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ORACLE INEQUALITIES FOR HIGH-DIMENSIONAL PANEL DATA

MODELS

ANDERS BREDAHL KOCK
AARHUS UNIVERSITY AND CREATES

Abstract. This paper is concerned with high-dimensional panel data models where
the number of regressors can be much larger than the sample size. Under the assumption

that the true parameter vector is sparse we establish finite sample upper bounds on the

estimation error of the Lasso under two different sets of conditions on the covariates
as well as the error terms. Upper bounds on the estimation error of the unobserved

heterogeneity are also provided under the assumption of sparsity. Next, we show that
our upper bounds are essentially optimal in the sense that they can only be improved
by multiplicative constants. These results are then used to show that the Lasso can

be consistent in even very large models where the number of regressors increases at
an exponential rate in the sample size. Conditions under which the Lasso does not
discard any relevant variables asymptotically are also provided.

In the second part of the paper we give lower bounds on the probability with which
the adaptive Lasso selects the correct sparsity pattern in finite samples. These results
are then used to give conditions under which the adaptive Lasso can detect the correct

sparsity pattern asymptotically. We illustrate our finite sample results by simulations
and apply the methods to search for covariates explaining growth in the G8 countries.

Key words: Panel data, Lasso, Adaptive Lasso, Oracle inequality, Nonasymptotic

bounds, High-dimensional models, Sparse models, Consistency, Variable selection,
Asymptotic sign consistency.
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1. Introduction

When building an econometric model one of the first decisions one has to make is
which variables are to be included in the model and which are to be left out. Often this
decision is made based on economic theory but different theories might suggest different
explanatory variables and this leaves the researcher with a large set of potential variables.
In fact, one may often have access to many more variables than observations rendering
standard techniques inapplicable. Since this kind of high-dimensional data is becoming
increasingly available, the last 10-15 years have witnessed a great deal of research into
procedures that can handle such data sets. In particular, a lot of attention has been
given to penalized estimators. The Lasso of Tibshirani (1996) is the most prominent
of these procedures and a lot of subsequent research has focussed on investigating the
theoretical properties of the Lasso, see Zhao and Yu (2006), Meinshausen and Bühlmann
(2006), Bickel et al. (2009), Belloni and Chernozhukov (2011) and Bühlmann and Van
De Geer (2011) to mention just a few. Many other procedures have been investigated as
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well: the SCAD of Fan and Li (2001), the Adaptive LASSO of Zou (2006), the Bridge and
Marginal Bridge estimators of Huang et al. (2008), the Dantzig selector of Candes and
Tao (2007), the Sure Independence Screening of Fan and Lv (2008) and the square root
LASSO of Belloni et al. (2011). These procedures have become popular since they are
computationally feasible and perform variable selection and parameter estimation at the
same time.

Most focus in the literature has been on the standard linear regression model. However,
often objects (such as individuals, firms or countries) are sampled repeatedly over time
resulting in a panel data set. Since these data sets may often contain many variables it
is important to have procedures that can deal with them in a theoretically sound and
computationally feasible manner. In this paper we make a step in that direction by
investigating the properties of the Lasso and the adaptive Lasso in the linear fixed effects
panel data model

yi,t = x′i,tβ
∗ + c∗i + εi,t, i = 1, ..., N, t = 1, ..., T(1)

where xi,t is a pN,T × 1 vector of covariates and where pN,T is indexed by N and T to
indicate that the number of covariates can increase in the sample size. In the sequel we
shall omit this indexation. The c∗i s are the unobserved time homogeneous heterogeneitys
(such as intelligence of a person) while the εi,t are the error terms about which we shall
be more specific later. Even though economic theory may guide the researcher towards a
set of potential explanatory variables to be included in xi,t, large data sets are becoming
increasingly available nowadays and one may not want to take a strong stand a priori on
which variables to include in the model and which to leave out. This implies that xi,t can
be a very long vector – potentially much longer than the sample size. On the other hand,
only a few variables in xi,t might be relevant for explaining yi,t meaning that the vector
β∗ is sparse.

