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Abstract

In this paper prediction-based estimating functions (PBEFs), introduced in Sørensen
(2000), are reviewed and PBEFs for the Heston (1993) stochastic volatility model are de-
rived. The finite sample performance of the PBEF based estimator is investigated in a
Monte Carlo study, and compared to the performance of the GMM estimator based on con-
ditional moments of integrated volatility from Bollerslev and Zhou (2002). The case where
the observed log-price process is contaminated by i.i.d. market microstructure (MMS) noise
is also investigated. First, the impact of MMS noise on the parameter estimates from the
two estimation methods without noise correction are studied. Second, a noise robust GMM
estimator is constructed by approximating integrated volatility by a realized kernel instead
of realized variance. The PBEFs are also recalculated in the noise setting, and the two esti-
mation methods ability to correctly account for the noise are investigated. Our Monte Carlo
study shows that the estimator based on PBEFs outperforms the GMM estimator, both in
the setting with and without MMS noise. Finally, an empirical application investigates
the possible challenges and general performance of applying the PBEF based estimator in
practice.
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1. Introduction

Continuous time stochastic volatility (SV) models are widely used in econometric and empir-

ical finance for modeling prices of financial assets. Considerable efforts have been put into

modeling and estimation of the latent volatility process, and most of this research is surveyed

in part II of Andersen et al. (2009). Stochastic volatility diffusion models, such as the Heston

(1993) model, represent a popular class of models within the continuous time framework. The

Heston model will be the baseline model considered in this paper, since it is one of the most

widely used models in financial institutions due to its analytical tractability.

Parameter estimation in SV-models is difficult because the volatility process is unobserv-

able. This hidden Markov structure complicates inference, since the observed log-price process

will not in it self be a Markov process, which implies that computing conditional expectations

of functions of the observed process is practically infeasible. As a consequence, martingale es-

timating functions will not be a useful tool for conducting inference in SV-models. Likelihood

inference is also not straightforward because an explicit expression for the transition density

of the state vector is almost never available.

We will circumvent the above mentioned problems for conducting inference in SV models

by using prediction-based estimating functions (PBEFs), introduced in Sørensen (2000), which

are a generalization of martingale estimating functions. This generalization becomes especially

useful when applied to observations from a non-Markovian model, such as a log-price process

with stochastic volatility. PBEFs are estimating functions based on predictors of functions of

the observed process. The structure of PBEFs are essentially a sum of weighted augmented

prediction errors, and an estimator is found by making this sum zero.

In this paper, PBEFs will be reviewed, detailed and used for parameter estimation in the

Heston model. The estimation method is easy to implement and fast to execute since the

computation of PBEFs only rely on unconditional moments. When the Heston SV-model is

considered no simulations are needed for constructing the relevant PBEFs.

As an alternative we also will consider the method suggested in Bollerslev and Zhou (2002).

They derive a GMM-type estimation approach based on first and second order conditional

moments of the integrated volatility (IV). Since IV is latent, the realized variance (RV) is used

as a proxy and the sample moments of RV are matched to the population moments of IV

implied by the model.

In this paper, we investigate the finite sample properties of the PBEF based estimator in a

Monte Carlo study, and compare the performance to that of the GMM estimator from Boller-

slev and Zhou (2002). When constructing the GMM estimator from Bollerslev and Zhou (2002),

the intra-daily squared returns are transformed into daily realized measures, whereas in the
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method using PBEFs the squared returns are used directly in the estimation procedure. We

investigate whether the extra information contained in the PBEF based estimation procedure

results in more accurate parameter estimates. The case when the efficient price is assumed to be

directly observable, as well as the case when the price is observed with measurement error are

considered. In particular, we contribute by extending the two competing methods to handle

the latter case. To the best of our knowledge this is the first time the finite sample performance

of PBEFs applied to SV-models are studied. In fact, this is in general the most extensive Monte

Carlo study of the finite sample performance of the PBEF based estimation method. In Nolsøe

et al. (2000) the authors conduct a small Monte Carlo study for the case when a CIR process is

observed with additive white noise, but the performance of PBEF estimation of SV-models has

not previously been studied.

The paper also addresses implementation issues that arises when PBEFs are used in prac-

tice, and the link between the estimation method based on PBEFs and other well-known esti-

mation methods such as GMM and linear regression are discussed. Especially, the connection

between the optimal PBEF and the optimal choice of the weight matrix in GMM estimation

is established. Lastly, an empirical application to the spot DM/$ exchange rate is carried out,

investigating how the two estimation methods handle real data characteristics and possible

model misspecification. In the empirical application we also study how different choices in

the flexible PBEF based estimation method might impact the parameter estimates. In partic-

ular, we investigate how considering different choices of the predictor space might serve as a

robustness check of whether there is a need for additional volatility factors in the model.

The paper is organized as follows: In the next section the PBEF estimation method is review

and detailed. The connection to GMM estimation is established and a brief review of the

GMM based estimator from Bollerslev and Zhou (2002) is provided. For both methods the

estimator of the parameters in the Heston model are derived. In section 3 we present our

Monte Carlo study, which includes an investigation of how i.i.d. measurement errors impact

the performances of the two methods, and shows how the methods can be extended to handle

these errors. The fourth section contains an empirical application to the DM/$ spot exchange

rate, that reveal the consequences of different choices made when constructing the PBEFs. The

final section concludes and ideas on further research are outlined.

2. Estimating Stochastic Volatility Models

In this section the two estimation methods from Sørensen (2000) and Bollerslev and Zhou

(2002) are reviewed. We detail the structure of the PBEFs and discuss the link between the

optimal PBEF and a GMM estimator with the optimal choice of weight matrix.
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Both estimation methods are fairly easy to implement and do not rely on simulation schemes.1

When high-frequency data is available several other simulation-free methods have been sug-

gested in the literature, see for instance Barndorff-Nielsen and Shephard (2002), Corradi and

Distaso (2006) and Todorov (2009). Common to these methods, including the GMM based

estimator from Bollerslev and Zhou (2002), are that they are all based on time-series of daily

realized measures, such as realized variance (RV) and bipower variation (BV). Instead of be-

ing transformed into daily realized measures, the squared intra-daily returns are used directly

when constructing PBEFs. This means PBEFs have a potential informational advantage, the

strength of which will be investigated throughout the paper.2

The focus of this paper is on how to use the two considered estimation methods for esti-

mating SV models of the form

dXt =
√

vtdWt, dvt = b(vt; θ)dt + c(vt; θ)dBt, (1)

where W and B are independent standard Brownian motions. The independence assumption

rules out the possibility of leverage effects, but is only imposed for computational ease and

could be relaxed in other applications. We will assume v to be a positive, ergodic, diffusion

process with invariant measure µθ , and that v0 ∼ µθ is independent of B, which implies that v

is stationary. In particular, we are interested in studying inference for the Heston SV-model

dXt =
√

vtdWt, dvt = κ(α− vt)dt + σ
√

vtdBt, (2)

where the spot volatility, vt, is a CIR-process. The parameter α is the long run average variance

of the observed process {Xt} and the other drift parameter κ is the rate at which vt reverts to

the long run average α. The third parameter σ can be interpreted as the volatility of volatility.

The Heston model is widely used in mathematical finance where the observed process, {Xt},
would be the logarithm of an asset price. The popularity of the Heston model in financial

institutions is primarily due to the analytical tractability of the model, which allows for (quasi)-

closed form expressions for prices of financial derivatives, such as European options.

2.1. Estimation using Prediction-based Estimating Functions

First, we explain the general setup and ideas underlying the estimation method based on

PBEFs, which were introduced in Sørensen (2000) and further developed in Sørensen (2011b).

1Simulation based estimation methods for continuous time SV models, such as indirect inference, see Gourier-
oux et al. (1993), the efficient method of moments (EMM), see Gallant and Tauchen (1996), or Markov Chain Monte
Carlo (MCMC), see Eraker (2001), are not as easily implemented, since many of them require substantial computa-
tional efforts.

2Another way of tackling the difficulties that arise when considering parameter estimation in continuous time
SV models is based on approximations of the likelihood function, see for example Aı̈t-Sahalia and Kimmel (2007).
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Then, following Sørensen (2000), we derive the PBEFs for the Heston model which will be used

in our Monte Carlo Study.

2.1.1. The General Setup and Ideas

The estimation method based on PBEFs are used for conducting parametric inference on ob-

servations Y1, Y2, . . . , Yn from a general stochastic process. The stochastic process is assumed to

belong to a class of models parametrized by a p-dimensional vector, θ ∈ Θ ⊆ Rp, that we wish

to estimate. An estimating function is a p-dimensional function Gn(θ) that depends on the data

Y1, Y2, . . . , Yn and θ. An estimator is then obtained by solving the p equations Gn(θ) = 0 w.r.t.

θ. When considering PBEFs, the task of solving Gn(θ) = 0 is essentially the same as choosing

θ to eliminate a sum of weighted augmented prediction errors.

Let Fi denote the σ-algebra generated by the observations Y1, Y2, . . . , Yi. When θ is the

true parameter, we denote by Hθ
i the L2-space of all square integrable, Fi-measurable, 1-

dimensional random variables. Hθ
i is a Hilbert space of real-valued functions of the type

h(Y1, . . . , Yi), with inner product given by 〈h1, h2〉 = Eθ [h1(Y1, . . . , Yi)h2(Y1, . . . , Yi)]. For each

i a closed linear subspace P θ
i−1 of Hθ

i−1 can be chosen as the predictor space for predicting

f (Yi), where f is some known 1-dimensional function3. The predictor space P θ
i−1 can be cho-

sen freely, but is often chosen to be finite dimensional in order to obtain tractable estimating

functions.

In the setup of PBEFs, we study estimating functions of the form

Gn(θ) =
n

∑
i=1

Π(i−1)(θ)︸ ︷︷ ︸
p×1

[ f (Yi)− π̂(i−1)(θ)︸ ︷︷ ︸
∈P θ

i−1︸ ︷︷ ︸
1×1

], (3)

where the function to be predicted, f (Yi), is defined on the state space of the data generating

process Y. The function f is assumed to satisfy the condition Eθ [ f (Yi)
2] < ∞ for all θ ∈ Θ and

for i = 1, . . . , n. Note that Eθ [·] denotes expectation under the model with parameter θ. In (3),

the p-dimensional stochastic vector Π(i−1)(θ) =
(
π
(i−1)
1 (θ), . . . , π

(i−1)
p (θ)

)
has elements that

belong to the predictor space P θ
i−1, and π̂(i−1)(θ) is the minimum mean square error (MMSE)

predictor of f (Yi) in P θ
i−1. That is, π̂(i−1)(θ) is the orthogonal projection of f (Yi) onto P θ

i−1 w.r.t.

the inner product inHθ
i defined above. Since the predictor space is both closed and linear, this

3One could also choose to predict functions of the type f (Yi, . . . , Yi−s), see Sørensen (2011b), but for the purpose
of this study f (Yi) will be general enough. The function f can be chosen freely, but will often take the form
f (Yi) = Yν

i , ν ∈ N, such that the moments needed to find the (optimal) PBEF are easier to calculate. PBEFs can
in fact be further generalized to a setup where several functions of the data, f j(Yi) j = 1, . . . , N, are predicted,
see Sørensen (2000) and Sørensen (2011b). This generalization will, however, not be necessary for estimating the
SV-models we are considering.
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orthogonal projection exists and is uniquely determined by the normal equations

Eθ

[
π
[

f (Yi)− π̂(i−1)(θ)
]]

= 0, for all π ∈ P θ
i−1, (4)

see e.g. Thm. 3.1 in Karlin and Taylor (1975).4 Note that (4) is just an orthogonality condition,

stating that the prediction error
[

f (Yi)− π̂(i−1)(θ)
]

is orthogonal to any element, π, from the

predictor space P θ
i−1. Using the normal equations (4) it easily follows that our PBEF, Gn(θ),

is an unbiased estimating function, i.e. that Eθ

[
Gn(θ)

]
= 0 for all θ ∈ Θ. When we consider

finite dimensional predictor spaces regularity conditions, such as stationarity and geometric

α-mixing of the observed process, can be proved to ensure
√

n-consistency and asymptotic

normality of the resulting estimator, (see Thm. 4.3 in Sørensen (2011b)).

