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Abstract

We propose an ARFIMA (autoregressive fractionally integrated moving average) model that is

able to capture long memory and incorporate structural breaks in the model parameters. We

model structural breaks through irreversible Markov switching or so-called change-point dy-

namics. Monte Carlo simulations demonstrate that our approach is effective in estimating the

model parameters, identifying and dating structural breaks. Applied to daily S&P 500 data we

find evidence of four structural breaks. The evidence of structural breaks is robust to differ-

ent specifications including a GARCH specification for the conditional volatility of realized

volatility.
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1 Introduction

Measuring and modeling volatility is a very important issue in many pricing and risk management
problems. Recently, a new observable measure of volatility, called realized volatility (RV) has
been proposed. Realized volatility uses high-frequency data information and has been shown to
be an accurate estimate of expost volatility. RV is constructed from the sum of intraday squared
returns and converges to quadratic variation for a broad class of continuous time models. A well-
known property of RV is the strong serial dependence as evidenced for instance in Andersen et al.
(2001) and Andersen et al. (2007). For this reason long memory models such as the ARFIMA
(autoregressive fractionally integrated moving average) model have been applied to RV data.

In this paper we provide a Bayesian analysis of structural breaks in daily S&P 500 realized
volatility. In particular, we propose an ARFIMA model in which the level, persistence and volatility
of realized volatility parameters are subject to structural breaks. The basis of the analysis is on an
ARFIMA model which builds on the Hidden Markov Chain (HMC) formulation of the multiple
change-point model proposed by Chib (1998). Breaks are captured through an integer-valued state
variable, st that tracks the regime from which a particular observation, yt is drawn. st is modeled
as a discrete first order Markov process with a constrained transition probability matrix. At each
point in time, st can either remain in the current state or jump to the next state.

We investigate specifications which allow for all parameters, as well as only for a subset of
parameters to change due to structural breaks. This allows one to isolate the impact of structural
breaks on individual parameters and use all data in estimation of parameters that are not affected
by structural breaks. Each change-point ARFIMA model is estimated conditional on 0,1, ...,m
breaks occurring and for each of these specifications the marginal likelihood (ML) and the deviance
information criterion (DIC) are calculated and used to determine the number of change points.
Specifically, we can compare marginal likelihoods using Bayes factors and use differences in DIC
between different specifications to compare models and determine the number of structural breaks.
It is important to note that DIC can be considered as a compelling alternative to ML. Furthermore,
calculation of DIC in our MCMC scheme is trivial as the likelihood with st , t = 1, ...,T integrated
out is easily obtainable.

Our contributions in this paper are two-fold. First, we provide an efficient Markov chain
Monte Carlo sampling scheme to draw st , t = 1, ...,T and the parameters within each regime, θk,
k = 1, ...,m from their respective conditional posteriors. Furthermore, instead of using traditional
approaches to evaluate the likelihood function such as Chan and Palma (1998), we build upon pre-
vious works on precision-based algorithms as in Chan and Jeliazkov (2009), Chan (2013) and use
a direct approach to evaluate the likelihood function. In fact, we believe that incorporating the
precision-based algorithm of Chan and Jeliazkov (2009) and Chan (2013) along with the change-
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point specification of Chib (1998) within the ARFIMA setting is the most important contribution
that we make. Furthermore, we also conduct an extensive Monte Carlo experiment to investigate
if our methods work well in identifying data generating parameters, true structural break dates and
the correct number of structural breaks. With regards to the last point we compare the ability of ML
and DIC to detect the correct number of structural breaks. Our simulations, based on empirically
reasonable scenarios, show that ML and DIC perform very well in identifying the true number of
structural breaks. The higher the number of parameters that are affected by a break, the more likely
it is that structural breaks are correctly identified. Finally, it becomes more difficult to identify one
or more breaks when only the persistence parameter changes.

Empirical results for S&P 500 volatility provide strong evidence in favor of four structural
breaks based on data from January 2nd, 2000 to December 31st, 2009, for a total of 2515 trading
days. The effect of structural breaks is mainly confined to the conditional mean and variance with
weaker evidence that the persistence parameter is also subject to structural breaks. Finally, in order
to investigate if the existence of breaks is spurious due to neglected conditional variance dynamics,
we also consider breaks in an ARFIMA-GARCH model. Again, evidence is strong in favor of
structural breaks in the model parameters and the estimated change-point dates are close to that of
the change-point ARFIMA model.

The structure of this paper is as follows. In Section 2, we present the change-point ARFIMA
model. Bayesian estimation techniques and model comparison methods are presented in section
3. Section 4 presents the Monte Carlo results. In Section 5, we briefly review the theory behind
realized volatility. Section 6 is the application on S&P 500 volatility while section 7 concludes. An
appendix explains how to evaluate the likelihood using the precision-based algorithm of Chan and
Jeliazkov (2009) and Chan (2013).

2 Change-point ARFIMA Model

Consider an ARFIMA (AutoRegressive Fractionally Integrated Moving Average) model

yt = µ +(1−L)−d
εt , εt ∼ N

(
0,σ2) (2.1)

for t = 1, ...,T . yt is the actual observation, L is the lag operator such that Lεt = εt−1 and d de-
termines the long memory of the process. The fractional difference operator, (1−L)−d in (2.1) is
defined as

(1−L)−d =
∞

∑
j=0

Γ( j+d)
Γ( j+1)Γ(d)

L j
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where Γ(.) is the Gamma function. Equation (2.1) is a generalization of the moving average (MA)
model to non-integer values of d. Specifically, if d > 0 the process is said to have long memory
since the autocorrelations die out at a hyperbolic rate. For 0 < d < 0.5, (2.1) is a stationary long-
memory process with non-summable autocorrelation functions. For d = 0, we have that yt = µ+εt .

There are many ways to estimate (2.1), see for example Beran (1994) and Robinson (2003). In
this paper we focus on MCMC methods for inference, in particular Gibbs sampling. We rely on the
idea of Chan and Palma (1998). Specifically, Chan and Palma (1998) consider an approximation
of (2.1) based on a truncation lag of order M. Thereafter, the likelihood is computed using the
Kalman filter. However, instead of using the Kalman filter we take a different approach to evaluate
the likelihood function. Our approach extends previous works on precision-based algorithms as
in Chan and Jeliazkov (2009) and Chan (2013) using a direct approach to evaluate the likelihood
function.

The aforementioned method exploits the special structure of (2.1), particularly that the covari-
ance matrix for the joint distribution of YT = (y1, ...,yT )

′
is sparse, i.e. it contains only few non-zero

elements. By exploiting the sparse structure of the covariance matrix of YT , we are able to develop
an easy and fast method for evaluating the likelihood function.

Conditional on the model parameters, θ =
(
µ,d,σ2)′ and M we can write (2.1) as YT = u+Hε

where u = µι , ι is a T ×1 vector of 1’s, ε = (ε1, ...,εT )
′
∼ N (0,SY ) and SYT = σ2IT . H is a T ×T

lower triangular matrix with ones on the main diagonal and

H =



1 0 0 0 0 0 · · · 0
π1 1 0 0 0 0 · · · 0
π2 π1 1 0 0 0 · · · 0
...

... π1 1 0 0 · · · 0

πM πM−1
... π1 1 0 · · · 0

0 πM πM−1
... π1 1 · · · 0

...
... . . . . . . ... . . . . . . ...

