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Abstract

We propose a flexible model that is able to simultaneously approximate long memory behavior
as well as incorporate structural breaks in the model parameters. Our model is an extension
of the heterogeneous autoregressive (HAR) model, which is designed to model and forecast
volatility of financial time series. In an extensive empirical evaluation involving several volatil-
ity series, we demonstrate presence of structural breaks and their importance for forecasting.
Furthermore, we find that the choice of how to model break processes is important in achieving

good forecast performance.
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1 Introduction

Measuring and modeling the conditional variance or volatility of financial time series is an impor-
tant issue in econometrics. General approaches of estimating volatility are based on parametric
models such as generalized autoregressive conditional heteroskedasticity (GARCH) models pro-
posed by Engle (1982) and Bollerslev (1986) or stochastic volatility (SV) models as in Kim et al.
(1998). However, during the past two decades, the approach of using improved measures of expost
volatility constructed from high-frequency data has become very popular. This measure is called re-
alized volatility (RV) and it is discussed formally by Andersen et al. (2001) and Barndorff-Nielsen
and Shephard (2002 a,b).

This paper proposes a simple model that merges long memory dynamics and nonlinearities. The
specification that is put forward is a generalization of the Heterogeneous Autoregressive (HAR)
model of Corsi (2009). The HAR model has been applied with success in modeling and forecast-
ing realized volatility, see for example Andersen et al. (2007). Our model is called the Mixture
Innovation Heterogeneous Autoregressive (MHAR) model and combines ingredients from HAR
and mixture innovation (MIA) models, see Gerlach et al. (2000), Giordani and Kohn (2008) and
Groen et al. (2012). This approach builds on the state space representation, modeling the breaks
through mixture distributions in state innovations of linear Gaussian state space models. Indeed,
this approach is very intuitive and has several desirable features such as: the possibility of including
a random number of breaks that can occur in the sample, the possibility of jointly modeling small
possibly frequent and large possibly less frequent breaks, while allowing different parameters to
change at different points in time.

It is an open question if the MHAR model will perform well when dealing with the sort of
structural changes present in realized volatility series. The main purpose of this paper is to shed
light on this question. Therefore, we compare the performance of the MIA specification with
an existing method of modeling structural breaks, namely, the change-point specification of Chib
(1998), henceforth CPHAR, given in for example Liu and Maheu (2008). In addition, we also
include alternative forecasting procedures such as: recursively estimating the HAR model and a
random walk time-varying parameter HAR model.

We believe that applying the MIA specification using realized volatility data and comparing its
performance with the change-point specification which in the literature is considered as a “state-
of-the-art” structural break model is in fact the most important contribution that we make since
basically no work has been done on comparing these methods. MHAR and CPHAR differ in
important aspects, like for instance their treatment of the break process. The change-point specifi-
cation imposes the restriction that a precise number of breaks occurs in the sample whereas for the

MIA specification the number of breaks is treated as unknown.



For eleven realized volatility series between 2004 and 2009 we consider the aforementioned
models and produce daily, weekly and biweekly forecasts. We evaluate forecast performance using
two criteria: predictive likelihood (PL), see Geweke (2005) and root mean squared error (RMSE)
both which are easily obtained within the Bayesian estimation procedure. It turns out that these
two loss functions lead to similar qualitatively conclusions. Overall, structural breaks play an
important role for forecasting in all of the volatility series that we consider. Specifically, we find that
each structural break specification outperforms the HAR model regardless of criterion or forecast
horizon. Furthermore, we find that for longer forecast horizons the MHAR model with time-varying
volatility tends to perform better. However, we find that there is no one single method which can
be recommended universally, i.e. for all series and all forecast horizons. For some series CPHAR
performs better than MHAR specifications and vice versa.

The structure of this paper is as follows. Section[2]discusses the econometric issues for Bayesian
estimation. Section [3|reviews the theory behind the volatility measures used in this paper. Section
H]briefly presents the HAR model. Details on the data is presented in section[5] Section [f|discusses

the empirical results and finally the last section concludes.

2 Modeling Structural Breaks

2.1 Change-point model

The models considered in this paper use the framework of a Gaussian linear regression model
v = X—iB+e, &~N(0,0%) 2.1)

fort=1,..,T. Let Yy = (yl,...,yT), be a vector of size T and X7 be a T X k, matrix of regressors
with row X;_; which can also include lags of y;. Obviously, different structural break models vary
in the way they model breaks in by allowing 8 and possibly 62 to vary with time. To begin
with, we focus mainly on structural breaks in the regression coefficients, B and assume that 62 is
fixed through time. However, breaks in o2 can also be modeled rather easily. We consider two
main approaches for modeling structural breaks in B and later in both B and o2

We start by considering the change-point (or structural break) specification proposed by Chib
(1998). This specification uses a hidden Markov model with a restricted transition matrix to model
the change points. A test for the number of structural breaks is then a test of the dimension of the
hidden Markov chain.

Assume that there are m— 1, m € {1,2, ...} change points at unknown times, Q,, = {71, 72, ..., Tn—1}-
Separated by those change points, there are m different regimes. The density of observation y;,

t =1,...,T depends on B;, j = 1,2,...m whose value changes at the change points, Q,, and o2
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Thus,

( B if 1< 1T

B, if T1<t<D

B

(2.2)
ﬁm—l if T, 2 <t <7y
ﬁm if Tm—1 <t

\

!
Let S = (s1,...,s7) denote the unobserved state system where s, = j indicates that y; is from regime
j and follows the conditional distribution p (y, | Bj, o2, Y,,l). The one-step ahead transition prob-

ability matrix for s;, P is assumed to be

psi=Jjlsic1=J) = pj
psi=j+1|s,m1=j) = 1—p; (2.3)

for j=1,...m—1and p(s, =m|s;—1 =m) = 1. The other elements of P are set to zero. Hence,
if regime j holds at time # — 1, then at time ¢ the process can either remain in regime j (with
probability p;) or a break occurs and the process moves to regime j+ 1 (with probability 1 — p;).
Once the last regime is reached, one stays there forever. This structure enforces the ordering
on the change pointﬂ Technical details about estimation of using (2.2)) is provided in the
appendixﬂ

As stated in the introduction, requires a fixed number of structural breaks to occulﬂ In this
paper we follow Pesaran et al. (2006), Liu and Maheu (2008), Bauwens et al. (2011) and estimate
models for different number of structural breaks (0 to 7 in our empirical application). Then, we
compare results across these models using the marginal likelihood criterion. Specifically, let models
with i and j structural breaks be denoted by M; and M; respectively. For each specification we
can calculate the marginal likelihood, p (yi,...,yr | M;) following Chib (1995) and rank models
by means of their Bayes factor, BF;; = p (y1,...,yr | M) /p (y1,...,yr | Mj). Large values of BF;;
indicate that data supports M; over M;. In the appendix, we show how to compute the marginal

likelihood of the change-point regression model using the method of Chib (1995).