Oftent the unobserved heterogeneity ci,t is simply removed by a differencing or demean-
ing procedure. However, just like β∗, c∗ = (c∗1, ..., c

∗
N ) might be a sparse vector. Example

of this could be intelligence only having an effect for certain individuals when modeling
income or the culture of a country when modeling its growth. It is our goal to investigate
the properties of the Lasso for fixed effects panel data models in such situations. We shall
see that the Lasso can estimate the two parameter vectors almost as precisely as if the true
sparsity pattern had been known and only the relevant variables had been included from
the outset. For the adaptive Lasso we show that it selects the correct sparsity pattern
with high probability. In particular, we

(1) provide nonasymptotic oracle inequalities for the estimation error of the Lasso for
β∗ and c∗ under different sets of moment/tail assumptions on the covariates and
the error terms. More precisely, for a given sample size we provide upper bounds
on the estimation error which hold with at least a certain probability. In the first
of our settings we allow for much heavier tails than the usual sub-gaussian ones.

(2) show that our bounds are optimal in the sense that they can at most be improved
by a multiplicative constant.

(3) use the nonasymptotic bounds to give a set of sufficient conditions under which
the Lasso estimates β∗ and c∗ consistently. It turns out that the Lasso can be
consistent in even very high-dimensional models. We also provide conditions
under which the Lasso does not discard any relevant variables, i.e. conditions
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under which it can be used as a strong initial screening device removing irrelevant
variables and thus reducing the dimension of the model.

(4) establish nonasymptotic lower bounds on the probability with which the adaptive
Lasso unveils the correct sparsity pattern.

(5) use the nonasymptotic bounds to give conditions under which the adaptive Lasso
detects the correct sparsity pattern asymptotically.

(6) propose an efficient algorithm to implement the Lasso and the adaptive Lasso in
panel data models which reduces the estimation problem to a standard Lasso one.

(7) introduce a new restricted eigenvalue condition similar in spirit to Bickel et al.
(2009) and show how this can be valid even for data with non-gaussian, non-
independent rows, hence extending the work of Raskutti et al. (2010) and Vershynin
(2011). The proof of our Theorem 1 is also different than the one for the plain
cross sectional model due to the presence of two parameter vectors which have to
be treated separately.

(8) illustrate the methods by means of simulations and a real data example.

We believe that these results will be very useful for applied researchers since they provide
tools with which very large panel data sets can be handled in a theoretically sound way
without reducing the dimension of the model in an ad hoc way prior to estimation.

The rest of the paper is organized as follows: Section 2 introduces relevant notation
and the panel Lasso. Section 3 provides a range of non-asymptotic oracle inequalities for
the Lasso while Section 4 uses these inequalities to give asymptotic results for it. Next,
Section 5 is concerned with finite sample probabilities of the adaptive Lasso selecting the
correct sparsity pattern. It also gives sufficient conditions for when this probability tends
to one asymptotically. Section 6 provides a simulation study while Section 7 contains an
application to growth in the G8 countries. Finally, Section 8 concludes while all proofs
are deferred to the appendix.

2. Setup and notation

Let J1 = {j : β∗j 6= 0} ⊆ {1, ..., p} and J2 = {i : c∗i 6= 0} ⊆ {1, ..., N} be the sets of
active covariates and unobserved heterogeneities, respectively. βmin = min {|β∗j | : j ∈ J1}
and cmin = min {|c∗j | : j ∈ J2} are the smallest nonzero entries of β∗ and c∗, respectively.

Denote by γ∗ = (β∗′, c∗′)′ and J = J1 ∪ J2 ⊆ {1, ..., N + p}1. For any set A, |A| denotes
its cardinality while Ac denotes its complement. In particular, |J1| = s1, |J2| = s2 and
|J | = s.