0 0 · · · πM πM−1 · · · π1 1


where π j =

Γ( j+d)
Γ( j+1)Γ(d) . It is important to note that in general H is a banded T × T matrix that

contains only (T −M/2)(M+1) < T (M+1)) non-zero elements. Using the algorithm of Chan
(2013) it is shown in the appendix that p(YT | θ ,M) has a closed form solution given as

log p(YT | θ ,M) =−T
2

log(2π)− T
2

log
(
σ

2)− 1
2
(YT −u)

′
Ω
−1
YT

(YT −u) (2.2)

where ΩYT = HSYT H
′
and p(.) denotes the density of all random quantities.
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Allowing for structural breaks in the parameters of (2.1) is straightforward. Assume that there
are m−1, m ∈ {1,2, ...} change points at unknown times {τ1,τ2, ...,τm−1}. Separated by those
change points, there are m different regimes. The density of yt depends on θk =

{
µk,dk,σ

2
k

}
,

k = 1,2, ...m whose value changes at the change points {τ1,τ2, ...,τm−1} and remains constant
otherwise

θ =



θ1 if t < τ1

θ2 if τ1 ≤ t < τ2
...

...
...

θm−1 if τm−2 ≤ t < τm−1

θm if τm−1 ≤ t

(2.3)

Let S = (s1, ...,sT )
′

where st = k indicates that yt is from regime k. The one-step-ahead transition
probability matrix for st is given as

P =



p11 p12 0 · · · 0
0 p22 p23 · · · 0
...

...
...

...
...

...
... 0 pm−1,m−1 pm−1,m

0 0 · · · 0 1


(2.4)

where plk = p(st = k | st−1 = l) with k = l or k = l +1 is the probability of moving from regime l

at time t−1 to regime k at time t. P ensures that given st = k at time t, the next period, t +1, st +1
remains in the same state or jumps to the next state. For instance, given st = k, one has st+1 = k or
st+1 = k+1 with pk,k + pk,k+1 = 1. Once the last regime is reached, one stays there forever, that is
pm,m = 1. This structure enforces the ordering (2.3) on the change points.

3 Bayesian Estimation

To conduct model estimation we jointly estimate the long memory dynamics and S. However,
model estimation is not straightforward. First, S is not observable. Second, there is no standard
method to draw dk or µk from their conditional posterior densities. Although the joint posterior
density of the model, p(P,θ ,M,S | YT ) is not a well-known density, samples from it can be obtained
using Gibbs sampling and Metropolis-Hastings (M-H). The parameters are divided into four blocks:
θ = {θk}m

k=1, S, M and P. The Gibbs sampler requires the following steps: first, choose starting
values for P, θ and M, i.e. P(0), θ (0),M(0) and set i = 1. Then iterate from
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1. S(i) | P(i−1),θ (i−1),M(i−1),YT

2.
{

θ
(i)
k

}m

k=1
| P(i−1),M(i−1),S(i),YT

3. M(i) | P(i−1),θ (i),S(i),YT

4. P(i) | θ (i),M(i),S(i),YT

5. Set i = i+1 and go to the first step.

Notice that in step 2 of iteration i of the Gibbs sampler each element of θ is updated one-at-a-time.
After dropping a set of burn-in samples, the remaining draws are collected for inference. For N

large enough, any function of interest can be consistently estimated. For instance,

f̂ (θ) =
1
N

N

∑
i=1

f
(

θ
(i)
)

is a consistent estimate of E [ f (θ) | YT ], the posterior mean of f (θ). Below more details are pro-
vided on each step of the Gibbs sampling procedure.

Step 1: Simulation of S | P,θ ,M,YT . Chib (1998) shows that a joint draw of S can be achieved
in one step using

p(S | P,θ ,M,YT ) = p(sT | P,θ ,M,YT )
T−1

∏
t=1

p(st | st+1,P,θ ,M,Yt) (3.1)

in which one samples sequentially from each density on the right-hand-side of (3.1) beginning with
p(sT | P,θ ,M,YT ), and then p(st | st+1,P,θ ,M,Yt), t = T −1, ...,1. At each step one conditions on
the previously drawn state st+1, until a full draw of S is obtained. The individual densities in (3.1)
are obtained based on the following steps:

(a) Initialization: At t = 1, set p(s1 = 1 | P,θ ,M,Y1) = 1.
(b) Compute the Hamilton (1989) filter, p(st = k | P,θ ,M,Yt). This involves a prediction and

an update step in which one iterates on the following from t = 2, ...,T ,

p(st = k | P,θ ,M,Yt−1) =
k

∑
l=k−1

p(st−1 = l | P,θ ,M,Yt−1) plk, k = 1, ...,m (3.2)

p(st = k | P,θ ,M,Yt) =
p(st = k | P,θ ,M,Yt−1) p(yt | θ ,M,Yt−1,st = k)

∑
m
l=1 p(st = l | P,θ ,M,Yt−1) p(yt | θ ,M,Yt−1,st = l)

,

k = 1, ...,m

The last equation is obtained from Bayes’ rule. Note that in (3.2) the summation is only from k−1
to k, due to the restricted nature of the transition matrix and p(yt | θ ,M,Yt−1,st = k) has a closed
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form solution, see (2.2).
(c) Finally, Chib (1998) shows that the individual densities in (3.1) are

p(st | st+1,P,θ ,M,Yt) ∝ p(st | P,θ ,M,Yt) p(st+1 | st ,P)

Thus, given sT = m, st is drawn backwards over t = T −1,T −2, ...,2 as

st | st+1,P,θ ,M,Yt =

{
st+1 with probability ct

st+1−1 with probability 1− ct

where

ct =
p(st = k | P,θ ,M,Yt) p(st+1 = k | st = k,P)

∑
k
l=k−1 p(st = l | P,θ ,M,Yt) p(st+1 = k | st = l,P)

Finally, note that p(s1 = 1 | s2,P,θ ,M,Y1) = 1.
Step 2: Simulation of θk | θ1, ...,θk−1,θk+1, ...,θm,M,S,YT . For each regime, the conditional

posterior of θk depends only on information in regime k. Furthermore, compared to σ2
k sampling µk

and dk is more complicated since their conditional posteriors do not have closed form. Therefore,
the Metropolis-Hastings algorithm is used. Let Ŷk = {yt : st = k} denote the observations in regime
k. We sample µk and dk, k = 1, ...,m one-at-a-time. For example, µk is sampled in the following
way:

1. Sample a candidate, µ∗k from a random walk proposal q
(

µ∗k | µ
(i−1)
k

)
∼N

(
µ
(i−1)
k ,Σk

)
where

Σk is chosen by the researcher in a manner to ensure a sufficient acceptance rate. We follow
Koop (2003, page 98) and adjust Σk to get an acceptance rate roughly around 30 to 40%.
We do this by experimenting with different values of Σk until we find one which yields a
reasonable acceptance rate probability.

2. Define the acceptance probability of µ∗k as

aMH

(
µ
∗
k ,µ

(i−1)
k

)
= min

1,
p
(

µ∗k | d
(i−1)
k ,σ

2(i−1)
k ,M(i−1),Ŷk

)
q
(

µ
(i−1)
k | µ∗k

)
p
(

µ
(i−1)
k | d(i−1)

k ,σ
2(i−1)
k ,M(i−1),Ŷk

)
q
(

µ∗k | µ
(i−1)
k

)
 (3.3)

3. Draw u from the standard Uniform distribution, U . If u≤ aMH

(
µ∗k ,µ

(i−1)
k

)
then set µ

(i)
k = µ∗k

else set µ
(i)
k = µ

(i−1)
k .