ITheoretically, we could allow for breaks in each element of B to occur independently. In this case, s, will be a
k x 1 discrete random variable with the first element controlling breaks in 31, the second element controlling breaks in
B, and so on. Furthermore, in order to ease the notation conditioning on X7 is suppressed.

ZNotice that our specification is identical to Liu and Maheu (2008) but differs slightly from the hierarchical prior
specification (on the conditional mean, variance and the prior on the regime durations) of Pesaran et al. (2006).
However, since we perform direct forecasting it does not make any difference which specification is used.

3Koop and Potter (2007) argue that may be restrictive in some situations. They suggest the use of the more
flexible Poisson distribution for the durations. However, in order to avoid the very heavy additional computational cost
inherent to the use of the Poisson prior we choose only to implement the change-point model using @)



2.2 Mixture innovation model

An alternative specification that allows for structural breaks in the regression parameters of (2.1
can be defined in the following way

i = XiBi+&, gtNN(O,GZ) (2.4)

!
where B, = (Bis, ..., Bi) is a vector of time-varying regression parameters and each element of f3,

evolves according to the following form

ﬁit = ﬁit—l""(itnilv nil‘NN(aniz)7 i=1,..k (2.5)

where k;; = {0, 1} is an unobserved process with p (k; = 1) = m;, K, = (K7, ..., Kt ), K = {Kt}thl
and B = { B,},TZI. In this framework the ith parameter, 3; remains the same as its previous value,
Bi:—1 unless k;; = 1 in which it changes with 1;.

This specification implies that ;; in is allowed to change every time period, but it does
not necessarily need to change at all. Also, changes in the separate parameters are not restricted to
coincide as in the change-point model. Rather, changes in each fB; are allowed to occur at different
points in time. Furthermore, as stated in section [2.1] for the change-point model we specify the
number of structural breaks by comparing Bayes factors for different specifications. Here, we
estimate only one specification and allow the data to determine the nature of the structural breaks
in each element of f3;. In the appendix, we provide details on how to estimate the MIA model using
Gibbs sampling. Finally, we note that if k1, = ky...Ky = 1 forz = 1,...,T then we get the very

well-known time-varying parameter (TVP) model where f3; varies according to a random walk.

2.3 Breaks in the conditional variance

In this section we describe how to model structural breaks in the conditional variance, 62 for CP
and MIA specifications.

First, for the change-point model in order to estimate the parameters for each regime we use
only observations in regime j. Therefore, let $; = {y; : s, = j} and X; = {X;—_1 : sy = j}. Once
we sample f3; for j = 1...,m then we can use & = $; — X;$3; and thus sample GJZ from the In-
verse gamma density, see Liu and Maheu (2008). Ideally, it would be desirable to allow o2 to
vary independently from 8. However, for the change-point model this would be relatively more
computationally demanding and will probably not provide any significant improvements.

Modeling structural breaks in ¢ for the MIA model is a bit more complicated. In this paper
we take the same approach as Giordani and Kohn (2008) and Groen et al. (2012). The approach is
as follows:



* Initialize the sampler with a time series of conditional variances, 612, - 0'%.

« Conditional on 67, ..., draw K, B, ¢}, ...,q7 and 7y , .., 7; from their respective conditional
posteriors. Compute the residual for time ¢ as & =y, — X; 1y = o;u; where u, ~ N (0, 1).
We can then square both sides and take the logarithm such that log &> = log 6/ + log u? where
logu? is log X12 distributed and can be very accurately approximated by a mixture of Normals
with seven components, see Kim et al. (1998). We follow the stochastic volatility literature

and model structural breaks in o2 as

logo? = logo? +x"n, nth(O,G%)

Here, k> = {0,1} and evolves independently from K;. Estimating this specification is straight-
forward since we can write the above equations in state space form and again use the conditioning

features of the Gibbs sampler to sample logo?, >/, ¢t =1,...,T, 73 and 0'% from their respective

conditional posteriors. Specifically, we draw K5V = (k7" ,...,k}") using the algorithm of Gerlach

et al. (2000). Thereafter, we sample log Gtz, t =1,...,T using Carter and Kohn (1994) conditional
on K%V and G%.

2.4 Model comparison

In this paper we compare the performance of models using a specific out-of-sample period. Con-
sider the universe .# = (M}, ...,M,) of models. Let p (y; | 6,,Y,—1,M,) denote the conditional data
density of model M), given Y, _; and the model parameters, 6,. Conditional on ¥; _; = (y1,...,y;—1 )/,
the predictive likelihood (PL) of model M,, for y;,...,yr, t < T is defined as

p<yt7"'7yT ‘Yl—lan) = / p(yh"'ayT ‘ 9n7YI—17Mn)p<9n‘Yt—bMVl)den (26)

n

Note that, if # = 1 this would be the marginal likelihood and changes to

p(yl,---;yT‘Mn) = / p(yl,,yT’Gn,Mn)p(9n|Mn)d9n
where p (y1,...,y7 | 6, M,) is the likelihood and p (6, | M,) is the prior density of model M,.
Hence, the sum of log predictive likelihoods can be interpreted as a measure similar to the log
of the marginal likelihood, but ignoring the initial # — 1 observations. The predictive likelihood
indicates how well model M,, accounts for the realizations yy, ..., yr, such that the best model is the

one which achieves its maximum value. Hence, it can be used to order models according to their



predictive abilities. For instance, (2.6) is simply the product of the individual predictive likelihoods

T
POy Yo, M) = []p s | Yem1,My) 2.7)

s=t
where each of the terms p (yy | Ys—1,M,) has parameter uncertainty integrated out. The relative
value of density forecasts can be compared using the realized data yy,...,y7r with the predictive
likelihoods for two or more models. The Bayesian framework allows also for comparison and
ranking of models using the predictive Bayes factors. The predictive Bayes factor (PBF) for M

versus M, is

PBFIZ = p<yl‘7"'7yT|Y1717M1)/p(yl‘7"'7yT|Y1717M2)

PBF, provides an estimate of the relative evidence for model M| versus M, over yy,...,yr. The
predictive Bayes factors include Occam’s razor effect in that they penalize highly parametrized
models that do not deliver improved predictive content. Kass and Raftery (1995) recommend con-
sidering twice the logarithm of PBF for model comparison. Evidence in favor of model M; can
be interpreted as: not worth more than a bare mention for 0 < 2log(PBFj2) < 2; positive for
2 <2log(PBF);) < 6; strong for 6 < 2log (PBF};) < 10 and very strong for 2log (PBFj,) > 10.

