof of Lemma B.1. Part a4). The proof follows similarly as in part a2) of

Lemma B.1, where we now consider the variable E
(
β (p)q(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
in place

of β (p)q(j−1)(p+1)kn
.

Proof of Lemma B.1. Part a5). Given the definition of β(p)i, for any p ≥ 1, such that
bn = (p+ 1) kn we can write

1√
n

Jn∑
j=1

E
(
β (2p+ 1)q(j−1)bn |F

n
(j−1)bn

)
=

1√
n

[Jn2 ]∑
j=1

E
(
β (2p+ 1)q2(j−1)bn |F

n
2(j−1)bn

)

+
1√
n

[Jn2 ]∑
j=1

E
(
β (2p+ 1)q(2(j−1)+1)bn

|Fn(2(j−1)+1)bn

)
,

which is oP (1) given part a4) of Lemma B.1.
Proof of Lemma B.1. Part a6). Here, the proof contains two steps. Step 1. We show

show that 1√
n
E

(∑Jn
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
→ 0. Step 2. We show show that

1
n
V ar

(∑Jn
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
→ 0. Note that using the first expression in

equation (5.47) of Jacod et al. (2009), the result of step 1 follows directly. Given this result, to

show step 2, it is sufficient to show that 1
n
E

(∑Jn
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))2

→ 0.
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We have that

1

n

(
Jn∑
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))2

≤ Jn
n

Jn∑
j=1

E
(
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
=
Jn
n

Jn∑
j=1

E
(
β (p)2(j−1)(p+1)kn

)
≤ K

1√
n
E

(
Jn∑
j=1

β (p)2(j−1)(p+1)kn

)
,

which is o (1) given equation (5.47) of Jacod et al. (2009) and the fact that Jn = O (
√
n) under

our assumptions.
Proof of Lemma B.1. Part a7). The proof follows similarly as part a5) and therefore

we omit the details.
Our next result is crucial to the proofs of Lemmas 3.1 and 3.2.

Lemma B.2 Under Assumptions 1, 2 and 3, if bn = (p+ 1) kn where p ≥ 1 is fixed, then

a1)
√
nb2n

k2nψ
2
2

∑Jn
j=1 B̄

2
j →P Vp + θ (p+ 1)

∫ 1

0

(
σ2
s + ψ1

θ2ψ2
αs

)2
ds.

a2)
√
nb2n

k2nψ
2
2

∑Jn−1
j=1 B̄jB̄j+1 →P θ (p+ 1)

∫ 1

0

(
σ2
s + ψ1

θ2ψ2
αs

)2
ds+OP

(
1
p

)
.

Proof of Lemma B.2. Part a1). Given the definition of B̄j, we have that

B̄j =
1

bn

jbn−1∑
i=(j−1)bn

Ȳ 2
i =

1

bn

jbn−1∑
i=(j−1)bn

(
Ȳ 2
i − Ai − ci

)︸ ︷︷ ︸
≡Ỹi

+
1

bn

jbn−1∑
i=(j−1)bn

(Ai + ci)

where Ai ≡ E (ε̄2i |X) and ci =
kn∑
j=1

g
(

j
kn

)2 ∫ i+j
n

i+j−1
n

σ2
t dt. It follows that

√
nb2n

k2nψ
2
2

Jn∑
j=1

B̄2
j = B1n + B2n + B3n,

where

B1n ≡
√
n

Jn∑
j=1

 1

θψ2

√
n

jbn−1∑
i=(j−1)bn

Ỹi

2

=
√
n

Jn∑
j=1

η (p)2j ,

B2n ≡
2

θψ2

Jn∑
j=1

η (p)j

jbn−1∑
i=(j−1)bn

(Ai + ci) ; and

B3n ≡
1

θ2ψ2
2

√
n

Jn∑
j=1

 jbn−1∑
i=(j−1)bn

(Ai + ci)

2

.

