
Department of Economics and Business 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

Time-Consistency Problem and the Behavior of US Inflation 

from 1970 to 2008 

 

Nima Nonejad 

 

CREATES Research Paper 2013-25 

 

 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Time-Consistency Problem and the Behavior of US
Inflation from 1960 to 2013

Nima Nonejad†∗

Aarhus University and CREATES

Abstract

Restrictions implied by the theory of time-consistent monetary policy are imposed on data.

Model estimation is conducted using Bayesian MCMC techniques. We identify a major change

in the policy of the Federal Reserve with regards to inflation stabilization. In fact, since the be-

ginning of 1982 the Federal Reserve places more weight on its goals for inflation stabilization.

Furthermore, volatility of the shocks that affect the fundamentals and the correlation between

these shocks has fallen since the early 1980s.
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1 Introduction

Movements in the quarter-to-quarter inflation rate in the United States from 1960 to 2013 are re-
markably different. First, a period of rising inflation from the 1960s to the early 1980s, thereafter
a period of falling inflation from mid 1980s to the end of the 1990s and again a period of slight
rising inflation from the mid 2000s. In their seminal paper Barro and Gordon (1983) explain that
the activist, discretionary monetary policy can have contributed to the high rates of inflation during
the 1970s and early 1980s.

Ireland (1999) performs a detailed econometric analysis using the Barro and Gordon (1983)
model and tests the hypothesis that the time-consistency problem may explain the behavior of the
inflation rate in the United States from 1960 to 2000. In this paper we extend the main model
of Ireland (1999). Specifically, we try to answer the following question: can we build on Ireland
(1999) by allowing for time-variation in the key policy parameters of the Federal Reserve and thus
obtain more information regarding policy decisions at different points in time? Furthermore, to
distinguish between policy changes and external shocks, exogenous macroeconomic parameters
are also subject to structural breaks.

Ideally, we should be able to detect a structural break in the beginning of the 1980s. Further-
more, we would also expect lower volatility of the shocks that affect the macroeconomic fundamen-
tals such as the Philips curve and changes in the natural level of unemployment since the beginning
of the 1980s. From a computational point of view this extension also allows us to demonstrate the
flexibility of Markov chain Monte Carlo (MCMC) methods to adapt to more complicated model
structures.

Estimation results are presented in section (2.2). Section (3) concludes. Appendices at the
end of the paper present the theoretical framework of Ireland (1999), details about the MCMC
algorithm, DIC computation and prior sensitivity analysis.

2 Methodology

The main equations that form the basis of Ireland (1999) are

πt−αAUt =
(
1+α

2A
)

ηt−αAεt (2.1)

4Ut = 4Un
t −αηt +αηt−1 (2.2)

πt and Ut denote the inflation and unemployment rate respectively. α is the slope of the expecta-
tional Phillips curve. A = (1− k)/b > 0 where b > 0 and 0 < k < 1 are the weights that the Fed
attaches to its loss function, Lt = (1/2)(Ut− kUn

t )
2 +(b/2)π2

t . Thus, any deviation of inflation
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(unemployment) from its target value generates increasing marginal disutility in Lt . Un
t is the nat-

ural rate of unemployment, εt ∼ N
(
0,σ2

ε

)
, ηt ∼ N

(
0,σ2

η

)
with E [εtηt ] = σεη . We can write (2.1)

and (2.2) in state space form as

yt =

[
πt−αAUt

4Ut

]
= Hβt =

[
0 −αA 1+α2A 0
1 0 −α α

]
4Un

t

εt

ηt

ηt−1

 (2.3)

and

βt =


4Un

t

εt

ηt

ηt−1

= Fβt−1 +Kεt =


λ 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0



4Un

t−1

εt−1

ηt−1

ηt−2

+


1 0
1 0
0 1
0 0


[

εt

ηt

]
(2.4)

Allowing for structural breaks in (2.3)-(2.4) is straightforward.
Assume that there are m−1, m∈{1,2, ...} change points at unknown times, Ωm = {τ1,τ2, ...,τm−1}.

Separated by these change points, there are m different regimes. The density of yt , t = 1, ...,T de-
pends on θk =

(
αk,bk,kk,λk,σεk,σηk,σεηk

)′
where

θ =



θ1 if t < τ1

θ2 if τ1 ≤ t < τ2
...