For any x ∈ Rn, ‖x‖ =
√∑n

i=1 x
2
i , ‖x‖`1 =

∑n
i=1 |xi| and ‖x‖`∞ = max1≤i≤n |xi|

denote `2, `1 and `∞ norms, respectively. For a random variable U , ‖U‖Lr = (E|U |r)1/r

denotes its Lr-norm and for a symmetric square matrix M , φmin(M) and φmax(M) denote
the minimal and maximal eigenvalues of M .

For any vector x ∈ Rn and subset A of {1, ..., n}, xJ denotes the vector in R|J| only
consisting of the elements indexed by A. For a matrix R, RA denotes the submatrix only
containing the columns indexed by A while RA,B denotes the submatrix with rows indexed
by A and columns indexed by B. Next, for any two real numbers a and b, a∧ b = min(a, b)
and a ∨ b = max(a, b). For any x ∈ Rn, sign(x) denotes the sign function applied to each
component of x.

1Here J1 ∪ J2 is understood as J1 ∪ (J2 + p) where J2 + p = {s = r + p : r ∈ J2} such that J1 ∪ J2 ⊆
{1, ..., p+N}. J shall be used to index p+N × 1 vectors.
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Since our primary focus is high-dimensional models we shall sometimes tacitly assume
that p,N ≥ e for the sole reason of keeping the presentation simple.

Define Xi = (xi,1, ..., xi,T )′ and X = (X ′1, ..., X
′
N )′. Letting ι denote the T × 1 vector of

ones, set D = IN ⊗ ι (where ⊗ denotes the Kronecker product) and define the NT × (p+k)
matrix Z = (X,D). We shall refer to the jth column of X by xj , j = 1, ..., p and to the
ith column of D by di, i = 1, ..., N . Defining yi = (yi,1, ..., yi,T )′ and εi = (εi,1, ..., εi,T )′

for i = 1, ..., N and setting y = (y′1, ..., y
′
N )′ as well as ε = (ε′1, ..., ε

′
N )′ one may equivalently

write (1) as

y = Zγ∗ + ε.

The properly scaled Gram matrix of Z will turn out to play an important role in the
sequel.

2.1. The panel Lasso. The panel Lasso estimates γ∗ = (β∗′, c∗′)′ by minimizing the
following objective function

L(β, c) =

N∑
i=1

T∑
t=1

(
yi,t − x′i,tβ − ci

)2
+ 2λN,T

p∑
k=1

|βk|+ 2µN,T

N∑
i=1

|ci|(2)

=‖y − Zγ‖2 + 2λN,T ‖β‖`1 + 2µN,T ‖c‖`1 .(3)

The Lasso estimator, denoted γ̂ = (β̂′, ĉ′)′, is the solution of a minimization problem which
is the sum of the usual least squares objective function plus two terms that penalize βk
and ci for being different from 0. The size of the penalty is determined by the sequences

λN,T and µN,T . The larger these are, the more will the entries of β̂ and ĉ be shrunk
towards zero. As will be seen later, two different regularization sequences (λN,T and µN,T )

are needed to establish desirable properties of γ̂ = (β̂′, ĉ′)′. On an intuitive level this is
due to the fact that the number of effective observations for each βk, k = 1, ..., p is NT
while it only is T for each ci i = 1, ..., N .

2.2. The panel restricted eigenvalue condition. Since we are primarily interested
high-dimensional models the properly scaled Gram matrix of Z will often be ill-behaved
or even singular. However, Bickel et al. (2009) observed for the standard linear regression
model that the Lasso does not need the smallest eigenvalue of the scaled Grammian of Z
to be strictly positive on order to derive useful upper bounds on the estimation error. In
particular, it suffices that a so-called restricted eigenvalue is bounded away from 0. We
shall see next that a similar, though slightly more involved, observation can be made for
the panel Lasso.

Let S =
(√NT Ip 0

0
√
T IN

)
and set ψN,T = S−1Z ′ZS−1. If p+N > NT it is well known

that

min
δ∈Rp+N\{0}

δ′ΨN,T δ

‖δ‖2
= min
δ∈Rp+N\{0}

‖ZS−1δ‖2

‖δ‖2
= 0.