Finally, σ2
k | µk,dk,M,Ŷk ∼ IG(νk/2, lk/2) where IG

(
.
2 ,

.
2

)
stands for the Inverse-gamma density,

see Kim and Nelson (1999), vk = Tk +v0, lk = ε̂
′
kε̂k + l0, Tk is the number of observations in regime
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k and ε̂k = {ε̂t : st = k}. v0 and l0 are the prior hyperparameter values.
Step 3: Simulation of M | P,θ ,S,YT . In order to sample M from its conditional posterior we use

the same method as in Raggi and Bordignon (2012). A truncation parameter, M∗ is proposed from
a discretized Laplace proposal, q

(
M∗ |M(i−1)

)
= 1

2λ
exp
(
−λ

∣∣∣M∗−M(i−1)
∣∣∣) where λ = 0.1 in

order to obtain small moves. The Metropolis-Hastings acceptance probability is given as

aMH

(
M∗,M(i−1)

)
= min

1,
p
(

M∗ | θ (i),S(i),YT

)
q
(

M(i−1) |M∗
)

p
(
M(i−1) | θ (i),S(i),YT

)
q
(
M∗ |M(i−1)

)
 (3.4)

Step 4: Simulation of P | S. Assume that pkk ∼ Beta(a0,b0). The conditional posterior for each
diagonal component of P is then

pkk | S ∼ Beta(a0 +nkk,b0 +1) , k = 1, ...,m−1

where nkk is the number of one-step transitions from state k to state k in a sequence of S.

3.1 Breaks in µ and d

Suppose that only µ and d are subject to structural breaks. Thus, we have µk and dk for k =

1, ...,m while the conditional variance, σ2 is constant trough time. Modeling this specification is
straightforward because as before we can use the conditioning properties of the Gibbs sampler.

Specifically, in order to sample µ
(i)
k and d(i)

k for k = 1, ...,m we use S(i), M(i−1), Ŷk = {yt : st = k}
and perform M-H to obtain µ

(i)
k and d(i)

k using (3.3). Conditional on S(i), µ
(i)
1 , ...,µ

(i)
m , d(i)

1 , ...,d(i)
m ,

M(i−1) and YT we then draw σ2(i) from the Inverse-gamma density. The remaining parameters, M(i)

and P(i) are also sampled conditional on S(i), µ
(i)
k , d(i)

k , k = 1, ...,m, σ2(i) and YT using Step 3 and
Step 4 from the previous section.

3.2 Only breaks in σ2

Now suppose only σ2 changes between regimes, while µ and d are constant. For this case, we
draw σ

2(i)
k from the Inverse-gamma density, IG

(
νk
2 ,

lk
2

)
for k = 1, ...m using S(i) from Step 1,

µ(i−1), d(i−1), M(i−1) and YT . Thereafter, we stack σ
2(i)
k ’s using st = k and construct a vector of

time-varying conditional variances, σ
2(i)
t . To complete the cycle we sample µ(i) and d(i) conditional

on σ
2(i)
1 , ...,σ

2(i)
T ,M(i−1),YT .

Finally, note that we can consider breaks in the conditional variance with only partial breaks in
µ or d by combining the methods in the last two subsections.
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3.3 Bayes factors and marginal likelihood computation

Let M denote a model parametrization in which some or all parameters are subject to breaks. The
marginal likelihood (ML) of model M is defined as

p(YT |M ) =

�
p(YT | P,θ ,M,M ) p(P,θ ,M |M )dPdθdM (3.5)

The marginal likelihood is a measure of the success the model has in accounting for the data after
parameter uncertainty has been integrated out over the prior, p(P,θ ,M |M ). p(YT | P,θ ,M,M )

is the likelihood function with S integrated out. It is calculated as

log p(YT | P,θ ,M,M ) =
T

∑
t=1

log p(yt | P,θ ,M,M ,Yt−1) (3.6)

where

p(yt | P,θ ,M,M ,Yt−1) =
m

∑
k=1

p(yt | θ ,M,M ,Yt−1,st = k) (3.7)

p(st = k | P,θ ,M,M ,Yt−1)

The last term on the right-hand-side of (3.7) is computed from (3.2). In the following steps the
model index, M is suppressed for conciseness. Gelfand and Dey (1994), henceforth G-D propose
a method to calculate ML based on

1
N

N

∑
i=1

g
(

θ
(i)
)
/
[

p
(

YT | P(i),θ (i),M(i)
)

p
(

P(i),θ (i),M(i)
)]
→ p(YT )

−1 as N → ∞ (3.8)

It applies to any posterior simulator, no matter what algorithm is used. The prior, p
(

P(i),θ (i),M(i)
)

can be evaluated directly and p
(

YT | P(i),θ (i),M(i)
)

is calculated by substituting θ (i) into the like-

lihood function with S integrated out, (3.6). Gelfand and Dey (1994) show that if g
(

θ (i)
)

is

thin-tailed relative to p
(

YT | P(i),θ (i),M(i)
)

p
(

P(i),θ (i),M(i)
)

then (3.8) is bounded and the esti-
mator is consistent. Following Geweke (2005) a truncated Normal distribution, N (θ ∗,Σ∗) is used
for g(θ) where θ ∗ and Σ∗ are the posterior sample moments calculated as θ ∗ = N−1ΣN

i=1θ (i) and

Σ∗ = N−1ΣN
i=1

(
θ (i)−θ ∗

)(
θ (i)−θ ∗

)′
whenever θ (i) is in the domain of the truncated Normal.

The domain, Θ is defined as

Θ =

{
θ :
(

θ
(i)−θ

∗
)′
(Σ∗)−1

(
θ
(i)−θ

∗
)
≤ χ

2
α (z)

}
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where z is the dimension of the parameter vector and χ2
α (z) is the αth percentile of the Chi-squared

distribution with z degrees of freedom. In practice, 0.75, 0.95 and 0.99 are popular selections for
α . High values of α work best since then more draws will be included when estimating (3.8).

We estimate (3.8) using the aforementioned values of α . In general, we find that different values
of α lead overwhelmingly to very similar results, see section 4.2. It was also suggested to compute
the marginal likelihood using the method of Sims et al. (2008) because as pointed out in Sims et
al. (2008) the G-D method may not work for models with time-varying parameters as the posterior
density tends to be non-Gaussian. We also calculate ML for the empirical part using the method of
Sims et al. (2008). However, we do not find any significant qualitative changes compared to G-D.
Therefore, we choose to retain these values. Furthermore, Monte Carlo results clearly indicate that
G-D correctly identifies the true model in the presence of structural breaks.

Once we calculate the marginal likelihood for different specifications, we can compare models
across the number of regimes as well as across the subset of parameters using Bayes factors. The
Bayes factor (BF) for model MA versus model MB is

BFMAB =
p(y1, ...,yT |MA)

p(y1, ...,yT |MB)

This odds ratio is the factor by which the data considers MA more probable than MB. Kass and
Raftery (1995) suggest interpreting the evidence for MA as: not worth more than a bare mention
for 1 ≤ BFMAB < 3; positive for 3 ≤ BFMAB < 20; strong for 20 ≤ BFMAB < 150; and very strong
for BFMAB ≥ 150.

4 Monte Carlo

In this section, a set of Monte Carlo simulations is conducted to investigate the ability of the change-
point ARFIMA model to detect the correct number of change points. The effect of different sample
sizes and the ability of the deviance information criterion (DIC) to detect the correct number of
change points is also considered. Specifically, we compare the performance of DIC with ML to
find out if DIC is just as capable of identifying the true model from which the data is generated
as ML. We do this because computing DIC for the change-point ARFIMA model is almost trivial,
see section 4.4. However, as pointed out by Spiegelhalter et al. (2002) we must be cautions against
using ML as a basis against which to assess DIC. ML addresses how well the prior has predicted the
observed data whereas DIC addresses how well the posterior might predict future data generated
by the same parameters that give rise to the observed data.
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4.1 Setting

The ARFIMA model based on equation (2.1), in which change points affect one or more model pa-
rameters is considered. Table 1 lists all the specifications used in the simulations and the empirical
application. Specifically, M0 is the simple ARFIMA model without any structural changes, M1 to
M5 are models in which different parameters change and M6 is the model in which all parameters
change from a structural break. For each model, a sample of T = 1000 observations is gener-
ated. The true models considered include cases of no, one and two change points. In settings with
change points the positions of the change points follow a Uniform distribution, U . For instance,
when there is one change point, the position of this change point follows U (0.25×T,0.75×T ).
When there are two change points, the first one follows U (0.25×T,0.40×T ) and the second follows
U (0.60×T,0.80×T ).