A special class of PBEFs is the class of martingale estimating functions, which is obtained

by choosing the predictor space to be the space of all square integrable Fi−1-measurable func-

tions, that is, by letting P θ
i−1 = Hθ

i−1. In this case, the MMSE predictor of f (Yi) in P θ
i−1 is the

conditional expectation

π̂(i−1)(θ) = Eθ

[
f (Yi)|Y1, . . . , Yi−1

]
,

and Gn(θ) becomes a Pθ-martingale w.r.t. the filtration generated by the data process. Mar-

tingale estimating functions are however mainly useful when considering Markovian models,

since for Non-Markovian models it is practically infeasible to calculate conditional expecta-

tions conditioning on the entire past of observations. Because continuous time SV-models are

Non-Markovian, the idea is to use a smaller and tractable predictor space in place of Hθ
i−1.

In fact, we will restrict our attention to finite dimensional predictor spaces and think of the

resulting PBEF as an approximation to a martingale estimating function. The MMSE predictor

obtained by projecting on a finite dimensional space can similarly be thought of as a linear

approximation to the conditional expectation, needed to construct the martingale estimating

function. The advantage of considering this linear approximation is that it only requires com-

puting unconditional moments which, from a simulation point of view, are much easier to

compute than conditional moments. Regarding efficiency issues, the conventional wisdom is

that estimators based on conditional moments are more efficient than those based on uncon-

ditional moments. Likelihood inference is often complicated or infeasible when we consider

non-Markovian models, such as SV-models, but since the score function is a martingale, we can

obtain a close approximation to the score function by using martingale estimating functions.

As mentioned, martingale estimating functions are constructed using conditional moments,

but by suitably choosing the predictor space the MMSE predictors will be good approxima-

tions to the conditional moments, and the resulting PBEF will also be a good approximation

4Unique in the sense of mean square distance.
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to the score function. This gives reason to believe that the estimators based on PBEFs can also

obtain high efficiency.

In the rest of the paper we will restrict our attention to finite dimensional predictor spaces

P θ
i−1 and assume the observed process {Yi} to be stationary. In order to obtain even more

tractable PBEFs, we will only consider predictor spaces with basis elements of the form Z(i−1)
k =

hk(Yi−1, . . . , Yi−s), k = 0, . . . , q, where hk : Rs 7→ R, s ∈N and where the functions h0, h1, . . . , hq

does not depend on θ. The predictor space used for predicting f (Yi) is then given by P θ
i−1 =

span{Z(i−1)
0 , Z(i−1)

1 , . . . , Z(i−1)
q }. The functions h0, h1, . . . , hq are assumed to be linearly inde-

pendent in Hθ
i−1 such that the dimension of the predictor space P θ

i−1 is q + 1. Note that the

dimension does not depend on i. The basis elements of the predictor space are no longer as-

sumed to be functions of the entire past, but are instead functions of the “most recent past” of

a period of length s. To adapt to usual practice, and to ensure the resulting MMSE predictor of

f (Yi) in P θ
i−1 becomes unbiased, we will assume h0 = 1. The predictors in P θ

i−1 will therefore

be of the form a0 + a′Z(i−1), where a′ = (a1, . . . , aq) and Z(i−1) =
(
Z(i−1)

1 , . . . , Z(i−1)
q

)′.5
The normal equations (4) lead to the MMSE predictor

π̂(i−1)(θ) = â0(θ) + â(θ)TZ(i−1), (5)

where â(θ)) = C(θ)−1b(θ) and â0(θ) = Eθ [ f (Yi)] − â(θ)′Eθ [Z(i−1)]. C(θ) denotes the q × q

covariance matrix of Z(i−1) and b(θ) =
[
Covθ(Z(i−1)

1 , f (Yi)), . . . , Covθ(Z(i−1)
q , f (Yi))

]′. Note

that, since the observed process {Yi} is stationary, the coefficients of the MMSE predictor does

not depend on i, but stay constant across time.6 The covariance matrix C(θ) will be invertible,

because the functions h1, h2, . . . , hq are linearly independent. For a formal derivation of the

expressions for the coefficients in (5) see Appendix A of the online appendix.

From (3-5) it follows that PBEFs can be calculated provided we can calculate the first- and

second-order moments of the random vector
(

f (Yi), Z(i−1)
1 , . . . , Z(i−1)

q
)
. In most models, we

will have to use simulation schemes in order to obtain the unconditional moments we need

for the computation of π̂(i−1)(θ). However, in special cases, such as in some affine stochas-

tic volatility models, these unconditional moments can be found explicitly for certain choices

of the function f . Again, it should be noted that computing unconditional moments using

simulation is less demanding than simulating the corresponding conditional moments.

Within the setup of the finite dimensional predictor spaces considered above, we now turn

to the specification of the p × 1-vector Π(i−1)(θ) from (3). Since each element of the vector

5In the case of the Heston model, the basis elements we will consider is of the form Z(i−1)
k = Y2

i−k, k = 1, . . . q.
6PBEFs with finite dimensional predictor spaces can also be computed for non-stationary processes, but in this

case computing the MMSE predictor, π̂(θ), is a bit more complicated since the coefficients, â0(θ), . . . , âq(θ), become
time-varying.
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Π(i−1)(θ) belongs to the predictor space P θ
i−1, then the jth element of Π(i−1)(θ) is of the form

π
(i−1)
j (θ) =

q

∑
k=0

ajk(θ)Z(i−1)
k ,

where, as before Z(i−1)
0 = 1. Hence, each element of the vector Π(i−1)(θ) is a linear combination

of the basis elements spanning P θ
i−1, where the coefficient ajk(θ) denote the loading on Z(i−1)

k

for the jth element π
(i−1)
j (θ). Note that the coefficients ajk(θ) does not depend on i but are, like

the coefficients of the MMSE, â(θ) and â0(θ), constant over time. Therefore, in order to ease

notation, we define

A(θ)
p×(q+1)

=


a10(θ) . . . a1q(θ)

...
...

...

ap0(θ) . . . apq(θ)

 , H(i)(θ)
(q+1)×1

=


Z(i−1)

0

[
f (Yi)− π̂(i−1)(θ)

]
...

Z(i−1)
q

[
f (Yi)− π̂(i−1)(θ)

]
 .

for i = 1, . . . , n and Fn(θ) := ∑n
i=s+1 H(i)(θ).7 With this notation at hand we are considering

PBEFs of the form

Gn(θ) = A(θ)Fn(θ), (6)

where we need p ≤ q + 1 to identify the p unknown parameters. Finding the optimal PBEF

within a class of PBEFs of the type (6), is then a question of choosing an optimal weight matrix,

A∗(θ). The optimal PBEF will then be the estimating function, within the considered class of

estimating functions of type (6), that is closest to the score in an L2-sense. For further details

on the optimal PBEF see Sørensen (2000) or Appendix B.

2.1.2. Relating PBEFs to GMM estimation

To obtain an estimator one should solve Gn(θ) = 0 for θ, but for numerical reasons it is often

easier to minimize Gn(θ)′Gn(θ) w.r.t. θ ∈ Θ. We employ this approach and find an estimator

by solving

min
θ∈Θ

Gn(θ)
′Gn(θ) = min

θ∈Θ
Fn(θ)

′A(θ)′A(θ)Fn(θ).

The above expression looks very similar to the GMM objective function that emerges if we

perform GMM estimation using the q + 1 moment conditions Eθ [H(θ)] = 0. In that case the

GMM objective function is ( 1
n−s Fn(θ))′Wn(θ)(

1
n−s Fn(θ)), and the corresponding p first order

conditions are

2
( 1

n− s
)2 (

∂θ Fn(θ)
)′︸ ︷︷ ︸

p×(q+1)

Ŵn(θ̂)︸ ︷︷ ︸
(q+1)×(q+1)

Fn(θ)︸ ︷︷ ︸
(q+1)×1

= 0. (7)

7Note that the sum now runs from i = s + 1 since Z(i−1)
k is only well-defined for i ≥ s + 1.
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Here Ŵn(θ̂) is the GMM weight matrix evaluated at some consistent parameter estimate θ̂. The

first order conditions (7) have the same structure as the PBEFs in (6). The only difference is that

the term in front of Fn(θ) in (7) becomes data dependent, which we do not allow A(θ) to be.

However, it turns out that there is strong link between (7) with Ŵn(θ̂) chosen optimally and

the optimal PBEF of type (6). The optimal PBEF takes the form G∗n(θ) = A∗n(θ)Fn(θ), where

A∗n(θ) = U(θ)′Mn(θ)−1 and the expression for U(θ) and Mn(θ)−1 can be found in Sørensen

(2000) or Appendix B of the online appendix. Straightforward calculations show that

− 1
n− s

∂θ Fn(θ)
′ p−→ U(θ)′, when n −→ ∞. (8)

From the theory for GMM estimation we know that the optimal choice of weight matrix, Wn(θ),

is the inverse of the covariance matrix of Fn(θ), since the H(i)’s are correlated. In the GMM

setting this weight matrix will in practice be constructed using the sample version of the co-

variance matrix. When Wn(θ) is chosen optimally, 1
n−s Wn(θ) equals Mn(θ)−1 and (7) becomes

the empirical analog of the optimal PBEF, G∗n(θ) = A∗n(θ)Fn(θ). Constructing the optimal PBEF

is therefore the same as constructing the theoretical first order conditions that emerges from

the optimal GMM objective functions based on the moment conditions, Eθ [H(θ)] = 0, from

the normal equations. The choice of which function of the data to predict and which predictor

space to use, then translate into which moment conditions to use in the GMM estimation.

2.1.3. Prediction-based Estimating Functions for SV-Models

We now return to the setup from (1) and consider how to compute PBEFs for SV-models.

Suppose the process X has been observed at discrete time points X0, X∆, X2∆, . . . , Xn∆. It

is more convenient to base the statistical inference on the differences Yi = Xi∆ − X(i−1)∆

since the process {Yi}, in contrast to {Xi∆}, will be stationary since {vt} is assumed sta-

tionary. In this setup, inference based on martingale estimating functions becomes practi-

cally infeasible, since the conditional expectations appearing in estimation functions based on

f (Yi)− Eθ [ f (Yi)|Yi−1, . . . , Y1] are difficult to compute analytically, as well as numerically. One

feasible approach for conducting inference is to use PBEFs instead, since these are not based

on conditional expectations and do not require extensive simulation. In fact, for many mod-

els, such as the Heston model, we are able to find explicit expressions for the PBEFs. The

continuous time returns from (1) are given by

Yi = Xi∆ − X(i−1)∆ =
∫ i∆

(i−1)∆

√
vt dWt,

which allows for the following decomposition

Yi =
√

SiZi, (9)
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where the Zi’s are i.i.d standard normal random variables independent of {Si}, and where the

process {Si} is given by

Si =
∫ i∆

(i−1)∆
vt dt.

The distribution of vt is the same on all intervals [0, ∆), . . . , [(n− 1)∆, n∆) because {vt} is sta-

tionary, hence it follows that {Si} and {Yi} are stationary processes. It is easy to see that the

Y′i s have zero mean and are uncorrelated, but not independent.