We show that (1) B1n →P
∫ 1

0
γ2t (p) dt; (2) B2n →P 0, and that (3) B3n →P (p+ 1) θ

∫ 1

0

(
σ2
t + ψ1

θ2ψ2
αt

)2
dt.
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Starting with (1), write

√
n

Jn∑
j=1

η (p)2j −
∫ 1

0

γ2t (p) dt = B1.1n + B1.2n + B1.3n, with

B1.1n =
√
n

Jn∑
j=1

(
η (p)2j − E

(
η (p)2j |F

n
(j−1)(p+1)kn

))
,

B1.2n =
√
n

Jn∑
j=1

E
(
η (p)2j |F

n
(j−1)(p+1)kn

)
− Nn

n

1

Jn

Jn∑
j=1

γ(p)2j−1
Jn

,

B1.3n =
Nn

n

1

Jn

Jn∑
j=1

γ(p)2j−1
Jn

−
∫ 1

0

γ2t (p) dt.

We show that each of B1.`n →P 0 for ` = 1, 2, 3. For ` = 1, by Lenglart’s inequality (see e.g.

Lemma 4.4 of Vetter (2008)), it is sufficient to show that n
Jn∑
j=1

E
(
η (p)4j |Fn(j−1)(p+1)kn

)
→P 0,

which follows immediately by using equation (5.57) of Jacod et al. (2009). Next, to show that
B1.2n →P 0, note that

B1.2n ≤
Jn∑
j=1

∣∣∣∣√nE (η (p)2j |F
n
(j−1)(p+1)kn

)
− Nn

n

1

Jn
γ(p)2j−1

Jn

∣∣∣∣
=

Jn∑
j=1

∣∣∣∣√nE ( 1

θ2ψ2
2n
ζ2(p)(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
− 1

n
(p+ 1) θ

√
nγ(p)2j−1

Jn

∣∣∣∣
=

√
n

θ2ψ2
2n

Jn∑
j=1

∣∣∣E (ζ2(p)(j−1)(p+1)kn
|Fn(j−1)(p+1)kn

)
− θ3ψ2

2 (p+ 1) γ(p)2j−1
Jn

∣∣∣
≤ K

θ2ψ2
2

√
n

Jn∑
j=1

χ(p)(j−1)(p+1)kn

where we use the fact that Nn/Jn = (p+ 1) kn with kn = θ
√
n and rely on equation (5.41) of

Jacod et al. (2009) to bound the term in absolute value, where

χ(p)(j−1)(p+1)kn = n−1/4 +

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
and β (p)i is as defined in (9). It follows that

1√
n

Jn∑
j=1

χ(p)(j−1)(p+1)kn ≤
1√
n

Jn∑
j=1

n−1/4 +
1√
n

Jn∑
j=1

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
→P 0,

where the first term is of order O
(
n−1/4

)
and the second term is oP (1) given part a6) of Lemma

B.1. Finally, B1.3n →P 0 follows immediately by Riemann’s integrability of σ, the fact that
Nn
n
→ 1 and Jn →∞ as n→∞.
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To show (2), let ϕj ≡
jbn−1∑

i=(j−1)bn
(Ai + ci) and ζ (X, p)j =

jbn−1∑
i=(j−1)bn

(
X̄2
i − ci

)
. We can write

B2n =
2

θψ2

Jn∑
j=1

ϕj · η (p)j = B2.1n + B2.2n, with

B2.1n =
2

θψ2

Jn∑
j=1

(
ϕjη (p)j − E

(
ϕjη (p)j |F

n
(j−1)(p+1)kn

))
, and

B2.2n =
2

θψ2

Jn∑
j=1

E
(
ϕjη (p)j |F

n
(j−1)(p+1)kn

)
.

We show that each of B2.`n →P 0 for ` = 1, 2. Note that given the definitions of Ai, ci, and
the fact that kn = θ

√
n, Assumption 3 implies that Ai + ci ≤ K/

√
n uniformly in i. Given

that bn = (p+ 1) kn, it follows that ϕj ≤ K uniformly in j. Starting with ` = 1, by Lenglart’s

inequality, it is sufficient to show that
Jn∑
j=1

E
(
ϕ2
jη (p)2j |Fn(j−1)(p+1)kn

)
→P 0. We can write

Jn∑
j=1

E
(
ϕ2
jη (p)2j |F

n
(j−1)(p+1)kn

)
≤ K

Jn∑
j=1

E
(
η (p)2j |F

n
(j−1)(p+1)kn

)
= K

(
1√
n

(
√
n
Jn∑
j=1

E
(
η (p)2j |F

n
(j−1)(p+1)kn

)
− Nn

n

1

Jn

Jn∑
j=1

γ(p)2j−1
Jn

))