In this case ordinary least squares is infeasible. However, for the Lasso it turns out that
we do not need to minimize the above Rayleigh-Ritz ratio over all of Rp+N – it suffices to
minimize over a subset implying that the minimum can be non-zero even when ΨN,T is

not of full rank. More precisely, letting δ1 be p× 1 and δ2 be N × 1 with δ = (δ1′, δ2′)′
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and R1 ⊆ {1, ..., p} as well as R2 ⊆ {1, ..., N} we define the RE(r1, r2) panel restricted
eigenvalue as

κ2
ψN,T (r1, r2) = min

{∥∥ZS−1δ
∥∥2

‖δ‖2
: δ ∈ Rp+N \ {0} , |R1| ≤ r1, |R2| ≤ r2,

λN,T√
NT

∥∥δ1
Rc1

∥∥
`1

+
µN,T√
T

∥∥δ2
Rc2

∥∥
`1
≤ 3

λN,T√
NT

∥∥δ1
R1

∥∥
`1

+ 3
µN,T√
T

∥∥δ2
R2

∥∥
`1

}
> 0.(4)

The panel restricted eigenvalue condition looks similar to the one introduced in Bickel
et al. (2009). It extends it in that it allows for different penalty sequences for the two
groups of parameters. Similarly, for

Γ =
(
E
(
X′X
NT

)
0

0 IN

)
define

κ2(r1, r2) = min

{
δ′Γδ

‖δ‖2
: δ ∈ Rp+N \ {0} , |R1| ≤ r1, |R2| ≤ r2,

λN,T√
NT

∥∥δ1
Rc1

∥∥
`1

+
µN,T√
T

∥∥δ2
Rc2

∥∥
`1
≤ 3

λN,T√
NT

∥∥δ1
R1

∥∥
`1

+ 3
µN,T√
T

∥∥δ2
R2

∥∥
`1

}
.

Note that for κ2 > 0 it suffices that Γ is of full rank which is a rather standard assumption
and independent of whether p+N < NT or not. I turns out that in order to get tight
upper bounds on the estimation error of the Lasso κ2

ΨN,T
should be as large as possible. In

Lemma 5 in the appendix we show that κ2
ΨN,T

is close to κ2 if ΨN,T is close to Γ. Hence,

it suffices that κ2 is bounded away from zero and that ΨN,T is close to Γ in order to
bound κ2

ΨN,T
away from 0 with high probability. In Lemmata 6 and 7 in the Appendix

lower bounds on the probability with which κ2
ΨN,T

> κ2/2 are provided using this idea

for heavy- and light-tailedness assumptions on the covariates and the error terms. While
the results for light-tailed (sub-gaussian) variables in Lemma 7 are to be expected in the
light of previous results in the literature (see e.g. Vershynin (2011)) the results on more
heavy-tailed random variables in Lemma 6 are to our knowledge new.

3. Results for the Lasso

Before stating our first result we introduce the following two sets

AN,T =
{
‖X ′ε‖`∞ ≤

λN,T
2

, ‖D′ε‖`∞ ≤
µN,T

2

}
and BN,T =

{
κ2

ΨN,T ≥ κ
2/2
}
.

The set AN,T is the set where none of the covariates X or D are too highly correlated with
the error term. This requirement limits the number of variables in X and D. Working
on the set BN,T means restricting attention to settings where the restricted eigenvalue of
ΨN,T is not too small.

Theorem 1 gives upper bounds on the estimation error of the Lasso on AN,T ∩ BN,T
and will be our main tool to derive further bounds under more specific assumptions on
the covariates and the error terms. It is worth emphasizing that it is a purely algebraic
result without any probabilities attached to it yet.
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Theorem 1. On AN,T ∩ BN,T with κ2 > 0 one has for any positive sequences λN,T and
µN,T ∥∥β̂ − β∗∥∥ ≤ 8λN,T

√
s1

κ2NT
+

4µN,T
√
s2

κ2
√
NT

(5)

and ∥∥ĉ− c∗∥∥ ≤ 8µN,T
√
s2

κ2T
+

4λN,T
√
s1

κ2
√
NT

.(6)

We stress that the claims in Theorem 1 are deterministic. Probabilities will be attached
to the bounds once we have made statistical assumptions on the covariates and the error
terms.

