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Abstract

The use of large-dimensional factor models in forecasting has received much atten-
tion in the literature with the consensus being that improvements on forecasts can
be achieved when comparing with standard models. However, recent contributions
in the literature have demonstrated that care needs to be taken when choosing which
variables to include in the model. A number of different approaches to determining
these variables have been put forward. These are, however, often based on ad-hoc
procedures or abandon the underlying theoretical factor model.

In this paper we will take a different approach to the problem by using the LASSO
as a variable selection method to choose between the possible variables and thus
obtain sparse loadings from which factors or diffusion indexes can be formed. This
allows us to build a more parsimonious factor model which is better suited for fore-
casting compared to the traditional principal components (PC) approach. We provide
an asymptotic analysis of the estimator and illustrate its merits empirically in a fore-
casting experiment based on US macroeconomic data. Overall we find that compared
to PC we obtain improvements in forecasting accuracy and thus find it to be an
important alternative to PC.
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1. Introduction

Many of the initial attempts at estimating factor models proposed in the literature
were quite seriously limited in the amount of data they could handle. Because of this
the prevailing methodology used for a number of years now is that of asymptotic
principal components (PC). This non-parametric method is capable of handling
enormous datasets at almost no computational cost. A recent survey by Stock and
Watson (2011) provides a thorough overview of the state of the literature, and is an
important addition to previous surveys (e.g. Bai and Ng, 2008b; Stock and Watson,
2006).

One area where the use of factor models has become particularly popular is in
macroeconomic forecasting. The literature on using factors estimated from large
datasets using PC was initiated by Stock and Watson (2002a,b). Although the esti-
mated factors are often difficult or even impossible to give any economic interpre-
tation, they argued that in the context of macroeconomic forecasting one possible
interpretation of the estimated factors is in terms of the diffusion indexes developed
by NBER business cycle analysts to measure common movement in macroeconomic
variables. Due to this they referred to the estimated factors as diffusion indexes and
this has now become the standard terminology when concerned with macroeco-
nomic forecasting using factors estimated by PC (or similar methods).

Although diffusion indexes are conceptually very appealing in their ability to allow
the use of very large datasets in a parsimonious manner, they do not necessarily give
forecasting performance gains when the number of included variables is increased.
Boivin and Ng (2006) investigate the problem. They show using both simulations
and real data that forecasting performance is not always improved by including
more variables and in fact that in some cases using a smaller dataset of pre-screened
variables better forecasting results can be obtained.

Screening of the data is also the topic of Bai and Ng (2008a) where the screening is
based on the variable we wish to forecast. The idea is to use various methods to try to
determine a subset of the data best suited to forecast the variable thereby obtaining
a set of targeted predictors. These are then used to estimated the diffusion indexes.
A similar idea is entertained in Dias, Pinheiro, and Rua (2010) where the determi-
nation of the targeted predictors is incorporated in the estimation of the diffusion
indexes hence the name targeted diffusion indexes. In both cases the authors find
improvements in the forecasting performance.

In this paper we will investigate a different way of solving this problem of which
variables to include. We will use the least absolute shrinkage and selection operator
(LASSO) of Tibshirani (1996) to estimate diffusion indexes with sparse loadings, i.e.
loadings where only some of the entries of the vectors differ from zero. Like Boivin and
Ng (2006) this will produce diffusion indexes where the individual indexes or factors
are linear combinations of only a subset of the variables and not all the variables
like in the classical PC approach. However, unlike Bai and Ng (2008a) and Dias et al.
(2010) our estimated diffusion indexes will not be “targeted” which is in line with the
original model in Stock and Watson (2002a) where the factors or diffusion indexes
are common to all variables we wish to forecast. However, the sparseness introduced
by the LASSO does allow for cases where only some of these common factors are
relevant to a variable.
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The combination of the LASSO and PC has been explored extensively in the
statistics literature and is often referred to as sparse principal components (SPC).
Examples of papers considering estimation of SPC include Jolliffe, Trendafilov, and
Uddin (2003); Zou, Hastie, and Tibshirani (2006); Shen and Huang (2008); Witten,
Tibshirani, and Hastie (2009). However, in macroeconomic forecasting the use of SPC
has received very little attention. Croux and Exterkate (2011) is one exception, here the
authors consider a robustified version of SPC in a typical macroeconomic forecasting
setting. They argue that sparsity in the loadings could help in making the factors more
easily interpretable. However, they do not provide any asymptotic justification for
their approach. This paper provides both a theoretical and an empirical contribution;
first we show that the SPC factor estimator is consistent under assumptions common
to the macroeconomic forecasting literature, and that this estimator can be easily
computed using the method of Shen and Huang (2008). In addition to this we give a
simple method for determining the number of factors using ridge regression. Second,
we apply the SPC factor estimator to a typical macroeconomic dataset and show that
improvements in forecasting accuracy can be achieved.

The paper is organized as follows. In Section 2 we start by briefly going over the
traditional PC approach to estimating factor models. Against this backdrop we then
detail how SPC can be used to estimate factor models with sparse loadings. We give
an asymptotic analysis of the SPC estimator where we show that the estimated factors
will be consistent and give a simple alternative to existing methods for determining
the number of factors based on ridge regression. Section 4 provides a number of
Monte Carlo simulations that highlight the main differences between the PC and SPC
estimators. In Section 5 a pseudo real-time forecasting experiment is conducted in
order to judge the forecasting performance of the SPC estimator. Finally, Section 6
concludes.

2. Diffusion index forecasting

The model of Stock and Watson (2002a,b) is based on the idea that we observe a
large number of macroeconomic variables, possibly many more than then number
of temporal observations. These variables contain information we want to express
concisely in a much lower dimension in order to forecast key variables, i.e. we want
to extract factors or diffusion indexes from the dataset. More specifically we observe
n variables X t over T periods, and we assume that these variables can be modelled
using a factor model. In addition to this we have a scalar time series yt which is
related to the factors and possible other exogenous variables, wt , and that we wish to
forecast. Hence our basic model is:

X t =ΛFt +et (1)

yt+h =β′
F Ft +β′

w wt +εt+h (2)

where Λ is a matrix of loadings associated with the factors and h is the forecast
horizon.

A small note on dimensions and notation: X t is n ×1 with elements xi t , when
convenient we will used matrix notation and collect these in X = (X1, . . . , XT )′. The
model has r factors and hence the loadings matrixΛ is n × r , rows of this matrix will
be denoted λi (1× r ), and columns λ j (n ×1). Ft is r ×1 and when used in matrix
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notation will be collected in F = (F1, . . . ,FT )′ (T × r ). When referring to columns of F
these will be denoted F i (T ×1). wt is q ×1 and when used in matrix notation will
be collected in W = (w1, . . . , wT )′ (T ×q). Finally,‖·‖2 is the Euclidean norm, i.e. for

z ∈Rn we have‖z‖2 =
√∑n

i=1 z2
i .

2.1. The classical approach

Estimation of the model in (1)–(2) is done using a two-step approach. In the first
step the factors (or diffusion indexes) and associated loadings in (1) are estimated by
means of principal components (PC). These estimates are then used in the second
step estimation of (2) by OLS. The fact that PC can be used to estimate (1) may not be
obvious. However, it can easily be motivated by realizing that PC is basically a least
squares estimator. Consider the following non-linear least squares objective function

V LS(F,Λ; X ) = (nT )−1
n∑

i=1

T∑
t=1

(xi t −λi Ft )2 (3)

which is to be minimized over both F andΛ. Since the parameters are unidentified we
need to impose restrictions on the problem, this is done by requiring that the loadings
are orthogonal and have a fixed length, e.g. Λ′Λ/n = Ir . A solution to this problem
is easily found by concentrating out F and imposing the identifying restrictions to
get an equivalent maximization problem tr

[
Λ′X ′XΛ

]
where tr[·] denotes the matrix

trace. Hence the loadings are estimated as the eigenvectors of X ′X corresponding to
its r largest eigenvalues, and the factors are given as:

F̂ LS = X Λ̂LS/n (4)

One of the properties of the PC estimator is that it produces orthogonal loadings
and uncorrelated factors (assuming the data have been centered). A consequence of
this property is that factors can be estimated sequentially, which is also a very natural
way of considering the estimator, i.e. an estimator where subsequent factors explain
as much of the residual variance as possible. When considering variations of this
standard PC estimation approach and subsequently the accompanying theory, it is
often easier to work with such a sequential approach to the estimation. We must,
however, keep in mind that what consequences this has on the estimator at hand.

2.2. A LASSO regularized approach

The basic observation underlying the idea of introducing sparsity in the loadings
is that in the classical case the PC estimated factors are linear combinations of all the
X -variables, see (4). Some of the loadings may be very small but never zero. Hence,
even though the estimated factors allow us to be very parsimonious in the forecasting
equation, (2), the factors are by no means parsimonious. It would therefore seem
interesting to modify the PC estimator such that the estimated loadings will be sparse
and hence parsimony will be achieved also in the factors. For this purpose we will
employ a LASSO penalized version of the PC estimator, which we will denote a sparse
principal components (SPC) estimator. Consider first the problem of estimating
a single factor. Simply augmenting the least squares criterion in (3) with a LASSO
penalty will give us the following objective function:

V LASSO(F ,λ; X ,ψT ) = (nT )−1

[
n∑

i=1

T∑
t=1

(xi t −λi Ft )2 +ψT

n∑
i=1

∣∣λi
∣∣] (5)
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Note that the function is written in terms of F and λ to make it explicit that we are
only estimating a single factor. Furthermore, the objective function now also depends
on the LASSO tuning parameter ψT .

One of the appealing features that this estimation method has, is that just as in
the PC case the estimated factor will be a linear combinations of the X -variables:

F̂ LASSO
1 = X λ̂LASSO

1 /n (6)

However, the crucial difference is that the loadings will now be sparse, in the sense
that some of the entries of λ̂LASSO

1 will be zero. Hence, the factor may depend only on
a subset of the X -variables.

Commonly, we are of course interested in more than one factor. Subsequent fac-
tors can be estimated in a sequential approach as detailed in the following definition:

Definition 1. Sparse PC Factor Estimator: The SPC estimates of the first factor and
associated loadings are defined as:

(F̂ 1, λ̂1) = argmin
F ,λ

V LASSO(F ,λ; X ,ψT ) s.t. λ′λ/n = 1

Let the residuals from the estimation of the kth factor be defined as ek , then for k > 1
the subsequent estimates are given as:

(F̂ k , λ̂k ) = argmin
F ,λ

V LASSO(F ,λ;ek−1,ψT ) s.t. λ′λ/n = 1

Hence the SPC factor estimates of r factors and associated loadings are given as F̂ =
(F̂ 1, . . . , F̂ r ) and Λ̂= (λ̂1, . . . , λ̂r ).

The sparsity of the estimator, unfortunately, comes at a cost. One of key features
of the PC estimator is lost, orthogonality of the loadings, and hence relation (6) only
holds for the first factor. Subsequent factors will also have an additive term relating
to previous factors. Note, however, that this is a finite sample feature. Asymptotically
the loadings will still be orthogonal as we shall see below.

In practice the estimation of the model is computationally more involved than
the usual PC estimation. However, Shen and Huang (2008) provide a simple and fast
estimation method for minimizing (5) presented in Algorithm 1 below.

Algorithm 1. Sparse PCA via regularized SVD (Shen and Huang, 2008, Alg. 1).

Apply SVD to obtain the a rank 1 approximation of the data X = usv ′. Set λ(0) = sv
and F (0) = u, hence the latter is the first PC normalized to have length one, and the
former is the (non-normalized) loadings. Then step i of the algorithm is given as:

1. Compute penalized loadings: λ(i ) = sgn
(
X ′F (i−1)

)
max

(∣∣X ′F (i−1)
∣∣−ψT ,0

)
.

2. Compute normalized factor: F (i ) = Xλ(i )/
∥∥Xλ(i )

∥∥
2.

3. Check for convergence.

When convergence is achieved after k iterations, normalize the factor and loadings to
get the final estimates: λ=λ(k)/

∥∥λ(k)
∥∥

2, and F = F (k)
∥∥λ(k)

∥∥
2.
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The algorithm is based on a simple alternating strategy which is often encoun-
tered in bilinear models. In the PC literature, for example, an analog is the NIPALS
algorithm (Esbensen, Geladi, and Wold, 1987), and a similar approach is also used in
robust factor model estimation, see e.g. Croux and Exterkate (2011) and Kristensen
(2013). The basic idea is that for a given F orΛ the problem reduces to a number of
linear regressions. In our case with the LASSO penalty we see in step 1 that for a given
Λ, F is estimated by the standard LASSO, and in fact in this simple case with only a
single regressor the solution has a closed form (Tibshirani, 1996). Now, for a given
Λ there is no penalty term, and F is obtained by standard regression. This is step 2.
Note, however, as discussed above we need to impose restrictions to identify the pa-
rameters. This is usually done by restricting the length ofΛ. However, because we use
the LASSO to estimateΛ this is not easily done and the algorithm therefore restricts
the length of F instead. This of course has no implications for the final estimates as
long as we remember to rescale them.

In the next section we show that this approach yields consistent estimates of the
factors. However, in spite of this one could still be worried that the penalty will induce
a bias in the factors which could affect the performance of the estimator in finite
samples. A typical solution to this problem is to only use the LASSO as a variable
selection device and rerun the estimation with only the selected variables. Such an
approach is often referred to as Post-LASSO, see e.g. Belloni and Chernozhukov (2013).
In our case this can easily be accomplished by modifying the first step of Algorithm 1.
Here instead of running a LASSO regression to obtain the loadings we run an OLS
regression but only for the variables which have been selected, the rest are set equal to
zero. This approach is summarized in Algorithm 2 and will be referred to as Post-SPC
when used in the context of Definition 1. In the simulations and empirical application
below we will include it to assess the severity of the bias introduced by the penalty.

Algorithm 2. Post-SPC. Let F̂ and λ̂ be the estimates from Algorithm 1, and let X j be
the j th column of X . Then step i of the algorithm is given as:

1. Compute loadings: λ(i )
j =


(
F (i−1)′F (i−1)

)−1
F (i−1)′X j if λ̂ j 6= 0

0 if λ̂ j = 0
for j=1,. . . ,n

2. Compute normalized factor: F (i ) = Xλ(i )/
∥∥Xλ(i )

∥∥
2.

3. Check for convergence.

When convergence is achieved after k iterations, normalize the factor and loadings to
get the final estimates: λ=λ(k)/

∥∥λ(k)
∥∥

2, and F = F (k)
∥∥λ(k)

∥∥
2.

3. Asymptotic properties

For the asymptotic analysis of the SPC estimator we adopt the asymptotic frame-
work of Stock and Watson (2002a) and hence Assumptions 1 and 2 below are identical
to their Assumptions F1 and M1. In addition to this we need to make assumptions
regarding the LASSO penalty, these are stated in Assumption 3.

Assumption 1. Factors and factor loadings

a. Λ′Λ/n → Ir .
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b. E
[
Ft F ′

t

]=ΣF F , where ΣF F is a diagonal matrix with elements σi i >σ j j > 0 for
i < j .

c.
∣∣λi , j

∣∣≤ λ̄<∞ for 1 ≤ i ≤ n, 1 ≤ j ≤ r .

d. T −1 ∑T
t=1 Ft F ′

t
p−→ΣF F .