+K

(
1√
n

(
Nn

n

1

Jn

Jn∑
j=1

γ(p)2j−1
Jn

−
∫ 1

0

γ2t (p) dt

)
+

1√
n

∫ 1

0

γ2t (p) dt

)

≡ K

(
1√
n
B1.2n +

1√
n
B1.3n +

1√
n

∫ 1

0

γ2t (p) dt

)
=

1√
n
oP (1) +

1√
n
oP (1) +OP

(
1√
n

)
= oP (1) ,

where in particular we use the fact that B1.2n=oP (1) and B1.3n = oP (1) , and
∫ 1

0
γ2t (p) dt =

OP (1) . It follows that B2.1n →P 0. Next, to show that B2.2n →P 0, note that we can write

B2.2n ≤
2K

θψ2

1

n1/4

(
n1/4

Jn∑
j=1

E
(
η (p)j |F

n
(j−1)(p+1)kn

))
= OP

(
n−1/4

)
oP (1) = oP (1) ,

given that ϕj ≤ K, and given equation (5.49) of Jacod et al. (2009).
Finally, to show (3), note that given the definitions of Ai and ci, and by using equations

(5.23) and (5.36) of Jacod et al. (2009), we can write

jbn−1∑
i=(j−1)bn

(Ai + ci) =

jbn−1∑
i=(j−1)bn

(
ψ1

θ
√
n
α(j−1)bn/n +

θψ2√
n
σ2
(j−1)bn/n

)
+O

(
p√
n

+ pβ(p)(j−1)bn

)
.

(11)
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It follows that

B3n ≡
1

θ2ψ2
2

√
n

Jn∑
j=1

 jbn−1∑
i=(j−1)bn

(Ai + ci)

2

= Ln +Rn,

where the leading term is

Ln = (p+ 1) θ
Nn

n

1

Jn

Jn∑
j=1

(
ψ1

θ2ψ2

α(j−1)bn/n + σ2
(j−1)bn/n

)2

→P (p+ 1)θ

∫ 1

0

(
σ2
t +

ψ1

θ2ψ2

αt

)2

dt.

(12)
The remainder is such that

Rn = K ·OP

(
1√
n

+
1√
n

Jn∑
j=1

β(p)2(j−1)bn

)
→P 0

by using Lemma (5.4) of Jacod et al. (2009).

Proof of part a2). Recall that B̄j = 1
bn

∑jbn−1
i=(j−1)bn Ȳ

2
i is the average of observations in a

block of size bn starting at observation (j − 1) bn. For any integer an such that 2 ≤ an < bn, we
can decompose

B̄j = B̄
[0,an−1]
j + B̄

[an,bn−1]
j ,

where B̄
[0,an−1]
j ≡ 1

bn

(j−1)bn+an−1∑
i=(j−1)bn

Ȳ 2
i and B̄

[an,bn−1]
j ≡ 1

bn

jbn−1∑
i=(j−1)bn+an

Ȳ 2
i . Then

B̄jB̄j+1 =
(
B̄

[0,pkn−1]
j + B̄

[pkn,bn−1]
j

)(
B̄

[0,kn−1]
j+1 + B̄

[kn,bn−1]
j+1

)
=

(
B̄

[0,pkn−1]
j B̄

[0,kn−1]
j+1

)
+
(
B̄

[0,pkn−1]
j B̄

[kn,bn−1]
j+1

)
+
(
B̄

[pkn,bn−1]
j B̄

[kn,bn−1]
j+1

)
+

(
B̄

[pkn,bn−1]
j B̄

[0,kn−1]
j+1

)
≡ Ξ1j + Ξ2j + Ξ3j︸ ︷︷ ︸

≡Lj

+ Ξ4j. (13)

We can write

n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

B̄jB̄j+1 =
n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

Lj +
n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

Ξ4j.