...
...

θm−1 if τm−2 ≤ t < τm−1

θm if τm−1 ≤ t

(2.5)

Let S = (s1, ...,sT )
′

where st = k indicates that yt is from regime k. The one-step-ahead transition
probability matrix for st is given as

P =



p11 p12 0 · · · 0
0 p22 p23 · · · 0
...

...
...

...
...

...
... 0 pm−1,m−1 pm−1,m

0 0 · · · 0 1


(2.6)

where plk = p(st = k | st−1 = l) with k = l or k = l + 1 is the probability of moving from regime
l at time t− 1 to regime k at time t. P ensures that given st = k at time t, the next period, t + 1,
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st + 1 remains in the same state or jumps to the next state. Once the last regime is reached, one
stays there forever, that is pm,m = 1. Testing for the dimension of (2.6) is then a test for the number
of structural breaks.

2.1 Bayesian Estimation

To conduct model estimation we jointly estimate θ = {θk}m
k=1, S and P. Although the joint posterior

density of the model, p(P,θ ,S | YT ) is not a well-known density, samples from it can be obtained
using Gibbs sampling and Metropolis-Hastings (M-H), see Appendix (B.1) for more details. The
parameters are divided into m+ 2 blocks: θ1, ...,θm, S and P. Choose a set of starting values:
θ
(0)
1 , ...,θ

(0)
m and P(0). For j = 1, ...,N iterate from

• S( j) | P( j−1),θ ( j−1),YT

• θ
( j)
k | S( j),YT for k = 1, ...,m

• P( j) | S( j)

• j = j+1

In step 1, we use the algorithm of Chib (1998) to draw S( j). θ
( j)
k is sampled all-at-once using

Metropolis-Hastings conditional on S( j) and YT . Finally, p( j)
kk | S

( j) ∼ Beta
(

a0 +n( j)
kk ,b0 +1

)
, k =

1, ...,m−1 where n( j)
kk is the number of one-step transitions from state k to state k in S( j).

2.2 Results

The inflation rate is measured using yearly percentage changes in the quarterly seasonally adjusted
GDP implicit price deflator from 1960q1 to 2013q4. For the unemployment rate we use the civilian
unemployment rate also from 1960q1 to 2013q4. Both data series are downloadable from FRED.

We estimate (2.3) and (2.4) for m = 0,1,2. For each specification, the MCMC algorithm con-
sists of N = 5000 iterations with a burn-in of 1000 assuming the following priors:

αk ∼ T N]0,∞[ (0,100) , bk ∼ T N]0,∞[ (0,100)

kk ∼ T N]0,1[ (0,100) , λk ∼ T N]−1,1[

σεk ∼ N (0,100) , σηk ∼ N (0,100)

σεηk ∼ N (0,100) , pkk ∼ Beta(8,0.1)

where T N refers to the truncated Normal distribution on the domain [., .]. In this setting, the prior
for each element of θk is very non-informative, while the prior for pkk favors infrequent structural
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ᾱ

1
0.

32
2

0.
00

9
[0

.3
07

,0
.3

37
]

2.
80

0
0.

23
7

0.
36

1
0.

01
1

[0
.3

43
,0

.3
78

]
9.

29
2

1.
36

8
ᾱ
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breaks. In Appendix (B.3) we evaluate sensitivity of the results to different prior specifications.
Overall, we find that evidence in favor of structural breaks is quite strong and the choice of prior
hyperparameters is of limited importance.

Results suggest existence of one change point according to DIC. The DIC of (2.3)-(2.4) (no-
break) is 993.104 while the DIC for its one change-point alternative (break) is 947.980. We also
estimate (2.3)-(2.4) conditional on two change points and obtain a DIC of 972.499. Table 2.1 re-
ports some summary statistics concerning the posterior distribution of the parameters and some
diagnostics. Figure 2.1 displays the data, posterior density of the change-point date and the cumu-
lative probability of the change point for (2.3)-(2.4) conditional on one change point. The posterior

mode of
{

S( j)
}N

j=1
is associated with 1982q2.