2.5 Calculating the predictive likelihood and the predictive mean

Calculating the predictive likelihood within a Gibbs sampling scheme is easy as we can use the
predictive decomposition, along with the output from the Gibbs sampler draws, o), ..., oW
Specifically, each term on the right-hand-side of can be consistently estimated from the Gibbs
sampler output as

1
N;

M=

POl YoMy ~ < Yop (vl 6%, M) 38)

1

For example, in the context of , o) — <[3(i), Gz(i)> and p (y[ | G,Ei),Y,_l ,Mn> denotes the Nor-
mal density with mean X,_; (), variance 62(!) evaluated at y,. The Gibbs sampler draws are ob-
tained based on the information set ¥;_;. As a new observation enters the information set, the poste-
rior is updated through a new round of Gibbs sampling and the predictive density of p (y;+1 | ¥;,M,,)
can then be calculated.

Calculating the predictive likelihood for the change-point or MIA specifications is a bit more
complicated because one must also consider uncertainty regarding the timing of the structural

breaks. This uncertainty is accounted for by using draws of S@, K or KV j=1,....N which



are all available from the Gibbs output.
We can also compare forecasts of models based on the predictive mean. Similar to the predictive
likelihood, the predictive mean can be computed using Gibbs draws. For instance, in the context of

(2.1) we calculate the predictive mean of y; conditional on ¥;_; as

1 Y ;
Ely| YoM ~ Y Xiip) 2.9)
i=1

3 Realized Volatility

Assume that the price process belongs to the class of special semi-martingales which is a very broad
class of processes including Ito and jump processes. Andersen et al. (2001) and Barndorff-Nielsen
and Shephard (2002a, b) show that the quadratic variation of the process which is defined as
integrated volatility plus a jump component provides a natural measure of expost volatility. Hence,

consider the following logarithmic price process
dp(t) = p@)dt+o(t)dW(t)+J(t)dq(t),0<t<T (3.1)

where p (¢) is the drift term, o (¢) is the stochastic volatility process, W (¢) is a standard Wiener
process, dq(t) is a Poisson process with dg(t) = 1 which corresponds to a jump at time ¢ and
dq(t) = 0 which corresponds to no jump, a jump intensity A (¢) and J () refers to the size of a

realized jump. The increment in quadratic variation from time O to ¢ is

o, :/()tcz(s)ds—i- Y )

0<s<t,dq(s)=1

where the first term, integrated volatility, is from the continuous component of equation (3.1)), and
the second term is the contribution from discrete jumps.

To consider estimation of QV;, the daily time interval is normalized to unity and divided into
n periods. Each period has length A = 1/n. The Aperiod return is defined as r; j = p (t 4+ jA) —
p(t+(j—1)4), j=1,..,n. The daily return is simply given as r, = £_,r, j. Andersen et al.
(2001) and Barndorff-Nielsen and Shephard (2002a, b) apply the following estimator called real-
ized volatility. It is defined as

n
RV, = Y ri; 5 Qv
=1

and converges to quadratic variation as n — oo. Therefore, RV; is the relevant quantity to focus on

with regards to modeling and forecasting of volatility.



Barndorff-Nielsen and Shephard (2004) also show how the continuous component can be sep-

arated from the jump component of volatility. They define realized bipower variation as

n

RBR, = 1° Y
j=2

r1j—1l|ml

where i} = \/2/m. Asn — o
t
RBP, —g»!/)czﬁjds
0

The difference between RV; and RBPF, is an estimate of the daily jump component.

Market microstructure dynamics contaminate the price process with noise. In some instances
the noise can be time dependent and may be correlated with the efficient price. Hence, RV; can be
a biased and inconsistent estimator of QV;. Hansen and Lunde (2006) provide a bias correction to

realized volatility in the following way
— n ) q w n—w
RV = Y ri;+2) (1 - —) Y et
=1 wa I+tq/) =5

We set g = 1 in this paper. Market microstructure also contaminates bipower variation, see Ander-

sen et al. (2007). Therefore, we adjust bipower variation as

n

RBP, = — i
t 2n—2jZ‘3|rt’J 2

It.j
In the following RV,? is referred to as RV; and R/BTD, is referred to as RBPF,.

4 Model

The Heterogeneous Autoregressive (HAR) model is proposed by Corsi (2009) and provides a flex-
ible way to model and forecast realized volatility. According to the framework of Corsi (2009)
partial volatility is defined as the volatility generated by a certain market component and the model
is an additive cascade of different partial volatilities. By straightforward recursive substitution of
the partial volatilities Corsi (2009) shows that the additive volatility cascade leads to a simple re-
stricted linear autoregressive model. The HAR model can approximate many of the features of

volatility, including long-memory. Our benchmark model is given as

yin = Bo+Bidi—1+Bayi—11+Bwyiess+ Bmyi—22+€&n  €&n~N(0, 62) 4.1)



where y; , = h’lZf’:]RVtH,l is the average realized volatility, 4 > 1 periods ahead. Evidently,
¥1,1 = yr. This model postulates that three factors affect y; 5: daily volatility, y; 1, weekly volatility,
y:—s,5 and monthly volatility, y,_22 22. For h = 1 we have a HAR model for the daily volatility, for
h =5 a HAR model for the weekly volatility and so forth. Following Andersen et al. (2007), we
also include a jump term in defined as J; = max{0,RV, — RBP,}.

The HAR model with a jump component can be cast into (2.1)). Furthermore, besides {.1)) we
can also estimate structural breaks versions of the HAR model using the techniques from section 2]

5 Data

The data consists of high-frequency observations of trades on the S&P 500 index using the Spyder
(SPY) fund, Boeing (BA), Bank of America (BAC), Caterpillar (CAT), General Electric (GE), IBM,
Johnson & Johnson (JNJ), JP Morgan (JPM), Pepsi (PEP), Walmart (WMT) and Exxon (XOM)
from January 2, 2004 to December 31, 2009, for a total of 1511 trading days. The cleaning of the
data is carried out using the steps in Barndorff-Nielsen et al. (2009). After cleaning a 5-minute grid
from 9:30 to 16:00 is constructed using previous-tick method, see Hansen and Lunde (2006). From
this grid, 5S-minute intraday log-returns are constructed. The log-returns are then used to construct
realized volatility and realized bipower variation. Conditioning on the first 22 observations, the
final data consists of 7' = 1488 observations. We define y, ;, as \/m /100 . Table (1| presents

summary statistics for y;.