Assumption 2. Moments of the errors

a. E
[
e ′t et+u/n

]= γn,t (u), and limn→∞ supt
∑∞

u=−∞
∣∣γn,t (u)

∣∣<∞.

b. E
[
ei t e j t

]= τi j ,t , limn→∞ supt n−1 ∑n
i=1

∑n
j=1

∣∣τi j ,t
∣∣<∞.

c. limn→∞ supt ,s n−1 ∑n
i=1

∑n
j=1

∣∣cov(ei s ei t ,e j s e j t )
∣∣<∞.

Assumption 3. LASSO penalty

a. T −1ψT → 0.

Notice that we make no explicit assumptions on the sparsity of the loadings. We
only require that they conform to Assumption 1a which is a standard assumption
for the PC estimator. However, by choosing SPC over PC we implicitly assume that
the loadings are sparse or at least that a sparse representation is more suitable for
the application at hand, e.g. in a bias/variance trade-off sense. We will show that the
penalty introduced in the SPC estimator does not interfere with the asymptotics and
that the estimator is therefore still consistent. Hence, the sparsity imposed by the
SPC estimator can be seen as a finite sample correction. In order to do so we need
only restrict the speed at which the penalty may tend to infinity (Assumption 3). This
is similar to the standard results on the LASSO estimator in e.g. Knight and Fu (2000).

Under this set of assumptions we can show that the SPC factor estimator will be
consistent as summarized in the following theorem:

Theorem 1. Let Si denote a variable with values of ±1, let n,T →∞, and suppose that
assumptions 1–3 hold. Then Si can be chosen such that

a. Si F̂i t
p−→ Fi t for i = 1,2, . . . ,r .

b. T −1 ∑T
t=1 F̂ 2

i t

p−→ 0 for i = r +1, . . . ,k.

The intuition behind the results is quite simple. Since the LASSO penalty is o(T )
the penalty term will disappear asymptotically. Hence the proof, which is given in the
appendix, shows that the penalized objective function for a single factor converges
uniformly to the asymptotic objective function considered in Stock and Watson
(2002a). Extending the results to all r factors is then done using a sequential argument
where the established consistency of the previous factors is used.

3.1. Forecasting and determining the number of factors

Before the estimated factors can be used in the forecasting equation we need to
be able to determine the number of factors r . A number of methods for doing this
have been proposed for the PC factor estimator, with the ICp information criteria of
Bai and Ng (2002) being the most commonly used. Alternatively BIC is also often used
in spite of it not being consistent (Stock and Watson, 1998). It has, however, shown
to give good results empirically. Due to the existence of methods to determine r the
results on the forecasting equation in Stock and Watson (2002a) take r to be known.
We start by stating a set of assumptions about the forecasting equation:
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Assumption 4. Forecasting equation. Let zt = (F ′
t , w ′

t )′ and β= (β′
F ,β′

w )′ then:

a. E
[
zt z ′

t

]=Σzz =
[
ΣF F ΣF w

ΣwF Σw w

]
is positive definite.

b. T −1 ∑
t zt z ′

t
p−→Σzz .

c. T −1 ∑
t ztεt+h

p−→ 0.

d. T −1 ∑
t ε

2
t+h

p−→σ2.

e. |βi | <∞ for 1 ≤ i ≤ r +q.

Assumption 4 corresponds to Assumption Y1 in Stock and Watson (2002a), and
as they argue items a–c are standard conditions that imply consistency of the OLS
estimator. The added assumptions are needed because the factors are not observed.
Based on this set of assumptions we can now restate Theorem 2 of Stock and Watson
(2002a) which also holds for the SPC factor estimator by the results of Theorem 1.

Theorem 2 (Stock and Watson (2002a, Thm. 2)). Let Si denote a variable with values
of ±1, let n,T →∞, and suppose that assumptions 1–4 hold. Then Si can be chosen
such that

a. (β̂′
F F̂T + β̂w wT )− (β′

F FT +βw wT )
p−→ 0.

b. β̂w −βw
p−→ 0 and Si β̂i F −βi F

p−→ 0 for i = 1, . . . ,r .

There is, however, a caveat associated with this result. Since we have not verified
that any of the existing methods for determining r also apply to the SPC estimator
it is problematic to assume r known. The results in Stock and Watson (2002a) do
not immediately extend to the case where r is unknown. One reason for this is
that in the case where one estimates more than r factors the OLS estimator will be
(asymptotically) infeasible due to singularities. A common solution to the problem
of a singular design is to replace OLS by e.g. ridge regression. We therefore propose
determining the set of relevant factors using ridge regression prior to estimating the
forecasting equation. We thereby view the problem of determining r as a variable
selection problem as detailed in the following definition:

Definition 2. Thresholded ridge regression. The method consists of the following three
steps:

1. Run ridge regression:

β̂RR = argmin
β

T−h∑
t=1

(
yt+h −

k∑
i=1

βi F̂i t
)2 +κT

k∑
i=1

β2
i

2. Select factors for which
∣∣β̂RR

i

∣∣>βthr.

3. Make forecasts based on OLS estimates obtained from the forecasting equation
including only selected factors:

yt+h = ∑
{i : |β̂RR

i |>βthr}

βF i F̂i t +β′
w wt +εt+h (7)
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In order to show that this method yields consistent results we will make the
following set of assumptions:

Assumption 5. Thresholded ridge regression

a. ΣF w = 0.

b. T −1κT → κ where 0 < κ<∞.

c. 0 <βthr < min{i :βF i 6=0}((σi i +κ)−1σi i |βF i |.
The first item of the assumption is clearly the most debatable, we need to have

that (asymptotically) there is no covariation between the factors and the other ob-
servable variables. This might not always be the case. The second item requires the
penalty parameter to converge to a positive finite number. This ensures that the
problem is well-defined asymptotically. The estimator will of course be inconsistent,
however, since we only want to select factors this is not a problem. Finally the last
item requires us to have knowledge of a lower bound of the relevant parameters. In
practice, however, we simply set this threshold to a low value. As we shall see later
using a fraction of the smallest OLS estimate as the threshold appears to yield good
results. Based on these assumptions we can state the following theorem:

Theorem 3. Let Si denote a variable with values of ±1, let n,T →∞, and suppose that
assumptions 1–5 hold. Then Si can be chosen such that

a. Si β̂F i
p−→βF i for i ≤ r .

b. P (β̂F i = 0) → 1 for i > r .

c. β̂w
p−→βw .

Hence, just as it was the case in Theorem 2 we achieve consistency of the co-
efficients associated with the factors and the other observable variables. However,
the crucial difference is that with probability tending to one we will only include
the true factors, i.e. the coefficients associated with the superfluous factors will be
exactly equal to zero. Another diffence is the implicit assumption often made that the
variable being forecast is related to all r factors. In the way Assumption 5 is defined
this need not be the case for Theorem 3 to hold. Finally, we should note that Theorem
3 holds for both the PC and SPC factor estimators.

4. Monte Carlo evidence

For our Monte Carlo analysis we will use a simplified version of the setup consid-
ered in Stock and Watson (2002a) The data-generating process will be:

xi t =λi Ft +ei t

(1−aL)ei t = (1+b2)vi t +bvi+1,t +bvi−1,t

Hence, we include the possibility that the error term ei t is correlated i.e. it will be
serially correlated with an AR(1) coefficient of a and cross-series correlated with a
(spatial) MA(1) coefficient b. The error is driven by the random variable vi t which
will be standard normal. Finally, both the factors Ft and loadings λi will be generated
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as independent standard normal variables. We will impose sparsity on the generated
loadings by setting a fraction τ of them equal to zero. For the SPC estimator we need to
select the LASSO tuning-parameter ψT . This will be done using a BIC-type criterion:

ψT = argmin
ψT

log
(
nT −1

n∑
i=1

T∑
t=1

[
xi t − λ̂i (ψT )′F̂t (ψT )

]2
)
+m

log(nT )

nT

where λ̂i (ψT ) and F̂t (ψT ) are the SPC estimates for a given ψT , and m is the number
of non-zero entries in Λ̂. In the following we determine ψT by a simple grid-search.
Three different goals will be considered when judging the performance of the es-
timators; i) ability to correctly estimate the number of factors, ii) precision of the
estimated factors, iii) ability to correctly estimate the loadings as being sparse.

In order to determine the number of factors we will employ three different meth-
ods, namely the ICp information criteria of Bai and Ng (2002), the BIC as used in
Stock and Watson (2002b), and the thresholded ridge regression proposed above (RR).
As the latter two are defined in terms of the forecasting relationship we need to have
a variable to forecast, hence we also generate a uni-variate time series to which these
methods are applied:

yt+1 = ι′Ft +εt+1

where ι is a vector of ones and εt+1 is an independent standard normal error term. For
the RR method we must select the penalty parameter and the parameter threshold.
Let β̂OLS be the OLS estimates of the forecasting relationship, i.e. an unpenalized
version of the RR regression, then we set: βthr = 0.5mini

∣∣β̂OLS
i

∣∣. We further select κT

by applying BIC to the forecasting equation only including the selected factors, i.e.
equation (7) in Definition 2.

Assessing the precision of the factor estimates is done, as is common in the litera-
ture, by computing the trace R2 of a multivariate regression of the factor estimates on
the true factors

R2 = tr
[
F ′F̂ (F̂ ′F̂ )−1F̂ ′F

]
/tr

[
F ′F

]
and averaging this across Monte Carlo replications. Hence we obtain a statistic that
measure how well the estimated factors span the space of the true factors, with values
close to 1 being the desired goal.

In Table 1 we give results for three scenarios with a moderate number of zero-
entries in the loadings matrix, i.e. τ= 0.4. The first scenario is the very simple case
of only a single factor and i.i.d. error terms. In terms of determining the number of
factors all three ICp criteria do very well. IC3 often has a tendency to overestimate the
number of factors, however, this is only seen for the smallest sample size in the PC
case. Both the BIC and RR overestimate the number of factors slightly. These results
translate directly into the precision of the factors. However, at the largest sample
size all methods for determining the number of factors perform comparably and
the estimated factors are very close to the true ones and on par with the benchmark
case where the number of factors are taken to be known, i.e. k = r . In Table 2 the
sparsity of the loadings for the SPC estimator is illustrated. We see that the estimator
has a tendency to set too many loadings equal to zero. The best case is for n = 50,
T = 200 where the fraction is 0.43. As n increases from this point keeping T fixed we
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Table 1. Simulation results for three different scenarios where τ= 0.4. Estimated number of
factors and precision of the estimates.

Data-generating process Estimated number of factors Factor R2 for various choices of k

Est. n T r a b τ IC1 IC2 IC3 BIC RR IC1 IC2 IC3 BIC RR k = r

PC 25 50 1 0 0 0.4 1.00 1.00 1.30 1.12 1.47 0.91 0.91 0.91 0.91 0.91 0.91
PC 25 100 1 0 0 0.4 1.00 1.00 1.00 1.06 1.31 0.92 0.92 0.92 0.92 0.92 0.92
PC 50 100 1 0 0 0.4 1.00 1.00 1.00 1.06 1.30 0.96 0.96 0.96 0.96 0.96 0.96
PC 50 200 1 0 0 0.4 1.00 1.00 1.00 1.03 1.16 0.96 0.96 0.96 0.96 0.96 0.96
PC 100 200 1 0 0 0.4 1.00 1.00 1.00 1.03 1.17 0.98 0.98 0.98 0.98 0.98 0.98
PC 150 200 1 0 0 0.4 1.00 1.00 1.00 1.03 1.19 0.98 0.98 0.98 0.98 0.98 0.98

SPC 25 50 1 0 0 0.4 1.00 1.00 1.00 1.12 1.41 0.90 0.90 0.90 0.90 0.91 0.90
SPC 25 100 1 0 0 0.4 1.00 1.00 1.00 1.06 1.25 0.92 0.92 0.92 0.92 0.92 0.92
SPC 50 100 1 0 0 0.4 1.00 1.00 1.00 1.06 1.22 0.96 0.96 0.96 0.96 0.96 0.96
SPC 50 200 1 0 0 0.4 1.00 1.00 1.00 1.03 1.17 0.96 0.96 0.96 0.96 0.96 0.96
SPC 100 200 1 0 0 0.4 1.00 1.00 1.00 1.01 1.16 0.98 0.98 0.98 0.98 0.98 0.98
SPC 150 200 1 0 0 0.4 1.00 1.00 1.00 1.03 1.15 0.98 0.98 0.98 0.98 0.98 0.98

Post-SPC 25 50 1 0 0 0.4 1.00 1.00 1.00 1.11 1.41 0.91 0.91 0.91 0.91 0.91 0.91
Post-SPC 25 100 1 0 0 0.4 1.00 1.00 1.00 1.07 1.28 0.92 0.92 0.92 0.92 0.92 0.92
Post-SPC 50 100 1 0 0 0.4 1.00 1.00 1.00 1.06 1.25 0.96 0.96 0.96 0.96 0.96 0.96
Post-SPC 50 200 1 0 0 0.4 1.00 1.00 1.00 1.03 1.16 0.96 0.96 0.96 0.96 0.96 0.96
Post-SPC 100 200 1 0 0 0.4 1.00 1.00 1.00 1.02 1.16 0.98 0.98 0.98 0.98 0.98 0.98
Post-SPC 150 200 1 0 0 0.4 1.00 1.00 1.00 1.03 1.17 0.98 0.98 0.98 0.98 0.98 0.98

PC 25 50 4 0 0 0.4 3.99 3.98 6.44 3.81 3.49 0.91 0.90 0.91 0.85 0.74 0.91
PC 25 100 4 0 0 0.4 4.00 4.00 4.00 3.87 3.58 0.91 0.91 0.91 0.87 0.78 0.91
PC 50 100 4 0 0 0.4 4.00 4.00 4.00 3.85 3.57 0.95 0.95 0.95 0.92 0.82 0.95
PC 50 200 4 0 0 0.4 4.00 4.00 4.00 3.89 3.68 0.96 0.96 0.96 0.93 0.86 0.96
PC 100 200 4 0 0 0.4 4.00 4.00 4.00 3.92 3.71 0.98 0.98 0.98 0.95 0.88 0.98
PC 150 200 4 0 0 0.4 4.00 4.00 4.00 3.91 3.68 0.98 0.98 0.98 0.96 0.88 0.98

SPC 25 50 4 0 0 0.4 3.93 3.86 3.99 3.85 3.60 0.89 0.88 0.90 0.85 0.76 0.90
SPC 25 100 4 0 0 0.4 3.99 3.99 4.00 3.90 3.63 0.91 0.91 0.91 0.88 0.80 0.91
SPC 50 100 4 0 0 0.4 4.00 4.00 4.00 3.89 3.64 0.95 0.95 0.95 0.92 0.84 0.95
SPC 50 200 4 0 0 0.4 4.00 4.00 4.00 3.90 3.68 0.96 0.96 0.96 0.93 0.87 0.96
SPC 100 200 4 0 0 0.4 4.00 4.00 4.00 3.94 3.76 0.98 0.98 0.98 0.96 0.90 0.98
SPC 150 200 4 0 0 0.4 4.00 4.00 4.00 3.94 3.75 0.98 0.98 0.98 0.96 0.90 0.98