Let bk denote the posterior estimate of b in regime k. For the break model we see that bk’s
k = 1,2 are distinctly different with b2 = 1.149 > b1 = 0.118. More importantly, the period during
the chairmanships of William M. Martin, Arthur Frank Burns and George William Miller which
covers from 1960 to 1979 is clearly associated with b1. Thereafter, results clearly reveal a switch
towards b2 shortly after the appointment of Paul Volcker as chairman of the Fed and throughout
the chairmanships of Alan Greenspan and Ben Bernanke. On the other hand, estimates of k do not
differ across regimes or models. Furthermore, estimates of k ≈ 0.8 are also close to those obtained
by Primiceri (2006).

With regards to the other parameters, we find that ᾱ2 is significantly flatter than ᾱ1. The esti-
mates of λ are positive, as expected. However, λ̄2 shows a slight more persistence in 4Un

t since
1982q3. Furthermore, estimates of ση show a decrease in volatility of the shocks that affect πt and
thus contributing to a more stable evolution in πt since 1982q3. Finally, positive estimates of σεη

indicate that unfavorable shocks to Un
t tend to coincide with unfavorable shocks to πt .

According to these results the increase in the rate of inflation in the 1960s and 1970s can also
partially be explained by a string of “bad luck”, in form of higher values of σε and ση along
with stronger correlation between εt and ηt . Specifically, we find that the estimated correlation
coefficient, ρ̄εη is 0.93 for m = 1 while on the other hand ρ̄εη is 0.28 for m = 2.

Overall, results in Table 2.1 and Figure 2.1 indicate that compared to the rest of the sample the
Fed is focusing more on inflation stabilization (indicated by b̄2 > b̄1) since the early 1980s. Further-
more, we can cautiously infer that the hypothesis that the disinflation since this period is solely the
result of “good luck” in form of lower volatility of the shocks that affect the fundamentals and the
correlation between these shocks can be ruled out. Rather, this disinflation can also be attributed to
policy changes at the Fed. However, as noted by Ireland (1999) the version of Barro and Gordon’s
model that we have used, is extremely simple and does not account for many important factors.
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Figure 2.1: MCMC estimates (break model)

3 Conclusion

Overall, this paper provides some interesting results. Parameter estimates indicate that compared
to the rest of the sample the Fed is relatively focusing more on inflation stabilization since the early
1980s. Furthermore, volatility of the shocks that affect the fundamentals has also decreased in this
period.

From a computational point of view by using basic tools such as Gibbs sampling and Metropolis-
Hastings we show that one is able to extensively build on an already well-known model and thus
obtain better interpretation of important economic phenomena. Specifically, we show that by al-
lowing for time-variation in policy variables as well exogenous parameters using the conditioning
features of MCMC we can obtain an in-depth understanding of the dynamics of US inflation using a
well-known macroeconomic framework. Hence, these methods can be applied to more complicated
models such as Primiceri (2006) which we leave for future research.
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A Appendix

The model of Ireland (1999) is as follows: let Ut denote the unemployment rate which fluctuates
around the unobserved natural rate, Un

t in response to deviations of the actual inflation rate, πt from
the expected rate, πe

t

Ut−Un
t = −α (πt−π

e
t ) (A.1)

where α > 0. The natural rate, in turn, fluctuates over time in response to real shocks according to
the autoregressive process

Un
t −Un

t−1 = λ
(
Un

t−1−Un
t−2
)
+ εt , |λ |< 1, εt ∼ N

(
0,σ2

ε

)
(A.2)

At the beginning of each time period after private agents have formed their expectation, πe
t but

before realization of εt the Fed chooses a planned rate of inflation, π
p
t . Actual inflation for that

time period is then determined as the sum of π
p
t and a control error, ηt , such that

πt = π
p
t +ηt (A.3)

where ηt ∼ N
(
0,σ2

η

)
and E [εtηt ] = σεη . The Fed selects π

p
t in order to minimize its loss function,

Lt . Following Barro and Gordon (1983) Lt penalizes variations of unemployment rate and inflation
around target values kUn

t <Un
t and zero

Lt = (1/2)(Ut− kUn
t )