The parameter values of the data generating process (DGP) under different scenarios are listed
in Table 2. For example, for M1 only µ changes while the other parameters remain constant. In
specifications M4 to M6, the time series properties change greatly and the change points should be
identified rather easily. Specifications M1 to M3 are rather challenging because the model structure
is more stable.

We specify the priors as: dk ∼ N (0,100) truncated such that 0 < dk < 0.5, µk ∼ N (0,100) and
σ2

k ∼ IG
(4

2 ,
0.02

2

)
, k = 1, ...,m. A suitable prior for M is the Poisson truncated distribution with

M ∈ {Mmin, ...,Mmax} where in this paper Mmin = 10 and Mmax = 50, see also Raggi and Bordignon
(2012). Finally, we assume that pkk ∼ Beta(8,0.1), k = 1, ...,m−1. In this setting, dk, µk, σ2

k and
M are very uninformative, while the prior for pkk favors infrequent structural breaks. We conduct a
prior sensitivity analysis with regards to the S&P 500 data and report the results in section 6.4.

4.2 Change point identification

It is assumed that model specification Mi is known but the number or dates of the structural breaks
are not known. For each draw from the data generating process (DGP), the change-point ARFIMA
model assuming 0, 1, 2 and 3 structural breaks is estimated. Evidence for the number of break
points is then ranked according to the highest marginal likelihood (ML). We calculate ML using
G-D with α = 0.99. The best model specification has the highest marginal likelihood, the second
best has next highest, etc. Thereafter, a new data from the DGP is generated and the procedure
is repeated until 100 repetitions are completed. The frequency over repetitions in which each
specification is best according to the marginal likelihood criterion is then reported.

Table 3 lists the results for each specification. For convenience, bold entries in these cells should
be 100 in case of perfect classification. For example, the second row for M1 says that for a DGP
with one change point, 99 times is correctly identified as one change point in terms of ML while
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1 is identified incorrectly as two change points. The next entry in the table repeats this for a DGP
with two change points. Here, 100 times two change points is correctly identified.

Overall, the change-point ARFIMA model works very well. When there is no change point,
this is correctly selected most of the time. Looking at these cases (first row in each panel) they
are: 100/100 for M1, 87/100 for M2 and 100/100 for M3−M6. When the process contains
change points, the marginal likelihood method correctly identifies existence of the change points
in most cases. For example, the probability of correctly identifying instability of the process is
0.99 (86+5+8)/100 for M2 and one change point, and is 1 for two change points. The correct
number of change points is found most of the times. Looking at the numbers in bold, many of
them are close to 100. However, relatively smaller numbers associated with M2 show that ML
is less powerful when there are changes only in d. Therefore, for DGPs where d is subject to
structural breaks it becomes easier to identify the breaks when more parameters undergo a change.
For example, compare M2 with the better performance of M4 in which both µ and d change from
a structural break.

We also investigate the ability of G-D to identify the true model for different values of α . There-
fore, besides α = 0.99 we repeat our Monte Carlo experiment with α = 0.75 and α = 0.95. Results
for M1, M5 and M6 are summarized in Table 4. We get identical results for these specifications
and for M0,M2, M3, M4 (not reported) as well. However, the Bayes factor in favor of the true
model in each case varies slightly across the values of α .

4.3 Parameter estimates

Given a full MCMC run we calculate the mean, median and mode of the posterior draws, θ
(i)
k ,

i = 1, ...N. We then take the mean of these quantities over the number of Monte Carlo replications.
Finally, we also consider the root mean squared error (RMSE) for each parameter in each regime

RMSE =

√√√√ 1
R

1
N

R

∑
h=1

N

∑
i=1

(
θ
(i)
k,h−θk

)2

where θ
(i)
k,h is the ith posterior draw of θk at the hth Monte Carlo iteration and θk is the vector of the

true DGP parameters in regime k. We summarize results for M4 with 2 change points for T = 500,
T = 1000 and T = 2000 in Table 5.

Overall, we see that the change-point ARFIMA model works very well as on average the es-
timates are very close to their true values. Compared to T = 500, as we increase the number of
observations in the DGP to T = 1000 the RMSE for each parameter drops on average by 10 to 40%.
The RMSE for each parameter drops even more when we increase the sample size to T = 2000.

12



4.4 Deviance information criterion

Another approach for comparing the evidence for the number of change points is by using the de-
viance information criterion (DIC) of Spiegelhalter et al. (2002). It is a compelling alternative to
AIC or BIC and it can be applied to nested or non-nested models. Calculation of DIC in a MCMC
scheme is trivial. Contrary to AIC or BIC it does not require maximization over the parameter
space. DIC is a combination of p(YT | P,θ ,M) and a penalty term, pD which describes the com-
plexity of the model and serves as a penalization term that corrects deviance’s propensity towards
models with more parameters. More precisely, pD = D(P,θ ,M)−D

(
P̄, θ̄ ,M̄

)
where D(P,θ ,M) is

approximated by N−1ΣN
i=1−2log p

(
YT | P(i),θ (i),M(i)

)
and D

(
P̄, θ̄ ,M̄

)
=−2log p

(
YT | P̄, θ̄ ,M̄

)
where P̄, θ̄ and M̄ are estimated from the Gibbs output using mean or mode of the posterior draws.
The DIC is defined as

DIC = D
(
P̄, θ̄ ,M̄

)
+2pD

It is worth mentioning that the best model is the one with the smaller DIC. However, it is difficult
to say what would constitute a significance difference in DIC. Very roughly, differences of more
than 10 might definitely rule out the model with the higher DIC.

The DIC is calculated for specifications M1, M3, M6 and results are summarized in Table
6. Similar results are obtained for other cases. The number of times out of 100 repetitions that a
specific change-point model is selected as best according to DIC and ML is reported. For instance,
in the top row, for DGP M6 with no change points, 84 out of 100 repetitions the no change-point
model has the smallest DIC, while 12/100 times the one change-point model is best and 2/100
times two and three change-point models are best. When there are two structural breaks in the DGP
for M6, DIC correctly identifies the true model 97/100 times whereas 3/100 the three change-point
model is best. On the other hand, for this DGP, ML identifies the correct model 100/100 times.

4.5 Higher number of change points

In section 4.2 we evaluated the performance of the change-point ARFIMA model under 0, 1 and
2 structural breaks. In this section we evaluate the performance of the change-point ARFIMA
model when the DGP contains more change points. Specifically, we set T = 2000 and simulate
data containing 4 change points. As before, the position of the change points follow a Uniform
distribution. We consider specifications M1, M3, M4, M6 and for each specification we estimate
the change-point ARFIMA model assuming 0, ...,5 structural breaks.

We find that DIC and ML correctly identify the true model in most cases. However, we are
also interested in whether or not our method is able to correctly identify the position of the change
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points. Therefore, for each Monte Carlo iteration we calculate the position of the change points

using the mode of
{

S(i)
}N

i=1
and compare it with the true position of the change points. Specifically,

for each change point we calculate

DIFFk =
1
R

R

∑
h=1

∣∣∣cp(h)k − cp(h)k

∣∣∣
for k = 1, ...,m−1 where cp(h)k is the kth estimated change point date and cp(h)k is the true position
of the kth change point for the hth Monte Carlo iteration. For results to give meaning, we focus
only on specifications that have the correct number of change points, i.e. four change points.

Table 7 reports DIFFk for each specification when the underlying process contains 4 change
points. For example, for M6 we find that on average we miss the correct date of the second
change point by 0.6 time periods (or 0.6 ≈ 1 day if we work with daily data). On the other hand,
we correctly identify the correct date of the last change point at every Monte Carlo iteration as∣∣∣cp(1)4 − cp(1)4

∣∣∣ = ∣∣∣cp(2)4 − cp(2)4

∣∣∣ = ... =
∣∣∣cp(R)4 − cp(R)4

∣∣∣ = 0. The same happens for the third and
forth change point for M1and M4.