Post-SPC 25 50 4 0 0 0.4 3.95 3.90 4.01 3.83 3.55 0.90 0.89 0.90 0.85 0.76 0.90
Post-SPC 25 100 4 0 0 0.4 3.99 3.99 4.00 3.88 3.60 0.91 0.91 0.91 0.88 0.79 0.91
Post-SPC 50 100 4 0 0 0.4 4.00 4.00 4.00 3.86 3.61 0.95 0.95 0.95 0.92 0.83 0.95
Post-SPC 50 200 4 0 0 0.4 4.00 4.00 4.00 3.89 3.66 0.96 0.96 0.96 0.93 0.86 0.96
Post-SPC 100 200 4 0 0 0.4 4.00 4.00 4.00 3.92 3.73 0.98 0.98 0.98 0.95 0.89 0.98
Post-SPC 150 200 4 0 0 0.4 4.00 4.00 4.00 3.92 3.71 0.98 0.98 0.98 0.96 0.89 0.98

PC 25 50 4 0.5 1 0.4 8.00 7.30 8.00 4.17 3.58 0.60 0.56 0.60 0.39 0.33 0.39
PC 25 100 4 0.5 1 0.4 8.00 7.96 8.00 4.95 4.01 0.53 0.52 0.53 0.40 0.33 0.36
PC 50 100 4 0.5 1 0.4 6.09 2.19 8.00 5.45 4.50 0.59 0.36 0.67 0.58 0.47 0.52
PC 50 200 4 0.5 1 0.4 4.38 2.75 8.00 5.85 4.86 0.55 0.45 0.66 0.61 0.52 0.56
PC 100 200 4 0.5 1 0.4 3.99 3.63 8.00 5.01 4.66 0.78 0.74 0.83 0.78 0.71 0.79
PC 150 200 4 0.5 1 0.4 4.01 3.93 8.00 4.53 4.36 0.87 0.86 0.88 0.84 0.77 0.87

SPC 25 50 4 0.5 1 0.4 2.69 1.41 7.31 3.71 3.24 0.27 0.18 0.53 0.36 0.32 0.38
SPC 25 100 4 0.5 1 0.4 5.51 3.40 7.89 4.59 3.74 0.40 0.29 0.50 0.38 0.32 0.35
SPC 50 100 4 0.5 1 0.4 1.50 1.15 4.72 4.85 4.11 0.28 0.22 0.52 0.53 0.46 0.50
SPC 50 200 4 0.5 1 0.4 2.20 1.77 4.60 5.30 4.61 0.39 0.33 0.56 0.59 0.52 0.55
SPC 100 200 4 0.5 1 0.4 3.11 2.50 4.11 4.58 4.47 0.66 0.55 0.79 0.78 0.74 0.79
SPC 150 200 4 0.5 1 0.4 3.66 3.13 4.11 4.23 4.32 0.81 0.71 0.87 0.86 0.82 0.87

Post-SPC 25 50 4 0.5 1 0.4 3.56 1.82 7.37 3.73 3.29 0.33 0.21 0.54 0.36 0.32 0.38
Post-SPC 25 100 4 0.5 1 0.4 6.16 4.35 7.83 4.73 3.84 0.44 0.34 0.51 0.39 0.33 0.36
Post-SPC 50 100 4 0.5 1 0.4 1.92 1.32 5.92 4.95 4.18 0.33 0.25 0.57 0.54 0.46 0.51
Post-SPC 50 200 4 0.5 1 0.4 2.68 2.09 5.81 5.53 4.72 0.44 0.38 0.60 0.60 0.52 0.56
Post-SPC 100 200 4 0.5 1 0.4 3.52 3.04 4.67 4.63 4.50 0.73 0.64 0.80 0.78 0.74 0.79
Post-SPC 150 200 4 0.5 1 0.4 3.88 3.59 4.59 4.27 4.33 0.85 0.80 0.87 0.85 0.82 0.87

Note: The results are based on 1,000 Monte Carlo replications.
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Table 2. Simulation results for three different scenarios where τ= 0.4. Sparsity of the loadings
for the SPC estimator.

Data-generating process Fraction of zero-entries

n T r a b τ ψT λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6 λ̂7 λ̂8

25 50 1 0 0 0.4 1.67 0.49 0.83 0.86 0.88 0.88 0.89 0.90 0.91
25 100 1 0 0 0.4 1.62 0.44 0.82 0.84 0.86 0.87 0.88 0.88 0.89
50 100 1 0 0 0.4 1.86 0.47 0.89 0.90 0.91 0.91 0.92 0.92 0.93
50 200 1 0 0 0.4 1.74 0.43 0.86 0.87 0.88 0.89 0.90 0.90 0.91

100 200 1 0 0 0.4 1.99 0.45 0.91 0.92 0.93 0.93 0.93 0.94 0.94
150 200 1 0 0 0.4 2.12 0.46 0.94 0.94 0.95 0.95 0.95 0.95 0.95

25 50 4 0 0 0.4 1.72 0.33 0.37 0.41 0.47 0.82 0.85 0.87 0.87
25 100 4 0 0 0.4 1.48 0.24 0.25 0.28 0.31 0.77 0.80 0.81 0.82
50 100 4 0 0 0.4 1.77 0.27 0.29 0.31 0.33 0.86 0.88 0.89 0.90
50 200 4 0 0 0.4 1.61 0.20 0.21 0.22 0.23 0.82 0.84 0.85 0.86

100 200 4 0 0 0.4 1.83 0.23 0.23 0.24 0.24 0.88 0.90 0.90 0.91
150 200 4 0 0 0.4 1.96 0.24 0.24 0.25 0.26 0.91 0.92 0.92 0.93

25 50 4 0.5 1 0.4 4.68 0.54 0.61 0.67 0.71 0.73 0.76 0.78 0.81
25 100 4 0.5 1 0.4 4.18 0.43 0.49 0.53 0.57 0.60 0.62 0.64 0.66
50 100 4 0.5 1 0.4 5.79 0.57 0.62 0.67 0.72 0.76 0.78 0.80 0.82
50 200 4 0.5 1 0.4 5.10 0.43 0.46 0.51 0.57 0.63 0.67 0.69 0.71

100 200 4 0.5 1 0.4 6.42 0.52 0.55 0.57 0.61 0.78 0.81 0.83 0.84
150 200 4 0.5 1 0.4 7.04 0.56 0.59 0.61 0.63 0.84 0.86 0.87 0.88

Note: The results are based on 1,000 Monte Carlo replications.

moved away from the true value of τ= 0.4, hence it could appear that T needs to be
large compared to n for this method to perform well. The estimated loadings of the
superfluous factors generally have a very large fraction of zero-entries.

In the second scenario we increase the number of factors to 4. Now, BIC and RR
tend to underestimate the number of factors. Further, it again appear that the size
of T relative to n is crucial, e.g. moving from n = 100, T = 200 to n = 150, T = 200
the performance of BIC and RR declines. The SPC estimator now tends to set too
few loadings equal to zero. However, there is still a clear distinction between the true
factors and the superfluous factors in terms of the fraction of zero-entries. In the
third scenario we introduce correlation in the error terms. This clearly makes the
model more difficult to estimate. Note, however, that part of this is most likely due to
the fact that the unconditional variance of the error term is larger compared to the
two previous scenarios and hence the signal-to-noise ratio is lower. One interesting
observation in this scenario is that IC3 completely breaks down for the PC estimator
but does very well for the SPC estimator. BIC and RR tend to overestimate the number
of factors for large samples. However, especially for small samples they appear to give
more reliable results than the ICp criteria. For the SPC estimator we again see that
there is a tendency to set too many loadings equal to zero.

When comparing the use of SPC and Post-SPC there seems to be little difference.
Especially for the precision of the factor estimates we only see minute improvements
for the smallest sample size. Hence, it does not appear that SPC introduces any
noteworthy bias in the factors, a somewhat surprising result. It could, however, still
be that the loadings are biased and thus that the use of Post-SPC could correct this.
As the loadings are not of direct interest to us, we have, however, not investigated this
possibility.

Tables A.3 and A.1 in the appendix provides a similar set of results for the case
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of τ = 0.8. One of the most striking results is in the last scenario. Here the three
ICp criteria break down completely for both PC and SPC, whereas both BIC and RR
perform quite well with the latter having a slight edge. One could perhaps also argue
that SPC does a slightly better job of estimating the fraction of zero-entries compared
to Table 1. However, we do still see both cases of under- and overestimation. For
reference we have also considered the case of τ= 0 to see how much is lost by using
SPC when the true model is not sparse. These results are reported in Tables A.4 and
A.2 in the appendix. In general PC is preferred when the true model is not sparse.
However, the SPC estimator is not lagging far behind, and in fact we see in the case of
correlated error terms that the ICp criteria become more reliable when using the SPC
estimator. This is likely due to the fact that loadings of superfluous factors are heavily
penalized and hence the information criteria are less inclined to include them.

In general it appears that we can capture the sparsity of the models using the SPC
estimator to some degree. However, it is not clear that we necessarily approach the
true fraction of zero-entries as the sample size increases, and hence it could appear
that our methodology has some outstanding issues. On possible culprit could be the
BIC-type information criterion we use to select ψT . Another, possible problem is that
we use the same ψT for all factors. One could imagine using different penalties for
each factor. However, since we select ψT by a grid search the computational burden
would quickly increase and we have therefore not pursued this possibility. Clearly,
determining ψT is an area with much potential for future research.

Regarding the number of factors, it does appear that the thresholded ridge re-
gression does have acceptable performance. In the simple cases the ICp criteria are
always preferred, but it could appear that RR could have merits in more complex
cases. And even if we do not believe the model is sparse the combination of SPC and
ICp could be a more robust method of selecting the number of factors as seen in the
case of τ= 0. The RR method does, however, have an additional feature we have not
considered in these simulation results, namely that it does not necessarily select con-
secutive factors. Hence if the variable being forecast is only related to say, the first and
third factors it could potentially pick this up whereas the other methods would also
include the second factor. We would therefore expect RR to perform comparatively
better if this were the case.

5. Forecasting

To illustrate the merits of the SPC estimator we will perform a simulated real-time
out-of-sample forecast experiment as in Stock and Watson (2002b). Note, however,
that it is not true real-time forecasting as the dataset only contains the final vintages
of the variables. The dataset used is from Ludvigson and Ng (2010) and consists of
131 monthly US macroeconomic variables spanning the period 1964:1 to 2007:12,
and is an updated version of the dataset used in Stock and Watson (2005).

We will forecast variables similar to Stock and Watson (2002b): the consumer
price index, all items (punew); the personal consumption expenditure implicit price
deflator (gmdc); the consumer price index less food (puxf); and the producer price
index for finished goods (pwfsa). Total industrial production (ips10); real personal
income (ypr); real manufacturing and trade sales (mtq); and number of employees
on nonagricultural payrolls (ces002).
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For the estimation of the factors the entire dataset is used after being transformed
to stationarity and standardized. The forecasts will be obtained as direct forecasts by
fitting the forecasting equation

yh
t+h =αh +β′

h F̂t +
p∑

j=1
θh, j yt− j+1 +εt+h (8)

where yh
t+h is defined appropriately according to the assumed integration order of the

underlying variable, see Stock and Watson (2002b) for details. In this common form
we need to specify the number of factors, k, and the AR lag length, p. In the results
presented here we select p using BIC with a maximum value of 6, and determine k
either by BIC, RR, or the ICp criterion of Bai and Ng (2002), or we simply fix it. The
maximum number of factors is set to 8. All forecasting results will be reported as
mean squared forecast errors (MSFE) relative to the MSFE of an AR(p) forecast where
p is again selected using BIC with a maximum value of 6.

A natural alternative to the SPC approach would be to use the LASSO directly in
the forecasting equation to select which X -variables should be used for forecasting.
Hence in the results we also include this approach, i.e. we estimate

yh
t+h =αh +β′

h X t +
p∑

j=1
θh, j yt− j+1 +εt+h

using the LASSO where only βh is penalized and the tuning parameter is selected
using BIC. This will be denoted “LASSO” in the results.1 Note that in the one factor
case this can be seen as an unrestricted version of the SPC approach. Recall that if
we estimate a single factor using SPC it will be given as F̂ LASSO

1,t = λ̂LASSO
1

′X t /n. Hence

in (8) we have β′
h F̂t =β′

hλ̂
LASSO
1

′X t /n ≡ β̃′
h X t where β̃h =β′

hλ̂
LASSO
1 /n. Sparsity of the

loadings will then imply sparsity of β̃h .
Before turning to the actual forecasting results we start by a visual inspection of

the consequences for the estimated factors (and loadings) when the LASSO penalty
is present. In Figures 1 and 2 the first two estimated factors and associated loadings
based on the entire dataset are plotted. In the first plot we see that the estimated
factor looks quite similar in all three cases. This is interesting because in the SPC
cases roughly 40% of the variables are deemed irrelevant. Hence in appears that
the SPC estimator produces a comparable but more parsimonious estimate of the
factor. In the second plot we see that for the second factor the effect of the penalty is
larger leaving only 37% non-zero entries in the loadings. The plot of the estimated
factor also differs more now. Similar plots are provided for the remaining six factors
in Figures A.1–A.6 in the appendix.

The forecasting results are presented in Table 3 for the 12-month horizon and
in Table 4 for the 6- and 24-month horizons. In a majority of cases either SPC or
Post-SPC outperforms PC and only in a single case is the AR model preferred. Even
though the performance is quite close in many cases, there are, however, cases where
the difference is substantial. For example in the case of industrial production at the
six month horizon the best PC forecast has a relative MSFE of 0.9468, whereas it is

1The estimation is carried out using the glmnet package of Friedman, Hastie, and Tibshirani (2010).
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Figure 1. Estimates of the first factor and associated loadings
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Figure 2. Estimates of the second factor and associated loadings
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Table 3. Forecasting results for the 12-month horizon.