2 +(b/2)π
2
t

where 1 > k > 0 and b > 0 are the weights that the Fed attaches to inflation and unemployment rate
fluctuations. Using (A.1) and (A.3), the Fed’s problem can be written as

min
π

p
t

Et−1

[
(1/2)

(
(1− k)Un

t −α
(
π

p
t −π

e
t +ηt

))2
+(b/2)

(
π

p
t +ηt

)2
]

where Et−1 denotes the expectation at the end of period t−1. If k = 1 then the Fed is just trying to
keep unemployment at the natural rate. However, we assume that 0 < k < 1 which means that the
Fed is targeting an unemployment rate that is actually lower than the natural rate of unemployment.
Barro Gordon (1983) justify this assumption by appealing to the idea that the government (not the
Fed), is trying to push unemployment lower than its natural rate and the Fed considers k as an
external constraint. The first-order condition for this problem is

αEt−1
[
(1− k)Un

t −α
(
π

p
t −π

e
t +ηt

)]
= bEt−1

[
π

p
t +ηt

]
(A.4)
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Private agents know the structure of the economy and understand the Fed’s time-consistency prob-
lem. Therefore, they correctly anticipate its actions and adjust their inflation expectations by solv-
ing out the above optimization problem, such that in equilibrium πe

t = π
p
t . Using this equilibrium

condition, along with the fact that Et−1 [ηt ] = 0, equation (A.4) simplifies to

π
p
t = αAEt−1 [Un

t ] (A.5)

where A = (1− k)/b > 0. Equation (A.5) reveals that the inflationary bias resulting from the Fed’s
inability to commit depends positively on Et−1 [Un

t ]. Equations (A.1) and (A.3) imply that

Ut = Un
t −αηt (A.6)

while combining (A.2), (A.3) and (A.5) yields

πt = αAUn
t−1 +αAλ4Un

t−1 +ηt (A.7)

where4Un
t−1 =Un

t−1−Un
t−2. In the same manner, combining (A.2) and (A.6) yields

Ut = Un
t−1 +λ4Un

t−1 + εt−αηt (A.8)

Equations (A.7) and (A.8) reveal that while both πt and Ut are nonstationary the linear combination
πt−αAUt is stationary

πt−αAUt =
(
1+α

2A
)

ηt−αAεt (A.9)

Furthermore, taking first difference of (A.6) yields

4Ut = 4Un
t −αηt +αηt−1 (A.10)

According to (A.9), πt and Ut ought to be nonstationary but cointegrated. We follow Ireland (1999)
and check for unit roots and test if Ut and πt are cointegrated. In Table A.1, we find that both πt

and Ut are nonstationary. The null hypothesis of no cointegration is also rejected.
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Panel A: unit root test ρ t-test M Z
πt 0.986 -1.052 8 -1.793
Ut 0.968 -1.819 10 -2.526

Panel B: cointegration test λ1 λ2 cointegrating vector LR =−T ln(1−λ1)
0.043 0.001 0.433πt−0.264Ut 9.4406

Panel A reports the estimates of ρ , the slope coefficient from a regression variable on a constant and
its own lagged value, t-test for ρ = 1 and Phillips and Perron’s (1988) statistic, Z adjusted to allow
for serial correlation in the regression errors. M denotes the truncation lag required to form the
Newey-West estimator. Panel B reports the two eigenvalues, λ1 and λ2, the estimated cointegrating
vector and the likelihood ratio statistic, LR for testing the null hypothesis of no cointegration.

Table A.1: Unit root and cointegration test

B Appendix

B.1 Markov chain Monte Carlo algorithm

In the following let θ = {θk}m
k=1, S = (s1, ...,sT )

′
and YT = (y1, ...,yT )

′
. The idea behind MCMC

is to simulate a trajectory of a Markov chain
{

θ ( j),S( j),P( j)
}N

j=1
from a given set of starting

points,
{

θ (0),S(0),P(0)
}

, with limiting invariant density, the joint augmented posterior density,
p(θ ,S,P | YT ). Once convergence is achieved, the algorithm provides a sample of serially depen-
dent draws for θ , S and P, which can be used for posterior inference. Below more details are
provided on each step of the Gibbs sampler.