Overall, we find that the change-point ARFIMA model works very well in identifying the true
dates of the change points. Specifications M1, M4 and M6 are more accurate than M3.

4.6 Sample size

In order to assess the robustness of the ML criterion with respect to different sample sizes the more
challenging specifications are considered with sample sizes of 500, 1000 and 2000. Therefore,
results for M2, with one and two change points along with M4 with two change points are reported
in Table 8. Increasing the number of observations improves identification of the true number of
change points. The distribution is also more concentrated on the true model. For instance, for
DGP, M2, 2 CP with T = 500 we identify the correct specification only 54/100 times whereas
the for T = 1000 the correct specification is selected 95/100 times and for T = 2000 the correct
specification is selected 98/100 times.

5 Realized Volatility

Suppose that, along day t, the logarithmic prices of a given asset follow a continuous-time diffusion
process

d p(t + s) = µ (t + s)dt +σ (t + s)dW (t + s) , 0≤ s≤ 1, t = 1,2, ...
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where p(t + s) is the logarithmic price at time t + s, µ (t + s) is the drift component, σ (t + s) is
the instantaneous volatility and W (t + s) is a standard Brownian motion. In addition, suppose that
σ (t + s) is orthogonal to W (t + s), such that there is no leverage effect. This assumption is standard
in the realized volatility literature. Andersen et al. (2003), Barndorff-Nielsen and Shephard (2002a)
show that daily returns, defined as rt = p(t)− p(t−1) are conditionally Gaussian. That is

rt |Ft ∼ N
(� 1

0
µ (t + s−1)ds,

� 1

0
σ

2 (t + s−1)ds
)

The true volatility for day t is defined as IVt =
� 1

0 σ2 (t + s−1)ds and is known as the integrated
volatility. In the absence of microstructure noise, realized volatility is a consistent estimator of IVt

as the intraday sampling frequency goes to infinity. Realized volatility (RV) is constructed from the
sum of intraday squared returns, Σn

j=1r2
j,t where r j,t = p j,t− p j−1,t . p j,t is the jth intraday price and

n is the number of intra-daily observations. As pointed out by for example Andersen et al. (2003),
RVt is more efficient than traditional measures of volatility, such as daily squared returns.

Market microstructure dynamics contaminate the price process with noise. Hence, RVt can be
a biased and inconsistent estimator of IVt , see Hansen and Lunde (2006) for more details on the
effects of market microstructure noise on volatility estimation. In order to reduce the effects of
market microstructure noise, we employ a kernel-based estimator that utilizes autocovariances of
intraday returns. Specifically, we follow Hansen and Lunde (2006) and provide a bias correction to
realized volatility in the following way

RV q
t =

n

∑
j=1

r2
t, j +2

q

∑
w=1

(
1− w

1+q

)n−w

∑
j=1

rt, jrt, j+w

where q is a small positive integer and we set q = 1. Henceforth, RV q
t is referred to as RVt .

6 Application to S&P 500 Volatility

6.1 Data

The empirical application is based on S&P 500 index data using the Spyder (SPY) fund. The data
consists of 5 minutes intra-daily observations from January 2nd, 2000 to December 31st, 2009, for a
total of T = 2515 trading days. The cleaning of the data is carried out using the steps in Barndorff-
Nielsen et al. (2009). After cleaning, a 5-minute grid from 9:30 to 16:00 is constructed using
previous-tick method, see Hansen and Lunde (2006). From this grid, 5-minute intraday returns are
constructed. These returns are used to construct realized volatility. Following Raggi and Bordignon
(2012), the annualized realized standard deviation, yt =

√
252RVt
100 is considered.
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However, there are outliers in yt , and therefore we risk that a single outlier may wrongly be
identified as a separate regime. To rule this out, we follow Kim et al. (2005) and Liu and Maheu
(2008) imposing the assumption that each regime lasts at least 66 days. Specifically, we perform
the following: when we simulate a draw of S which has a regime shorter than 66 days, we discard
it and resample until each regime is 66 days or more in length. We find that our results are robust
to different duration restrictions, see section 6.3. The first 1000 draws are discarded and the next
5000 are used for posterior inference.

6.2 Results

To conduct estimation, we use the same priors as in section 4.1. We investigate models under the
structural change configurations in Table 1. Table 9 displays log(ML) and DIC (indicated inside
the parentheses) for specifications with no change point up to six change points.

Results suggest existence of four change points according to ML and DIC. The log marginal
likelihood for no change point is −1946.84 and most specifications with structural breaks improve
on this. The difference between the best structural break specification (M5, 4 CP) and M0 is large
with a Bayes factor of exp(689.74) in favor of four structural breaks. This is very strong evidence.
For all model settings, except M2, the largest ML (lowest DIC) occurs at four change points. There
is some posterior support for four change points for M2, but it is outperformed by its one change
point counterpart with a Bayes factor of exp(3.03).

We also compare models across parameter specifications. The highest log(ML) and lowest DIC
model across all cases is −1257.10 and 2360.45 respectively for M5 with four change points. This
means that there are four structural breaks in µ and σ2. Comparing M5, 4 CP with the second
highest ML and second lowest DIC, which are −1290.64 and 2378.46 for M6, also with four
change points, we find that the Bayes factor for M5, 4 CP versus M6, 4 CP is exp(33.54). At the
same time we find that the difference in DIC between these two models is 18.

Figure 1 displays the data and the estimated change-point dates shown by vertical lines using

the posterior mode of
{

S(i)
}N

i=1
for M5 , 4 CP. The change-point dates are given as: 04-10-2003,

07-17-2007, 09-16-2008 and 03-19-2009. As seen in Figure 1 the last two break points occur
during the financial crises (fall of 2008 and spring of 2009). The first and second break points
correspond roughly to the beginning of the Iraq war in 2003 and the beginning of the subprime
crisis in the US in 2007.

Table 10 reports some summary statistics concerning posterior distribution of the key param-
eters for M5, 4 CP and some diagnostics. Specifically, after discarding the first 1000 iterations
we collect the final sample and compute the posterior mean, of θ , 95% credibility intervals (indi-
cated inside the brackets), inefficiency measures, RB, Geweke’s convergence statistics, Metropolis-
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Hastings acceptance ratios, DIC and log(ML)1.
None of the density intervals for the parameters include 0. The order of integration, d, is

estimated at 0.45 (compared to 0.48 for M0). This implies that S&P 500 data exhibits long memory
behavior. When we look at parameters that change from a break we find that there are sensible
differences across regimes. For instance, we see that µk increases from 0.15 to 0.39 during the
regime that covers the financial crisis and then subsequently falls to 0.17 from the last change point
to the end of the sample. The same happens for the conditional volatility of realized volatility, σk.
Specifically, we estimate σ4 at 0.82 during the 2008 financial crises which is twice as large as σ3

which we estimate at 0.42. Thereafter, σk falls to 0.28 from the last change point to the end of the
sample.

6.3 Robustness to minimum duration restrictions

In this section we test the robustness of the minimum regime durations. We follow Liu and Maheu
(2008) and estimate the best model according to ML and DIC, M5 under different minimum dura-
tion lengths. Hence, besides the minimum 66 days (3 months) we consider the following duration
lengths: 44 days (2 months), 88 days (4 months), 110 days (5 months) and 132 days (6 months).

Table 11 reports ML values for M5 from 1 to 6 change points under the mentioned duration
lengths. Overall, we see that the marginal likelihoods are almost identical across different cases,
except for duration lengths of 44 and 132 days. First, when we set the minimum duration length to
44 we obtain the exact same ML values as in Table 9 for 1 to 4 change points. For 5 and 6 change
points we get lower ML values. However, this does not change the main conclusion.