Est. k h IP PI M&TS Emp. CPI C.defl. CPI exc. PPI

PC 8 12 0.8686 0.9700 0.8296 0.8353 0.7103 0.8554 0.7949 0.9526
PC BIC 12 0.8826 1.0004 0.8369 0.8255 0.6961 0.8591 0.7921 0.9359
PC IC1 12 0.8634 0.9793 0.8309 0.8397 0.7070 0.8564 0.7916 0.9494
PC IC2 12 0.8998 1.0009 0.8471 0.8538 0.7008 0.8419 0.7745 0.9420
PC IC3 12 0.8686 0.9700 0.8296 0.8353 0.7103 0.8554 0.7949 0.9526
PC RR 12 0.8886 0.9752 0.8265 0.8371 0.7211 0.8792 0.8093 0.9686

SPC 8 12 0.8889 0.9919 0.8099 0.8583 0.7379 0.8954 0.8178 0.9804
SPC BIC 12 0.8406 0.9436 0.7701 0.8386 0.7124 0.8403 0.7918 0.9454
SPC IC1 12 0.8537 0.9683 0.7961 0.8292 0.7229 0.8532 0.7706 0.9283
SPC IC2 12 0.8749 0.9544 0.8178 0.8633 0.7690 0.9200 0.7887 0.9764
SPC IC3 12 0.8817 0.9888 0.8174 0.8541 0.7358 0.8836 0.8102 0.9629
SPC RR 12 0.8631 0.9650 0.8042 0.8456 0.7015 0.8497 0.7483 0.9066

Post-SPC 8 12 0.8649 0.9822 0.7922 0.8444 0.7301 0.8889 0.8211 0.9771
Post-SPC BIC 12 0.8582 0.9688 0.7850 0.8335 0.6958 0.8452 0.8051 0.9549
Post-SPC IC1 12 0.8378 0.9653 0.7939 0.8257 0.7068 0.8532 0.7638 0.9412
Post-SPC IC2 12 0.8605 0.9493 0.8123 0.8305 0.7296 0.8603 0.7790 0.9638
Post-SPC IC3 12 0.8348 0.9570 0.8059 0.8590 0.7095 0.8536 0.7894 0.9578
Post-SPC RR 12 0.8560 0.9845 0.8009 0.8363 0.7034 0.8260 0.7670 0.9261

LASSO 12 1.1426 1.0334 0.8586 0.8928 0.7071 0.7826 0.7131 0.9549

RMSFE(AR) 12 0.0364 0.0231 0.0334 0.0141 0.0015 0.0011 0.0018 0.0026

Notes: The results are reported as MSFEs relative to AR(p) forecasts with 0 ≤ 0 ≤ 6 choosen by BIC. Bold indicates lowest
value in a column, underlined indicates lowest value in a block, i.e. between to horizontal lines. All models include p AR
lags where p is chosen by BIC. The last row gives the RMSFE is the benchmark AR model.

0.8329 for the best SPC model. Interestingly, the simple LASSO model does quite
well in a number of cases and it is not clear whether LASSO or SPC would be the
preferred approach, it all comes down to which variable is being forecast. It is also
not clear whether SPC or Post-SPC should be preferred. The performance of the two
approaches is very close and it appears quite arbitrary which has the lowest MSFE.
This is in line with the Monte Carlo results where their performance was practically
identical. As to the problem of determining the number of factors, there is no clear
answer to which method to use. But we do see that the RR approach does perform
well in a number of cases. This might indicate that for some variables it is beneficial
to not include all r factors but only a subset of these.

6. Concluding remarks

In this paper we have investigated the possibility of using sparse principal compo-
nents to estimate diffusion indexes or factors with sparse loadings. We showed that
consistency of the factors, in the sense of Stock and Watson (2002a), was maintained,
and proposed a simple alternative to existing methods for determining the number
of factors. The methodology still has its shortcomings, and especially the problem
of selecting the penalty parameter is an area the requires more research. However,
based on both the simulation study and forecasting experiment we are confident that
it will prove an important alternative to traditional PC factor estimation in the area of
macroeconomic forecasting.
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Table 4. Forecasting results for the 6- and 24-month horizons.

Est. k h IP PI M&TS Emp. CPI C.defl. CPI exc. PPI

PC 8 6 0.9468 0.8508 0.8988 0.7788 0.8323 0.9769 0.8653 1.0500
PC BIC 6 0.9948 0.8772 0.9432 0.7859 0.8351 0.9721 0.8339 0.9986
PC IC1 6 0.9468 0.8632 0.9096 0.7721 0.8370 0.9795 0.8679 1.0536
PC IC2 6 0.9594 0.8810 0.8859 0.7530 0.8172 0.9583 0.8486 1.0364
PC IC3 6 0.9468 0.8508 0.8988 0.7788 0.8323 0.9769 0.8653 1.0500
PC RR 6 0.9668 0.8763 0.9251 0.7535 0.8743 0.9219 0.8384 1.0262

SPC 8 6 0.9522 0.8817 0.9465 0.8028 0.8524 1.0157 0.8859 1.0617
SPC BIC 6 0.8329 0.8732 0.8381 0.8088 0.8450 0.9354 0.8461 0.9849
SPC IC1 6 0.9202 0.8662 0.8463 0.7577 0.8173 0.9475 0.8484 1.0154
SPC IC2 6 0.9075 0.8505 0.8561 0.7662 0.8212 0.9626 0.8362 1.0320
SPC IC3 6 0.9332 0.8688 0.8668 0.7981 0.8543 1.0004 0.8808 1.0537
SPC RR 6 0.9124 0.8844 0.9135 0.7991 0.8260 0.9159 0.8334 0.9823

Post-SPC 8 6 0.9361 0.8699 0.9149 0.7922 0.8481 1.0224 0.8886 1.0651
Post-SPC BIC 6 0.8779 0.8667 0.8626 0.8063 0.8336 0.9502 0.8457 0.9826
Post-SPC IC1 6 0.9055 0.8632 0.8423 0.7505 0.8099 0.9488 0.8389 1.0232
Post-SPC IC2 6 0.8600 0.8262 0.8335 0.7469 0.8133 0.9524 0.8448 1.0225
Post-SPC IC3 6 0.9125 0.8521 0.8942 0.7801 0.8315 0.9925 0.8654 1.0477
Post-SPC RR 6 0.8908 0.8437 0.8663 0.7902 0.8219 0.9213 0.8215 0.9868

LASSO 6 0.9893 0.8863 0.8957 0.7390 0.8515 0.9268 0.8451 1.0198

RMSFE(AR) 6 0.0219 0.0154 0.0218 0.0080 0.0015 0.0011 0.0018 0.0027

Est. k h IP PI M&TS Emp. CPI C.defl. CPI exc. PPI

PC 8 24 0.8125 1.1434 0.7980 0.9165 0.6356 0.7488 0.6902 0.8558
PC BIC 24 0.7830 1.1522 0.7927 0.8953 0.6363 0.7392 0.6640 0.8789
PC IC1 24 0.8194 1.1560 0.8222 0.9225 0.6383 0.7512 0.6875 0.8571
PC IC2 24 0.8527 1.1721 0.8624 0.9654 0.6425 0.7556 0.6612 0.8629
PC IC3 24 0.8125 1.1434 0.7980 0.9165 0.6356 0.7488 0.6902 0.8558
PC RR 24 0.7942 1.1489 0.8293 0.9079 0.6422 0.7851 0.6521 0.8708

SPC 8 24 0.8333 1.1652 0.7811 0.9176 0.6694 0.8161 0.7165 0.8881
SPC BIC 24 0.8227 1.1389 0.7979 0.8936 0.6533 0.7717 0.6759 0.8901
SPC IC1 24 0.7787 1.0786 0.7411 0.8898 0.6633 0.7849 0.6718 0.8607
SPC IC2 24 0.7816 1.0346 0.7158 0.8780 0.7395 0.8749 0.7263 0.9270
SPC IC3 24 0.8263 1.1585 0.7865 0.9138 0.6719 0.8128 0.7170 0.8806
SPC RR 24 0.8131 1.1366 0.8021 0.9024 0.6089 0.7253 0.6657 0.8461

Post-SPC 8 24 0.8354 1.1729 0.8012 0.9248 0.6450 0.7841 0.7023 0.8713
Post-SPC BIC 24 0.8258 1.1307 0.7801 0.9139 0.6383 0.7623 0.6550 0.8872
Post-SPC IC1 24 0.7974 1.1023 0.7707 0.9014 0.6449 0.7747 0.6625 0.8644
Post-SPC IC2 24 0.8012 1.0454 0.7512 0.8888 0.6724 0.7957 0.6840 0.8975
Post-SPC IC3 24 0.8355 1.1540 0.8291 0.9596 0.6528 0.7845 0.6768 0.8857
Post-SPC RR 24 0.8037 1.1295 0.7798 0.9233 0.5844 0.7074 0.6332 0.8462

LASSO 24 0.8877 1.2851 0.7394 0.8723 0.7067 0.6928 0.7559 0.8195

RMSFE(AR) 24 0.0567 0.0365 0.0518 0.0246 0.0018 0.0012 0.0020 0.0027

Notes: The results are reported as MSFEs relative to AR(p) forecasts with 0 ≤ 0 ≤ 6 choosen by BIC. Bold indicates lowest
value in a column, underlined indicates lowest value in a block, i.e. between to horizontal lines. All models include p AR
lags where p is chosen by BIC. The last row in each of the two parts gives the RMSFE is the benchmark AR model.
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Appendix: Proofs

We start by introducing some notation. When possible the same, or at least similar,
notation will be used as that of Stock and Watson (2002a). The proof of Theorem 1 is
sequential in the same manner as Definition 1, i.e. we start by showing uniform con-
vergence of each objective function of the definition to a corresponding asymptotic
objective function. Recall the model:

X t =ΛFt +et

Rewriting the objective function we get

V LASSO(F ,λ; X ,ψT ) = (nT )−1tr
[
(X −F λ′)′(X −F λ′)

]+S(λ)

where S(λ) is the LASSO penalty. The expression for the factor estimate is given by
the first-order condition:

∂V LASSO(F ,λ; X ,ψT )

∂F
= (nT )−12

[
F λ′λ−Xλ

]= 0 ⇔ F = Xλ/n

Hence the concentrated objective function becomes

V LASSO(λ; X ,ψT ) = (nT )−1
[

tr(X ′X )− tr(n−1λλ′X ′X )
]
+S(λ)

The first term is independent of λ and can thus be discarded, changing signs we are
therefore left with the equivalent maximization problem:

n−2T −1tr
[
λ′X ′Xλ

]−S(λ) = R1(λ)−S(λ)

Therefore the first step gives us the following estimates: λ̂1 = argmaxλR1(λ)−S(λ)

and F̂1t = λ̂
′
1X t /n. The residuals from the j th estimation are ê( j )

t = X t −∑ j
i=1 λ̂i F̂i t

and hence the estimates of the ( j +1)th step are: λ̂ j+1 = argmaxλR j+1(λ)−S(λ) and

F̂ j+1,t = λ̂′
j+1ê( j )

t /n. Thus, all objective functions under consideration are constructed
from the following quantities:

R1(γ) = n−2T −1γ′X ′Xγ= n−2T −1γ′
∑

t
X t X ′

tγ

Rl (γ) = n−2T −1γ′
∑

t
ê(l−1)

t ê(l−1)
t

′γ

S(γ) = n−1T −1ψT
∑

i

∣∣γi
∣∣

and the corresponding asymptotic objective functions will be formed using:

R∗
1 (γ) = n−2T −1γ′ΛF ′FΛ′γ= n−2T −1γ′Λ

∑
t

Ft F ′
tΛ

′γ

= n−2T −1γ′
r∑

i=1
λi

∑
t

Fi t

r∑
j=1

F j tλ
′
jγ

R∗
l (γ) = n−2T −1γ′

r∑
i=l

λi

∑
t

Fi t

r∑
j=l

F j tλ
′
jγ

18



where
∑

t =
∑T

t=1 and
∑

i =
∑n

i=1. In all maximizations we need to impose a length
restriction on the loadings, and hence we will make use of the following set: Γ =
{γ | γ′γ/n = 1}. Finally, due to the sequential nature of the problem we need a few
definitions pertaining to the steps of the sequential estimation:

δ(l )
t =

l−1∑
i=1

[
λi Fi t − λ̂i F̂i t

]
F (l ) = (

F l , . . . ,F r

)
Λ(l ) = (

λl , . . . ,λr

)
T −1F (l )′F (l ) p−→Σ(l )

F F

hence Σ(l )
F F is a submatrix of ΣF F as defined in Assumption 1.

The proofs are built up from a number of smaller results which we present first,
the proofs of the theorems then follow at the end. The proof of Theorem 1 is split in
two parts. The first part proves consistency of the first factor, and the second part the
subsequent factors. The reason for this is that the first part is almost identical to the
proof of Stock and Watson (2002a, Thm. 1b), whereas the second part requires more
modifications. All results named (R#) are taken from Stock and Watson (2002a), in
the cases where small changes to their results are needed a prime has been added to
the name and any needed changes in the proofs are detailed. Additional results are
labelled (T#).

(R2) supγ∈Γ(n2T )−1γ′e ′eγ
p−→ 0

(R3) Let qt denote a sequence of random variables with T −1 ∑
t q2

t ∼Op (1). Then

sup
γ∈Γ

∣∣T −1
∑

t
qt (N−1

∑
i
γi ei t )

∣∣ p−→ 0

(R4) supγ∈Γ
∣∣T −1 ∑

t F j t (n−1 ∑
i γi ei t )

∣∣ p−→ 0 for j = 1,2, . . . ,r

(R5) supγ∈Γ(n2T )−1
∣∣γ′ΛF ′eγ

∣∣ p−→ 0

(R6′′′) supγ∈Γ
∣∣R1(γ)−S(γ)−R∗

1 (γ)
∣∣ p−→ 0.

Proof.

R1(γ)−S(γ)−R∗
1 (γ) = (n2T )−1γ′e ′eγ+2(n2T )−1γ′ΛF ′γ− (nT )−1ψT

∑
i

∣∣γi
∣∣

Hence

sup
γ∈Γ

∣∣R1(γ)−S(γ)−R∗
1 (γ)

∣∣≤ sup
γ∈Γ

(n2T )−1∣∣γ′e ′eγ∣∣
+ sup

γ∈Γ
2(n2T )−1∣∣γ′ΛF ′eγ

∣∣+ sup
γ∈Γ

(nT )−1ψT
∑

i

∣∣γi
∣∣

The first term on the right-hand side converges to 0 by (R2), and the second term
converges to 0 by (R5). Consider now the third term:

(nT )−1ψT
∑

i

∣∣γi
∣∣≤ T −1ψT → 0

The inequality uses the fact that for any γ ∈ Γwe have that n−1 ∑
i γ

2
i = 1 which implies

n−1 ∑
i

∣∣γi
∣∣≤ 1. The convergence then follows by Assumption 3.a.
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(R7′′′)
∣∣supγ∈Γ [R1(γ)−S(γ)]− supγ∈ΓR∗

1 (γ)
∣∣ p−→ 0.

Proof. Stock and Watson (2002a, (R7)) using (R6′) instead of (R6).

(R8) supγ∈ΓR∗
1 (γ)

p−→σ11

(R9′′′) supγ∈ΓR1(γ)−S(γ)
p−→σ11

Proof. Stock and Watson (2002a, (R9)) using (R7′) instead of (R7).

(R10′′′) Let λ̂1 = argsupγ∈ΓR1(γ)−S(γ); then supγ∈ΓR∗
1 (λ̂1)

p−→σ11

Proof. Stock and Watson (2002a, (R10)) using (R6′) and (R9′) instead of (R6) and (R9),
respectively.

(R11′′′) (S1λ̂
′
1Λ/n)

p−→ (1,0,0, . . . ,0)′

Proof. Stock and Watson (2002a, (R11)) using (R10′) instead of (R10).

(R15′′′) S1F̂1t −F1t
p−→ 0

Proof.

S1F̂1t −F1t = S1λ̂
′
1X t /n −F1t

= S1λ̂
′
1

(
et +

r∑
i=1

λi Fi t
)

/n −F1t

= S1λ̂
′
1et /n + (

S1λ̂
′
1λ1/n −1

)
F1t +S1λ̂

′
1

( r∑
i=2

λi Fi t
)

/n

The first term is op (1), this is shown in the proof of Stock and Watson (2002a, (R15)).
Since |FT | is Op (1) by Assumption 1 if follows from (R11′) that the second and third
terms are op (1) using the same argument as in the proof of (R15).