Step 1: S | θ ,P,YT

Chib (1998) shows that a joint draw of all states can be achieved using

p(S | θ ,P,YT ) = p(sT | θ ,P,YT )
T−1

∏
t=1

p(st | st+1,θ ,P,Yt) (B.1)

in which one samples sequentially from each density on the right-hand-side of (B.1) beginning
with p(sT | θ ,P,YT ), and then p(st | st+1,θ ,P,Yt) t = T −1, ...,1. At each step one conditions on the
previously drawn state st+1, until a full draw of S is obtained. The individual densities in (B.1) are
obtained based on the following steps:

(a) Initialization: at t = 1, set p(s1 = 1 | θ ,P,Y1) = 1.
(b) Compute the Hamilton (1989) filter, p(st = k | θ ,P,Yt). This involves a prediction and an
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update step in which one iterates on the following from t = 2, ...,T ,

p(st = k | θ ,P,Yt−1) =
k

∑
l=k−1

p(st−1 = l | θ ,P,Yt−1) plk, k = 1, ...,m (B.2)

p(st = k | θ ,P,Yt) =
p(st = k | θ ,P,Yt−1) p(yt | θ ,Yt−1,st = k)

∑
m
l=1 p(st = l | θ ,P,Yt−1) p(yt | θ , ,Yt−1,st = l)

,

k = 1, ...,m

The last equation is obtained from Bayes’ rule. Note that in (B.2) the summation is only from k−1
to k, due to the restricted nature of the transition matrix and p(yt | θ , ,Yt−1,st = k) is obtained by
applying Kalman recursions.

(c) Finally, Chib (1998) shows that the individual densities in (B.1) are

p(st | st+1,θ ,P,Yt) ∝ p(st | θ ,P,Yt) p(st+1 | st ,P)

Thus, given sT = m, st is drawn backwards over t = T −1,T −2, ...,2 as

st | st+1,θ ,P,Yt =

{
st+1 with probability ct

st+1−1 with probability 1− ct

where

ct =
p(st = k | θ ,P,Yt) p(st+1 = k | st = k,P)

∑
k
l=k−1 p(st = l | θ ,P,Yt) p(st+1 = k | st = l,P)

Finally, note that p(s1 = 1 | s2,θ ,P,Y1) = 1.

Step 2: θ | S,YT

Sampling αk, bk, kk and λk is more involved, since their conditional posteriors are not known in
closed form. These parameters are updated using the Metropolis-Hastings (M-H) algorithm. The
Metropolis-Hastings algorithm is an alternative to the Gibbs sampler. It is very useful in cases
where the posterior itself is hard to sample from. In contrast to the Gibbs sampler, which draws
samples directly from the conditional posterior, M-H draws a candidate, θ ∗ from the candidate
generating density, q

(
θ | θ ( j−1)

)
which is close to the conditional posterior followed up by an

acceptance-rejection procedure with acceptance probability

aMH

(
θ
∗,θ ( j−1)

)
= min

1,
p(θ ∗ | YT )q

(
θ ( j−1) | θ ∗

)
p
(
θ ( j−1) | YT

)
q
(
θ ∗ | θ ( j−1)

)

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where p(θ ∗ | YT ) is the notation for the posterior density evaluated at θ = θ ∗ and q
(

θ ( j−1) | θ ∗
)

is the candidate generating density function for θ ( j−1) given θ ∗. If the candidate is rejected, the old
draw that was sampled in the previous iteration is used as the next item of the chain.

In this paper we follow Koop (2003) and perform Independence Chain Metropolis–Hastings.
Hence, q

(
θ | θ ( j−1)

)
= q(θ) and q

(
θ ( j−1) | θ

)
= q

(
θ ( j−1)

)
, that is the candidate generating

density does not depend on θ ( j−1). We set q(θ) ∼ N
(
θ̂ML,Σq

)
, where θ̂ML is the maximum like-

lihood estimate of θ and Σq ≈ c · var
(
θ̂ML

)
, c ∈ R+ is chosen by the researcher in a manner to

ensure a sufficient acceptance rate. We follow Koop (2003), page 98 and adjust Σq to get accep-
tance rates roughly around 40 to 50%. We do this by experimenting with different values of c until
we find one which yields a reasonable acceptance rate probability. In general, the M-H steps can
be summarized in the following way:

1. Draw θ ∗ from q(θ). That is θ ∗ ∼ N
(
θ̂ML,Σq

)
.