To construct PBEFs we have to decide on which function of the data to predict. Since the Y′i s

are uncorrelated, trying to predict Yi using Yi−1, Yi−2, . . . Yi−q will not work. As is the case with

empirical data where we have volatility clustering, squared returns from the SV-model are

often correlated and a natural choice for f would therefore be f (x) = x2. The decomposition

in (9) also reveals that f (x) = x2 is convenient as it eases the computation of the moments

required to construct the PBEFs. As our predictor spaces we choose

P θ
i−1 = {a0 + a1Y2

i−1 + · · ·+ aqY2
i−q|ak ∈ R k = 0, 1, . . . , q}.

This means that aside from the constant, Z(i−1)
0 = 1, the predictor variables Z(i−1)

k = Y2
i−k for

k = 1, 2, . . . , q have the same functional form as the function of the data to predict.8 Notice,

that in this case s = q since P θ
i−1 is spanned by the “most recent past of squared returns” of

length q.9 With the above choice of f and predictor space the MMSE predictor is given by

π̂(i−1)(θ) = â0(θ) + â(θ)′Z(i−1), with Z(i−1) = (Y2
i−1, . . . , Y2

i−q)

and

â(θ) = C−1(θ)b(θ), â0(θ) = Eθ(Y2
1 )[1− (â1(θ) + · · ·+ âq(θ))]. (10)

As before, C denotes the covariance matrix of Z(i−1) and b is the q× 1-vector with j th element

given by Covθ(Y2
i−j, Y2

i ). Together with (6), this means we are considering PBEFs of the form

Gn(θ) =
n

∑
i=q+1

Π(i−1)(θ)︸ ︷︷ ︸
p×1

[Y2
i − (â0(θ) + â1(θ)Y2

i−1 + · · ·+ âq(θ)Y2
i−q)], (11)

with Π(i−1)(θ) = A(θ)Z̃(i−1), where Z̃(i−1) = (1, Y2
i−1, . . . , Y2

i−q)
′ are the basis elements of the

predictor space P θ
i−1 and A(θ) is a p× (q + 1) weight matrix.

8It should be noted, that one does not have to choose a predictor space spanned by variables of the same form
as f , even though it seems like the most natural choice.

9When the volatility process {vt} is ρ-mixing the coefficient âk(θ) decreases exponentially with k and q need not
be very large, (see thm. 3.3 in Bradley (2005)). Note that if the volatility process {vt} is α-mixing then the observed
process {Yi} inherits this property and is also α-mixing, (see lemma 6.3 in Sørensen (2000)).
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In our Monte Carlo study we will use the following sub-optimal, yet simple weight matrix

A(θ) =


1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 1 0 . . . 0

 ,

since computing the optimal weight matrix A∗(θ) involves analytically computing the covari-

ance matrix of the sum of weighted augmented predition errors, (Fn(θ)). The resulting sub-

optimal PBEF is

Gn(θ) =
n

∑
i=q+1


1

Y2
i−1

Y2
i−2

 [Y2
i − (â0(θ) + â1(θ)Y2

i−1 + · · ·+ âq(θ)Y2
i−q)]. (12)

Equating (12) to zero and solving for θ gives a
√

n-consistent estimator, but we may loose some

efficiency for not using the optimal weight matrix A∗(θ).

From the above expressions, the econometrician might notice the link to OLS regression.

In a standard linear regression y = βX + ε the fitted value vector ŷ = β̂X is exactly the MMSE

predictor of y, arising from the projection of y onto the linear subspace spanned by the columns

in X. The residuals from the regression, ε̂, are then the prediction errors. Another way to see

the link to regression, is to consider the simple regression y = α + βx + ε. The formulas for the

regression coefficients are

α̂ = y− β̂x, β̂ =
∑n

i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2 =
sample covariance of x and y

sample variance of x
,

where x denotes the sample mean of x and y denotes the sample mean of y. It is evident that the

formulas for β̂ and α̂ are just the sample versions of the analytical formulas in (10), if yi = Y2
i ,

xi = Y2
i−1 and q = 1. What we are doing, when estimating SV-models using PBEFs, are in some

sense to fit an AR(q) process, including a constant, to our series of squared returns. But instead

of carrying out a regression to find the coefficients determining the orthogonal projection, we

compute these coefficients, â(θ), analytically. The coefficients will be expressed in terms of the

parameters of interest to us, namely θ. Our estimate θ̂ is then the parameter vector for which

the chosen weighted sum of augmented prediction errors, from fitting the AR(q)-process and

constant, are eliminated.

The MMSE predictor π̂(i−1)(θ) can be computed if we can calculate â0(θ), â1(θ), . . . , âq(θ).

For this we need Eθ [Y2
i ], Varθ(Y2

i ) and Covθ(Y2
i , Y2

i+j) for j = 1, . . . , q, so we have to assume

Eθ [Y4
i ] < ∞ for the MMSE predictor to be well-defined.10 The requested moments can be

10From Jensen’s inequality it follows that Eθ [v
β/2
t ] < ∞ implies Eθ [Y

β
i ] < ∞ for β ≥ 2. For β ≤ 2, Eθ [vt] < ∞

implies Eθ [Y
β
i ] < ∞.
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calculated from the moments of the volatility process {vt}. By the Itô isometry and recall-

ing that {Si} is stationary we have that Eθ [Y2
i ] = Eθ [S1]. Straightforward calculations gives

Varθ(Y2
i ) = 3Varθ(S1) + 2Eθ(S1)

2 and Covθ(Y2
i , Y2

i+j) = Covθ(S1, S1+j).

Now, define the mean, variance and autocorrelation function of the volatility process using

the following notation ξ(θ) = Eθ [vt], ω(θ) = Varθ(vt), and r(u; θ) = Covθ(vt, vt+u)/ω(θ).

From (Barndorff-Nielsen and Shephard, 2001, pp. 179-181) it follows that

Eθ [Y2
i ] = ∆ξ(θ), (13)

Varθ(Y2
i ) = 6ω(θ)R∗(∆; θ) + 2∆2ξ(θ)2, (14)

Covθ(Y2
i , Y2

i+j) = ω(θ)[R∗(∆(j + 1); θ)− 2R∗(∆j; θ) + R∗(∆(j− 1); θ)], (15)

where R∗(t; θ) =
∫ t

0

∫ s
0 r(u; θ)duds. So all we need is now the first- and second-order moments

of the unobserved volatility process {vt}. This is, for instance, possible if the volatility process

belongs to the class of Pearson diffusions, see Forman and Sørensen (2008). Amongst others,

the CIR process is a Pearson diffusion so explicit expressions for PBEFs exist when the Heston

model is considered.

In the Heston model the stationary distribution of {vt} is the Gamma distribution with

shape parameter 2κασ−2 and scale parameter 2κσ−2, provided that σ > 0, α > 0 (non-negativity),

κ > 0 (stationary in mean), and 2κα ≥ σ2 (stationary in volatility). Thus, we have

ξ(θ) = α, ω(θ) =
ασ2

2κ
, r(u; θ) = e−κu and R∗(t; θ) =

1
κ2

(
e−κt + κt− 1

)
.

Using the formulas (13) - (15), we can now calculate the following moments needed to compute

â0(θ), â(θ) and hence the MMSE predictor π̂(i−1)(θ). The moments we need are given by

Eθ [Y2
i ] = ∆α, (16)

Varθ(Y2
i ) =

6ασ2

2κ3

(
e−κ∆ + κ∆− 1

)
+ 2∆2α2, (17)

Covθ(Y2
i , Y2

i+j) =
ασ2

2κ3

(
e−κ∆j[e−κ∆ − 2 + eκ∆]), (18)

and the sub-optimal PBEF can now be constructed.11

2.2. A GMM Estimator based on Moments of Integrated Volatility

In this subsection the GMM based estimation procedure from Bollerslev and Zhou (2002) is

reviewed. In Bollerslev and Zhou (2002) the moment conditions for constructing the GMM

11For details on how to compute optimal PBEFs for stochastic volatility models, see Sørensen (2000). In Sørensen

(2000) an analytical formula for the optimal PBEF for an affine SV-model, such as the Heston model, is also given.

Even though an analytical expression for A∗(θ) is in principle available, it is a very complicated expression and not

easy implementable. In practice, a feasible strategy could be to simulate A∗(θ).
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estimator arise from the analytical derivations of the conditional first- and second-order mo-

ments of the daily integrated volatility (IV) process. Since the daily IV is latent, the realization

of this time-series is approximated by the daily realized variance (RV). Replacing population

moments of IV with sample moments of RV result in an easy-to-implement GMM estimator

for the model parameters. Once again, the statistical inference will be based on the discretely

sampled returns Y∆
i = Xi∆−X(i−1)∆, which we will assume to be available at high frequencies.

The GMM based estimation method crucially depends on the availability of high-frequency

data, since high-frequency data will ensure that RV is a good approximation to IV, and hence

ensure that the moment conditions underlying the GMM estimator holds approximately for

RV.

When considering the Heston model, the conditional moment conditions used for con-

structing the GMM estimator is given by

E[IVt+1,t+2 − δIVt,t+1 − β|Gt] = 0,

E[IV2
t+1,t+2 − H(IV2

t,t+1)− I(IVt,t+1)− J|Gt] = 0,

where Gt = σ{IVt−s−1,t−s; s = 0, 1, 2, . . . ∞} and δ, β, H, I and J are functions of the parame-

ters κ, α and σ. The functions δ and β only depend on the drift parameters κ and α which is

why the second moment condition is needed. For further details on the derivation of the two

conditional moments conditions see Bollerslev and Zhou (2002) or Appendix C in the online

appendix. To get enough moment conditions to identify θ the two moment conditions are aug-

mented by IVt−1,t and IV2
t−1,t, yielding a total of six moment restrictions. By replacing daily IV

by daily RV and using the unconditional versions of these six moment conditions, we are now

able to construct a feasible GMM estimator for the parameters of interest θ = (κ, α, σ). The

feasible GMM estimator is given by

θ̂T = argmin
θ

( 1
T − 2

T−2

∑
t=1

ft(θ)
)′

Ŵ
( 1

T − 2

T−2

∑
t=1

ft(θ)
)

, (19)

with Ŵ = Ŝ−1, where Ŝ is a consistent estimate of the asymptotic covariance matrix of gT(θ) =

1
T−2 ∑T−2

t=1 ft(θ) and where ft(θ) is given by

ft(θ) =



RVt+1,t+2 − δRVt,t+1 − β

RV2
t+1,t+2 − H(RV2

t,t+1)− I(RVt,t+1)− J

[RVt+1,t+2 − δRVt,t+1 − β]RVt−1,t

[RV2
t+1,t+2 − H(RV2

t,t+1)− I(RVt,t+1)− J]RVt−1,t

[RVt+1,t+2 − δRVt,t+1 − β]RV2
t−1,t

[RV2
t+1,t+2 − H(RV2

t,t+1)− I(RVt,t+1)− J]RV2
t−1,t


. (20)
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The number of trading days and hence the number of daily RV in our sample is denoted by

T. The finite sample performance of this estimator for the parameters in the Heston model, as

well as the one based on the sub-optimal PBEF, will be investigated in a Monte Carlo study in

the following section.

3. A Monte Carlo Study of the Finite Sample Performances

3.1. The Setup and the Case with no Measurement Error

In this section the finite sample performances of the GMM estimator from Bollerslev and Zhou

(2002) and the PBEF based estimator from Sørensen (2000) are investigated in a Monte Carlo

study. The data used for estimation is simulated realizations from the Heston model (2). We

use a first-order Euler scheme for simulating the volatility- and log-price process. The log-

price is sampled every 30 seconds in the artificial 6.5 hours of daily trading, for sample sizes

of T = 1000, 4000 trading days. Using the simulated data, daily realized variances based on

the artificial five-minute returns are constructed. We think of the five-minute returns as our

available data and investigate the performance of the corresponding GMM based and PBEF

based estimator. Since we are using five-minute returns over 6.5 hours of trading we put

∆ = 1/78.