(T1) n−1Si λ̂
′
i S j λ̂ j

p−→ 0 for i 6= j , i , j ≤ r

Proof. Let the loadings be represented as:

λ̂ j =Λ( j )(Λ( j )′Λ( j )/n)−1/2α̂ j + V̂ j

where V̂ ′
jΛ

( j ) = 0. Then, by the argument given in (T11) below, it follows that V̂ ′
j V̂ j /n

p−→ 0, α̂2
j 1

p−→ 1 and α̂2
j k

p−→ 0 for k > 1. Assume i > j such that when α̂ j is length

q j = r − j +1 and α̂i is length qi = r − i +1 we have that qi < q j . Then

n−1λ̂
′
i λ̂ j = α̂′

i (Λ(i )′Λ(i )/n)−1/2′(Λ(i )′Λ( j )/n)(Λ( j )′Λ( j )/n)−1/2α̂ j

+ α̂′
i (Λ(i )′Λ(i )/n)−1/2′(Λ(i )′V̂ j /n)

+ (V̂ ′
i Λ

( j )/n)(Λ( j )′Λ( j )/n)−1/2α̂ j

+ V̂ ′
i V̂ j /n

By Assumption 1,Λ(i )′Λ(i )/n → Iqi ,Λ( j )′Λ( j )/n → Iq j , andΛ(i )′Λ( j )/n → (
0qi×(i− j ), Iqi

)
.

Therefore, since α̂ converges to zero except for the first term which is bounded the
first term of the expression is op (1). Considering the second and third terms we have

that for any column of Λ, |λ′V̂ /n| ≤ (λ′λ/n)1/2(V̂ ′V̂ /n)1/2 p−→ 0 since V̂ ′V̂ /n
p−→ 0,

hence the two terms are op (1). Finally, for the last term we have that |V̂ ′
i V̂ j /n| ≤

(V̂ ′
i V̂i /n)1/2(V̂ ′

j V̂ j /n)1/2 p−→ 0, thus the result follows from that fact that |Si S j | = 1.
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(T2) n−1 ∑
i δ

(l )
i t δ

(l )
i s

p−→ 0, t = 1, . . . ,T, s = 1, . . . ,T, l = 2, . . . ,r +1

Proof.

n−1
∑

i
δ(l )

i t δ
(l )
i s = n−1

∑
i

l−1∑
k=1

l−1∑
h=1

(λki Fkt − λ̂ki F̂kt )(λhi Fhs − λ̂hi F̂hs )

=
l−1∑
k=1

l−1∑
h=1

[
n−1

∑
i
λkiλhi Fkt Fhs −n−1

∑
i
λki Shλ̂hi Fkt Sh F̂hs

+n−1
∑

i
Sk λ̂ki Shλ̂hi Sk F̂kt Sh F̂hs −n−1

∑
i

Sk λ̂kiλhi Sk F̂kt Fhs
]

where the fact that SS = 1 is used. Regarding the first term in the square bracket we
have that n−1 ∑

i λkiλhi → 1 for k = h and 0 otherwise by Assumption 1. Considering

the second term we have that n−1 ∑
i λki Shλ̂hi

p−→ 1 for k = h and 0 otherwise by

(R11′) and (T11), and by (R15′) and (T12) that Sh F̂ht
p−→ Fht . For the third term

we have by (R15′) and (T12) that Sk F̂kt
p−→ Fkt and Sh F̂ht

p−→ Fht . Furthermore,
n−1 ∑

i Sk λ̂ki Shλ̂hi = 1 for k = h and converges to 0 in probability by (T1) otherwise.
Similarly for the fourth term. We therefore have that the two parts of the square
bracket are op (1) and the result follows.

(T3) supγ∈Γ
∣∣T −1 ∑

t
(
n−1 ∑

i γiδ
(l )
i t

)2∣∣ p−→ 0, for l = 2, . . . ,r +1

Proof.

T −1
∑

t

(
n−1

∑
i
γiδ

(l )
i t

)2 = n−2T −1
∑

t

∑
i

∑
j
γiγ jδ

(l )
i t δ

(l )
j t

= n−2
∑

i

∑
j
γiγ j

(
T −1

∑
t
δ(l )

i t δ
(l )
j t

)
≤

(
n−2

∑
i

∑
j
γ2

i γ
2
j

)1/2 (
n−2

∑
i

∑
j

(
T −1

∑
t
δ(l )

i t δ
(l )
j t

)2)1/2

Now since γ′γ/n = 1 we have that the first term equals 1, hence

sup
γ∈Γ

∣∣T −1
∑

t

(
n−1

∑
i
γiδ

(l )
i t

)2∣∣≤ (
n−2

∑
i

∑
j

(
T −1

∑
t
δ(l )

i t δ
(l )
j t

)2)1/2

=
(
T −2

∑
t

∑
s

[
n−1

∑
i
δ(l )

i t δ
(l )
i s

][
n−1

∑
j
δ(l )

j t δ
(l )
j s

])1/2

where the terms in the two square brackets converge to 0 in probability by (T2) thus
completing the proof.

(T4) supγ∈Γ(n2T )−1
∣∣γ′∑r

i=l λi
∑

t Fi tδ
(l )
t

′γ
∣∣ p−→ 0, for l = 2, . . . ,r

Proof.

(n2T )−1∣∣γ′ r∑
i=l

λi

∑
t

Fi tδ
(l )
t

′γ
∣∣≤∣∣n−1γ′

r∑
i=l

λi

∣∣∣∣T −1
∑

t
Fi t

(
n−1

∑
j
δ(l )

j t
′γ j

)∣∣
Hence:

sup
γ∈Γ

(n2T )−1∣∣γ′ r∑
i=l

λi

∑
t

Fi tδ
(l )
t

′γ
∣∣≤ (

max
l≤i≤r

sup
γ∈Γ

∣∣γ′λi /n
∣∣)
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×
r∑

i=l
sup
γ∈Γ

∣∣T −1
∑

t
Fi t

(
n−1

∑
j
δ(l )

j t γ j
)∣∣

≤ (
sup
γ∈Γ

(γ′γ/n)1/2)(max
l≤i≤r

(λ′
iλi /n)1/2)

×
r∑

i=l
sup
γ∈Γ

∣∣T −1
∑

t
Fi t

(
n−1

∑
j
δ(l )

j t γ j
)∣∣

The first term is 1 by definition, the second term converges to 1 by Assumption 1,
hence we need to show that the third term converges to 0 in probability to arrive at
the result. Consider the following:

sup
γ∈Γ

∣∣T −1
∑

t
Fi t

(
n−1

∑
j
δ(l )

j t γ j
)∣∣≤ (

T −1
∑

t
F 2

i t

)1/2 (
sup
γ∈Γ

T −1
∑

t

(
n−1

∑
j
δ(l )

j t γ j
)2)1/2

The first term is Op (1) by Assumption 1 and the second term is op (1) by (T3), thus
the desired result follows.

(T5) supγ∈Γ(n2T )−1
∣∣γ′∑t δ

(l )
t e ′tγ

∣∣ p−→ 0, for l = 2, . . . ,r +1

Proof.

(n2T )−1∣∣γ′∑
t
δ(l )

t et
′γ

∣∣=∣∣T −1
∑

t
(n−1

∑
i
γi ei t )(n−1

∑
j
γ jδ

(l )
j t )

∣∣
≤

[
T −1

∑
t

(
n−1

∑
i
γi ei t

)2
]1/2 [

T −1
∑

t

(
n−1

∑
j
γ jδ

(l )
j t

)2]1/2

where the first term is op (1) by (R2) and the second term is op (1) by (T3).

(T6) supγ∈Γ
∣∣Rl (γ)−S(γ)−R∗

l (γ)
∣∣ p−→ 0, for l = 2, . . . ,r.

Proof.

Rl (γ)−S(γ)−R∗
l (γ) = (n2T )−1γ′

∑
t

et e ′tγ

+ (n2T )−1γ′
∑

t
δ(l )

t δ(l )
t

′γ

+2(n2T )−1γ′
r∑

i=l
λi

∑
t

Fi tδ
(l )
t

′γ

+2(n2T )−1γ′
r∑

i=l
λi

∑
t

Fi t e ′tγ

+2(n2T )−1γ′
∑

t
δ(l )

t e ′tγ

− (nT )−1ψT
∑

i

∣∣γi
∣∣

Hence

sup
γ∈Γ

∣∣Rl (γ)−S(γ)−R∗
l (γ)

∣∣≤ sup
γ∈Γ

(n2T )−1∣∣γ′∑
t

et e ′tγ
∣∣

+ sup
γ∈Γ

(n2T )−1∣∣γ′∑
t
δ(l )

t δ(l )
t

′γ
∣∣
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+ sup
γ∈Γ

2(n2T )−1∣∣γ′ r∑
i=l

λi

∑
t

Fi tδ
(l )
t

′γ
∣∣

+ sup
γ∈Γ

2(n2T )−1∣∣γ′ r∑
i=l

λi

∑
t

Fi t e ′tγ
∣∣

+ sup
γ∈Γ

2(n2T )−1∣∣γ′∑
t
δ(l )

t e ′tγ
∣∣

+ sup
γ∈Γ

(nT )−1ψT
∑

i

∣∣γi
∣∣

The first term on the right-hand side converges to 0 by (R2), the second term con-
verges to 0 by (T3), the third term converges to 0 by (T4), the fourth term converges
to 0 by (R5) (note that (R5) is only shown for l = 1, however, it can easily be shown
to also hold for other values of l ), the fifth term converges to 0 by (T5), and the sixth
term converges to 0 by the argument used in (R6′).

(T7)
∣∣supγ∈Γ [R(γ)−S(γ)]− supγ∈ΓR∗(γ)

∣∣ p−→ 0.

Proof.
∣∣supγ∈Γ [R(γ)−S(γ)]− supγ∈ΓR∗(γ)

∣∣≤ supγ∈Γ
∣∣R(γ)−S(γ)−R∗(γ)

∣∣ p−→ 0 where
the first inequality follows by the definition of the sup and the convergence follows
from (T6).

(T8) supγ∈ΓR∗
l (γ)

p−→σl l for l = 2, . . . ,r .

Proof. Let γ be represented as γ=Λ(l )(Λ(l )′Λ(l )/n)−1/2α+V where V ′Λ(l ) = 0, hence
since γ ∈ Γwe have that α′α≤ 1. We can therefore write

sup
γ∈Γ

R∗
l (γ) = sup

α,α′α≤1
α′(Λ(l )′Λ(l )/n)1/2′(F (l )′F (l )/T )(Λ(l )′Λ(l )/n)1/2α

= sup
α,α′α≤1

α′C (l )
nTα= σ̂l l

where σ̂l l is the largest eigenvalue of C (l )
nT . Now (Λ(l )′Λ(l )/n)1/2 → I and F (l )′F (l )/T

p−→
Σ(l )

F F by Assumption 1, hence C (l )
nT

p−→Σ(l )
F F and σ̂l l

p−→σl l .

(T9) supγ∈ΓRl (γ)−S(γ)
p−→σl l

Proof. This follows from (T7) and (T8).

(T10) Let λ̂l = argsupγ∈ΓRl (γ)−S(γ); then R∗
l (λ̂l )

p−→σl l .

Proof. This follows from (T6) and (T9).

(T11) (Sl λ̂
′
lΛ/n)

p−→ `′l for l = 2, . . . ,r where `l ,i = 1 for i = l and 0 otherwise.

Proof. Let λ̂l =Λ(l )(Λ(l )′Λ(l )/n)−1/2α̂+V̂ and recall that R∗
l (λ̂l ) = α̂C (l )

nT
′α̂where C (l )

nT
is defined in (T8). Then

R∗
l (λ̂l )−σl l = α̂′(C (l )

nT −Σ(l )
F F )α̂+ α̂′Σ(l )

F F α̂−σl l

= α̂′(C (l )
nT −Σ(l )

F F )α̂+ (α̂2
1 −1)σl l +

∑
l<i≤r

α̂2
i−l+1σi i
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We have by (T10) that the left-hand-side is op (1), and the first term on the right-hand-

side is op (1) since C (l )
nT

p−→Σ(l )
F F and α̂ is bounded. Hence (α̂2

1−1)σl l+
∑

l<i≤r α̂
2
i−l+1σi i

p−→ 0. By Assumption 1 we have that σi i > 0 for i = 1, . . . ,r , hence we must have that

α̂2
1

p−→ 1 and α̂2
i

p−→ 0 for i > 1.

We have that λ̂
′
l λ̂/n = 1 but from the definition above we also have that λ̂

′
l λ̂/n =

α̂′(Λ(l )′Λ(l )/n)−1/2′α̂+ V̂ ′V̂ /n. By Assumption 1,Λ(l )′Λ(l )/n → I and as shown above

α̂
p−→ (1,0, . . . ,0) therefore we must have that V̂ ′V̂ /n is op (1).
Consider the expression

Sl λ̂
′
lΛ/n = [SlΛ

(l )(Λ(l )′Λ(l )/n)−1/2α̂+Sl V̂ ]′Λ/n

= Sl α̂
′(Λ(l )′Λ(l )/n)−1/2′Λ(l )′Λ/n +Sl V̂ ′Λ/n (A.1)

Now,Λ(l )′Λ/n → (
0(r−l+1)×(l−1), Ir−l+1

)
by Assumption 1 therefore the first term con-

verges to `′l . For the second term we have for each column ofΛ that

∣∣V̂ ′λ j /n
∣∣≤ (V̂ ′V̂ /n)1/2(λ′

jλ j /n)1/2 p−→ 0

since the first term is op (1) and the second is bounded. Therefore the second term of
(A.1) converges to a vector of zeros and the result follows.

(T12) Sl F̂l t −Fl t
p−→ 0 for l = 2, . . . ,r .

Proof.

Sl F̂l t −Fl t = Sl λ̂
′
l ê(l )

t /n −Fl t

= Sl λ̂
′
l

(
et +δ(l )

t +
r∑

i=l
λi Fi t

)
/n −Fl t

= Sl λ̂
′
l et /n +Sl λ̂

′
lδ

(l )
t /n + (

Sl λ̂
′
lλl /n −1

)
Fl t +Sl λ̂

′
l

( r∑
i=l+1

λi Fi t
)

/n

The first term is op (1), this is shown in the proof of Stock and Watson (2002a, (R15)).
Since |FT | is Op (1) by Assumption 1 we have that the third and fourth terms are op (1)
by (T11). Considering the second term we have that∣∣Sl λ̂

′
lδ

(l )
t /n

∣∣≤ (
λ̂
′
l λ̂l /n

)1/2 (
δ(l )

t
′δ(l )

t /n
)1/2

where the first term equals 1 and the second term is op (1) by (T2). Hence the result
follows.

(T13) T −1 ∑
t F̂ 2

l t

p−→ 0, for l > r

Proof.