6 Results

6.1 Priors

For HAR, CPHAR and MHAR models estimation and forecasting is performed conditional on the

following priors

* HAR

B ~N(0,1001) , IG(4/2,0.2/2)

« CPHAR

B; ~N(0,1001) , p(o7)~I1G(4/2,0.2/2)
pj~ Beta(20,0.1) , j=1,..m, pp=1

10



* MHAR

p(q7) ~1G(4/2,0.2/2) , p(o?) ~1G(4/2,0.2/2)
m; ~ Beta(0.5,37) , i=d,w,m

where I1G (5, 5) stands for the Inverse-gamma density, see Kim and Nelson (1999). In section
we conduct a prior sensitivity analysis for CPHAR as well as for MHAR. Overall, for the MHAR
model we see that results are slightly sensitive to prior settings on £ whereas results are very robust
with respect to different hyperparameter values on P for CPHAR.

Finally, besides these models we also estimate a MHAR model with time-varying volatility, see
section [2.3] Henceforth, we label this model as MHAR-SV. For this model, we choose the same
prior hyperparameter values as the MHAR model for q% and ;. With regards to the additional
parameters we set 0" ~ Beta(0.5,42) and p (G%) ~1G(0.2/2,10/2). We also experiment with

different hyperparameter values for niSV and do not find any significant changes worth mentioning.

6.2 Full sample estimation

We estimate daily CPHAR, MHAR and MHAR-SV models using the volatility series listed in Table
[I] This way we obtain a better understanding with regards to nature and dates of possible structural
breaks.

For each series we estimate the CPHAR model from O to 7 change points. We relax the as-
sumption of homoskedastic errors of section and thus incorporate structural breaks in 62 as
well as f3, see section We then choose the change-point specification with the highest marginal
likelihood value. With regards to MHAR specifications we find that 8, B,, and B, are able to
capture structural changes in y; as By, and fB;; are basically constant through time. Therefore, we
choose to estimate the intercept and the jump component as being constant coefficients. Hence, the
MHAR (MHAR-SV) model is respecified as

yin = Bo+Bii—1+Baryi—11+ Buyi—55+ Buyi—2220+ & (6.1)

Estimating fy and ; within the Gibbs sampling scheme is straightforward as we can sample these
parameters from their Gaussian conditional posterior using sampled draws of the regression param-
eters and the conditional variance.

In Table [2] we report structural break dates found in daily CPHAR models using the complete
sample. For most of the series we find evidence in favor 2 change points. On the other hand, for
IBM, XOM and SPY we find evidence in favor of 4 change points.

The next question is how large are the parameter changes when breaks occur and which param-

11



eters are mostly affected. Table [3|contains posterior mean and standard deviation of parameters for
the CPHAR equations of each regime for BAC, IBM and SPY, over the full sample period. Focus-
ing on these series we observe that the more sensitive parameters are 34, B,, and 6. As expected,
o? increases during the financial crises of 2008. This increase is noticeable while on the other
hand changes in the regression coefficients are less spectacular than changes in 2. In Figure (1| we
picture the break probabilities for BAC, IBM and SPY.

For MHAR specifications we do not obtain exact change-point dates or estimates of By;, By
and fB,,. Instead, we plot structural break probabilities, Ky;, K,y and K;;; along with estimates of
Baz> Bw and By, for t = 1,..., T using the mean of the Gibbs sampler draws. They are given in
Figures [2|to

Overall, looking at the break probabilities and the estimates of the regression coefficients we
can clearly see structural breaks occurring during the fall of 2008 and the beginning of 2009. For
instance, for BAC we see small breaks in the beginning of 2008 for B and B, while B, is
pretty much constant. However, all coefficients change abruptly from structural breaks during the
financial crises. When we allow for time-variation in the volatility of realized volatility we see that
the regression coefficients tend to behave more smoothly with more frequent and smaller changes
in the beginning of the sample for BAC. Furthermore, we clearly confirm an almost linear increase
in the level of o2 in the beginning of 2007 and a subsequent gradual fall from the beginning of
2009 to the end of the sample.

6.3 Forecasts

We present results for forecasting daily (2= 1), weekly (h =35) and biweekly (h = 10) realized
volatility using the direct method of forecasting, see Marcellino et al. (2005). The following is a

list of the forecasting models used in this paper along with their acronyms.
1. My: HAR: constant parameter HAR model.
2. Mj: CPHAR: structural break HAR model using the specification of Chib (1998).
3. M5: MHAR: mixture innovation HAR model.
4. My: MHAR-SV: MHAR model with structural breaks in the volatility of realized volatility.

5. Ms: TVPHAR: random walk time-varying parameter HAR model. This specification is a
standard time-varying parameter model where B;; = B;—1 + 1 for i = d,w,m. As before, we
estimate the intercept and the jump component as being constant coefficients. This specifi-
cation assumes typically small and gradual breaks in 3;. Finally, notice that TVPHAR is a

restricted version of MHAR when k;;, = K, = Ky =1, fort =1,...,T.

12



Tables [] to [6] present results of our forecasting exercise for # = 1, h =5 and h = 10, respectively.
For each series listed in Table |1, we choose the out-of-sample period from February 2, 2008 to
December 31, 2009 for a total of 483 observations. We first estimate the models using the initial
sample and forecast. Then, we add one data point, update and forecast again, until the end of the
out-of-sample data. This strategy works for HAR, MHAR, MHAR-SV and TVPHAR specifica-
tions as we do not need to specify the number of structural breaks at each point in time over the
out-of-sample data.

In the context of forecasting with CPHAR we follow Bauwens et al. (2011) and perform the fol-
lowing: for the first out-of-sample observation at time ¢ we calculate the marginal likelihood for var-
ious number of change points, (0, ...,n) using ¥;_. Thereafter, we choose the optimal change point
number, n; using Bayes factors. We calculate the predictive likelihood, p (y; | Y;—1, M) and the pre-
dictive mean, E [y, | ¥;—1,M;] using the parameters associated with specification n;. Thereafter, we
increase the out-of-sample with one observation, calculate marginal likelihoods for (0,...,n; + 1)
change points, choose the optimal change point number, n;, repeat the above forecasting procedure
to obtain p (y; 41 | ¥;,M2) and E [y, 1 | ¥;, Ma].