The proof contains two steps. Step 1. We show that n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

Lj →P (p+1)θ
∫ 1

0

(
σ2
t + ψ1

θ2ψ2
αt

)2
dt.

Step 2. We show that n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

Ξ4j = OP

(
kn
bn

)
.

Step 1. Let σεj ≡ ψ2kn
n
σ2
(j−1)bn/n + ψ1

kn
α(j−1)bn/n. It follows that

n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

Lj −
(

(p+ 1)− 1

p+ 1

)
θ

∫ 1

0

(
σ2
t +

ψ1

θ2ψ2

αt

)2

dt = Ba.1n + Ba.2n + Ba.3n, with
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Ba.1n =
n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

(
Lj − E

(
Lj|Fn(j−1)(p+1)kn

))
,

Ba.2n =
n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

E
(
Lj|Fn(j−1)(p+1)kn

)
− n1/2b2n

ψ2
2k

2
n

Jn∑
j=1

σε2j ,

Ba.3n =
n1/2b2n
ψ2
2k

2
n

Jn∑
j=1

σε2j −
(

(p+ 1)− 1

p+ 1

)
θ

∫ 1

0

(
σ2
t +

ψ1

θ2ψ2

αt

)2

dt.

We show that each of Ba.`n →P 0 for ` = 1, 2, 3. Starting with ` = 1, by Lenglart’s inequality,

it is sufficient to show that nb4n
ψ4
2k

4
n

Jn−1∑
j=1

E
(
L2
j |Fn(j−1)(p+1)kn

)
→P 0. We can write

n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

E
(
L2
j |Fn(j−1)(p+1)kn

)
=

nb4n
ψ4
2k

4
n

Jn−1∑
j=1

E
((
B̄jB̄j+1 − Ξ4j

)2|Fn(j−1)(p+1)kn

)
≤ nb4n

ψ4
2k

4
n

Jn−1∑
j=1

E
(
B̄2
j B̄

2
j+1|Fn(j−1)(p+1)kn

)
≤ nb4n

ψ4
2k

4
n

Jn−1∑
j=1

(
E
(
B̄4
j |Fn(j−1)(p+1)kn

))1/2 (
E
(
B̄4
j+1|Fn(j−1)(p+1)kn

))1/2
= OP

(
n−1/2

)
= oP (1) ,

where the first line uses the definition of Lj; the second line follows by the fact that Ξ4j ≥ 0;
the third line follows by Cauchy-Schwartz inequality and the fourth line uses the fact that

bn = (p+ 1) kn, Jn = O (
√
n) and E

(
B̄4
j |Fn(j−1)(p+1)kn

)
= OP (n−2) uniformly in j. To show

that E
(
B̄4
j |Fn(j−1)(p+1)kn

)
= OP (n−2), by the c-r inequality,

E
(
B̄4
j |Fn(j−1)(p+1)kn

)
=

1

b4n
E

 jbn∑
i=(j−1)bn

Ȳ 2
i

4

|Fn(j−1)(p+1)kn

 ≤ 1

bn
E

 jbn∑
i=(j−1)bn

Ȳ 8
i

 |Fn(j−1)(p+1)kn


≤ Kn−2,

where we can show that

E
(
Ȳ 8
i

)
≤ K

(
E
(
X̄8
i

)
+ E

(
ε̄8i
))

= O
(
n−2
)

uniformly in i.

given that Ȳi = X̄i+ ε̄i and given equations (5.28) and (5.38) of Jacod et al. (2009). This shows
that Ba.1n →P 0. Next, to show that Ba.2n →P 0, note that given the definition of Lj, the fact
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that bn = (p+ 1) kn, and by using equation (13)we can write

n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

E
(
Lj|Fn(j−1)(p+1)kn

)
= n1/2 (p+ 1)2

ψ2
2

Jn−1∑
j=1

E
((
B̄

[0,pkn−1]
j B̄

[0,kn−1]
j+1

)
|Fn(j−1)(p+1)kn

)
+n1/2 (p+ 1)2

ψ2
2

Jn−1∑
j=1

E
((
B̄

[0,pkn−1]
j B̄

[kn,bn−1]
j+1

)
|Fn(j−1)(p+1)kn

)
+n1/2 (p+ 1)2

ψ2
2

Jn−1∑
j=1

E
((
B̄

[pkn,bn−1]
j B̄

[kn,bn−1]
j+1

)
|Fn(j−1)(p+1)kn

)
≡ Υ1 + Υ2 + Υ3.