T −1
∑

t
F̂ 2

l t = n−2T −1λ̂
′
l

∑
t

ê(l−1)
t ê(l−1)

t
′λ̂l = Rl (λ̂l )

where λ̂l = argsupγ∈ΓRl (γ)−S(γ). Now

sup
γ∈Γ

∣∣Rl (γ)
∣∣≤ sup

γ∈Γ
n−2T −1∣∣γ′∑

t
et e ′tγ

∣∣
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+ sup
γ∈Γ

n−2T −1∣∣γ′∑
t
δ(r+1)

t δ(r+1)
t

′γ
∣∣

+ sup
γ∈Γ

n−2T −1∣∣∑
r<k<l

γλ̂k

∑
t

F̂kt F̂kt λ̂
′
kγ

∣∣ (A.2)

+ sup
γ∈Γ

2n−2T −1∣∣γ′∑
t

etδ
(r+1)
t

′γ
∣∣

+ sup
γ∈Γ

2n−2T −1∣∣γ′∑
t

et
∑

r<k<l̂
Fkt λ̂

′
kγ

∣∣
+ sup

γ∈Γ
2n−2T −1∣∣γ′∑

t
δ(r+1)

t

∑
r<k<l̂

Fkt λ̂
′
kγ

∣∣
Now for l = r +1 we have that the third, fifth and sixth terms disappear. Further, by
(R2) the first term is op (1), by (T3) the second term is op (1), and by (T5) the fourth
term is op (1).

In the case l > r +1 we must check the third, fifth and sixth terms. Consider the
third term:

sup
γ∈Γ

(n2T )−1∣∣∑
r<k<l

γλ̂k

∑
t

F̂kt F̂kt λ̂
′
kγ

∣∣= sup
γ∈Γ

∣∣(n2T )−1
∑

r<k<l

∑
t

∑
i

∑
j
γiγ j λ̂ki λ̂k j F̂ 2

kt

∣∣
≤ max

r<k<l
sup
γ∈Γ

∣∣n−2
∑

i

∑
j
γiγ j λ̂ki λ̂k j

∣∣∑
r<h<l

T −1
∑

t
F̂ 2

ht

For the first term we have that∣∣n−2
∑

i

∑
j
γiγ j λ̂ki λ̂k j

∣∣≤ (
n−2

∑
i

∑
j
γ2

i γ
2
j

)1/2 (
n−2

∑
i

∑
j
λ̂

2
ki λ̂

2
k j

)1/2 = 1

and the second term is op (1) as argued above.
Consider the fifth term:

n−2T −1∣∣γ′∑
t

et
∑

r<k<l̂
Fkt λ̂

′
kγ

∣∣=∣∣∑
r<k<l

T −1
∑

t

(
n−1

∑
i
γt ei t

)(
n−1

∑
j
γ j λ̂k j F̂kt

)∣∣
≤ [

(l − r −1)T −1
∑

t

(
n−1

∑
i
γt ei t

)2]1/2

× [∑
r<k<l

T −1
∑

t

(
n−1

∑
j
γ j λ̂k j F̂kt

)2]1/2

The first term is op (1) by (R2), and the second term is the square root of (A.2) and
hence op (1) as argued above. Lastly, the same argument holds for the sixth term if we
rely on (T3) instead of (R2).

(R17) T −1 ∑
t SF̂t F ′

t
p−→ΣF F where F̂t is r ×1.

(R18) T −1 ∑
t F̂t F̂ ′

t
p−→ΣF F where F̂t is r ×1.

(R20) T −1 ∑
t SF̂t w ′

t
p−→ΣF w where F̂t is r ×1.

(R21) T −1 ∑
t SF̂tεt+h

p−→ 0 where F̂t is r ×1.

(T14) Let F̂t be the k ≥ r estimated factors then:

T −1
∑

t
F̂t F̂ ′

t
p−→

[
ΣF F 0r×k−r

0k−r×r 0k−r×k−r

]
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Proof. The first diagonal element follows from (R18). For the remaining elements
consider T −1 ∑

t F̂ 2
kt . For k ≤ r this will be Op (1) by (R18) and Assumption 1, and for

k > r it will be op (1) by (T13). Since

T −1∣∣∑
t

F̂kt F̂l t
∣∣≤ [

T −1
∑

t
F̂ 2

kt

]1/2 [
T −1

∑
t

F̂ 2
l t

]1/2

the results then follows.

(T15) Let F̂t be the k ≥ r estimated factors then:

T −1
∑

t
SF̂t F ′

t
p−→

[
ΣF F

0k−r×r

]

Proof. The proof is analogous to that of (T14) only using (R17) instead of (R18).

(T16) Let F̂t be the k ≥ r estimated factors then:

T −1
∑

t
SF̂t w ′

t
p−→

[
ΣF w

0k−r×r

]

Proof. For the first element on the right-hand side the result follows by (R20), for the
second element we have that:

T −1∣∣∑
t

F̂l t wi t
∣∣≤ [

T −1
∑

t
F̂ 2

l t

]1/2 [
T −1

∑
t

w2
i t

]1/2

Since the first term is op (1) by (T13) and the second is Op (1) by Assumption 4 the
result follows.

(T17) Let F̂t be the k ≥ r estimated factors then:

T −1
∑

t
SF̂tεt+h

p−→ 0

Proof. For the first r factors the result follows by (R21) and for the remaining factors
we have that

T −1∣∣∑
t

F̂l tεt+h
∣∣≤ [

T −1
∑

t
F̂ 2

l t

]1/2 [
T −1

∑
t
ε2

t+h

]1/2

Since the first term is op (1) by (T13) and the second is Op (1) by Assumption 4 the
result follows.

(T18) Si β̂
RR
F i

p−→ (σi i +κ)−1σi iβF i for i = 1, . . . ,r , and β̂RR
F i

p−→ 0 for i > r .

Proof. In matrix from the forecasting model is Y = FβF +Wβw +ε, hence the ridge
regression estimate of βF is:

Sβ̂RR
F =

(
T −1F̂ ′F̂ +T −1κT I

)−1
T −1SF̂ ′(FβF +Wβw +ε)

Now for the first term we have by (T14) that(
T −1F̂ ′F̂ +T −1κT I

)−1 p−→
[(
ΣF F +κI

)−1 0
0 κ−1I

]

which is a diagonal matrix. Combining this with (T15), (T16), (T17) and Assumption
5 the desired result follows.
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(T19) P (β̂F i = 0) → 1 for i > r .

Proof.

P (β̂F i = 0) = P (|β̂RR
F i | <βthr)

Since we choose βthr < min{i :βF i 6=0}((σi i +κ)−1σi i |βF i | and for i ≤ r we have by (T18)

that Si β̂F i
p−→ (σi i +κ)−1σi iβF i the result follows.

Proof of Theorem 1. For i = 1 the result follows by (R15′), and for i = 2, . . . ,r it follows
by (T12).

Proof of Theorem 3. For part b the result follows by (T19). Parts a and c then follow by
Theorem 2 since by part b only the true factors are included with probability tending
to one.
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Appendix: Additional results

Table A.1. Simulation results for three different scenarios where τ= 0.8. Sparsity of the loadings
for the SPC estimator.

Data-generating process Fraction of zero-entries

n T r a b τ ψT λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6 λ̂7 λ̂8

25 50 1 0 0 0.8 1.75 0.79 0.86 0.88 0.89 0.89 0.90 0.91 0.92
25 100 1 0 0 0.8 1.66 0.76 0.83 0.85 0.87 0.88 0.89 0.89 0.90
50 100 1 0 0 0.8 1.92 0.79 0.90 0.91 0.92 0.92 0.93 0.93 0.93
50 200 1 0 0 0.8 1.81 0.77 0.87 0.89 0.90 0.90 0.91 0.91 0.92

100 200 1 0 0 0.8 2.06 0.79 0.92 0.93 0.94 0.94 0.94 0.94 0.95
150 200 1 0 0 0.8 2.20 0.81 0.95 0.95 0.95 0.95 0.96 0.96 0.96

25 50 4 0 0 0.8 2.29 0.77 0.80 0.83 0.86 0.90 0.91 0.92 0.93
25 100 4 0 0 0.8 2.09 0.73 0.75 0.77 0.81 0.88 0.89 0.90 0.91
50 100 4 0 0 0.8 2.35 0.75 0.77 0.78 0.80 0.94 0.94 0.95 0.95
50 200 4 0 0 0.8 2.18 0.70 0.71 0.72 0.73 0.92 0.93 0.93 0.93

100 200 4 0 0 0.8 2.52 0.73 0.75 0.75 0.76 0.96 0.96 0.96 0.96
150 200 4 0 0 0.8 2.72 0.75 0.77 0.77 0.78 0.97 0.97 0.98 0.98

25 50 4 0.5 1 0.8 4.89 0.62 0.69 0.74 0.77 0.79 0.81 0.83 0.84
25 100 4 0.5 1 0.8 4.91 0.59 0.65 0.69 0.71 0.73 0.74 0.75 0.76
50 100 4 0.5 1 0.8 6.02 0.73 0.77 0.79 0.82 0.83 0.84 0.86 0.87
50 200 4 0.5 1 0.8 5.91 0.69 0.72 0.75 0.77 0.78 0.80 0.81 0.82

100 200 4 0.5 1 0.8 6.73 0.78 0.79 0.81 0.83 0.84 0.86 0.87 0.88
150 200 4 0.5 1 0.8 7.36 0.83 0.84 0.85 0.86 0.88 0.89 0.90 0.90

Note: The results are based on 1,000 Monte Carlo replications.

Table A.2. Simulation results for three different scenarios where τ= 0. Sparsity of the loadings
for the SPC estimator.

Data-generating process Fraction of zero-entries

n T r a b τ ψT λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6 λ̂7 λ̂8

25 50 1 0 0 0 1.61 0.20 0.82 0.85 0.87 0.87 0.88 0.89 0.91
25 100 1 0 0 0 1.53 0.13 0.79 0.82 0.84 0.85 0.86 0.87 0.87
50 100 1 0 0 0 1.80 0.15 0.87 0.89 0.90 0.90 0.91 0.91 0.92
50 200 1 0 0 0 1.68 0.10 0.84 0.86 0.87 0.88 0.88 0.89 0.90

100 200 1 0 0 0 1.92 0.11 0.90 0.92 0.92 0.92 0.93 0.93 0.93
150 200 1 0 0 0 2.04 0.12 0.93 0.93 0.94 0.94 0.94 0.94 0.95

25 50 4 0 0 0 1.42 0.15 0.18 0.22 0.26 0.77 0.79 0.82 0.84
25 100 4 0 0 0 1.32 0.10 0.12 0.15 0.17 0.72 0.75 0.77 0.78
50 100 4 0 0 0 1.57 0.12 0.14 0.16 0.17 0.82 0.84 0.85 0.87
50 200 4 0 0 0 1.46 0.08 0.10 0.10 0.11 0.78 0.80 0.82 0.83

100 200 4 0 0 0 1.65 0.09 0.10 0.11 0.11 0.85 0.86 0.87 0.88
150 200 4 0 0 0 1.74 0.09 0.10 0.11 0.12 0.88 0.89 0.89 0.90

25 50 4 0.5 1 0 4.24 0.41 0.49 0.56 0.61 0.66 0.69 0.72 0.76
25 100 4 0.5 1 0 3.56 0.27 0.34 0.40 0.45 0.49 0.52 0.55 0.57
50 100 4 0.5 1 0 5.30 0.38 0.45 0.51 0.58 0.68 0.72 0.75 0.78
50 200 4 0.5 1 0 4.62 0.26 0.30 0.33 0.39 0.55 0.60 0.63 0.65

100 200 4 0.5 1 0 5.76 0.31 0.34 0.37 0.40 0.73 0.76 0.78 0.80
150 200 4 0.5 1 0 6.27 0.33 0.36 0.38 0.41 0.79 0.81 0.83 0.84

Note: The results are based on 1,000 Monte Carlo replications.
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Table A.3. Simulation results for three different scenarios where τ= 0.8. Estimated number of
factors and precision of the estimates.

Data-generating process Estimated number of factors Factor R2 for various choices of k

Est. n T r a b τ IC1 IC2 IC3 BIC RR IC1 IC2 IC3 BIC RR k = r

PC 25 50 1 0 0 0.8 1.00 1.00 1.32 1.20 1.63 0.72 0.72 0.72 0.73 0.74 0.72
PC 25 100 1 0 0 0.8 1.00 1.00 1.00 1.12 1.41 0.75 0.75 0.75 0.75 0.76 0.75
PC 50 100 1 0 0 0.8 1.00 1.00 1.00 1.07 1.37 0.87 0.87 0.87 0.88 0.88 0.87
PC 50 200 1 0 0 0.8 1.00 1.00 1.00 1.05 1.20 0.88 0.88 0.88 0.88 0.88 0.88
PC 100 200 1 0 0 0.8 1.00 1.00 1.00 1.05 1.19 0.94 0.94 0.94 0.94 0.94 0.94
PC 150 200 1 0 0 0.8 1.00 1.00 1.00 1.03 1.21 0.96 0.96 0.96 0.96 0.96 0.96

SPC 25 50 1 0 0 0.8 1.00 1.00 1.00 1.17 1.47 0.74 0.74 0.74 0.75 0.75 0.74
SPC 25 100 1 0 0 0.8 1.00 1.00 1.00 1.09 1.27 0.76 0.76 0.76 0.77 0.77 0.76
SPC 50 100 1 0 0 0.8 1.00 1.00 1.00 1.05 1.23 0.88 0.88 0.88 0.88 0.88 0.88
SPC 50 200 1 0 0 0.8 1.00 1.00 1.00 1.03 1.18 0.89 0.89 0.89 0.89 0.89 0.89
SPC 100 200 1 0 0 0.8 1.00 1.00 1.00 1.04 1.18 0.94 0.94 0.94 0.94 0.94 0.94
SPC 150 200 1 0 0 0.8 1.00 1.00 1.00 1.03 1.14 0.96 0.96 0.96 0.96 0.96 0.96

Post-SPC 25 50 1 0 0 0.8 1.00 1.00 1.00 1.17 1.47 0.74 0.74 0.74 0.74 0.75 0.74
Post-SPC 25 100 1 0 0 0.8 1.00 1.00 1.00 1.08 1.30 0.76 0.76 0.76 0.76 0.76 0.76
Post-SPC 50 100 1 0 0 0.8 1.00 1.00 1.00 1.06 1.24 0.88 0.88 0.88 0.88 0.88 0.88
Post-SPC 50 200 1 0 0 0.8 1.00 1.00 1.00 1.03 1.18 0.89 0.89 0.89 0.89 0.89 0.89
Post-SPC 100 200 1 0 0 0.8 1.00 1.00 1.00 1.03 1.18 0.94 0.94 0.94 0.94 0.94 0.94
Post-SPC 150 200 1 0 0 0.8 1.00 1.00 1.00 1.03 1.19 0.96 0.96 0.96 0.96 0.96 0.96