To get a better grasp of the finite sample performance of the estimator based on PBEFs,

as well as the GMM estimator, we conduct our Monte Carlo experiment in three different

scenarios of parameter configurations.

• Scenario 1: (κ, α, σ) = (0.03, 0.25, 0.10). The volatility process is highly persistent (near

unit-root), as the autocorrelation is given by r(u, θ) = e−κu the correlation between the

volatility process sampled five minutes apart equals e−0.03∗1/78 = 0.9996.

• Scenario 2: (κ, α, σ) = (0.10, 0.25, 0.10). Here we have a slightly less persistent volatility

process due to the increase in the mean-reversion parameter.

• Scenario 3: (κ, α, σ) = (0.10, 0.25, 0.20). The local variance of volatility is now increased.

This process is also close to the non-stationary region since the CIR process is stationary

if and only if 2κα ≥ σ2, and here 2κα− σ2 = 0.01 (compared to 0.04 in scenario 2).

The same scenarios where considered in the Monte Carlo study conducted in Bollerslev and

Zhou (2002). In each of the three scenarios we simulate data from the Heston model and use

it as input in the two estimation procedures. We impose strict positivity of the parameter

estimates κ̂, α̂ and σ̂ and require that the Feller condition, 2κ̂α̂ ≥ σ̂2, be satisfied. In each case
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the number of Monte Carlo replications is 1000 and we use the true values of θ as starting

values.

3.1.1. Finite Sample Performance of the GMM Estimator based on IV

When estimating the asymptotic covariance matrix of gT(θ) we use the heteroscedasticity and

autocorrelation consistent estimator from Newey and West (1987) . When implementing the

GMM estimation procedure, we use continuously updated GMM, where the weight matrix

is estimated simultaneously with the parameters θ. Regarding the lag length in the Bartlett

kernel we follow Bollerslev and Zhou (2002) and choose a lag length of five. The results from

the GMM estimations are reported in Table 1.

The finite sample performance of the GMM estimator, using realized variance based on

five-minute returns, is quite good. As in Bollerslev and Zhou (2002), we find the mean-

reversion parameter κ to exhibit a small upwards bias, while the long-run mean parameter

α is slightly downwards biased. The biases of the two drift parameters seem to worsen when

the volatility of volatility is high (as in scenario 3), but in all cases decrease when the sample

size increases. The volatility of volatility parameter σ has a small, yet systematic, upwards

bias, that actually seems to be more pronounced when the sample size increases from 1000 to

4000. Below we will try to account for the bias in σ by adjusting the moment conditions used

for constructing the GMM estimator. Turning our attention to the RMSE, we observe that the

RMSE for the two drift parameters is roughly halved when the sample size increases from 1000

to 4000, as one would expect. However, the decay rate in RMSE for σ, when the sample grows

from 1000 to 4000 is not always 2, (
√

4000/1000).

To better understand the bias in σ, we consider the discretization error ut,t+1 = RVt,t+1 −
IVt,t+1. From Barndorff-Nielsen and Shephard (2002) we know that, in the case of zero drift,

the error made by replacing IVt,t+1 with RVt,t+1 is averaged out in the first moment condition

and the corresponding augmented ones, since these depend linearly on the discretization error.

However, Barndorff-Nielsen and Shephard (2002) also show that RV2
t,t+1 , for any fixed sam-

pling frequency, is an upwards biased estimator of IV2
t,t+1. To account for this discretization

error Bollerslev and Zhou (2002) therefore introduce a nuisance parameter, γ, and approximate

IV2
t+1,t+2 by RV2

t+1,t+2− γ. We follow the same strategy and implement the discretization error

correction (DEC) described above in the three second order moment conditions. The results on

σ from using the GMM estimation procedure with DEC are reported in Table 1. For the results

on the drift parameters consult Table 1 in Appendix D of the online appendix. The results

show that the drift parameters κ and α are not as affected by the discretization error correction

as σ is. This is not surprising since the drift parameters enters both the first and second order
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Table 1: Performance of the GMM estimator based on RV.

Mean Bias Variance RMSE

T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Scenario 1

GMM with daily realized variance from five-minute returns

κ = 0.03 0.0342 0.0312 0.0042 0.0012 1.162e-04 2.495e-05 0.0116 0.0051

α = 0.25 0.2422 0.2458 -0.0078 -0.0042 0.0029 6.758e-04 0.0541 0.0263

σ = 0.10 0.1015 0.1023 0.0015 0.0023 6.814e-05 1.802e-05 0.0084 0.0048

GMM with daily realized variance using DEC

σ = 0.10 0.0934 0.0994 -0.0066 -0.0006 2.773e-04 7.100e-05 0.0179 0.0084

Scenario 2

GMM with daily realized variance from five-minute returns

κ = 0.10 0.1043 0.1012 0.0043 0.0012 4.273e-04 9.367e-05 0.0211 0.0098

α = 0.25 0.2445 0.2461 -0.0055 -0.0039 2.481e-04 5.795e-05 0.0167 0.0086

σ = 0.10 0.1061 0.1071 0.0061 0.0071 5.874e-05 1.413e-05 0.0098 0.0080

GMM with daily realized variance using DEC

σ = 0.10 0.0992 0.1013 -0.0008 0.0013 2.861e-04 5.492e-05 0.0169 0.0075

Scenario 3

GMM with daily realized variance from five-minute returns

κ = 0.10 0.1101 0.1035 0.0101 0.0035 4.844e-04 1.075e-04 0.0242 0.0109

α = 0.25 0.2381 0.2447 -0.0119 -0.0053 8.873e-04 2.263e-04 0.0321 0.0160

σ = 0.20 0.2029 0.2044 0.0029 0.0044 1.271e-04 3.422e-05 0.0116 0.0073

GMM with daily realized variance using DEC

σ = 0.20 0.1890 0.1991 -0.0110 -0.0009 5.509e-04 1.988e-04 0.0259 0.0141

moment conditions. But for σ, that only the enters the second order moment conditions, the

results change. The DEC seems to remove the systematic upwards bias in the estimates of σ,

in fact there is now a downwards bias when T = 1000 and practically no bias when T = 4000.

Unfortunately, the variance of σ has now increased and the RMSE has roughly doubled. The

size of the RMSE is still very small, but of course this is a bias-variance trade-off to consider.

There is definitely still room for improvement, which could be filled by using more sophisti-

cated methods for discretization error correction. We will not pursue any other DEC methods

here since this is not the aim of our study.

3.1.2. Finite Sample Performance of the Estimator based on PBEFs

We now investigate the finite sample performance of the estimator associated with the follow-

ing sub-optimal PBEF from (12)

Gn(θ) =
n

∑
i=q+1


1

Y2
i−1

Y2
i−2

 [Y2
i − (â0(θ) + â1(θ)Y2

i−1 + · · ·+ âq(θ)Y2
i−q)].
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An interesting question, that arises when considering PBEFs, is how to optimally choose q.

One approach for answering this question, could be to consider the partial-autocorrelation

function for the squared returns and then choose q as the cut-off point where the function dies

out. Instead, we start at the smallest interesting choice, q = 3, and then later on investigate the

choice of q.12

Table 2: Performance of the sub-optimal PBEF based estimator with q = 3.

Mean Bias Variance RMSE

T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Scenario 1

Sub-optimal PBEF estimation based on five-minute returns

κ = 0.03 0.0303 0.0301 0.0003 0.0001 2.621e-06 7.525e-07 0.0016 0.0009

α = 0.25 0.2500 0.2500 -4.076e-05 3.317e-05 0.0027 6.799e-04 0.0517 0.0261

σ = 0.10 0.0989 0.0993 -0.0011 -0.0007 1.063e-04 3.247e-05 0.0104 0.0057

Scenario 2

Sub-optimal PBEF estimation based on five-minute returns

κ = 0.10 0.1003 0.1002 0.0003 0.0002 5.536e-06 1.162e-06 0.0024 0.0011

α = 0.25 0.2500 0.2500 -3.823e-06 -1.163e-05 2.436e-04 5.952e-05 0.0156 0.0077

σ = 0.10 0.0995 0.0996 -0.0005 -0.0004 2.159e-05 4.454e-06 0.0047 0.0021

Scenario 3

Sub-optimal PBEF estimation based on five-minute returns

κ = 0.10 0.1002 0.1003 0.0002 0.0003 1.039e-05 2.732e-06 0.0032 0.0017

α = 0.25 0.2501 0.2506 -0.0001 0.0006 8.894e-04 2.316e-04 0.0298 0.0152

σ = 0.20 0.1996 0.1990 -0.0004 -0.0010 1.583e-04 4.255e-05 0.0126 0.0066

When the parameters θ = (κ, α, σ) are estimated we minimize Gn(θ)′Gn(θ) instead of solv-

ing Gn(θ) = 0. The finite sample performance of the sub-optimal PBEF based on the series,

{Y2
i }, of squared five-minute returns are reported in Table 2. Compared to the results for the

GMM estimator based on IV, using PBEF to estimate the Heston model looks promising. The

results show indicate that the parameter estimates becomes almost unbiased when using this

choice of PBEF. Comparing the RMSEs for the drift parameters it seems that the mean rever-

sion parameter κ is easier to estimate when using PBEFs, whereas the RMSEs for α are similar

to those obtained using the GMM procedure. In scenario 2, the RMSE for σ is smaller when the

PBEF is used, but for the other two scenarios the RMSE is similar to the those from the GMM

procedure. In contrast to what we observed for the GMM estimator based on IV, the RMSE

for σ in the PBEF case is actually halved when the sample size doubles. For κ the variance is

smaller when the PBEF is used, but for α and σ the variances are of the same magnitude as for

the GMM procedure.
12q = 2 would automatically result in an optimal PBEF because the weight matrix A(θ) would then be a 3× 3

matrix and could be disregarded when solving Gn(θ) = 0.
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These results were to be expected, because the estimation method based on PBEFs use the

intra-daily squared returns directly, whereas the squared returns are transformed into daily

realized measures before the GMM estimator is constructed. Based on our results, it seems

that the PBEF based estimator is able to exploit the extra information contained in the intra-

daily returns.
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Figure 1: Normalized RMSE for the three parameter estimates in scenario 1-3, with T = 1000, plotted as a

function of the number of predictor variables q. The RMSE are in each case normalized to have a minimum of 1.

To investigate the optimal choice of q in the PBEF, the impact on the RMSEs from increasing

q is examined. In Figure 1 the three different scenarios are considered for T = 1000 and the

RMSEs for the three parameters are plotted against the choice of q. The shape of the plots for κ

and σ look almost identical. In the two scenarios 1 and 3, where the volatility process is close

to the non-stationary region, q = 3 seems to be the optimal choice for κ and σ. In scenario 2,

q = 6 appears to be the optimal choice for both parameters. Looking at the three plots for α

there does not seem to be much variation in the RMSE across the choice of q. In in scenario 1

and 3, where we are close to the non-stationary region, the RMSE decreases when q increases.

Therefore, we chose q = 3 in our Monte Carlo Study even though the variations in the RMSEs
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are small. It should also be noted that the optimal choice of q might be depend on the PBEF

under consideration.

In the next section we investigate how adding i.i.d. measurement errors to the observed

process effects the finite sample performance of the two estimation methods. We also extend

the methods to take account of these measurement errors and compare the performance of the

two resulting estimators. In the simulations we fix q at 3.

3.2. Including Measurement Errors in the Observed Log-price Process

We now consider the following observation equation

Xt = X∗t + Ut, Ut i.i.d N(0, ω2), (21)

where the efficient log-price process X∗ comes from the Heston model and X∗ and U are as-

sumed to be independent. The additive error term Ut will be interpreted as market microstruc-

ture (MMS) noise due to market frictions such as bid-ask bounce, liquidity changes and dis-

creteness of prices. In this section, the impact of MMS noise on the parameter estimates from

the two estimation procedures is investigated. In the next section we consider how to change

the two estimation methods to incorporate the MMS noise. We now simulate data with MMS

noise and then perform parameter estimation ignoring the noise. We consider two levels of

noise, ω2 = 0.001 which we present in the paper. Results for ω2 = 0.0005 can be found in

Appendix D of the online appendix.