We report the logarithm of PBF for M», ..., Ms versus M; and the ratio of RMSE for M», ..., M5
over M for the out-of-sample data. Overall, we see that structural break specifications outperform
the HAR model both in terms of predictive likelihood and point forecasts, especially as forecast
horizon lengthens. For instance, for SPY, the log (PBF) in favor of MHAR over HAR is 50.54
for h =1, 60.64 for h =5 and 72.54 for h = 10 (64.58 for h =1, 62.84 for h = 5 and 74.50 for
h = 10 for CPHAR). With regards to point forecasts we find that MHAR and CPHAR on average
outperform the HAR model by 5% to 10% for h =1, 10% to 25% for h =5 and h = 10. The
TVPHAR model outperforms the HAR model in terms of the predictive likelihood regardless of
forecast horizon. On the other hand, TVPHAR performs slightly worse than HAR in terms of point
forecasts for h = 1.

We also compare results between models that allow for structural breaks. Here, we get very
interesting results. For example, when we compare CPHAR with MHAR we find that for some
series and forecast horizons the CPHAR model performs better while for other series the MHAR
model performs better. For instance, for BAC we find that MHAR outperforms CPHAR regardless
of forecast horizon or criterion. Compared to CPHAR, the log (PBF) in favor of MHAR is 5.29
forh=1,15.08 for h =5 and 29.61 and & = 10. In terms of point forecasts, compared to CPHAR
we see a reduction of 20% for h = 1, 24% for h = 5 and 26% for h = 10 in RMSE when we use
the MHAR model. On the other hand, for XOM, we see that CPHAR outperforms MHAR by 8.14
for h =1, 1.87 for h =5 and 4.98 for & = 10 in terms of log (PBF). Furthermore, these models
tend to perform better than TVPHAR in terms of the predictive likelihood regardless of forecast

horizon. However, TVPHAR performs relatively better especially in terms of point forecasts, for
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h =5 and h = 10. The difference between the predictive likelihood and the predictive mean is
that the predictive likelihood criterion takes into account the whole shape of the predictive density
whereas the predictive mean does not.

Finally, the MHAR-SV model tends to dominate its homoskedastic counterpart as well as the
CPHAR model. Density forecasts show the most improvements, while point forecasts often show
only modest gains over MHAR or CPHAR. For example, MHAR-SV improves upon MHAR with
increases in the log(PL) of 7.17 for h =1, 1.07 for h =5 and 4.01 for & = 10 for SPY.

7 Prior Sensitivity Analysis

7.1 CPHAR

In this section sensitivity of the results to prior specification is evaluated by investigating alternative
priors on the transition probability, p; ~ Beta(ag,bp), j = 1,...,m — 1 keeping the prior values for
the other parameters the same as in section pj is one of the key parameters of the model
because it controls the duration of each regime. Models with different hyperparameter values for
B, and GJZ are also estimated and results are very similar to those given in Tables @to @

In Table [/| we repeat the forecasting exercise of section while experimenting with different
hyperparameter values for p;. For instance, the first alternative prior that is considered is p; ~
Beta(0.5,0.5) which is relatively flat while the last alternative prior is p; ~ Beta (100,0.1) which
is relatively very tight. In fact, for p; ~ Beta (100,0.1) we assume a priori that the expected duration
of each regime is about 1000 days before we see the data.

Overall, we see that we get almost identical results regardless the values of ag and bg. Results
overwhelmingly suggest existence of structural breaks over the out-of-sample data. Furthermore,

the choice of prior hyperparameters is of limited importance both in terms of PL. and RMSE.

7.2 MHAR

In order to illustrate sensitivity of the results to the prior hyperparameter values on 7;, p (m;) ~
Beta(ajy,bjp) for i = d,w,m, we consider the MHAR model using the SPY data. The forecast-
ing exercise of section is repeated using different prior hyperparameter values for p (7;). For
instance, for the first prior specification we set p (;) ~ Beta (0.5,27) keeping the other hyperpa-
rameter values the same as in section

The log (PBF) and ratio of RMSE for MHAR over HAR using these different prior settings
are displayed in Table[§] It can be seen that these different prior hyperparameter values are overall
yielding fairly similar results. For p(7;) ~ Beta(2,8) we get better results in terms of log (PBF)
and RMSE for 4 = 10.
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8 Conclusion

In this paper we compare different forecasting procedures which allow for structural breaks in
the model parameters using different realized volatility time series. Our set of forecasting models
is divided into three groups: constant parameter model, HAR, one which formally specifies the
number of structural breaks, CPHAR and those which determine the nature of structural changes
in the parameters using MIA and random walk specifications.

The empirical application provides some interesting results. First, we add to the literature
establishing existence of structural breaks in realized volatility time series. Second, our results also
show the importance of using a forecasting method which allows for some sort of structural changes
in the parameters. Furthermore, perhaps as expected, we cannot establish that there is one single
forecasting method that always is to be preferred. On the contrary, we find that for some series the
MHAR model outperforms the CPHAR model whereas for other series the CPHAR model works
better.

Finally, when we account for structural breaks in the volatility of realized volatility in the
MHAR model we find that this specification tends to dominate its homoskedastic counterpart as
well as the CPHAR model. Density forecasts show the most improvement, while point forecasts

show only modest gains.
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A Appendix

A.1 Estimation of the change-point model

To conduct estimation of the change-point model, we start by specifying independent conditionally

conjugate priors for the parameters in each regime. They are
Bj ~ N (ng,Np), O'J2 ~ IG(VT‘),%O) , pj~ Beta(ag,bo)

for j=1,...,mand p,, = 1. Notice that here we consider the case where both 8 and 6> change due

!

to structural breaks. For the sake of notation, let 6; = <ﬁ s G}) . Furthermore, in order to ease the
notation conditioning on X7 is suppressed.

In order to perform Gibbs sampling we divide the parameter space into three blocks: 6 =
{61, ..., 60}, the state of the system S = (sy, ..., sT)/, and the transition matrix, P. Below, we provide
more details on each step of the Gibbs sampler.