PC 25 50 4 0 0 0.8 2.77 2.30 5.82 3.74 3.46 0.60 0.52 0.73 0.67 0.58 0.72
PC 25 100 4 0 0 0.8 2.92 2.66 3.35 3.90 3.63 0.61 0.57 0.68 0.71 0.63 0.74
PC 50 100 4 0 0 0.8 3.73 3.50 3.96 3.92 3.68 0.83 0.79 0.87 0.84 0.76 0.87
PC 50 200 4 0 0 0.8 3.85 3.77 3.94 3.94 3.75 0.85 0.84 0.87 0.86 0.80 0.88
PC 100 200 4 0 0 0.8 4.00 4.00 4.00 3.95 3.78 0.94 0.94 0.94 0.92 0.87 0.94
PC 150 200 4 0 0 0.8 4.00 4.00 4.00 3.95 3.79 0.96 0.96 0.96 0.94 0.88 0.96

SPC 25 50 4 0 0 0.8 2.12 1.73 2.84 3.87 3.78 0.48 0.41 0.61 0.69 0.65 0.72
SPC 25 100 4 0 0 0.8 2.58 2.37 3.00 3.96 3.86 0.56 0.52 0.63 0.72 0.68 0.74
SPC 50 100 4 0 0 0.8 3.40 3.14 3.85 4.01 3.96 0.77 0.72 0.85 0.86 0.82 0.87
SPC 50 200 4 0 0 0.8 3.74 3.65 3.88 3.97 3.89 0.84 0.82 0.86 0.87 0.83 0.88
SPC 100 200 4 0 0 0.8 3.99 3.98 4.00 4.01 3.97 0.94 0.94 0.94 0.93 0.91 0.94
SPC 150 200 4 0 0 0.8 4.00 4.00 4.00 4.00 3.98 0.96 0.96 0.96 0.95 0.93 0.96

Post-SPC 25 50 4 0 0 0.8 2.21 1.81 2.91 3.84 3.73 0.50 0.43 0.62 0.69 0.63 0.72
Post-SPC 25 100 4 0 0 0.8 2.63 2.42 3.06 3.93 3.79 0.57 0.53 0.64 0.72 0.67 0.74
Post-SPC 50 100 4 0 0 0.8 3.48 3.19 3.87 3.97 3.85 0.79 0.73 0.85 0.86 0.81 0.87
Post-SPC 50 200 4 0 0 0.8 3.76 3.69 3.90 3.95 3.82 0.84 0.83 0.86 0.86 0.82 0.88
Post-SPC 100 200 4 0 0 0.8 4.00 3.99 4.00 4.00 3.93 0.94 0.94 0.94 0.93 0.90 0.94
Post-SPC 150 200 4 0 0 0.8 4.00 4.00 4.00 3.99 3.95 0.96 0.96 0.96 0.95 0.92 0.96

PC 25 50 4 0.5 1 0.8 8.00 7.53 8.00 2.18 2.53 0.34 0.33 0.34 0.12 0.15 0.18
PC 25 100 4 0.5 1 0.8 8.00 7.99 8.00 2.36 2.74 0.25 0.25 0.25 0.10 0.11 0.14
PC 50 100 4 0.5 1 0.8 3.48 1.10 8.00 3.00 2.97 0.15 0.06 0.30 0.15 0.15 0.17
PC 50 200 4 0.5 1 0.8 1.30 1.03 8.00 3.90 3.47 0.07 0.06 0.26 0.17 0.15 0.17
PC 100 200 4 0.5 1 0.8 1.04 1.00 8.00 5.28 4.25 0.11 0.11 0.40 0.32 0.26 0.27
PC 150 200 4 0.5 1 0.8 1.07 1.00 8.00 5.75 4.61 0.16 0.15 0.50 0.44 0.36 0.37

SPC 25 50 4 0.5 1 0.8 2.36 1.25 7.64 1.89 2.39 0.11 0.07 0.32 0.11 0.15 0.18
SPC 25 100 4 0.5 1 0.8 5.13 2.52 7.97 2.07 2.60 0.16 0.09 0.24 0.10 0.12 0.14
SPC 50 100 4 0.5 1 0.8 1.01 1.00 2.78 2.37 2.68 0.07 0.07 0.13 0.14 0.16 0.18
SPC 50 200 4 0.5 1 0.8 1.00 1.00 1.40 3.03 3.08 0.07 0.07 0.09 0.16 0.16 0.17
SPC 100 200 4 0.5 1 0.8 1.00 1.00 1.24 4.11 3.70 0.15 0.15 0.17 0.34 0.33 0.32
SPC 150 200 4 0.5 1 0.8 1.00 1.00 1.63 4.59 4.15 0.19 0.19 0.30 0.53 0.52 0.48

Post-SPC 25 50 4 0.5 1 0.8 3.01 1.50 7.50 1.92 2.39 0.14 0.08 0.31 0.11 0.14 0.18
Post-SPC 25 100 4 0.5 1 0.8 5.45 3.00 7.89 2.07 2.56 0.17 0.10 0.24 0.09 0.11 0.14
Post-SPC 50 100 4 0.5 1 0.8 1.04 1.00 4.18 2.40 2.73 0.07 0.07 0.18 0.14 0.15 0.18
Post-SPC 50 200 4 0.5 1 0.8 1.01 1.00 2.10 3.22 3.19 0.07 0.07 0.11 0.16 0.16 0.17
Post-SPC 100 200 4 0.5 1 0.8 1.00 1.00 1.77 4.40 3.80 0.14 0.14 0.21 0.34 0.32 0.32
Post-SPC 150 200 4 0.5 1 0.8 1.00 1.00 2.50 4.74 4.24 0.19 0.19 0.38 0.52 0.51 0.47

Note: The results are based on 1,000 Monte Carlo replications.
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Table A.4. Simulation results for three different scenarios where τ= 0. Estimated number of
factors and precision of the estimates.

Data-generating process Estimated number of factors Factor R2 for various choices of k

Est. n T r a b τ IC1 IC2 IC3 BIC RR IC1 IC2 IC3 BIC RR k = r

PC 25 50 1 0 0 0 1.00 1.00 1.41 1.13 1.46 0.94 0.94 0.94 0.94 0.94 0.94
PC 25 100 1 0 0 0 1.00 1.00 1.00 1.06 1.32 0.95 0.95 0.95 0.95 0.95 0.95
PC 50 100 1 0 0 0 1.00 1.00 1.00 1.05 1.25 0.97 0.97 0.97 0.97 0.97 0.97
PC 50 200 1 0 0 0 1.00 1.00 1.00 1.04 1.16 0.97 0.97 0.97 0.97 0.97 0.97
PC 100 200 1 0 0 0 1.00 1.00 1.00 1.03 1.17 0.98 0.98 0.98 0.98 0.98 0.98
PC 150 200 1 0 0 0 1.00 1.00 1.00 1.02 1.14 0.99 0.99 0.99 0.99 0.99 0.99

SPC 25 50 1 0 0 0 1.00 1.00 1.00 1.12 1.40 0.94 0.94 0.94 0.94 0.94 0.94
SPC 25 100 1 0 0 0 1.00 1.00 1.00 1.05 1.25 0.95 0.95 0.95 0.95 0.95 0.95
SPC 50 100 1 0 0 0 1.00 1.00 1.00 1.06 1.25 0.97 0.97 0.97 0.97 0.97 0.97
SPC 50 200 1 0 0 0 1.00 1.00 1.00 1.04 1.14 0.97 0.97 0.97 0.97 0.97 0.97
SPC 100 200 1 0 0 0 1.00 1.00 1.00 1.04 1.15 0.98 0.98 0.98 0.98 0.98 0.98
SPC 150 200 1 0 0 0 1.00 1.00 1.00 1.03 1.16 0.99 0.99 0.99 0.99 0.99 0.99

Post-SPC 25 50 1 0 0 0 1.00 1.00 1.00 1.12 1.43 0.94 0.94 0.94 0.94 0.94 0.94
Post-SPC 25 100 1 0 0 0 1.00 1.00 1.00 1.05 1.28 0.95 0.95 0.95 0.95 0.95 0.95
Post-SPC 50 100 1 0 0 0 1.00 1.00 1.00 1.06 1.25 0.97 0.97 0.97 0.97 0.97 0.97
Post-SPC 50 200 1 0 0 0 1.00 1.00 1.00 1.03 1.15 0.97 0.97 0.97 0.97 0.97 0.97
Post-SPC 100 200 1 0 0 0 1.00 1.00 1.00 1.04 1.16 0.98 0.98 0.98 0.98 0.98 0.98
Post-SPC 150 200 1 0 0 0 1.00 1.00 1.00 1.03 1.15 0.99 0.99 0.99 0.99 0.99 0.99

PC 25 50 4 0 0 0 4.00 4.00 6.37 3.85 3.54 0.94 0.94 0.94 0.89 0.78 0.94
PC 25 100 4 0 0 0 4.00 4.00 4.00 3.87 3.54 0.94 0.94 0.94 0.90 0.81 0.94
PC 50 100 4 0 0 0 4.00 4.00 4.00 3.87 3.61 0.97 0.97 0.97 0.93 0.84 0.97
PC 50 200 4 0 0 0 4.00 4.00 4.00 3.90 3.67 0.97 0.97 0.97 0.95 0.87 0.97
PC 100 200 4 0 0 0 4.00 4.00 4.00 3.90 3.64 0.98 0.98 0.98 0.96 0.88 0.98
PC 150 200 4 0 0 0 4.00 4.00 4.00 3.91 3.66 0.99 0.99 0.99 0.96 0.89 0.99

SPC 25 50 4 0 0 0 4.00 4.00 4.01 3.86 3.53 0.93 0.93 0.93 0.88 0.77 0.93
SPC 25 100 4 0 0 0 4.00 4.00 4.00 3.87 3.59 0.94 0.94 0.94 0.91 0.81 0.94
SPC 50 100 4 0 0 0 4.00 4.00 4.00 3.89 3.62 0.97 0.97 0.97 0.93 0.85 0.97
SPC 50 200 4 0 0 0 4.00 4.00 4.00 3.91 3.70 0.97 0.97 0.97 0.95 0.87 0.97
SPC 100 200 4 0 0 0 4.00 4.00 4.00 3.90 3.63 0.98 0.98 0.98 0.96 0.88 0.98
SPC 150 200 4 0 0 0 4.00 4.00 4.00 3.89 3.66 0.99 0.99 0.99 0.96 0.89 0.99

Post-SPC 25 50 4 0 0 0 4.00 4.00 4.06 3.87 3.56 0.94 0.94 0.94 0.89 0.78 0.94
Post-SPC 25 100 4 0 0 0 4.00 4.00 4.00 3.88 3.57 0.94 0.94 0.94 0.91 0.81 0.94
Post-SPC 50 100 4 0 0 0 4.00 4.00 4.00 3.88 3.62 0.97 0.97 0.97 0.93 0.85 0.97
Post-SPC 50 200 4 0 0 0 4.00 4.00 4.00 3.91 3.68 0.97 0.97 0.97 0.95 0.88 0.97
Post-SPC 100 200 4 0 0 0 4.00 4.00 4.00 3.89 3.65 0.98 0.98 0.98 0.96 0.88 0.98
Post-SPC 150 200 4 0 0 0 4.00 4.00 4.00 3.89 3.63 0.99 0.99 0.99 0.96 0.88 0.99

PC 25 50 4 0.5 1 0 8.00 7.71 8.00 5.02 4.12 0.73 0.71 0.73 0.59 0.47 0.54
PC 25 100 4 0.5 1 0 8.00 7.97 8.00 5.44 4.38 0.68 0.68 0.68 0.59 0.47 0.53
PC 50 100 4 0.5 1 0 7.14 4.26 8.00 5.21 4.59 0.80 0.72 0.81 0.74 0.64 0.73
PC 50 200 4 0.5 1 0 5.61 4.24 8.00 5.15 4.71 0.79 0.77 0.81 0.77 0.68 0.77
PC 100 200 4 0.5 1 0 4.13 4.00 8.00 4.31 4.19 0.89 0.89 0.91 0.87 0.79 0.89
PC 150 200 4 0.5 1 0 4.03 4.00 8.00 4.15 4.04 0.93 0.93 0.94 0.90 0.83 0.93

SPC 25 50 4 0.5 1 0 4.15 2.26 7.52 4.69 3.87 0.50 0.35 0.69 0.55 0.45 0.52
SPC 25 100 4 0.5 1 0 7.04 5.70 7.97 5.30 4.38 0.63 0.57 0.67 0.58 0.47 0.53
SPC 50 100 4 0.5 1 0 3.27 2.59 6.21 4.97 4.36 0.63 0.54 0.75 0.71 0.61 0.70
SPC 50 200 4 0.5 1 0 3.94 3.71 5.84 5.00 4.55 0.74 0.72 0.78 0.75 0.66 0.76
SPC 100 200 4 0.5 1 0 4.00 3.98 4.43 4.22 4.08 0.89 0.88 0.89 0.86 0.78 0.89
SPC 150 200 4 0.5 1 0 4.00 4.00 4.35 4.07 3.99 0.92 0.92 0.92 0.90 0.82 0.92

Post-SPC 25 50 4 0.5 1 0 5.08 3.08 7.58 4.68 3.88 0.57 0.42 0.70 0.56 0.45 0.53
Post-SPC 25 100 4 0.5 1 0 7.51 6.53 7.96 5.38 4.47 0.66 0.62 0.68 0.59 0.48 0.53
Post-SPC 50 100 4 0.5 1 0 3.81 3.05 7.02 5.05 4.37 0.68 0.61 0.78 0.72 0.61 0.71
Post-SPC 50 200 4 0.5 1 0 4.21 3.90 6.96 5.09 4.62 0.76 0.75 0.80 0.76 0.68 0.76
Post-SPC 100 200 4 0.5 1 0 4.00 4.00 5.44 4.22 4.15 0.89 0.89 0.90 0.86 0.79 0.89
Post-SPC 150 200 4 0.5 1 0 4.00 4.00 5.40 4.04 3.94 0.93 0.93 0.93 0.90 0.82 0.93

Note: The results are based on 1,000 Monte Carlo replications.
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Figure A.1. Estimates of the third factor and associated loadings
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Notes: PSPC refers to Post-SPC. Fraction of non-zero loadings for (Post-)SPC: 0.130.

Figure A.2. Estimates of the fourth factor and associated loadings
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Notes: PSPC refers to Post-SPC. Fraction of non-zero loadings for (Post-)SPC: 0.267.
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Figure A.3. Estimates of the fifth factor and associated loadings
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Notes: PSPC refers to Post-SPC. Fraction of non-zero loadings for (Post-)SPC: 0.328.

Figure A.4. Estimates of the sixth factor and associated loadings
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Notes: PSPC refers to Post-SPC. Fraction of non-zero loadings for (Post-)SPC: 0.115.
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Figure A.5. Estimates of the seventh factor and associated loadings
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Notes: PSPC refers to Post-SPC. Fraction of non-zero loadings for (Post-)SPC: 0.405.

Figure A.6. Estimates of the eighth factor and associated loadings
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Notes: PSPC refers to Post-SPC. Fraction of non-zero loadings for (Post-)SPC: 0.092.
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Appendix: Data Description

The dataset used is from Ludvigson and Ng (2010) and can be downloaded from
their homepages. The full list of variables along with descriptions from Ludvigson
and Ng (2010) has been reproduced below. The majority of the variables are from the
Global Insights Basic Economics Database. The remaining variables are either from
The Conference Boards Indicators Database (TCB) or calculated by the authors using
Global Insights or TCB data (AC). Transforming the variables to be stationary is done
according to the transformation codes (TC): 1, no transformation; 2, first difference;
4, logarithms; 5, first difference of logarithms; 6, second difference of logarithms. In
addition to this the following abbreviations are used: SA, seasonally adjusted; NSA,
not seasonally adjusted; AR, annual rate; SAAR, seasonally adjusted at an annual rate.