For Υ1, we obtain

Υ1 = n1/2 (p+ 1)2

ψ2
2

Jn−1∑
j=1

E
(
B̄

[0,pkn−1]
j |Fn(j−1)(p+1)kn

)
E
(
B̄

[0,kn−1]
j+1 |Fn(j−1)(p+1)kn

)

= n1/2 (p+ 1)2

ψ2
2b

2
n

Jn−1∑
j=1

E

(j−1)bn+pkn−1∑
i=(j−1)bn

Ȳ 2
i

|Fn(j−1)(p+1)kn

E

((
jbn+kn−1∑
i=jbn

Ȳ 2
i

)
|Fn(j−1)(p+1)kn

)
.

where we used the fact that Ȳi and Ȳj are (conditionally) independent provided that |j − i| > kn.
By adding and substracting appropriately, we can write Ȳ 2

i =
(
Ȳ 2
i − ci − Ai

)
+ (ci + Ai). Then

we show that

E

(j−1)bn+pkn−1∑
i=(j−1)bn

(
Ȳ 2
i − ci − Ai

)
|Fn(j−1)(p+1)kn

 = pkn$j and (14)

E

(j−1)bn+pkn−1∑
i=(j−1)bn

(ci + Ai)|Fn(j−1)(p+1)kn

 = pkn(σεj +$j), (15)

where $j ≡ OP

(
1
n

+ 1√
n

√
E
(
β (2p+ 1)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
and σεj ≡ ψ2kn

n
σ2
(j−1)bn/n +

ψ1

kn
α(j−1)bn/n. Given the decomposition Ȳ 2

i =
(
X̄i + ε̄i

)2
= X̄2

i + 2X̄iε̄i + ε̄2i , we can write

E

(j−1)bn+pkn−1∑
i=(j−1)bn

(
Ȳ 2
i − ci − Ai

)
|Fn(j−1)(p+1)kn

 = E

(j−1)bn+pkn−1∑
i=(j−1)bn

(
X̄2
i − ci

)
|Fn(j−1)(p+1)kn


+E

(j−1)bn+pkn−1∑
i=(j−1)bn

(
2X̄iε̄i + ε̄2i − Ai

)
|Fn(j−1)(p+1)kn


≡ ζ1(X) + ζ1(X, ε) .

We can show that ζ1(X, ε) = 0 by relying on Assumption 1. In particular, noting that Fn(j−1)(p+1)kn
⊂

F0 ×F1
(j−1)(p+1)kn

n
−
, (where F0 ×F1

(j−1)(p+1)kn
n

− denotes the sigma algebra generated by all F0-

measurable random variables plus all variables Ys, with s < (j − 1) (p+ 1) kn) we have that by
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the law of iterated expectations,

ζ1(X, ε)=E

E
(j−1)bn+pkn−1∑

i=(j−1)bn

(
2X̄iε̄i + ε̄2i − Ai

)
|F0 ×F1

(j−1)(p+1)kn
n

−

|Fn(j−1)(p+1)kn

 = 0,

where by Assumption 1, E

(
X̄iε̄i|F0 ×F1

(j−1)(p+1)kn
n

−

)
= X̄iE

(
ε̄i|F0 ×F1

(j−1)(p+1)kn
n

−

)
= X̄iE (ε̄i|X) =

0 and E

(
ε̄2i |F0 ×F1

(j−1)(p+1)kn
n

−

)
= E (ε̄2i |X) ≡ Ai (see equation (5.37) of Jacod et al. (2009)).