Table 3: Performance of the GMM estimator based on RV in the presence of noise, ω2 = 0.001.

Mean Bias Variance RMSE

T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Scenario 1

GMM with daily realized variance from five-minute returns

κ = 0.03 0.0374 0.0336 0.0074 0.0036 2.325e-04 4.266e-05 0.0169 0.0075

α = 0.25 0.3976 0.3981 0.1476 0.1481 0.0031 6.808e-04 0.1578 0.1503

σ = 0.10 0.0797 0.0806 -0.0203 -0.0194 1.425e-04 3.626e-05 0.0235 0.0203

Scenario 2

GMM with daily realized variance from five-minute returns

κ = 0.10 0.1069 0.1043 0.0069 0.0043 0.0010 2.304e-04 0.0329 0.0158

α = 0.25 0.3987 0.3999 0.1487 0.1499 2.532e-04 5.915e-05 0.1495 0.1501

σ = 0.10 0.0915 0.0927 -0.0085 -0.0073 1.760e-04 4.135e-05 0.0157 0.0097

Scenario 3

GMM with daily realized variance from five-minute returns

κ = 0.10 0.1211 0.1133 0.0211 0.0133 7.786e-04 1.512e-04 0.0350 0.0181

α = 0.25 0.3929 0.3967 0.1429 0.1467 0.0010 2.458e-04 0.1464 0.1475

σ = 0.20 0.1611 0.1619 -0.0389 -0.0381 1.451e-04 3.4253e-05 0.0407 0.0386
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The results for GMM estimation based on RV are reported in Table 3. From the results it fol-

lows that the inclusion of MMS noise in the observed process leads to biases in the parameters,

when the GMM estimation procedure without noise correction is carried out. Compared to

the no noise case, we note that the upwards bias in the drift parameter κ has worsened and the

small downwards bias in the other drift parameter α has been turned into a severe upwards

bias. Regarding the parameter σ, the small upwards bias has now been replaced by a notable

downwards bias. The biases in κ and σ seems to worsen in scenario 3 where σ is increased.

For all three parameters, the biases become more pronounced when ω2 increases, but for κ

and σ the biases become less pronounced when the sample size increases. In all three cases,

and for both choices of sample size, the RMSE for the parameters estimates goes up when

ω2 increases. For κ and σ, the RMSE goes down when the sample size increases, because the

variance decrease. For α the RMSE remains unchanged.

To understand how the MMS noise effects the estimator from the PBEF estimation method,

we start by investigating the impact of noise on the autocorrelation function for the squared

return series, in each of the three parameter scenarios.
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Figure 2: Autocorrelation functions for the squared returns in scenario 1-3.

From Figure 2, we see how the theoretical autocorrelation function drops as the variance

of the noise increases. It also becomes evident that the MA(1) structure in the errors from
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the return series causes the autocorrelation function to drastically drop from the first to the

second lag. This feature becomes more pronounced as the variance of the noise increases. The

low level of the autocorrelation function, especially in scenario 2, means that our predictors

Y2
i−1, . . . , Y2

i−q have little predictive power and the PBEF estimation method might not produce

as accurate parameter estimates as in the no noise case. The results from the estimation method

based on the sub-optimal PBEF without noise correction are reported in Table 4 in the ω2 =

0.001 case.

Table 4: Performance of the PBEF based estimator in the presence of noise, ω2 = 0.001 and q = 3.

Mean Bias Variance RMSE

T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Scenario 1

Sub-optimal PBEF estimation based on five-minute returns

κ = 0.03 0.0329 0.0322 0.0029 0.0022 3.929e-06 1.192e-06 0.0035 0.0025

α = 0.25 0.4050 0.4061 0.1550 0.1561 0.0028 6.829e-04 0.1638 0.1582

σ = 0.10 0.0843 0.0870 -0.0157 -0.0130 1.134e-04 3.538e-05 0.0190 0.0143

Scenario 2

Sub-optimal PBEF estimation based on five-minute returns

κ = 0.10 0.0968 0.0964 -0.0032 -0.0036 1.133e-05 9.147e-06 0.0047 0.0047

α = 0.25 0.4060 0.4060 0.1560 0.1560 2.470e-04 6.0034e-05 0.1568 0.1562

σ = 0.10 0.1071 0.1078 0.0071 0.0078 4.878e-05 4.109e-05 0.0100 0.0101

Scenario 3

Sub-optimal PBEF estimation based on five-minute returns

κ = 0.10 0.1082 0.1073 0.0082 0.0073 2.116e-05 5.272e-06 0.0094 0.0077

α = 0.25 0.4054 0.4066 0.1554 0.1566 9.565e-04 2.331e-04 0.1585 0.1573

σ = 0.20 0.1714 0.1737 -0.0286 -0.0263 2.163e-04 5.445e-05 0.0322 0.0273

From the tables we see that the drift parameter κ becomes upwards biased, but not as

much as for the GMM method. The bias also increases when then noise variance, ω2, goes

from 0.0005 to 0.001, except for scenario 2 where the bias becomes negative when the noise

variance doubles. This is a bit odd, but can be explained by the fact that the autocorrelation

function in scenario 2 is extremely low, especially when ω2 = 0.001, which means that the

PBEF estimation procedure might not work as well as in the no noise case. The long run

average of variance parameter, α, becomes severely upwards biased when we include MMS

in our log-price process and fail to correct for it in the PBEF. In all the considered cases, the

positive bias in α roughly doubles when the variance of the noise doubles. The bias in α is

bigger in the PBEF setting, compared to the GMM setting, but the increase in the bias from the

no noise case to the MMS noise case is roughly the same for the two estimation methods. As

for the volatility of volatility parameter, σ, it now becomes downwards biased. The bias in σ

worsen when ω2 increases but decreases when the sample size decreases, except for scenario
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2 where the bias again changes sign when the noise variance is increased. When comparing

the results to those for the GMM estimator based on RV, we find that the variance of κ has

gone down, the variance of α is roughly unaltered and the variance of σ is bigger in scenario

1 and 3 and smaller in scenario 2. The results on the behavior of the bias and variance of the

parameter estimates means that the RMSE for kappa as gone significantly down, the RMSE

for α has increased and the RMSE for σ is the same, when compared to the GMM results.

Compared to the no noise results from Table 2, the RMSE has gone up in all the considered

scenarios. In all cases, the RMSE goes down when the sample size increases, but it is not close

to being halved as otherwise expected.

By looking at the autocorrelation functions in the three scenarios, some of the above results

for the sub-optimal PBEF could have been anticipated. From the expression for the autocorre-

lation function for the squared returns in the no noise case, (obtained using equation (17) and

(18))

Corr(Y2
i , Y2

i+j) =
Cov(Y2

i , Y2
i+j)

Var(Y2
i )

=
e−κ∆j[e−κ∆ − 2 + eκ∆]

6(e−κ∆ + κ∆− 1) + 4∆2ακ3

σ2

, (22)

we see that the decay rate is completely determined by κ. When the presence of MMS noise

is ignored, the above autocorrelation structure is fitted to the ones from the MMS noise case

depicted in Figure 2. But due to rapid drop from the first to the second autocorrelation when

we have MMS noise, κ will increase such that the correlation structure (22) from the no noise

case better fits the autocorrelation structure from the MMS noise case. This could be one ex-

planation for the upwards bias in κ. It was also noted that the level of the autocorrelation

function drops when MMS noise is added to the observed log-price process. From (22) we see

that, assuming κ has been determined to fit the decay rate, one way of getting the level of the

autocorrelation function to drop would be to increase α and/or decrease σ. The inspection of

the autocorrelation functions offers some explanation of the biases in the parameters. In the

next subsection, where the two estimation procedures are extended to handle MMS noise, it

will become clear why α becomes significantly upwards biased when we do not correct for the

MMS noise. Furthermore, an analytical expression for the bias will be derived.

3.3. Correcting for MMS Noise in the two Estimation Procedures

The two estimation methods are now extended to handle MMS noise. Since RV is no longer

a consistent estimator of IV when MMS noise present, we will extend the GMM estimation

procedure from Bollerslev and Zhou (2002) to handle this situation by replacing daily RV with

a noise robust estimate of IV. As our estimate of daily IV we will use the realized kernel

(RK) estimator from Barndorff-Nielsen et al. (2008a). The PBEF based method can also be
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extended to handle MMS noise, simply by recalculating the moments Eθ [Y2
i ], Varθ(Y2

i ) and

Covθ(Y2
i , Y2

i+j) needed for constructing π̂(θ), and hence the PBEFs, in this new setting.

3.3.1. Correcting for MMS noise in the GMM Approach

In the presence of i.i.d. MMS noise that is independent of the efficient log-price process Hansen

and Lunde (2006) show that

Eθ [RVt,t+1] =
∫ t+1

t
vs ds + 2∆−1ω2. (23)

In fact, also the variance of RV diverges to infinity as the sample frequency increases. In the

setting with MMS noise, RV is no longer a consistent estimator of IV and we therefore use a

noise robust estimate of IV when constructing the GMM estimator. Instead of basing the esti-

mation procedure on the time-series of daily RV we instead use the time series of daily realized

kernels (RK) from Barndorff-Nielsen et al. (2008a). We use the flat-top Tukey-Hanning2 kernel,

since the resulting RK is closest to being efficient in the setting of i.i.d. noise that is indepen-

dent of the observed process. As for the bandwidth, H, we follow the asymptotic derivations

from Barndorff-Nielsen et al. (2008a) and let H ∝ (1/∆)1/2, in order to obtain the optimal rate

of convergence, (1/∆)1/4, of RK to IV. For further details on how the bandwidth is chosen

consult section 4 of Barndorff-Nielsen et al. (2008a).

The finite sample performances of the GMM estimator based on the time series of daily RK

are reported in Table 5 when ω2 = 0.001.

Table 5: Finite sample behavior of the GMM estimator based on RK, ω2 = 0.001.

Mean Bias Variance RMSE

T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Scenario 1

GMM with daily realized kernels from five-minute returns

κ = 0.03 0.0329 0.0306 0.0029 0.0006 2.037e-04 5.507e-05 0.0146 0.0074

α = 0.25 0.2405 0.2414 -0.0095 -0.0086 0.0029 5.831e-04 0.0548 0.0256

σ = 0.10 0.1058 0.1093 0.0058 0.0093 4.954e-04 1.673e-04 0.0230 0.0159

Scenario 2

GMM with daily realized kernels from five-minute returns

κ = 0.10 0.1024 0.1005 0.0024 0.0005 0.0018 4.540e-04 0.0428 0.0223

α = 0.25 0.2410 0.2417 -0.0090 -0.0083 5.075e-04 5.810e-05 0.0242 0.0113

σ = 0.10 0.1259 0.1291 0.0259 0.0291 7.654-04 2.035e-04 0.0379 0.0324

Scenario 3

GMM with daily realized kernels from five-minute returns

κ = 0.10 0.1040 0.1009 0.0040 0.0009 4.412e-04 1.031e-04 0.0214 0.0102

α = 0.25 0.2386 0.2422 -0.0114 -0.0078 5.866e-04 1.467e-04 0.0267 0.0144

σ = 0.20 0.2116 0.2163 0.0116 0.0163 2.452e-04 7.909e-05 0.0195 0.0185
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From the tables it is clear that the upwards bias in κ has gone down, and is in fact a bit

smaller than the upwards bias from the no noise case in Table 1. Regarding the RMSE for κ,

it is almost the same for both levels of noise and is roughly halved when the sample size is

doubled. Compared to the no noise case from Table 1 the RMSE has gone up in the first two

scenarios, especially in scenario 2. When compared to the noise case without noise correction

from Table 3, the RMSE is unaltered in scenario 1, has gone up in scenario 2 and gone down in

scenario 3.