For 132 days we find evidence in favor of 3 change points at: 04-10-2003, 07-25-2007 and
03-19-2009. Furthermore, the ML values for M5, 4 to 6 CP differ significantly than those in
Table 9. However, this is understandable. The explanations is as follows: in section 6.2 we found
evidence of four structural breaks. Furthermore, the last two break dates occur at 09-16-2008 and
03-19-2009 such that there is basically 127 days between these to dates. Hence, when we set the
minimum duration length to 132 we are automatically forcing the model to find different break
dates than those dates. In fact, for the specification with four change-points we find that the last
two breaks occur at 09-05-2008 and at 03-19-2009 whereas for the other duration lengths they
occur at 09-16-2008 and 03-19-2009. Therefore, as a consequence we obtain different ML values.
Furthermore, this indicates that getting a different estimate of the third change point (09-05-2008
vs 09-16-2008) worsens ML considerably.

1RB displays the relative variance of the posterior sample draws when adapting for correlation between iterations,
as compared to the variance without accounting for correlation. In these calculations, a bandwidth B of 100 is used.
See Kim et al. (1998) for a further background on this measure.
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6.4 Prior sensitivity analysis

In this section sensitivity of the results to prior specification is evaluated by investigating alternative
priors on the transition probabilities, pkk, keeping prior values of the other parameters the same as
in section 4. pkk, k = 1, ...,m−1 is one of the key parameters of the model because it controls the
duration of each regime in a sequence of S.

In Table 12, we experiment with different hyperparameter values for pkk and report log(ML)
for each of these hyperparameters by estimating M5 from 1 to 6 change points. For instance, the
first alternative prior that is considered is pkk ∼ Beta(0.5,0.5) which is relatively flat. With this
prior we find evidence of three change points in the data. The change-point dates are given as:
04-10-2003, 07-25-2007 and 03-19-2009. For this prior specification, compared to M5, 4 CP the
Bayes factor in favor of M5, 3 CP is exp(1.35) which is very weak evidence. Hence, contrary to
the results in Table 9, with pkk ∼ Beta(0.5,0.5) we get uncertain results with regards to the correct
number of change points, since we do not have substantial posterior evidence in favor of 3 or 4
change points. For pkk ∼ Beta(10,2) we find strong evidence in favor of four change points and
the change-point dates correspond exactly to those in section 6.2.

Finally, for pkk ∼ Beta(20,0.1) which is a relatively tighter prior (a priori the expected duration
of each regime is about 201 days) we find that M5, 5 CP performs best. The first break occurs at
07-26-2002, the second at 04-14-2003 while the remaining break dates correspond exactly to those
in section 6.2.

Evidently, there remains some uncertainty regarding the correct number of change points given
the hyperparameter values of pkk for very uninformative (pkk ∼ Beta(0.5,0.5)) and very tight
(pkk ∼ Beta(20,0.1)) priors. However, results overwhelmingly suggest existence of structural
breaks during the financial crisis of 2008/2009.

6.5 Forecasts

In this section, we compare the out-of-sample performance of M5 (break) with M0 (no-break).
Specifically, we compare the out-of-sample predictive likelihood (PL) and predictive mean between
these two models. Given data up to time t − 1, Yt−1 = (y1, ...,yt−1)

′
, the predictive likelihood,

p(yt , ..,yT | Yt−1) is the predictive density evaluated at the realized outcome, yt , ...,yT , t ≤ T , see
Geweke (2005). It contains the out-of-sample prediction record of a particular model, making it the
essential quantity of interest for model evaluation. For instance, the predictive likelihood for M5 is
given as

p(yt , ..,yT | Yt−1,M5) =

�
p(yt , ..,yT | P,θM,Yt−1,M5) p(P,θM | Yt−1,M5)dPdθdM (6.1)
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Notice that the terms on the right-hand-side of (6.1) have parameter uncertainty integrated out. If
t = 1 this would be the marginal likelihood and (6.1) changes to (3.5). Hence, the sum of log
predictive likelihoods can be interpreted as a measure similar to the log of the marginal likelihood,
but ignoring the initial t− 1 observations. The predictive likelihood can be used to order models
according to their predictive abilities. In a similar fashion to Bayes factors, one can also compare
the performance of models based on a specific out-of-sample period by predictive Bayes factors,
PBF. The PBF for model A versus B is given as

PBFAB = p(yt , ..,yT | Yt−1,MA)/p(yt , ..,yT | Yt−1,MB)

and summarizes the relative evidence of the two models over the out-of-sample data, yt , ...,yT .
Calculating the predictive likelihood within a Gibbs sampling scheme is easy as we can use the
output from the Gibbs sampler. These draws are obtained based on the information set Yt−1. As a
new observation enters the information set, the posterior is updated through a new round of Gibbs
sampling and p(yt+1 | Yt ,MA) can then be calculated.

In the context of forecasting with M5 we perform the following: for the first out-of-sample
observation at time t we calculate the marginal likelihood for various number of change points,
(1, ...,n) using Yt−1. Thereafter, we choose the optimal change point number, n1 using Bayes fac-
tors. We calculate the predictive likelihood, p(yt | Yt−1,M5) and the predictive mean, E [yt | Yt−1,M5]

using the parameters associated with specification n1. Thereafter, we increase the out-of-sample
with one observation, calculate marginal likelihoods for (1, ...,n1 +1) change points, choose the
optimal change point number, n2, repeat the above forecasting procedure to obtain p(yt+1 | Yt ,M2)

and E [yt+1 | Yt ,M5]. We choose the out-of-sample period from January 23rd, 2006 to the end of
the sample.

Although we focus on the predictive likelihood to measure predictive content, it is also inter-
esting to consider out-of-sample point forecasts of RVt based on the predictive mean. Therefore,
we also report mean absolute error (MAE) and root mean squared error (RMSE) for the predictive
mean. The out-of-sample period corresponds exactly to the period used to calculate the predic-
tive likelihood. Furthermore, in addition to MAE and RMSE, forecasts are also compared us-
ing the linear exponential (LINEX) loss function of Zellner (1986). This loss function is defined
as L(yt , ŷt) = bLINEX [exp(aLINEX (ŷt− yt))−aLINEX (ŷt− yt)−1], where ŷt is the point forecast.
L(yt , ŷt) ranks overprediction (underprediction) more heavily for aLINEX > 0 (aLINEX < 0). We use
bLINEX = 1, with aLINEX = 1 and aLINEX =−1 in our calculations.

Overall, the break model offers improvements compared to the no-break model. For one obser-
vation out-of-sample, log(PBF) = 2.26, 1 month log(PBF) = 5.14, 3 months log(PBF) = 59.06
each in favor of the break specification. The improvements continue till the end of sample, see
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Table 12. Finally, Table 12 also displays out-of-sample results for one-day-ahead point forecasts
for the no-break and break model. The break model offers improvements in terms of MAE and
RMSE compared to the no-break model. When the LINEX loss function is used, the break model
also provides gains in terms of point forecasts. However, compared to density forecasts point fore-
casts show only modest improvements. The difference between the predictive likelihood and the
predictive mean is that the predictive likelihood criterion takes into account the whole shape of the
density whereas the predictive mean does not.