For ζ1(X), by the definition of ci, we can write

ζ1(X) ≤ K

n1/4
χ(p)(j−1)(p+1)kn

= K

(
1

n1/2
+

1

n1/4

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))

≤

(
1

n1/2
+

1

n1/4

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
= pkn$j,

where the first line follows from equation (5.30) of Jacod et al. (2009); the second line uses the

definition of χ(p)(j−1)(p+1)kn = n−1/4 +

√
E
(
β (p)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

)
; and the third line

uses the fact that β (p)(j−1)(p+1)kn
≤ β (2p+ 1)(j−1)(p+1)kn

. This proves (14). To show (15), we

rely on arguments similar to those used by Jacod et al. (2009) (in particular, see their equations
(5.23) and (5.36)). This implies that

E

(j−1)bn+pkn−1∑
i=(j−1)bn

Ȳ 2
i

|Fn(j−1)(p+1)kn

 = pkn (σεj + 2$j) .

By similar arguments, we can show that

E

((
jbn+kn−1∑
i=jbn

Ȳ 2
i

)
|Fn(j−1)(p+1)kn

)
= kn (σεj + 2$j) ,

which implies that

Υ1 = n1/2 (p+ 1)2

ψ2
2b

2
n

Jn−1∑
j=1

pk2n (σεj + 2$j)
2

= n1/2 (p+ 1)2

ψ2
2b

2
n

pk2n

Jn−1∑
j=1

(
σε2j + 4$jσεj + 2$2

j

)
= n1/2 p

ψ2
2

Jn−1∑
j=1

(
σε2j + 4$jσεj + 2$2

j

)
. (16)

Using the fact that
√
nσεj = OP (1) uniformly in j, Jn = O (

√
n) , and the definition of $j =
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OP

(
1
n

+ 1√
n
E
((
β (2p+ 1)(j−1)(p+1)kn

)
|Fn(j−1)(p+1)kn

))
uniformly in j, we get that

n1/2 2p

ψ2
2

Jn−1∑
j=1

$jσεj =
2p

ψ2
2

Jn−1∑
j=1

$j

(
n1/2σεj

)
= OP

(
Jn
n

)
+OP

(
1√
n

Jn∑
j=1

√
E
(
β (2p+ 1)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))
,

which is oP (1) since Jn/n = O (1/
√
n) and 1√

n

Jn−1∑
j=1

E
((
β (2p+ 1)(j−1)(p+1)kn

)
|Fn(j−1)(p+1)kn

)
→P

0 by Lemma B.1. The third term in (16) is such that

n1/2 2p

ψ2
2

Jn−1∑
j=1

$2
j = OP

(
Jn
n3/2

)
+OP

(
2√
n

1√
n

Jn∑
j=1

√
E
(
β (2p+ 1)2(j−1)(p+1)kn

|Fn(j−1)(p+1)kn

))

+OP

(
1√
n

Jn−1∑
j=1

E
((
β (2p+ 1)2(j−1)(p+1)kn

)
|Fn(j−1)(p+1)kn

))
= oP (1) ,

given parts a5) and a7) of Lemma B.1. Thus

Υ1 = n1/2 p

ψ2
2

Jn−1∑
j=1

σε2j + oP (1) . (17)

Similarly, we can show

Υ2 = n1/2 p
2

ψ2
2

Jn−1∑
j=1

σε2j + oP (1) , and (18)

Υ3 = n1/2 1

ψ2
2

Jn−1∑
j=1

σε2j + oP (1) . (19)

From (17), (18) and (19), we have that

n1/2b2n
ψ2
2k

2
n

Jn−1∑
j=1

E
(
Lj|Fn(j−1)(p+1)kn

)
=

(
(p+ 1)2 − 1

) n1/2

ψ2
2

Jn−1∑
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σε2j + oP (1)

=
(
(p+ 1)2 − 1

)(n1/2

ψ2
2

Jn∑
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σε2j −
n1/2

ψ2
2

σε2Jn

)
+ oP (1)

=
(
(p+ 1)2 − 1

)(n1/2

ψ2
2

Jn∑
j=1

σε2j

)
+OP

(
n−1/2

)
+ oP (1)

=
(
(p+ 1)2 − 1

)(n1/2

ψ2
2

Jn∑
j=1

σε2j

)
+ oP (1) .