Turning our attention to the other drift parameter α, we see that the huge upward biases

from Table 3 have now been turned into a small but noticeable downwards bias, that is more

pronounced than in the no noise case from Table 1. Looking at the RMSE, the values are now

almost the same as in the no noise case of Table 1 when scenario 1 is considered and a bit higher

and a bit lower in scenario 2 and 3 respectively.

Regarding the volatility of volatility parameter σ, the situation is a bit different. The down-

wards bias, caused by the MMS noise, has now been replaced by an upwards bias from the use

of RK. This upwards bias is most pronounced in scenario 2, and in all three scenarios more

severe than the one we observed in the no noise case. As in the no noise case, the bias seems

to worsen when the sample size increases. As a consequence, the RMSE has also gone signifi-

cantly up, compared to the no noise case, especially in scenario 2. In scenario 2, the RMSE for

σ is actually larger than in the case without noise correction. In scenario 1 and 3 the results are

a bit mixed. When compared to the noise case without noise correction, the RMSE for σ has

gone slightly up in scenario 1 when ω2 = 0.0005, whereas in scenario 3 the RMSE has gone

down for both levels of the noise variance. When the sample size doubles, the RMSE is again

far from being halved. Common to all three parameter estimates is the fact that when the series

of RK is used as input in the GMM estimation, the RMSE seems to be almost unchanged when

the noise level increases. The severe upwards bias in σ might be, as discussed earlier in the no

noise case, due to the discretization error since RK2 is an upwards biased estimator of IV2. The

slower convergence rate of RK might explain why the upwards bias in σ is more pronounced

than in the no noise case where RV is used to construct the GMM estimator.

In conclusion, the use of RK in the presence of MMS noise is not perfect in the setting we

are considering. It helps reduce the bias in κ and almost removes the huge bias in α, but it also

causes a severe upwards bias in σ. This way of correcting for the noise also causes the RMSE

for κ and σ to increase compared to the no noise case, and in some cases it even increased when

compared to the case with MMS noise and no noise correction. However, this increase is not

dramatic and there is still much to be gained from using RK to correct for the MMS noise.
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3.3.2. Correcting for MMS noise in the Estimation Method based on PBEFs

To correct for MMS noise in the PBEFs, the moments used to construct the MMSE predictor

have to be recalculated. That is, Eθ [Y2
i ], Varθ(Y2

i ) and Covθ(Y2
i , Y2

i+j) need to be computed in

the setting from (21)

Yi = Xi − Xi−1 = (X∗i − X∗i+1) + (Ui −Ui−1) = Y∗i + εi,

where the MA(1) process ε is normally distributed, N(0, 2ω2), and independent of the efficient

return process Y∗. The moments needed to compute PBEFs in the presence of i.i.d MMS noise

are given below. Straight forward calculations give Eθ [Y2
i ] = ∆α + 2ω2, since Y∗ and ε are in-

dependent and have mean zero. We can now derive the bias in α that can be expected to occur,

when performing the PBEF based estimation procedure without correcting for MMS noise. If

the MMS noise is not taken into account, then the equation, Eθ [Y2
i ] = ∆α, is erroneously used

for constructing the PBEF. Therefore, the expected bias in α is given by 2ω2

∆ . The bias equals

0.0780 and 0.1560 when the noise variance is 0.0005 and 0.001 respectively, and in fact these

numbers exactly match the actual biases reported in Table 4.

As for the variance of the squared returns we have that

Varθ(Y2
i ) = Eθ [Y4

i ] + Eθ [Y2
i ]

2, (24)

where the last term can be computed from the above calculations. By using the binomial

formula we find

Eθ [Y4
i ] = Eθ [(Y∗i )

4] + Eθ [ε
4
i ] + 6Eθ [(Y∗i )

2]Eθ [ε
2
i ],

again due to Y∗ and ε being independent and having mean zero. From previously derived

results we get

Eθ [Y4
i ] = 3Eθ [S2

1] + 3(2ω2)2 + 6∆α2ω2 = 3Eθ [S2
1] + 12ω4 + 12∆αω2, (25)

and by using the derivation of equation (14) as well as equation (17) we obtain

Eθ [S2
1] = 2Varθ(vt)R∗(∆, θ) + Eθ [S1]

2 =
ασ2

κ3

(
e−κ∆ + κ∆− 1

)
+ ∆2α2. (26)

Now, by plugging (26) into (25) we can obtain an expression for Varθ(Y2
i ) by using (24)

Varθ(Y2
i ) =

3ασ2

κ3

(
e−κ∆ + κ∆− 1

)
+ 3∆2α2 + 12ω4 + 12∆αω2 − (∆α + 2ω2)2

= Varθ(Y∗2i ) + 8ω4 + 8∆αω2. (27)

Regarding the covariance structure of the squared returns, only the first order covariance will

change due to the MA(1) structure in the return errors ε. By, once again, exploiting that Y∗
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and ε are independent and both have mean zero we obtain the following expression for the

first order covariance of the observed squared return series

Covθ(Y2
i , Y2

i+1) = Covθ(Y∗2i , Y∗2i+1) + Covθ(ε
2
i , ε2

i+1) = Covθ(Y∗2i , Y∗2i+1) + 2ω4. (28)

We can now compute the noise corrected version of the PBEF we previously used for esti-

mation. Note that we can choose to estimate the variance of the noise, ω2, in a first step, by

for instance using a non-parametric estimator based on RV and RK, and then plug it into the

noise corrected PBEF used for estimating κ, α and σ. Another approach would be to expand

the parameter vector to θ = (κ, α, σ, ω2) and use the noise corrected PBEF to estimate all four

parameters. In the last approach one would have to choose a 4× (q + 1) weight matrix, A(θ),

that will results in a 4× 1 estimating function Gn(θ), such that our estimator θ̂ is obtained by

solving four equations in four unknowns. We follow the last approach and estimate all four

parameters in one step. Since we have chosen q = 3 and wish to estimate ω2, the weight matrix

will be a 4× 4 matrix. This means the weight matrix can be ignored when solving Gn(θ) = 0,

under the assumption that A(θ) is invertible, and the sub-optimal PBEF we have considered so

far will now be optimal. The finite sample performances of the (now optimal) PBEF corrected

for MMS noise are reported in Table 6 when ω2 = 0.001.

Table 6: Performance of the PBEF based estimator corrected for noise, ω2 = 0.001 and q = 3.

Mean Bias Variance RMSE

T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Scenario 1

Optimal PBEF estimation based on five-minute returns

κ = 0.03 0.0308 0.0301 0.0008 0.0001 3.911e-06 1.031e-06 0.0021 0.0010

α = 0.25 0.2525 0.2512 0.0025 0.0012 0.0023 5.107e-04 0.0477 0.0226

σ = 0.10 0.0958 0.0995 -0.0042 -0.0005 1.506e-04 4.398e-05 0.0130 0.0066

ω2 = 0.001 9.776e-04 9.932e-04 -2.236e-05 -6.853e-06 1.0153e-08 2.517e-09 1.032e-04 5.061e-05

Scenario 2

Optimal PBEF estimation based on five-minute returns

κ = 0.10 0.0999 0.0999 -0.0001 -0.0001 6.904e-06 1.225e-06 0.0026 0.0011

α = 0.25 0.2513 0.2503 0.0013 0.0003 1.890e-04 3.903e-05 0.0138 0.0063

σ = 0.10 0.1005 0.1003 0.0005 0.0003 2.796e-05 5.073e-06 0.0053 0.0023

ω2 = 0.001 9.915e-04 9.981e-04 -8.455e-06 -1.934e-06 1.765e-09 2.613e-10 4.283e-05 1.627e-05

Scenario 3

Optimal PBEF estimation based on five-minute returns

κ = 0.10 0.1014 0.1002 0.0014 0.0002 1.721e-05 4.346e-06 0.0044 0.0021

α = 0.25 0.2520 0.2509 0.0020 0.0009 0.0010 2.104e-04 0.0320 0.0145

σ = 0.20 0.1955 0.1994 -0.0045 -0.0006 2.483e-04 6.667e-05 0.0164 0.0082

ω2 = 0.001 9.841e-04 9.977e-04 -1.592e-05 -2.289e-06 1.028e-08 2.096e-09 1.026e-04 4.582e-05

In Table 6 we see that by noise correcting the PBEF estimation procedure the bias in κ
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vanishes when T = 4000 and only a small bias is left when T = 1000. As for the other drift

parameter, α, only a small negligible upwards bias is left. Compared with the results on noise

corrected GMM estimator based on RK, the bias in α is smaller both when ω2 = 0.0005 and

when ω2 = 0.001. In all the considered cases, the bias in α is reduced when the sample size

is increased. The downwards bias in σ is now much smaller than in the MMS noise case

without noise correction, and the bias almost disappears when the sample size increases to

4000 trading days. The RMSE is once again halved when the sample size increases from 1000

to 4000 trading days. Compared to the MMS noise case without noise correction, the RMSE has

dropped drastically for all three parameter estimates and for both levels of the noise variance.

The RMSEs have also roughly reached the same level as in the no noise case from Table 2.

The variances of the parameter estimates are also smaller than in the MMS noise case without

noise correction. The noise variance is also estimated, and the results show that the noise

corrected PBEF produces unbiased estimates of this quantity. The RMSEs coming from the

noise corrected PBEF estimation method are in all cases, except for α in scenario 3, smaller than

the RMSEs obtained using the noise corrected GMM estimation method, with the difference

being most remarkable for the parameters κ and σ. In conclusion, the noise corrected PBEF

estimation method produces (almost) unbiased parameter estimates with RMSEs comparable

to those from the no noise case. In our Monte Carlo setup where the Heston model with

additive MMS noise is considered, the estimation method based on PBEFs seems to outperform

the GMM estimation method from Bollerslev and Zhou (2002).

4. Empirical Application

In this section we use actual five-minute returns from a widely used data set on the DM/$

spot exchange rate as input in the two estimation methods analyzed in our Monte Carlo study.

First, completely ignoring MMS noise effects, we fit a Heston model to the data using both

estimation methods and compare the results. Then, we try to estimate the MMS noise level in

the data and see how the parameter estimates changes when we account for MMS noise effects.

We are well aware that the Heston model might not fit the chosen data well. This is however

not the purpose of this exercise, the application to data should rather be seen as a check of

what happens when the estimation methods are used to fit a (possibly misspecified) model to

real data. The empirical application is also an investigation of how different choices, such as

MMS noise correction and the choice of predictor space in the flexible PBEF based method,

might affect the parameter estimates.
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4.1. Data description

For our empirical illustration we use five-minute returns for the DM/ $ spot exchange rate

covering the period from October 1, 1992 through September 30, 1993. The data consist of 288

daily five-minute returns for each of the 260 trading days in our sample, yielding a total of

74880 five-minute returns.

As a first inspection of the data characteristics, we consider the empirical autocorrelation

functions for the squared five-minute returns, reported in Figure 3. The autocorrelation func-

tion does not seem to be exponentially decaying, revealing that the Heston model will not be

able to properly account for the dynamics of the data. However, our main interest lies in in-

vestigating if the two estimation methods will yield similar parameter estimates or perform

differently. The autocorrelation function also exhibits cyclical patterns corresponding to a lag

length of one trading day. This is due to the well-documented intra-day periodicity in volatil-

ity in foreign exchange and equity markets, see for instance Andersen and Bollerslev (1997) or

Dacorogna et al. (1993).
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Figure 3: Autocorrelation function for the squared five-minute returns on the DM/$ the exchange rate.