6.6 Structural breaks and GARCH effects

In this section we model changes in the volatility of realized volatility, see for instance Bollerslev et
al. (2007), Corsi et al. (2008) and Liu and Maheu (2008). To investigate if the presence of structural
breaks is due to neglected conditional variance dynamics, the following ARFIMA-GARCH model
is considered

(1−L)d (yt−µ) = γkσtεt , εt ∼ N (0,1) , σ
2
t = ω +aε

2
t−1 +bσ

2
t−1 (6.2)

where ω > 0, a > 0, b > 0 and a+b < 1 are also imposed. The parameter γk is a scaling constant,
which has a direct effect on yt . In the following γ1 = 1 and it is assumed that γk > 0 for k = 2, ...,m.
Thus, in regime 1, this is a standard ARFIMA model with GARCH effects, see Baillie et al. (1996)
while in later regimes, the conditional variance of yt can be larger or smaller than σ2

t depending of
course on γk > 1 or γk < 1. As noted by Liu and Maheu (2008) the advantage of this specification
is that one can model permanent changes in the volatility of realized volatility but avoid the path
dependence in σ2

t induced by parameter changes in ω , a, and b. Equation (6.2) is estimated using
the AR representation of the ARFIMA model. The likelihood is evaluated using the method of
Beran (1994). Let θ = (µ,d,ω,a,b,γ2, ...γm)

′
, the Gibbs sampler requires iteration of

• S(i) | P(i−1),θ (i−1),YT

• θ (i) | P(i−1),S(i),YT

• P(i) | θ (i),S(i),YT

We use Metropolis-Hastings to sample each element of θ . For the GARCH parameters, we sample
ψ = (ω,a,b)

′
all-at-once using the independent chain Metropolis-Hastings algorithm. Specifically,

conditional on S, γ2, ...γm, d and µ at each iteration of the Gibbs sampler we maximize (6.2) with
respect to ψ and set the candidate generating density to q∗ ∼ N (ψ̂ML,c · var (ψ̂ML)) where c ∈R+.
The priors of θ are independent Normals with mean 0, variance 100, truncated (except for µ) to
satisfy the restrictions on each parameter. Furthermore, we ensure that a+ b < 1 by resampling
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a(i) > 0 and b(i) > 0 until a(i)+ b(i) < 1. We follow section 6.2 and estimate a stable ARFIMA-
GARCH model as well as its structural break version with 1 to 5 change points. We find strong
evidence in favor of structural breaks for (6.2). Specifically, we find that the specification with 3
change points performs best both in terms of ML and DIC. The change-point dates are given as:
11-20-2007, 09-04-2008 and 03-19-2009.

Parameter estimates of the ARFIMA-GARCH specification conditional on 3 change points
are listed in Table 10. Compared to M5, 4 CP we find that d increases (from 0.44 to 0.48).
The scaling parameter, γk also changes between regimes. Specifically, γk rises during the sec-
ond and third phase which start from late 2007 and last until 03-18-2009. γk falls from 1.68 for
09-04-2008/03-18-2009 to 0.93 for 03-19-2009/12-31-2009. Finally, the unconditional volatility of
volatility,

√
γ2

st
ω/(1−a−b) increases during the financial crises (1.91 for the period 09-04-2008

to 03-18-2009 compared to 0.82 for the period 11-20-2007 to 09-03-2008) and falls to 0.58 from
the last change point to the end of the sample.

7 Conclusion

We present a Bayesian method for joint analysis of long-memory and structural breaks using
change-point ARFIMA models. We estimate different specifications and determine the number
of change points using ML and DIC. Monte Carlo simulations demonstrate that our MCMC sam-
pler works very well as the estimated parameters are close to their true values. Furthermore, we
find that ML and DIC are powerful in detecting the correct number of structural breaks.

Applying the model to daily S&P 500 data from 2000 to 2009 shows that there is robust ev-
idence of four structural breaks. We demonstrate that accounting for structural breaks improves
density and point forecasts. Finally, an ARFIMA model with GARCH effects is also considered.
This model provides evidence in favor of three structural breaks.
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A Appendix

This appendix details a direct approach for evaluating the likelihood function of the ARFIMA
model using the precision-based algorithm of Chan and Jeliazkov (2009) and Chan (2013). Con-
sider the following ARFIMA model

yt = µ +(1−L)−d
εt , εt ∼ N

(
0,σ2) (A.1)

Conditional on M we write (A.1) as YT = u + Hε where u, H and ε follow directly from the
main text. The special structure of H can be exploited to speed up computation. For instance,
obtaining the Cholesky decomposition of a banded T×T matrix with fixed bandwidth involves only
O(T ) operations as opposed to O

(
T 3) for a full matrix of the same size. Similar computational

savings can be generated in operations such as multiplication, forward and backward substitution
by using block-banded or sparse matrix algorithms. These banded and sparse matrix algorithms are
implemented in Matlab.

It follows from (A.1) that p(YT | θ ,M) ∼ N (u,ΩYT ) where ΩYT = HSYT H
′

and SYT = σ2IT .
Since SYT is a diagonal matrix and H is a lower triangular sparse matrix, the product, ΩYT is sparse.
Moreover, since |H| = 1 for any π1, ...,πM one has that |ΩYT | = |SYT |. The joint density of YT is
therefore given by

log p(YT | θ ,M) =−T
2

log(2π)− T
2

log
(
σ

2)− 1
2
(YT −u)

′
Ω
−1
YT

(YT −u) (A.2)

As stated in Chan (2013) it is important to note that we need not obtain the T ×T inverse matrix
Ω
−1
YT

in order to evaluate (A.2) which would involve O
(
T 3) operations. Instead, it can be computed

in three steps, each of which requires only O(T ) operations. Therefore, the following notation is
introduced, see also Chan (2013): given a lower (upper) triangular T ×T non-singular matrix A

and a T ×1 vector c, let A\ c denote the unique solution to the triangular system Ax = c obtained
by forward (backward) substitution, i.e. A\ c = A−1c.

Now, obtain the Cholesky decomposition, CYT of ΩYT such that CYT C
′
YT

= ΩYT . This involves
only O(T ) operations. Compute x1 = C

′
YT
\ (CYT \ (YT −u)) by forward followed by backward

substitution, each of which require O(T ) operations since CYT is also banded. Then, by definition

x1 = C−1′
YT

(
C−1

YT
(YT −u)

)
=
(

CYT C
′
YT

)−1
(YT −u) = Ω

−1
YT

(YT −u)

Finally, compute x2 =−1
2 (YT −u)

′
x1 =−1

2 (YT −u)
′
Ω
−1
YT

(YT −u) which gives the quadratic term
in (A.2).
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Table 1: Change-point model specifications
Model index parameters that change from a break

M0 None
M1 µ

M2 d
M3 σ2

M4 µ , d
M5 µ , σ2

M6 All parameters

This table labels the various change-point specifications. The first column is the model index and
the second column lists model parameters that change due to structural breaks.

Table 2: Parameter values for Monte Carlo simulations
Regime M0 M1 M2 M3 M4 M5 M6

1 1 1 1 1 1 1 1
2 µ 1 2 1 1 2 2 2
3 1 0.8 1 1 0.8 0.8 0.8

1 0.3 0.3 0.20 0.3 0.3 0.3 0.2
2 d 0.3 0.3 0.45 0.3 0.45 0.3 0.45
3 0.3 0.3 0.05 0.3 0.05 0.3 0.05

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 σ2 0.1 0.1 0.1 0.18 0.1 0.18 0.18
3 0.1 0.1 0.1 0.36 0.1 0.36 0.36

This table lists the parameter values for the Monte Carlo simulations. The first column is the index
of the regimes. The second column lists the parameters. The first row is the model index. If there
is one break then the DGP parameters are first from regime 1 and then regime 2.
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Table 3: Change-point identification by marginal likelihood
DGP frequency by ML

# of CP 0 CP 1 CP 2 CP 3 CP

M1
µ

0
1
2

100
0
0

0
99
0

0
1

100

0
0
0

M2
d

0
1
2

87
1
0

0
86
0

0
5

95

13
8
5

M3
σ2

0
1
2

100
0
0

0
100
1

0
0

99

0
0
0

M4
µ

d

0
1
2

100
0
0

0
97
0

0
3

98

0
0
2

M5
µ

σ2

0
1
2

100
1
0

0
99
2

0
0

98

0
0
0

M6
All parameters

0
1
2

100
0
0

0
100
0

0
0

100

0
0
0

The first column lists the true model along with the parameters that change due to a structural
break. CP, change points; ML, marginal likelihood. The “0 CP” displays the number of times in
the repetitions when the specification with no change points has the highest ML ect. Each row
sums to 100. In this table α = 0.99.
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Table 4: Model comparison using ML
Frequency by ML for different values of α