Step 1: Simulation of S | 0, P, Y. Chib (1998) shows that a joint draw of S can be achieved in

one step using

T—1
p(S16,PYr) = p(st|6,PYr) Hl p(si|si41,6,PY,) (A.1)
=
in which one samples sequentially from each density on the right-hand-side of (A.I) beginning
with p (s7 | 6,P,Yr), and then p (s; | s;4+1,0,P,Y;) t =T—1,..., 1. Ateach step one conditions on the
previously drawn state s, 1, until a full draw of S is obtained. The individual densities in (A.T)) are
obtained based on the following steps:
(a) Initialization: Atz =1,setp(s;=1|6,PY;)=1.
(b) Compute the Hamilton (1989) filter, p (s, = j | 6,P,Y;). This involves a prediction and an

update step in which one iterates on the following from ¢ =2,...,T,

j
plss=jl0,PY,1) = Y pls—1=1|0,PY,_1)py, j=1,..m (A.2)
I=j—1
: p(si=j|0,PY1)p(y|0,Y 1,5 =j)
ss=Jj|6,PY,) = : (A.3)
p(t ]| t) Z’ln:]p(st:l|67P7Yt—l>p<yt|67yt—l7st:l>
j=1,...m

The last equation is obtained from Bayes’ rule. Note that in (A.2]) the summation is only from j— 1
to j, due to the restricted nature of the transition matrix and p (y; | 0,Y,_1,5, = j) ~N (Xt_ 1B, G]Z)
has a closed form solution.
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(c) Finally, Chib (1998) shows that the individual densities in (A.T]) are

p(st | SH—laeaPaYt) o< P(St | 97P7Yt)p(sl‘+l ‘SHP)
Thus, given s7 = m, s; is drawn backwards overt =7 — 1,7 —2,...,2 as

S;+1  with probability ¢
SI|SI+I7G7P7)/Z‘ — . o
s;+1— 1 with probability 1—¢;

where

P(St:j| 97P7YI)P(St+1 :j|sl:j7P)
{:jflp(sf =1 ’ 97P7Yt)p(sl+l :j’Sl‘ :l’P)

Finally, note that p (s =1 |s2,0,P,Y;) = 1.

Step 2: Simulation of 0 | S,Yr. The conditional posterior density of 6; depends only on the
data in regime j. Therefore, let ¥; = {y,; : sy = j}, X; = {X,—1 : s = j} and use Gibbs sampling
methods for a linear regression model. Hence, f3; | ¥}, X, O'JZ ~ N (nj,N;) where

Ny = (0728%+N; ") R (072%;%4+ N} 'n))
and 67 | X;,Y;, B ~1G (%,%) where v; = Tj+vo, s; = (¥; —}?jﬁj)/ (Y; —X;B;) + so and T; is the
number of observations in regime j.
Step 3: Simulation of P | S. The conditional posterior for each diagonal component of P is very
simple and given by p; | S ~ Beta (ao +nj,by+ 1) where n; is the number of one-step transitions
from state j to state j in a sequence of S.

A.2 Marginal likelihood

To compute the marginal log-likelihood for the change-point model we use the method of Chib
(1995) which is based on

p(YT | 9,P>p(9,P)
p(O,P | YT)

p(Yr) (A.4)

where p (Y7 | 0, P) is the likelihood function with S integrated out, p (0, P) is the prior density, and

p(0,P|Yr) is the posterior density. As before, we set Yr = (yy, ...,yT), and follow the notation
from the previous sections. In principle any value of (6, P) can be used to compute (A.4). Here,
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we follow Liu and Maheu (2008) and use the posterior mean denoted as (6, P). Then
logp(Yr) = logp(Yr|6,P)+logp(6,P)—logp(6,P]|Yr) (A.5)

p (6,P) is evaluated directly and the likelihood function p (Y7 | 6, P) is calculated as

T
logp(Yr|6,P) = Y logp(y:|6,PY,—1) (A.6)

t=1

where
m
pi|PO.Yc1) = Y p(vi|6.PYi_i,5 =) (A7)
j=1
p(St :]| 97P7thl)

The most difficult and demanding part of 1} is the computation of the p (5,13 | YT) since it must
be computed numerically. We use the decomposition

p(8.P|Yr) = p(B|Yr)p(62|B.Yr)p(P|B,6%Yr) (A.8)

where each term on the right-hand-side can be estimated from MCMC simulations. The first term

can be estimated as

1
N

™=

P<B|YT) ~ p<B|62(i)as(i)7YT>

i=1

where p <B | Gz(i),S(i),YT> =1, p (B] | Gz(i),S(i),YT> and the draws {Gz(i),S(i)}_ are di-

rectly available from the Gibbs output. The second term in (A.8) is equal to

p(6%|B.Yr) = /p(c‘rZ\B,SJT)p(SrB,YT)dS

where p(62 | B,S,YT) = '}’le(csz | B,S,YT). To obtain the draws from p(S | B,YT), we run
an additional reduced Gibbs sampling conditional on 3, that is, we run a Gibbs sampling scheme

- AN
where we do not draw from f3 but fix them to be 3. Thereafter, we use {S @ } | and calculate
— 1=
p(6%|B.Yr) as



Finally, for p(ﬁ]ﬁ,(fz,YT) = H’;’:—llp(ﬁj\ﬁ,éz,YT), j=1,..m—1 we sample {S(i)} | from
p(S| B,&Z,YT) and set

p(pjlB,6%Yr) = ]l\, P (ﬁj | 375275(0,%)
i=
A.3 Estimation of the MIA model
Consider the following model
i = X-1B+&, &~N(0,0%) (A.9)
where B; = (B, ...,Bkt)/ and
B = Bu—i+KuMie, Ma~N(0.g7), i=1,..k (A.10)

where k; = {0, 1} with p (k; = 1) = m;. The parameters of (A.9)-(A.10) are: the structural break
probabilities, T = (7, ..., 7rk)/, the magnitude of the breaks in the state parameters, g = (q%, ey q%)
and 2. These quantities are all collected in 6. As before, let K; = (k;, ..., Kz ), K = {Kt},T:1 and

B={B,}"_,. The Gibbs sampling scheme for (A.9)-(A.10) is as follows
» Sample K | 6,Yr

The structural breaks are sampled using the algorithm of Gerlach et al. (2000). In particular,
Gerlach et al. (2000) has two important features. First, K is generated without conditioning on the
states, B. Second, the number of operations required to obtain a draw of K is reduced from O (Tz)
to O(T). Define K_, = {Ks}stl,s¢z-