This shows that Ba.2n →P 0. Finally, Ba.3n →P 0 follows immediately by Riemann’s integrability
of α and σ, the fact that Nn

n
→ 1 and Jn →∞ as n→∞.
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Step 2. Next, we analyze the term that depends on Ξ4j ≡ B̄
[pkn,bn−1]
j B̄

[0,kn−1]
j+1 . We show that

E

(
n1/2b2n
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n
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Ξ4j

)
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)
, and V ar
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. Given the definition of

Ξ4j, we have that
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Given the decomposition Ȳi = X̄i+ε̄i, using the triangle inequality we have that
∣∣Ȳi∣∣ ≤ ∣∣X̄i

∣∣+|ε̄i| .
It follows that

E
(
Ȳ 4
i

)
≤ K

(
E
(
X̄4
i

)
+ E

(
ε̄4i
))

= O
(
n−1
)

uniformly in i, where we use the c-r inequality and equations (5.28) and (5.38) of Jacod et al.
(2009) to show that E

(
X̄4
i

)
= O (n−1) , and E (ε̄4i ) = O (n−1) uniformly in i. Thus, we can

bound (20) by K n1/2
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2
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n

= O
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)
given that Jn = Nn/bn = (

√
n/θ) (Nn/n) (kn/bn) with

kn = θ
√
n and Nn/n→ 1. Next, we show that V ar
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2
n
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= O
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)
. We have that
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2k

2
n
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Ξ4j
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. Thus, using the c-r inequality, we can write
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(
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4
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(
Ȳ 8
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where the second inequality holds given Cauchy-Schwartz inequality and the fact that E
(
Ȳ 8
i

)
=

O (n−2) uniformly in i. Thus, we can bound (21) by K J2
n

n
= O

(
k2n
b2n

)
given that Jn = Nn/bn =

(
√
n/θ) (Nn/n) (kn/bn) with kn = θ

√
n and Nn/n→ 1. Hence n1/2b2n

ψ2
2k

2
n

Jn−1∑
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Ξ4j = OP

(
kn
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)
.

Proof of Lemma 3.1. Part a) Given the definition of V ∗n , we can write

V ∗n = V ∗1n −
√
nNnbn

(Nn − bn + 1)2
V ∗2n,

33



where

V ∗1n =
1

bn

bn−1∑
t=0

v∗1n,t, with v∗1n,t ≡
√
n

(Nn − bn + 1)Nn

[Nn−t
bn

]∑
j=1

(
bn+t∑
i=t+1

Zi+(j−1)bn
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, and

V ∗2n =
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bn
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v∗2n,t, with v∗2n,t ≡
1

Nn

[Nn−t
bn

]∑
j=1

bn+t∑
i=t+1

Zi+(j−1)bn .

We now proceed in two steps. In Step 1, we show that v∗1n,t →P Vp+θ (p+ 1)
∫ 1

0

(
σ2
s + ψ1

θ2ψ2
αs

)2
ds

uniformly in t. In Step 2, we show that v∗2n,t →P
∫ 1

0

(
σ2
s + ψ1

θ2ψ2
αs

)2
ds, also uniformly in t. This

together with the fact that
√
nNnbn

(Nn−bn+1)2
→ (p+ 1) θ as n→∞ when bn = (p+ 1) kn and kn satis-

fies Assumption 2 imply the result. Proof of Step 1. For t = 0, . . . , bn−1 and j = 1, . . . ,
[
Nn−t
bn

]
,

let

B̄j,t ≡
1

bn

bn∑
i=1

Ȳ 2
i−1+t+(j−1)bn =

knψ2

Nn

1

bn

bn∑
i=1

Zi+t+(j−1)bn ,

where Zi ≡ Nn
kn

1
ψ2
Ȳ 2
i−1 and note that the B̄j,t are averages of non-overlapping blocks for given t.