Table A.5. Data description

No. Short name Mnemonic TC Description

1 PI ypr 5 Personal Income (AR, Bil. Chain 2000 $)
(TCB)

2 PI less transfers a0m051 5 Personal Income Less Transfer Payments (AR,
Bil. Chain 2000 $) (TCB)

3 Consumption cons_r 5 Real Personal Consumption Expenditures
(AC) (Bil. $) pi031 / gmdc

4 M&T sales mtq 5 Manufacturing And Trade Sales (Mil. Chain
1996 $) (TCB)

5 Retail sales a0m059 5 Sales Of Retail Stores (Mil. Chain 2000 $)
(TCB)

6 IP: total ips10 5 Industrial Production Index - Total Index
7 IP: products ips11 5 Industrial Production Index - Products, Total
8 IP: final prod ips299 5 Industrial Production Index - Final Products
9 IP: cons gds ips12 5 Industrial Production Index - Consumer

Goods
10 IP: cons dble ips13 5 Industrial Production Index - Durable Con-

sumer Goods
11 IP: cons nondble ips18 5 Industrial Production Index - Nondurable

Consumer Goods
12 IP: bus eqpt ips25 5 Industrial Production Index - Business Equip-

ment
13 IP: matls ips32 5 Industrial Production Index - Materials
14 IP: dble matls ips34 5 Industrial Production Index - Durable Goods

Materials
15 IP: nondble matls ips38 5 Industrial Production Index - Nondurable

Goods Materials
16 IP: mfg ips43 5 Industrial Production Index - Manufacturing

(Sic)
17 IP: res util ips307 5 Industrial Production Index - Residential

Utilities
18 IP: fuels ips306 5 Industrial Production Index - Fuels
19 NAPM prodn pmp 1 Napm Production Index (Percent)
20 Cap util utl11 2 Capacity Utilization (SIC-Mfg) (TCB)
21 Help wanted indx lhel 2 Index Of Help-Wanted Advertising In News-

papers (1967=100;Sa)
22 Help wanted/emp lhelx 2 Employment: Ratio; Help-Wanted Ads:No.

Unemployed Clf
23 Emp CPS total lhem 5 Civilian Labor Force: Employed, Total

(Thous.,Sa)
24 Emp CPS nonag lhnag 5 Civilian Labor Force: Employed, Nona-

gric.Industries (Thous.,Sa)
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Table A.5. Data description (continued)

No. Short name Mnemonic TC Description

25 U: all lhur 2 Unemployment Rate: All Workers, 16 Years &
Over (%,Sa)

26 U: mean duration lhu680 2 Unemploy. By Duration: Average (Mean)
Duration In Weeks (Sa)

27 U < 5 wks lhu5 5 Unemploy.By Duration: Persons Un-
empl.Less Than 5 Wks (Thous.,Sa)

28 U 5–14 wks lhu14 5 Unemploy.By Duration: Persons Unempl.5 To
14 Wks (Thous.,Sa)

29 U 15+ wks lhu15 5 Unemploy.By Duration: Persons Unempl.15
Wks+ (Thous.,Sa)

30 U 15–26 wks lhu26 5 Unemploy.By Duration: Persons Unempl.15
To 26 Wks (Thous.,Sa)

31 U 27+ wks lhu27 5 Unemploy.By Duration: Persons Unempl.27
Wks+ (Thous,Sa)

32 UI claims claimuii 5 Average Weekly Initial Claims, Unemploy.
Insurance (Thous.) (TCB)

33 Emp: total ces002 5 Employees On Nonfarm Payrolls: Total Pri-
vate

34 Emp: gds prod ces003 5 Employees On Nonfarm Payrolls - Goods-
Producing

35 Emp: mining ces006 5 Employees On Nonfarm Payrolls - Mining
36 Emp: const ces011 5 Employees On Nonfarm Payrolls - Construc-

tion
37 Emp: mfg ces015 5 Employees On Nonfarm Payrolls - Manufac-

turing
38 Emp: dble gds ces017 5 Employees On Nonfarm Payrolls - Durable

Goods
39 Emp: nondbles ces033 5 Employees On Nonfarm Payrolls - Non-

durable Goods
40 Emp: services ces046 5 Employees On Nonfarm Payrolls - Service-

Providing
41 Emp: TTU ces048 5 Employees On Nonfarm Payrolls - Trade,

Transportation, And Utilities
42 Emp: wholesale ces049 5 Employees On Nonfarm Payrolls - Wholesale

Trade.
43 Emp: retail ces053 5 Employees On Nonfarm Payrolls - Retail

Trade
44 Emp: FIRE ces088 5 Employees On Nonfarm Payrolls - Financial

Activities
45 Emp: Govt ces140 5 Employees On Nonfarm Payrolls - Govern-

ment
46 Avg hrs ces151 1 Avg Weekly Hrs of Prod or Nonsup Work-

ers On Private Nonfarm Payrolls - Goods-
Producing

47 Overtime: mfg ces155 2 Avg Weekly Hrs of Prod or Nonsup Workers
On Private Nonfarm Payrolls - Mfg Overtime
Hours

48 Avg hrs: mfg a0m001 1 Average Weekly Hours, Mfg. (Hours) (TCB)
49 NAPM empl pmemp 1 Napm Employment Index (Percent)
50 Starts: nonfarm hsfr 4 Housing Starts:Nonfarm(1947-58);Total Farm

& Nonfarm(1959-)(Thous.,Saar)
51 Starts: NE hsne 4 Housing Starts:Northeast (Thous.U.)S.A.
52 Starts: MW hsmw 4 Housing Starts:Midwest(Thous.U.)S.A.
53 Starts: South hssou 4 Housing Starts:South (Thous.U.)S.A.
54 Starts: West hswst 4 Housing Starts:West (Thous.U.)S.A.
55 BP: total hsbr 4 Housing Authorized: Total New Priv Housing

Units (Thous.,Saar)
56 BP: NE hsbne 4 Houses Authorized By Build. Per-

mits:Northeast(Thou.U.)S.A
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Table A.5. Data description (continued)

No. Short name Mnemonic TC Description

57 BP: MW hsbmw 4 Houses Authorized By Build. Per-
mits:Midwest(Thou.U.)S.A.

58 BP: South hsbsou 4 Houses Authorized By Build. Per-
mits:South(Thou.U.)S.A.

59 BP: West hsbwst 4 Houses Authorized By Build. Per-
mits:West(Thou.U.)S.A.

60 PMI pmi 1 Purchasing Managers’ Index (Sa)
61 NAPM new ordrs pmno 1 Napm New Orders Index (Percent)
62 NAPM vendor del pmdel 1 Napm Vendor Deliveries Index (Percent)
63 NAPM Invent pmnv 1 Napm Inventories Index (Percent)
64 Orders: cons gds a1m008 5 Mfrs’ New Orders, Consumer Goods And

Materials (Mil. $) (TCB)
65 Orders: dble gds a0m007 5 Mfrs’ New Orders, Durable Goods Industries

(Bil. Chain 2000 $) (TCB)
66 Orders: cap gds a0m027 5 Mfrs’ New Orders, Nondefense Capital Goods

(Mil. Chain 1982 $) (TCB)
67 Unf orders: dble a1m092 5 Mfrs’ Unfilled Orders, Durable Goods Indus.

(Bil. Chain 2000 $) (TCB)
68 M&T invent a0m070 5 Manufacturing And Trade Inventories (Bil.

Chain 2000 $) (TCB)
69 M&T invent/sales a0m077 2 Ratio, Mfg. And Trade Inventories To Sales

(Based On Chain 2000 $) (TCB)
70 M1 fm1 6 Money Stock: M1 (Curr, Trav.Cks, Dem Dep,

Other Ck’able Dep) (Bil. $,Sa)
71 M2 fm2 6 Money Stock: M2 (M1+O’nite Rps, Euro$,

G/P&B/D & Mmmfs&Sav& Sm Time Dep (Bil.
$, Sa)

72 Currency fmscu 6 Money Stock: Currency held by the public
(Bil. $,Sa)

73 M2 (real) fm2_r 5 Money Supply: Real M2, fm2 / gmdc (AC)
74 MB fmfba 6 Monetary Base, Adj For Reserve Requirement

Changes (Mil. $,Sa)
75 Reserves tot fmrra 6 Depository Inst Reserves:Total, Adj For Re-

serve Req Chgs(Mil. $,Sa)
76 Reserves nonbor fmrnba 6 Depository Inst Reserves:Nonborrowed,Adj

Res Req Chgs(Mil. $,Sa)
77 C&I loans fclnbw 6 Commercial & Industrial Loans Outstanding

+ NonFin Comm. Paper(Mil. $,Sa)
78 C&I loans fclbmc 1 Wkly Rp Lg Com’l Banks:Net Change Com’l &

Indus Loans(Bil. $,Saar)
79 Cons credit ccinrv 6 Consumer Credit Outstanding - Nonrevolv-

ing(G19)
80 Inst cred/PI ccipy 2 Ratio, Consumer Installment Credit To Per-

sonal Income (Pct.) (TCB)
81 S&P 500 fspcom 5 S&P’s Common Stock Price Index: Composite

(1941-43=10)
82 S&P: indust fspin 5 S&P’s Common Stock Price Index: Industrials

(1941-43=10)
83 S&P div yield fsdxp 2 S&P’s Composite Common Stock: Dividend

Yield (% Per Annum)
84 S&P PE ratio fspxe 5 S&P’s Composite Common Stock: Price-

Earnings Ratio (%,Nsa)
85 Fed Funds fyff 2 Interest Rate: Federal Funds (Effective) (%

Per Annum,Nsa)
86 Comm paper cp90 2 Commercial Paper Rate
87 3 mo T-bill fygm3 2 Interest Rate: U.S.Treasury Bills,Sec Mkt,3-

Mo.(% Per Ann,Nsa)
88 6 mo T-bill fygm6 2 Interest Rate: U.S.Treasury Bills,Sec Mkt,6-

Mo.(% Per Ann,Nsa)
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Table A.5. Data description (continued)

No. Short name Mnemonic TC Description

89 1 yr T-bond fygt1 2 Interest Rate: U.S.Treasury Const
Maturities,1-Yr.(% Per Ann,Nsa)

90 5 yr T-bond fygt5 2 Interest Rate: U.S.Treasury Const
Maturities,5-Yr.(% Per Ann,Nsa)

91 10 yr T-bond fygt10 2 Interest Rate: U.S.Treasury Const
Maturities,10-Yr.(% Per Ann,Nsa)

92 Aaa bond fyaaac 2 Bond Yield: Moody’s Aaa Corporate (% Per
Annum)

93 Baa bond fybaac 2 Bond Yield: Moody’s Baa Corporate (% Per
Annum)

94 CP-FF spread scp90 1 cp90-fyff (AC)
95 3 mo-FF spread sfygm3 1 fygm3-fyff (AC)
96 6 mo-FF spread sfygm6 1 fygm6-fyff (AC)
97 1 yr-FF spread sfygt1 1 fygt1-fyff (AC)
98 5 yr-FF spread sfygt5 1 fygt5-fyff (AC)
99 10 yr-FF spread sfygt10 1 fygt10-fyff (AC)
100 Aaa-FF spread sfyaaac 1 fyaaac-fyff (AC)
101 Baa-FF spread sfybaac 1 fybaac-fyff (AC)
102 Ex rate: avg exrus 5 United States;Effective Exchange

Rate(Merm)(Index No.)
103 Ex rate: Switz exrsw 5 Foreign Exchange Rate: Switzerland (Swiss

Franc Per U.S.$)
104 Ex rate: Japan exrjan 5 Foreign Exchange Rate: Japan (Yen Per U.S.$)
105 Ex rate: UK exruk 5 Foreign Exchange Rate: United Kingdom

(Cents Per Pound)
106 Ex rate: Canada exrcan 5 Foreign Exchange Rate: Canada (Canadian $

Per U.S.$)
107 PPI: fin gds pwfsa 6 Producer Price Index: Finished Goods

(82=100,Sa)
108 PPI: cons gds pwfcsa 6 Producer Price Index: Finished Consumer

Goods (82=100,Sa)
109 PPI: int materials pwimsa 6 Producer Price Index: Intermed Mat.Supplies

& Components(82=100,Sa)
110 PPI: crude matls pwcmsa 6 Producer Price Index: Crude Materials

(82=100,Sa)
111 Spot market price psccom 6 Spot market price index: bls & crb: all com-

modities(1967=100)
112 PPI: nonferrous matls pw102 6 Producer Price Index: Nonferrous Materials

(1982=100, Nsa)
113 NAPM com price pmcp 1 Napm Commodity Prices Index (Percent)
114 CPI-U: all punew 6 Cpi-U: All Items (82-84=100,Sa)
115 CPI-U: apparel pu83 6 Cpi-U: Apparel & Upkeep (82-84=100,Sa)
116 CPI-U: transp pu84 6 Cpi-U: Transportation (82-84=100,Sa)
117 CPI-U: medical pu85 6 Cpi-U: Medical Care (82-84=100,Sa)
118 CPI-U: comm. puc 6 Cpi-U: Commodities (82-84=100,Sa)
119 CPI-U: dbles pucd 6 Cpi-U: Durables (82-84=100,Sa)
120 CPI-U: services pus 6 Cpi-U: Services (82-84=100,Sa)
121 CPI-U: ex food puxf 6 Cpi-U: All Items Less Food (82-84=100,Sa)
122 CPI-U: ex shelter puxhs 6 Cpi-U: All Items Less Shelter (82-84=100,Sa)
123 CPI-U: ex med puxm 6 Cpi-U: All Items Less Midical Care (82-

84=100,Sa)
124 PCE defl gmdc 6 Pce, Impl Pr Defl:Pce (2000=100) (AC) (BEA)
125 PCE defl: dlbes gmdcd 6 Pce, Impl Pr Defl:Pce; Durables (2000=100)

(AC) (BEA)
126 PCE defl: nondble gmdcn 6 Pce, Impl Pr Defl:Pce; Nondurables

(2000=100) (AC) (BEA)
127 PCE defl: service gmdcs 6 Pce, Impl Pr Defl:Pce; Services (2000=100)

(AC) (BEA)
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Table A.5. Data description (continued)

No. Short name Mnemonic TC Description

128 AHE: goods ces275 6 Avg Hourly Earnings of Prod or Nonsup Work-
ers On Private Nonfarm – Goods-Producing

129 AHE: const ces277 6 Avg Hourly Earnings of Prod or Nonsup
Workers On Private Nonfarm – Construction

130 AHE: mfg ces278 6 Avg Hourly Earnings of Prod or Nonsup Work-
ers On Private Nonfarm – Manufacturing

131 Consumer expect hhsntn 2 U. Of Mich. Index Of Consumer Expectations
(Bcd-83)
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