The conditional posterior of K; is defined as

P(Kt ’ KfnYT,e) o< P(YT ‘ K,G)p(Kt ]K,I,G)

o< P(yt+1,-~~7)’T ’Kv)’l»m,ytve)
X P()’t | K17~'~7Kt7y17"'7yt—179)p(Kl |K—l76) (All)

The term p (K; | K_;, 0) is obtained from the prior and p (y; | K1, ..., Kz, y1,...,y:—1, 6) is computed
using the Kalman filter. The important contribution of Gerlach et al. (2000) is that the second
term in (A.11), p (Vr+1,-.-,y7 | K,Y;,0) can be obtained in one step after an initial set of backward
recursions. Finally, since K; can only take a finite number of values, it can be drawn by computing
the right-hand-side of (A.T1) for all possible values of K; and then normalizing. For more details

on implementation of the algorithm we refer the reader to Gerlach et al. (2000).
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e Sample B | K, 0,Yr

B is sampled from its conditional posterior using the simulation smoother of Carter and Kohn
(1994). The algorithm of Durbin and Koopman (2002) is also an interesting alternative.

e Sample 0 | K,B,Yr

To sample q% and o2 Inverse gamma priors are used, see Kim and Nelson (1999). Finally, assume
that p (m;) ~ Beta(ajp,bjp). Then, the conditional posterior of 7; is Beta (a;,b;) where a; = ajo +
! Ky and b;=bjo+T — XL K.
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Table 1: Summary statistics for RV;

Series mean median std. dev. kurtosis skewness
BA 0.022 0.018 0.013 16.354 2.970
BAC 0.030 0.015 0.036 16.130 3.135
CAT 0.026 0.021 0.016 12.914 2.691
GE 0.022 0.015 0.020 16.313 3.222
IBM 0.018 0.014 0.011 20.611 3.464
JNJ  0.013 0.011 0.008 36.515 4.335
JPM  0.028 0.017 0.026 13.886 2.773
PEP 0.015 0.013 0.009 43.877 4.656
SPY 0.013 0.010 0.010 23.864 3.640
WMT 0.018 0.015 0.009 29.579 3.772
XOM 0.020 0.017 0.012 43.574 4714

Summary statistics for RV; from January 2, 2004 to December 31, 2009. In total 1510

observations.

Table 2: Change-point dates based on full sample

Series # CP dates

BA 2 07-25-07 09-11-08

BAC 3 02-26-07 10-30-07 09-11-08

CAT 2 07-17-07 09-02-08

GE 3 05-14-04 06-18-07 09-08-08

IBM 4 07-18-07 03-24-08 09-05-08 12-09-08
INJ 2 12-31-07 09-05-08

JPM 2 07-18-07 09-02-08

PEP 2 07-18-07 09-15-08

SPY 4 02-27-07 03-19-08 09-08-08 12-29-08
WMT 2 09-29-06  09-09-08

XOM 4 07-19-07 02-12-08 09-08-08 12-08-08

This table reports the change-point dates for each series. The first column lists the volatility series.
The second column lists the number of the change points (CP) that are conditioned on and the last
column shows the change-point dates. The change-point dates are defined as the first observation

AN
of the new regime, using the mode of {S @ } K Sample period starts from February 2, 2004 to
December 31, 2009 (1488 observations). l
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Table 3: Parameter estimates: CPHAR model
Posterior mean (standard deviation)

Regime  fy Bs Ba B B o’
BAC
1 0.234  -0.190 0.395 0.198 0.084  0.009
(0.011) (0.137) (0.046) (0.070) (0.081) (0.001)
2 0.273  -0467 0.492 0.297 0.057 0.038
(0.012) (0.210) (0.084) (0.130) (0.120) (0.004)
3 0312 -0382 0.652 0265 -0.030 0.174
(0.011) (0.155) (0.075) (0.101) (0.078) (0.017)
4 0.315 -0.200 0.433 0.321 0.189 1.032
(0.026) (0.187) (0.066) (0.101) (0.087) (0.079)

IBM

1 0.190 -0313 0.208 0.498 -0.063 0.011
(0.006) (0.112) (0.045) (0.069) (0.079) (0.001)

2 0.230 -0.606 0438 0.195 0.131  0.055
(0.006) (0.147) (0.089) (0.157) (0.156) (0.006)

3 0.210 -0.029 0319 0386 -0.020 0.018
(0.006) (0.244) (0.115) (0.198) (0.173) (0.002)

4 0.3469 -0.263 0.224 0418 0.008  0.339
(0.056) (0.328) (0.139) (0.242) (0.189) (0.062)

5 0.217 -0.320 0.349 0489 0.081 0.021
(0.003) (0.181) (0.079) (0.113) (0.078) (0.001)

SPY

1 0.137 -0.229 0.231 0.480 0.049  0.004
(0.003) (0.135) (0.069) (0.107) (0.074) (0.001)

2 0.155 -0.298 0.553 0.219 0.062  0.025
(0.004) (0.215) (0.083) (0.123) (0.132) (0.004)

3 0.149 -0.001 0497 0309 -0.103  0.007
(0.003) (0.223) (0.107) (0.144) (0.104) (0.001)

4 0.260 -0.172 0.279 0415 -0.045 0.309
(0.053) (0.334) (0.132) (0.215) (0.180) (0.055)

5 0.151  -0.197 0.340 0.484  0.152  0.015
(0.003) (0.151) (0.081) (0.098) (0.094) (0.001)

This table reports posterior mean and standard deviations (indicated inside the parentheses) for
model parameters from the preferred CPHAR model. Sample period starts from February 2, 2004
to December 31, 2009 (1488 observations).
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Table 4: Out-of-Sample forecast results, RV, 5, h =1

log(PBF) RMSE

. TVP TVP
Series. CPHAR MHAR MHAR-SV ., CPHAR MHAR MHAR-SV . o
BA 2009 17.52 19.23 1751 097 0.98 0.97 1.03
BAC  90.14  95.44 101.27 9262 097 0.78 0.77 0.83
CAT 2636 2276 26.23 1790  0.96 1.00 0.98 1.01
GE  81.62 7551 83.02 7400 096 0.89 0.88 0.91
IBM 3677  26.88 32.38 2463  0.94 0.97 0.96 1.01
INJ 2868  36.35 41.68 3583 0.95 0.86 0.89 1.01
JPM  56.06  62.00 65.36 56.68 097 0.86 0.85 0.90
PEP 4201  47.43 52.68 49.19  0.96 0.88 0.87 0.94
SPY 6458  50.54 57.72 4793  0.93 0.91 0.90 1.00
WMT  19.12  27.06 35.62 2731 095 0.86 0.86 0.95
XOM 4761  39.47 45.67 3773 093 0.89 0.88 0.99

This table reports the log predictive Bayes factor, log (PBF') of the model of interest versus the
HAR model and the out-of-sample root mean squared error, RMSE for the predictive mean of the
model of interest over the HAR model. The out-of-sample period is from February 2, 2008 to
December 31, 2009.