With this notation, we have that

v∗1n,t =
N2
n

(Nn − bn + 1)Nn

√
nb2n

k2nψ
2
2

[Nn−t
bn

]∑
j=1

B̄2
j,t,

where we can show that N2
n

(Nn−bn+1)Nn
→ 1 under the condition that bn = (p+ 1) kn. Using

arguments similar to those used to prove Lemma B.2, we can show that

√
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k2nψ
2
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B̄2
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0

(
σ2
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ψ1

θ2ψ2

αs

)2

ds

uniformly in t. The proof of Step 2 relies on the consistency result in Theorem 1 of Christensen,
Kinnebrock and Podolskij (2010). Indeed v∗2n,t is the main term in Jacod et al. (2009) pre-
averaged realized volatility estimator without the bias corrected term, with starting point t.
Part b). Follows directly from part a) of Lemma 3.1 when replacing σt by a constant for all
t. Part c). Follows directly from part a) of Lemma 3.1.
Proof of Lemma 3.2 Part a). Given the definition of V ∗n , we can write

V ∗n = V ar∗
(
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)
=
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.
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The result follows from Lemma B.2 and the fact that n1/2b2n
ψ2
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2
n

(
B̄2

1 + B̄2
Jn

)
= OP

(
1√
n

)
given

that B̄j = OP (1/
√
n) uniformly in j. Part b). Follows directly from Lemma 3.2.a) and the

assumptions that V ar∗ (η) = 1
2

that p→∞.

Proof of Theorem 3.1 For any fixed p ≥ 1, let S∗n = n1/4 (PRV ∗n − E∗ (PRV ∗n )) = bn
ψ2kn

Jn∑
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z∗j ,
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Jn∑
j=1

z∗j

)
= 0, and

V ∗n ≡ V ar∗

(
Jn∑
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Since z∗1 , · · · , z∗Jn are conditionally independent, by the Berry-Esseen bound, for some small
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which converges to zero in probability as n→∞. We have

Jn∑
j=1

E∗
∣∣z∗j ∣∣ 2+δ =

Jn∑
j=1

E∗
∣∣∣∣n1/4 bn

ψ2kn

(
B̄∗j − E∗

(
B̄∗j
))∣∣∣∣2+δ

≤ 2n
(2+δ)

4

(
bn
ψ2kn

)2+δ Jn∑
j=1

E∗
∣∣B̄∗j ∣∣ 2+δ

≤ 2Kpn
(2+δ)

4 E∗ |η1|2+δ
Jn∑
j=1

∣∣B̄j

∣∣ 2+δ = KpOp

(
n−

δ
4

)
= op (1) ,

since E∗ |ηj|2+δ ≤ ∆ <∞, B̄j = KpOp

(
1√
n

)
, and Jn ∼ n1/2. It follows that n1/4 (PRV ∗n − E∗ (PRV ∗n ))→d∗

N(0, Ṽp) in probability, for any fixed p ≥ 1. The result follows by using part b) of Lemma 3.2
and letting p→∞.
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[11] Gonçalves, S., and H. White (2002). “The bootstrap of the mean for dependent heterogeneous

arrays,” Econometric Theory, 18, 1367-1384.

[12] Hansen, P.R. and A. Lunde (2006). “Realized variance and market microstructure noise,”Journal

of Business and Economics Statistics, 24, 127-161.

[13] Hautsch N., and Podolskij, M., (2013). “Pre-averaging based estimation of quadratic variation in

the presence of noise and jumps: Theory, Implementation, and Empirical Evidence,” Journal of

Business and Economic Statistics, 31(2), 165-183.

[14] Heston, S. (1993). “Closed-form solution for options with stochastic volatility with applications

to bonds and currency options,” Review of Financial Studies, 6, 327-343.

[15] Jacod, J. (2008). “Asymptotic properties of realized power variations and related functionals of

semimartingales,” Stochastic Processes and Their Applications, 118, 517-559.

[16] Jacod, J., Y. Li, P. Mykland, M. Podolskij, and M. Vetter (2009). “Microstructure noise in the

continuous case: the pre-averaging approach,” Stochastic Processes and Their Applications, 119,

2249-2276.

[17] Jacod, J., M. Podolskij, and M. Vetter, (2010). “Limit theorems for moving averages of discretized

processes plus noise,” Annals of Statistics 38, 1478–1545.
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