The intra-daily periodicity in the volatility might cause the two estimation methods to per-

form differently. The intra-daily periodicity should not affect the GMM based estimator much,

since the intra-daily pattern in volatility will be “smoothed out” when the five-minute returns

are aggregated into the daily realized measures used for constructing the estimator. This same

does not apply for the estimator based on PBEFs, since this estimator is based directly on the

squared five-minute returns. Hence, the intra-daily periodicity might effect the parameter es-

timates when the PBEF based estimation method is carried out. In order to avoid this, the

intra-daily volatility pattern is captured by fitting a spline function to the intra-daily averages
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of five-minute returns using a non-parametric kernel regression13.

The data are then adjusted for periodicity in intra-daily volatility by dividing the squared

returns through by the fitted values from the spline function, matched according to the intra-

daily five-minute interval in which the observation falls. Finally, the squared returns are nor-

malized such that the overall variance of the squared returns remain unchanged. Figure 4

displays the autocorrelation function for the adjusted data. From the figure it is clear that
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Figure 4: Autocorrelation function for the adjusted squared five-minute returns on the DM/$ the exchange rate.

the intra-daily periodicity has been removed. It is however still evident that the autocorrela-

tion function is not exponentially decaying, rendering the Heston model a poor model choice.

There also seems to be a need for at least a two factor SV model in order to properly capture the

dynamics of the autocorrelation function. One factor is needed for capturing the fast decay in

the autocorrelation function at the short end, whereas the other factor should be slowly mean-

reverting and thereby account for the persistent or long memory-like factor in the variance.

4.2. Estimation results

In the Heston model, the decay rate of the autocorrelation function for the squared returns is

uniquely governed by the mean reversion parameter κ. Due to the dynamic structure of the au-

tocorrelation function, discussed above, the choice of prediction space might heavily influence

the estimated value of κ. Depending on the largest time lag of past squared returns included

in the predictor space, different dynamics might be captured. When fitting the Heston model

to the adjusted data we hold the dimension of the predictor space fixed at 4, (q=3), but con-

sider three different choices of basis elements spanning the predictor space. The three cases

we consider corresponds to having 30 min., 12 hours and 24 hours between each of the basis

13We use the fit function in MATLAB with a smoothing spline, setting the smoothing parameter equal to 0.001
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elements.14 The same simple choice of weight matrix, as used in the Monte Carlo study, is

employed when constructing the PBEFs. As in our Monte Carlo study, both the case where the

possible presence of MMS noise is ignored and the case where it is corrected for are considered.

4.2.1. Results for estimation methods without noise correction

The parameter estimates from the two estimation methods without noise correction are re-

ported in Table 7. For the PBEF based estimation method the lag variable equals 6 (6x5min

lag between the basis elements) if we are in the first case and the laq variable equals 144 or

288 depending on whether we are in the second or the third case. Table 7 also shows how the

various estimated Heston models fit the mean, variance and first order autocorrelation of the

squared adjusted returns and daily IV. Since daily IV is not observable the sample moments

of IV are approximated by E[RV], Var(RV)− γ and Corr(RV, 1) ∗
(
Var(RV)/(Var(RV)− γ)

)
respectively, where γ is the bias correction term insuring that E[IV2] = E[RV2]− γ.

The estimated values for the long-run mean of volatility, reported in the second column of

Table 7, do not vary much with the choice of estimation method. Not surprisingly, the fourth

column in the lower part of Table 7 reveals that the estimated value of α are, in all cases, close

to the unconditional mean of daily RV. The best fit to the unconditional mean of daily RV, and

hence also to the unconditional mean of the squared five-minute returns, are obtained by the

PBEF based estimation methods. When the lag variable equals 6 we obtain the closest fit, and

as the lag value increases the parameter estimate for α decreases. For the other two parame-

ters there are large variation in the parameter estimates obtained using the different estimation

methods. For the GMM based approaches, the estimate of the mean reversion parameter κ de-

creases and the estimate for the volatility of volatility parameter increases when the naive DEC

is employed. The use of DEC also yields results more in line with those reported in Bollerslev

and Zhou (2002) for the bigger data set spanning the period December 1, 1986 through Decem-

ber 1 1996. Regarding the PBEF based estimation method, the need for a multifactor volatility

seems to be apparent from the estimated values for the mean-reversion parameter reported in

Table 7. When the predictor space only covers a short period ,(lag = 6), we capture the fast

decaying part in the beginning of the autocorrelation function from Figure 4, hence the esti-

mated value of κ is large. In contrast, as the lag length between the predictor variables increase

the estimated value of κ decreases drastically, since more emphasis is put on fitting the more

14That is, in the first case we let the predictor space we spanned by Y2
i−1, Y2

i−7, Y2
i−13 and a constant. In the second

case we choose Y2
i−1, Yi−145, Yi−289 and a constant as the basis elements of the predictor space and finally in the

third case we try to capture some of the more persistent dynamics by letting the predictor space span a period of

two days by using Y2
i−1, Y2

i−289, Y2
i−577 and a constant as basis elements.
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persistent dynamics of the autocorrelation function. In all three cases, the estimates for κ are

much larger than those obtained by the GMM estimation procedure. The same holds true for

σ, and the estimated value of σ also decreases as the lag variable increases. As a robustness

check we separate out the parameter (κ) that controls the dynamic behavior of the data from

those (α and σ) that govern the stationary distribution, by fitting the Heston model with the

following time-changed CIR specification for the variance process to the adjusted data

dvt = κ(α− vt)dt + σ
√

vtdBκt, where dBκt
L
=
√

κdBt.

The advantage of using this specification is that the stationary distribution of the variance

process becomes the Gamma distribution with shape parameter 2ασ−2 and scale parameter

2σ−2, hence the distribution no longer depends on κ. This also mean that the second order

moments of the returns that we use for constructing the PBEFs change since we now have

ξ(θ) = α, ω(θ) = ασ2

2 , and r(u; θ) = e−κu. The obtained parameter estimates from fitting the

time-changed model exactly match those in Table 7. Changing the dimension of the predictor

space to 6, (q = 5), did not influence the parameter estimates either.

Table 7: Estimation results for the estimation methods without noise correction.

Estimation method κ α σ γ FC ω2

Methods without noise correction

GMM with RV 0.3651 0.8032 0.3937 - -0.4314 -

GMM with RV and DEC 0.2621 0.8285 0.5833 -0.1217 -0.0941 -

PBEF with q = 3 and lag = 6 26.922 0.9070 8.5680 - 24.573 -

PBEF with q = 3 and lag = 144 2.1550 0.8984 2.0557 - 0.3537 -

PBEF with q = 3 and lag = 288 1.1689 0.8888 1.5081 - 0.1967 -

Estimation method E[Y2
i ] Var(Y2

i ) Corr(Y2
i , 1) E[IV] Var(IV) Corr(IV,1)

Methods without noise correction

Sample moments, RV 0.003149 1.0e-04 0.2020 0.9070 0.4452 0.4452

GMM with RV 0.002789 2.2e-05 0.0945 0.8032 0.1515 0.7898

GMM with RV and DEC 0.002877 3.6e-05 0.1799 0.8285 0.4937 0.8429

PBEF with q = 3 and lag = 6 0.003149 6.3e-05 0.2150 0.9070 0.0885 0.0193

PBEF with q = 3 and lag = 144 0.003119 5.1e-05 0.2057 0.8984 0.4821 0.3075

PBEF with q = 3 and lag = 288 0.003086 5.0e-05 0.2065 0.8888 0.6070 0.4953

The table reports the parameter estimates from fitting the Heston model to the DM/$ spot exchange rate data from October 1,

1992 to September 30, 1993. The variable FC denotes the Feller condition, σ2 − 2κα, and is positive if the parameter constraint

is violated. The table also reports sample moments as well as theoretical moments implied by the various obtained parameter

estimates. Since IV is not observable the sample moments of IV is constructed using RV.

For all of the three considered cases, the parameter estimates from the PBEF based estima-

tion methods violate the Feller condition. This is not surprising since we expected the Heston
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model to provide a poor fit to the exchange rate returns. The Feller condition actually holds

when the GMM estimation method is employed, but only barely when DEC is used. The

model misspecification is also highlighted by the negative estimate of the correction factor γ,

indicating that RV2
t,t+1 is a downwards biased estimate of IVt,t+1, which is not the case. The

presence of MMS noise could also influence the estimated values of γ. This will be investigated

in the next subsection. From the first three rows in the lower part of Table 7 the usefulness of

DEC is again highlighted, as the obtained parameter estimates provide better fit to the sample

moments, except when it comes to fitting Corr(IV, 1). Not surprisingly, it is also evident from

Table 7 that the PBEF based estimation procedures yields parameter estimates that produce

better fits to the mean, variance and first order autocorrelation of the squared adjusted returns.

The mean and variance is best matched if we consider the short time horizon, lag = 6, whereas

the first order autocorrelation is slightly better matches if longer horizons, (lag = 144, 228), are

used.

If the aim is to match the moments of daily IV, then the results vary drastically with the

choice of time span in the predictor space. For all three considered choices of the lag variable

the mean is matched fairly well. Letting lag = 6 results in a poor fit to the sample variance and

first order autocorrelation, but with lag = 144, 288 the fits improve drastically and are in fact

better than when the GMM estimation method is used.

4.2.2. Results for estimation methods with noise correction

As in our Monte Carlo study, we now consider how noise correcting the estimation procedures

affects the parameter estimates. The GMM estimation procedure is once again noise corrected

by using the time series of RK as input for the estimation method. The realized kernel is now

computed using the parzen kernel with H ∝ (1/∆)3/5 as recommended in Barndorff-Nielsen

et al. (2008b) for empirical applications. The obtained convergence rate of RK to IV is now

(1/∆)1/5. The choice of bandwidth H that resulted in the convergence rate of (1/∆)1/4 in our

Monte Carlo study relies heavily on the assumption of i.i.d MMS noise which might not hold

in practice.

After computing the daily realized kernels we compute a non-parametric estimate of the

daily MMS noise variance using the formula favored in Barndorff-Nielsen et al. (2008a)

ω̌2 = exp[log(ω̂2)− RK/RV],

with RK and RV constructed using the intra-daily adjusted five-minute returns and where

ω̂2 = RV/2n. In our case n = 288 and the overall estimate of the MMS noise variance is

found by averaging over the 260 daily estimates. For the adjusted exchange rate data we find
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ω̌2
avg = 7.3629e− 04. This means the MMS noise has a standard deviation of 0.0271%, which

are well in line with the values found in Bessembinder (1994) and those used in Aı̈t-Sahalia

et al. (2005).

The PBEF estimation procedure is noise corrected according to the assumption of Gaussian

i.i.d noise. It may not hold in practice and this highlight a possible pitfall of using PBEFs - one

has to specify the structure of the MMS noise in order to compute the PBEFs. We consider both

including the noise variance ω2 as a fourth parameter to be estimated (referred to as 1 step

PBEF) and the case where it is held fixed at the non-parametric estimate found above (referred

to as 2 step PBEF). The results of these procedures, as well as the parameter estimates obtain

by using the GMM estimator based on the time series of RK, are reported in Table 8.

Table 8: Estimation results for the estimation methods with noise correction.