Table 5: Out-of-Sample forecast results, RV; ,, h =5

log(PBF) RMSE

. TVP TVP
Series. CPHAR MHAR MHAR-SV .. CPHAR MHAR MHARSV . .,
BA 4280 4325 41.97 3892 0.86 0.88 0.85 0.89
BAC 110.81 12589 12628  110.12 091 0.69 0.67 0.81
CAT  47.09 5031 48.67 46.19  0.85 0.87 0.86 0.87
GE 11489 11722 11402 10546 0.1 0.80 0.77 0.96
IBM  43.69  44.08 49.02 3829 (.89 0.92 0.91 0.85
JNJ 5830  53.73 64.30 5034  0.87 0.89 0.84 1.02
JPM 9158  96.45 99.46 86.80  0.79 0.75 0.71 0.91
PEP  65.13  63.61 70.49 58.66  0.90 0.85 0.84 1.04
SPY  62.84  60.64 61.71 59.08  0.88 0.93 0.87 0.93
WMT 4999  47.73 50.56 4312 0.87 0.84 0.82 1.07
XOM 5579  53.92 59.26 49.13  0.90 0.85 0.80 0.89

This table reports the log predictive Bayes factor, log (PBF) of the model of interest versus the
HAR model and the out-of-sample root mean squared error, RMSE for the predictive mean of the
model of interest over the HAR model. The out-of-sample period is from February 2, 2008 to
December 31, 2009.
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Table 6: Out-of-Sample forecast results, RV; j, h = 10

log(PBF) RMSE

. TVP TVP
Series. CPHAR MHAR MHAR-SV ., CPHAR MHAR MHAR-SV . o
BA 4370  55.75 55.53 46.81  0.80 0.80 0.81 0.75
BAC 120.79 15040  144.17 12749  0.85 0.63 0.64 0.72
CAT 6462 7221 64.59 67.34  0.77 0.79 0.77 0.78
GE 12875 13501 12437 11561 0.71 0.70 0.72 0.85
IBM 5558  57.53 57.30 5422 083 0.85 0.82 0.73
INJ] 6698  68.59 79.90 62.66  0.82 0.82 0.79 1.10
JPM 9642 10735  107.19 84.41  0.72 0.68 0.68 0.80
PEP 7252  72.06 78.91 65.56  0.86 0.83 0.80 1.09
SPY 7450 7254 76.54 6831 081 0.86 0.84 0.79
WMT 5641 5851 64.77 5120  0.88 0.82 0.81 0.97
XOM 6819  63.20 69.12 60.65  0.86 0.77 0.72 0.80

This table reports the log predictive Bayes factor, log (PBF') of the model of interest versus the
HAR model and the out-of-sample root mean squared error, RMSE for the predictive mean of the
model of interest over the HAR model. The out-of-sample period is from February 2, 2008 to
December 31, 2009.

Table 7: Prior sensitivity analysis, CPHAR model, SPY
log(PBF) RMSE
h=1 h=5 h=10 h=1 h=5 h=10
pj~ Beta(0.1,0.1) 6428 6271 72.60 093 0.88 0.81
~~Beta(8 0 1) 64.13 62.72 7327 094 0.88 0.82
j~ Beta(10,0.1) 64.06 6500 72.60 094 0.88 0.81
(8,2)
(

i ~ Beta 63.70 63.89 72.61 094 088 0.81
j ~ Beta(20,2) 64.57 65.10 72.60 093 0.88 0.81
p~ ~ Beta(100,0.1) 64.56 65.16 7470 0.93 0.88 0.81

This table reports the log predictive Bayes factor, log (PBF )of the model of interest versus the
HAR model and the out-of-sample root mean squared error, RMSE for the predictive mean of the
model of interest over the HAR model. The results are for the CHAR model considering six
different prior hyperparameter values for p;. The out-of-sample period is from February 2, 2008
to December 31, 2009.
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Table 8: Prior sensitivity analysis, MHAR model, SPY
log(PBF) RMSE
h=1 h=5 h=10 h=1 h=5 h=10
7 ~ Beta(0.5,27) 50.58 60.87 73.80 0.88 0.93 0.86
7T~ Beta(0.5,47) 5054 61.24 7322 0.89 0.93 0.86
T ~ Beta(0.5,8) 50.04 61.34 7396 090 0.93 0.86
T ~ Beta(2,8) 49.12 61.79 71.69 090 0.92 0.82
T ~ Beta(0.5,100) 50.45 60.23 7335 091 0.93 0.87
7 ~ Beta(0.5,1000) 50.54 6096 72.12 092 093 0.87

This table reports the log predictive Bayes factor, log (PBF) of the model of interest versus the
HAR model and the out-of-sample root mean squared error, RMSE for the predictive mean of the
model of interest over the HAR model. The results are for the MHAR model considering different
prior hyperparameter values for 7. The out-of-sample period is from February 2, 2008 to
December 31, 2009.
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Figure 1: Change-point probabilities: CPHAR model
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Left: annual realized volatility. Right: change-point probability
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Figure 2: Posterior estimates: MHAR model, BAC
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Figure 3: Posterior estimates: MHAR model, IBM
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Figure 4: Posterior estimates: MHAR model, SPY
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cients, By, By and By.

31



0.5

0.5

0.5

Figure 5: Posterior estimates: MHAR-SV model, BAC

Kat

—

lllhl i1
05 06 07 08 09 10
KWt
Julnl l |lA al M
05 06 07 08 09 10
Kmt
\m““ " mLWM
05 06 07 08 09 10

04

Left: posterior structural break probabilities. Right: posterior estimates of the regression coeffi-

05

06

07

08

09

10

B
0.55 ‘

0.45}

0.35
04

0.29

0.22}

0.15
04

0.28

0.19

0.1
04

0.8

0.4rf

0 o ‘
04 05 06 07 08 09 10

cients, B/, Bws and B, and the time-varying conditional variance, 6.

32



Figure 6: Posterior estimates: MHAR-SV model, IBM
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Figure 7: Posterior estimates: MHAR-SV model, SPY
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