2. Draw u∼U (0,1), where u is a draw from a Uniform distribution, U .

3. If aMH

(
θ ∗,θ ( j−1)

)
> u, accept and set θ ( j) = θ ∗, else set θ ( j) = θ ( j−1).

Under certain conditions, see Chib and Greenberg (1995), iterations of these steps produce samples
from p(θ | YT ).

For the change-point model the conditional posterior of θk, k = 1, ...,m in each state depends
only on information in regime k. Let Ŷk = {yt : st = k}. Hence, at the jth step of the algorithm, θk

is sampled using

aMH

(
θ
∗
k ,θ

( j−1)
k

)
= min

1,
p
(
θ ∗k | Ŷk

)
q
(

θ
( j−1)
k

)
p
(

θ
( j−1)
k | Ŷk

)
q
(
θ ∗k
)
 (B.3)

Step 3: P | S

Simulating P from its conditional posterior is straightforward. Assume independent Beta distribu-
tion for the prior of pkk, i.e. p(pkk) ∼ Beta(a0,b0) where a0 and b0 are known hyperparameter
values. The conditional posterior for each diagonal component of P is then Beta(a0 +nkk,b0 +1),
k = 1, ...,m−1 where nkk is the number of one-step transition from state k to state k in the sequence
of S.
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B.2 Deviance information criterion

The deviance information criterion (DIC) of Spiegelhalter (2002) is a very useful model assessment
tool. It is a Bayesian alternative to AIC and BIC. Calculation of the DIC in a MCMC application
is trivial. It does not require maximization over the parameter space. It is defined as a combi-
nation of a classical estimate of fit, based on the likelihood function, p(YT | θ ,P) and a penalty
term, pD. More precisely, pD is the difference between the measure of fit and the deviance at the
estimates. It describes the complexity of the model and serves as a penalization term that cor-
rects deviance’s propensity towards models with more parameters. More precisely, pD is defined
as pD = D(θ ,P)−D

(
θ̄ , P̄

)
where D(θ ,P) is approximated by N−1ΣN

j=1−2log p
(

YT | θ ( j),P( j)
)

and D
(
θ̄ , P̄

)
=−2log p

(
YT | θ̄ , P̄

)
where θ̄ and P̄ are estimated from the Gibbs output using mean

or mode of the posterior draws. The DIC is defined as D
(
θ̄ , P̄

)
+2pD. A smaller DIC indicates a

better fit to the data set.
A crucial point for estimation of DIC in the context of the change-point model is the evaluation

of p
(

YT | θ ( j),P( j)
)

. In this paper the approximated solution proposed in Kim and Nelson (1999)
(pp. 97-106) in which the Kalman and the Hamilton filters are merged together is applied.

B.3 Prior sensitivity analysis

In this section sensitivity of the results to prior specification is evaluated by investigating alternative
priors on the transition probabilities, pkk, k = 1, ...,m− 1. pkk is the key parameter of the model
because it controls the duration of each regime in S. In Table B.1, we experiment with different
hyperparameter values for pkk ∼ Beta(a0,b0) and report the DIC for each of these hyperparameter
values by estimating 2.3-2.4 from 0 to 2 change points. For instance, the first alternative prior that
is considered is pkk ∼ Beta(0.1,0.1) which is relatively flat. With this prior we also find evidence
of one change point in the data and the change-point date corresponds also to 1982q2. In fact,
regardless the values of a0 and b0 we still find that the one change-point specification performs best
in terms on DIC. Furthermore, the change-point date for each of these specifications corresponds
to 1982q1.

# CP Beta(0.1,0.1) Beta(8,0.1) Beta(10,2) Beta(20,0.1) Beta(100,0.1)
0 993.104 993.104 993.104 993.104 993.104
1 947.675 947.980 947.672 947.678 948.101
2 972.797 972.499 972.561 972.761 973.375

This table compares DIC for different values of a0 and b0 where pkk ∼ Beta(a0,b0). The priors of
the other parameters are set according to section 2.2. #CP: the number of change points that are
conditioned on.

Table B.1: Prior sensitivity analysis (break model)
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