Estimation method κ α σ γ FC ω2

Methods with noise correction

GMM with RK 0.2097 0.6949 0.3799 - -0.1470 -

GMM with RK and DEC 0.2360 0.6673 0.5167 -0.0569 -0.0481 -

PBEF with q = 3 and lag = 6, 1 step 25.490 0.9070 8.3020 - 22.678 0.0000

PBEF with q = 3 and lag = 144, 1 step 0.9776 0.2374 1.5707 - 2.0029 0.0011

PBEF with q = 3 and lag = 288, 1 step 0.8940 0.3527 1.5552 - 1.7881 9.30e-04

PBEF with q = 3 and lag = 6, 2 step 21.539 0.4829 8.9102 - 58.587 7.36e-04

PBEF with q = 3 and lag = 144, 2 step 1.8741 0.4743 2.2533 - 3.2996 7.36e-04

PBEF with q = 3 and lag = 288, 2 step 1.0261 0.4646 1.6632 - 1.8130 7.36e-04

Estimation method E[Y2
i ] Var(Y2

i ) Corr(Y2
i , 1) E[IV] Var(IV) Corr(IV,1)

Methods with noise correction

Sample moments, RK 0.003149 1.0e-04 0.2020 0.7137 0.3380 0.4471

GMM with RK 0.003885 3.9e-05 0.1021 0.6949 0.2233 0.8717

GMM with RK and DEC 0.003789 4.3e-05 0.1300 0.6673 0.3493 0.8571

PBEF with q = 3 and lag = 6, 1 step 0.003149 6.3e-05 0.2152 0.9070 0.0924 0.0204

PBEF with q = 3 and lag = 144, 1 step 0.003024 3.0e-05 0.2058 0.2374 0.2218 0.5498

PBEF with q = 3 and lag = 288, 1 step 0.003085 3.6e-05 0.2058 0.3527 0.3380 0.5763

PBEF with q = 3 and lag = 6, 2 step 0.003149 5.1e-05 0.2156 0.4829 0.0788 0.0243

PBEF with q = 3 and lag = 144, 2 step 0.003119 4.3e-05 0.2059 0.4743 0.3759 0.3487

PBEF with q = 3 and lag = 288, 2 step 0.003086 4.2e-05 0.2066 0.4646 0.4576 0.5354

The table reports the parameter estimates from fitting the Heston model to the DM/$ spot exchange rate data from October 1,

1992 to September 30, 1993. The variable FC denotes the Feller condition, σ2 − 2κα, and is positive if the parameter constraint

is violated. The table also reports sample moments as well as theoretical moments implied by the various obtained parameter

estimates. Since IV is not observable the sample moments of IV is constructed using RK.

As expected from the results in the Monte Carlo study, the long run mean of volatility pa-

rameter, α, drops significantly when we correct for MMS noise in all of the considered cases.

However, the parameter estimate of α now varies a lot across the different estimation methods

employed. One explanation for this might be that the i.i.d Gaussian noise assumption un-
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derlying the construction of the PBEFs does not hold. The mean reversion parameter, κ, also

behaves like in the Monte Carlo study and drops when we try to correct for the presence of

MMS noise. As before the value of the lag variable influence the estimate of κ dramatically.

The drops in the two drift parameters are most pronounced when PBEFs is used for the estima-

tion, especially when ω2 is included in the parameter space. Only when the 2 step PBEF based

method is used does σ increase compared to the case without noise correction. In the other

cases σ drops, in contrast to what was expected from the results in our Monte Carlo study. As

for the estimate of ω2, it is either driven to zero when lag = 6 or takes on values higher than

ω̌2
avg when lag = 144, 288. When the noise variance, ω2, is included as a fourth parameter

to be estimated the minimization of Gn(θ)′Gn(θ) becomes extremely sensitive to the choice of

starting values and often a local minimum is reached. In contrast, the optimization routine

becomes much more stable when the noise variance is fixed at the non-parametric estimate.

Table 8 also report the implied fit to the moments of the adjusted squared returns and IV

obtained using the different estimation methods. The moments of the adjusted squared returns

implied by the fitted models are computed using the formulas in section 3.3 with ω2 = ω̌2
avg

when the GMM estimation method and the 2 step PBEF are used, and estimated within the

model when the 1 step PBEF is used. The model implied moments of IV are constructed as in

the case without noise correction, only this time RK is used as a proxy for IV. Even though

the assumption of i.i.d. Gaussian noise underlying the construction of the noise corrected

PBEF might not hold, then the parameters estimates from the PBEF based estimation methods

provide the best overall fit to the moments of the adjusted squared returns. Using RK as input

int the GMM based estimation procedure improved the fit to Var(Y2
i ) both with and without

DEC, but for the other two moments the fit is better without noise correction. Except for the

fit to Var(Y2
i ) when lag = 6, the 2 step PBEF provides the best overall fit to the moments of Y2

i .

The best fit to E[IV], is obtained using the GMM estimation method, but as in the case without

noise correction the PBEF based method with lag = 144, 288 provides fits to the variance of IV

comparable with those from the GMM based methods and are actually better at fitting the first

order autocorrelation of IV.

Over all, the choice of estimation method depends on whether you want to fit the intra-day

squared returns well or if the aim is fitting the moments of the daily integrated volatility. For

the considered data set, where there seems to be noise present, the 2 step PBEF based method

with lag = 144, 288 produces quite good fits to both the moments of Y2
i and IV. Whereas, the

moments implied by the GMM based method only reasonably matches the mean and variance,

and provide poor fits to the first order autocorrelation of the the two time series.

The aim of this section was never to find the best model for the exchange rate data, but in-
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stead to investigate how the two different estimation methods handle real data with possible

model misspecification. Here the problem seems to be that the dynamic structure implied by

the Heston model is not flexible enough to adequately model the observed dynamics. The rele-

vance of allowing for several volatility factor is best highlighted by the PBEF based estimation

method.

5. Conclusion and Final Remarks

We reviewed and detailed the general theory underlying PBEFs and explicitly constructed

PBEFs for parameter estimation in the Heston model. Implementation issues and the link to

other estimation methods, such as the link between optimal GMM estimation and the optimal

PBEF, were discussed. The finite sample performance of the estimator based on PBEFs was in-

vestigated in a Monte Carlo study and compared to that of the GMM estimator from Bollerslev

and Zhou (2002). Both the case with and without the inclusion of additive i.i.d. MMS noise

were considered. In the no MMS noise setting, there are gains to be made from using PBEFs in

terms of bias and the RMSE is also lower for the mean reversion parameter, κ.Including MMS

noise in the observation equation but neglecting to correct for it produced biased estimates,

with the upwards bias in the long run average variance (α) being most severe. The two estima-

tion methods were then extended to handle i.i.d. MMS noise by basing the GMM estimator on

a time series of realized kernels from Barndorff-Nielsen et al. (2008a) and recalculating the mo-

ments needed for constructing the PBEFs. Only the PBEF based estimator had a performance

comparable with the no MMS noise setup and once again seemed to outperform the GMM

based estimator in the considered setting.

However, one concern regarding the application of the PBEF based method to real data is

the sensitivity towards intra-daily dynamics, like intra-daily periodicity in volatility. Of course,

one could adjust for this periodicity as we do in our empirical application, but if modeling

the observed data is the aim of the study the GMM based estimator might be preferred. In

the empirical application we investigated how the two estimation methods handle possible

model misspecifaction and how the parameter estimates change when MMS noise correction

is employed. The parameter estimates from the two estimation methods were quite different.

The choice of predictor space influenced the estimates of κ and σ significantly, revealing the

need for a multifactor volatility model which was not apparent from the use of the GMM

based estimator. The study confirmed the presence of MMS noise in the DM/$ exchange rate

data and highlighted a possible pitfall when using PBEFs. When the data is contaminated

with MMS noise, the structure of the noise has to be specified for the PBEFs to be computable.

This is not necessary when the GMM estimator is used. Not surprisingly, our empirical study

35



showed that the model implied fit to the moments of the adjusted squared returns were best

when the PBEF based estimator was used. Actually, when the predictor space spanned longer

horizons, the fit to moments of daily IV were better than those obtained using the GMM based

estimator.

It would be of interest to see how the estimation method based on PBEFs perform if we

leave the assumption of i.i.d noise. This would however complicate the construction of the

MMS noise corrected PBEFs. A solution to this potential problem could be to try to filter out

the noise in a first step using the method of pre-averaging, introduced by Jacod et al. (2009),

instead of modeling the noise directly. The performance of this approach is still to be inves-

tigated. Since the PBEF based estimation method is quite general, an important contribution

to the existing literature would be to consider PBEFs in a setting where the driving sources

of randomness are general Lévy processes, like the models considered in Brockwell (2001),

Barndorff-Nielsen and Shephard (2001) and in Todorov and Tauchen (2006). Finally, the im-

portance of using the optimal weight matrix when basing inference on PBEFs in different set-

tings, as well as how to simulate or approximate the optimal weight, could also be a topic for

further research.
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Brockwell, P. J. (2001). Lévy-driven CARMA processes. Ann.Inst.Statist.Math 53, 113–124.

Corradi, V. and W. Distaso (2006). Semi-parametric comparison of stochastic volatility models
using realized measures. Review of Economic Studies 73, 635–667.

Cox, J. C., J. E. Ingersoll, and S. A. Ross (1985). A theory of the term structure of interest rates.
Econometrica 53, 385–408.

Dacorogna, M., U. Müller, R. Nagler, R. Olsen, and O. Pictet (1993). A geographical model for
the daily and weekly seasonal volatility in the foreign exchange market. Journal of Interna-
tional Money and Finance 12, 413–438.

Eraker, B. (2001). Markov Chain Monte Carlo analysis of diffusion models with application to
finance. Journal of Business and Economic Statistics 19-2, 177–191.

Forman, J. L. and M. Sørensen (2008). The Pearson diffusions: A class of statistically tractable
diffusion processes. Scandinavian Journal of Statistics 35, 438–465.

Gallant, A. R. and G. Tauchen (1996). Which moments to match? Econometric Theory 12, 657–
681.

Gourieroux, C., A. Monfort, and E. Renault (1993). Indirect inference. Journal of Applied Econo-
metrics 8, S85–S118.

Hansen, P. R. and A. Lunde (2006). Realized variance and market microstructure noise. Journal
of Business and Economic Statistics 24, 127–218.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applica-
tions to bond and currency options. Review of Financial Studies 6, 327–343.

Jacod, J., Y. Li, P. Mykland, M. Podolskij, and M. Vetter (2009). Microstructure noise in the
continuous case: The pre-averaging approach. Stochastic Processes and Their Applications 119,
2249–2276.

37



Karlin, S. and H. M. Taylor (1975). A First Course in Stochastic Processes. Academic Press, New
York.

Meddahi, N. (2002). A theoretical comparison between integrated and realized volatility. Jour-
nal of Applied Econometrics 17, 475–508.

Meddahi, N. (2003). ARMA representation of integrated and realized variances. Econometrics
Journal 6, 335–356.

Melino, A. and S. M. Turnbull (1990). Pricing foreign currency options with stochastic volatility.
Journal of Econometrics 45, 239–265.

Newey, W. K. and K. D. West (1987). A simple positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica 55, 703–708.

Nolsøe, K., J. N. Nielsen, and H. Madsen (2000). Prediction-based estimating functions for dif-
fusion processes with measurement noise. Technical reports no. 10, Informatics and mathe-
matical modelling, Technical University of Denmark.

Renault, E. (2009). Moment-based estimation of stochastic volatiliy models. In T. G. Andersen,
R. Davis, J.-P. Kreiss, and T. Mikosch (Eds.), Handbook of Financial Time Series, pp. 269–311.
Springer.

Sørensen, M. (2000). Prediction-based estimating functions. Econometrics Journal 3, 123–147.

Sørensen, M. (2011a). Estimating functions for diffusion-type processes. In Kessler, Lindner and
Søerensen editors, Statistical Methods for Stochastic Differential Equations. Chapmann and Hall.

Sørensen, M. (2011b). Prediction-based estimating functions: Review and new developments.
Brazilian Journal of Probability and Statistics 25, 362–391.

Todorov, V. (2009). Estimation of continuous-time stochastic volatility models with jumps us-
ing high-frequency data. Journal of Econometrics 148, 131–148.

Todorov, V. and G. Tauchen (2006). Simulation methods for Lévy-driven CARMA stochastic
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