# of CP measure 0 CP 1 CP 2 CP 3 CP
DGP, M1

0
α = 0.75
α = 0.95
α = 0.99

100
100
100

0
0
0

0
0
0

0
0
0

1
α = 0.75
α = 0.95
α = 0.99

0
0
0

99
99
99

1
1
1

0
0
0

2
α = 0.75
α = 0.95
α = 0.99

0
0
0

0
0
0

100
100
100

0
0
0

DGP, M5

0
α = 0.75
α = 0.95
α = 0.99

100
100
100

0
0
0

0
0
0

0
0
0

1
α = 0.75
α = 0.95
α = 0.99

1
1
1

99
99
99

0
0
0

0
0
0

2
α = 0.75
α = 0.95
α = 0.99

0
0
0

2
2
2

98
98
98

0
0
0

DGP, M6

0
α = 0.75
α = 0.95
α = 0.99

100
100
100

0
0
0

0
0
0

0
0
0

1
α = 0.75
α = 0.95
α = 0.99

0
0
0

100
100
100

0
0
0

0
0
0

2
α = 0.75
α = 0.95
α = 0.99

0
0
0

0
0
0

100
100
100

0
0
0

The evidence for the number of change points is determined according ML. “0 CP” column reports
the number of times in the 100 repetitions when the specification with no change point has the best
performance. Similarly for the other columns.
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Table 5: Monte Carlo parameter estimates
Regime parameter true mean median mode RMSE

DGP, M4, T = 500
1 1 0.9880 0.9877 0.9812 0.0771
2 µ 2 1.9883 1.9883 1.9455 0.1393
3 0.8 0.7985 0.7985 0.7941 0.0269

1 0.3 0.2798 0.2782 0.2511 0.0783
2 d 0.45 0.4223 0.4258 0.4117 0.0519
3 0.05 0.0854 0.0780 0.0752 0.1194

1-3 σ2 0.1 0.0953 0.0951 0.0762 0.0074

DGP, M4, T = 1000
1 1 0.9967 0.9968 0.9878 0.0575
2 µ 2 2.0012 2.0014 1.9961 0.1164
3 0.8 0.8018 0.8019 0.8014 0.0245

1 0.3 0.2983 0.2974 0.2846 0.0458
2 d 0.45 0.4430 0.4453 0.4437 0.0267
3 0.05 0.0686 0.0643 0.0705 0.0336

1-3 σ2 0.1 0.0988 0.0986 0.0847 0.0047

DGP, M4, T = 2000
1 1 1.0033 1.0040 0.9956 0.0407
2 µ 2 1.9896 1.9900 1.9929 0.0735
3 0.8 0.7979 0.7978 0.7957 0.0101

1 0.3 0.3089 0.3082 0.2983 0.0264
2 d 0.45 0.4479 0.4490 0.4446 0.0239
3 0.05 0.0638 0.0621 0.0551 0.0241

1-3 σ2 0.1 0.0991 0.0993 0.0898 0.0030

This table reports the true value of the DGP parameters along with the mean, median, mode and
root-mean-squared error (RMSE) of the estimated parameters for the Monte Carlo simulations,
generated from M4, 2 CP with parameters as indicated using samples of T = 500, T = 1000 and
T = 2000.
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Table 6: Model comparison using different criteria
Frequency by DIC and ML

# of CP measures 0 CP 1 CP 2 CP 3 CP
DGP, M1

0
DIC
ML

100
100

0
0

0
0

0
0

1
DIC
ML

0
0

98
99

0
1

2
0

2
DIC
ML

0
0

0
0

98
100

2
0

DGP, M3

0
DIC
ML

100
100

0
0

0
0

0
0

1
DIC
ML

0
0

93
100

0
0

7
0

2
DIC
ML

0
0

0
1

96
99

4
0

DGP, M6

0
DIC
ML

84
100

12
0

2
0

2
0

1
DIC
ML

0
0

96
100

2
0

2
0

2
DIC
ML

0
0

0
0

97
100

3
0

The evidence for the number of change points is determined according to DIC and ML. “0 CP”
column reports the number of times in the 100 repetitions when the specification with no change
point has the best performance (lowest DIC and highest ML). Similarly for the other columns.
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Table 7: Dating the change points
DIFF

DGP # CP 1st CP 2nd CP 3rd CP 4th CP
M1
µ

4 0.0053 0.0105 0 0

M3
σ2 4 2.2000 4.9375 4.3500 1.3250

M4
µ

d
4 0.3913 0.2391 0 0

M6
All parameters 4 0.0822 0.6027 0.1644 0

This table reports simulation results for M1, M3, M4 and M6 under 4 change points. Specifically,
we report the average difference (for each change point) between the estimated change point and
true change point date. The definition of DIFF is given in the text.

Table 8: Effect of sample size on identification of change points
Frequency by ML

Sample size 0 CP 1 CP 2 CP 3 CP
DGP, M2, 1 CP

500 9 76 6 9
1000 1 86 5 8
2000 0 95 3 2

DGP, M2, 2 CP
500 0 0 54 46

1000 0 0 95 5
2000 0 0 98 2

DGP, M4, 2 CP
500 0 0 83 17

1000 0 0 98 2
2000 0 0 98 2

This table reports simulation results for M2 and M4 under different specifications. The “0 CP”
column records the number of times in the 100 repetitions when the model with no change point
has the largest marginal likelihood. The “1 CP” column records the number of times in the 100
repetitions when the specification with one change point has the largest marginal likelihood, etc.
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Table 11: Robustness to minimum regime duration lengths
44 days 66 days 88 days 110 days 132 days

# CP (2 months) (3 months) (4 months) (5 months) (6 months)
1 -1927.45 -1927.45 -1927.45 -1927.45 -1927.45
2 -1378.12 -1378.12 -1380.89 -1378.12 -1378.12
3 -1283.65 -1283.65 -1283.65 -1283.65 -1283.65
4 -1257.10 -1257.10 -1257.10 -1257.10 -1662.56
5 -2033.78 -1259.75 -1259.75 -1259.75 -1542.71
6 -2036.12 -1737.02 -1737.02 -1737.02 -1702.11

This table compares log(ML) values of different minimum regime durations for M5. Each column
reports the lower bound for the number of observations in each regime.

Table 12: Prior sensitivity analysis, M5
# CP pkk ∼ Beta(0.5,0.5) pkk ∼ Beta(8,0.1) pkk ∼ Beta(10,2) pkk ∼ Beta(20,0.1)

1 -1928.12 -1927.45 -1935.21 -1927.35
2 -1384.52 -1378.12 -1393.53 -1379.41
3 -1290.85 -1283.65 -1669.50 -1616.89
4 -1292.20 -1257.10 -1289.23 -1444.74
5 -1869.91 -1259.75 -1869.29 -1237.21
6 -1905.09 -1737.02 -1888.65 -1604.79

This table compares log(ML) values of different prior hyperparameter values for pkk. The priors of
the other parameters are fixed according to section 4.

Table 13: Out-of-sample forecasts for S&P 500 volatility
Model MAE RMSE LINEX LINEX log(PL)

aLINEX = 1, bLINEX = 1 aLINEX =−1, bLINEX = 1
No-break 0.3553 0.6241 0.2582 3.2456 -923.73

Break 0.3403 0.5993 0.2475 2.5680 -544.48

This table reports mean absolute error (MAE), root mean squared error (RMSE) and average
LINEX for the forecasts based on the predictive mean for one-day-ahead. Furthermore, the one-
day-ahead log predictive likelihood, log(PL) is also reported.
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Figure 1: Change-point dates for M5, 4 CP
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