The bounds in Theorem 1 reveal that the further κ2 is away from zero the more precisely
can one estimate the parameters of the model. This is reasonable since it means that
the problem is in some sense far from a singular one. However, the set BN,T is clearly
decreasing in κ2, revealing a tradeoff between the sharpness of the upper bounds on the
estimation error and the size of the set on which the bounds hold. The same tradeoff is
present for λN,T and µN,T – the set AN,T is increasing in both of these but the same is
true for the upper bounds on the estimation error. Put differently, small values of λN,T
and µN,T give tight bounds on the estimation error but the bounds are only valid on a
smaller set. Our next two theorems investigate the tradeoff further under different sets of
assumptions on the tail behaviour of the covariates and the error terms. First, we shall
put forward the statistical assumptions of the panel data model:

A1 a) {Xi, εi}Ni=1 are identically and independently distributed
b) Xi and εi are independent for i = 1, ..., N

c) {ε1,t}Tt=1 are independent with mean zero.

Assumption A1a) is standard in the panel data literature, see e.g. Wooldridge (2002) or
Arellano (2003). Part b) is also relatively standard but slightly stronger than E(εit|Xi) = 0
which is often assumed. However, for most applied work involving panel data it is
hard to come up with realistic examples where E(εit|Xi) = 0 but Xi and εi are not

independent2. A1c) is standard. Note that we are not assuming that {ε1,t}Tt=1 are
identically distributed. In particular, they may be heteroscedastic. Put differently, for
every i = 1, ..., N (εi,1, ..., εi,T ) is distributed the same way, but the marginal distributions
of the individual elements may be non-identical.

Furthermore, the upper bounds on the estimation errors in (5) and (6) as well as the
probability with which they hold, depend on the number of moments the error terms and
covariates possess. We shall give results under two different sets of conditions.

A2a) E(|x1,t,k|r), E(|ε1,t|r) <∞ for some r ≥ 2 and t = 1, ..., T, k = 1, ..., p. Actually,
we shall assume max1≤t≤T E|x1,t,k|r ≤ 1 for all k = 1, ..., p.

Assumption A2a) is a moment assumption stating that the covariates as well as the
error terms possess r moments. max1≤t≤T E|x1,t,k| ≤ 1 for all k = 1, ..., p is merely a
normalization for technical convenience and to keep expressions simple. All results remain
valid without this normalization.

2Of course it is possible to construct examples where E(εit|Xi) = 0 but Xi and εi are not independent.
See e.g. Stoianov (1997).
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A2b) x1,t,k and ε1,t are uniformly subgaussian, i.e. there exist constants C and K such

that P (|x1,t,k| ≥ t) , P (|ε1,t| ≥ t) ≤ 1
2Ke

−Ct2 for all 1 ≤ t ≤ T and 1 ≤ k ≤ p.
Assumption A2b) controls the tail behaviour of the covariates and the error terms (and
hence also its moments). It is a standard assumption in the high-dimensional statistics
literature and much more restrictive than A2a) which only assumes the existence of r
moments. However, we will see that the dimension of the models considered can be a lot
larger under A2b) than under A2a).

We are now ready to transform the deterministic statement in Theorem 1 into proba-
bilistic ones. We stress that the bounds below are finite sample bounds, i.e. for a given
sample size we provide upper bounds on the estimation error that hold with at least a
certain probability. First, we work under assumption A2a):

Theorem 2. Let assumption A1) and A2a) be satisfied and assume that κ2 > 0. Then,
choosing λN,T = 4aN,T p

1/r(NT )1/2 max1≤t≤T ‖ε1,t‖Lr and µN,T = 4aN,TN
1/rT 1/2 max1≤t≤T ‖ε1,t‖Lr

for any positive sequence aN,T one has P (AN,T ∩ BN,T ) ≥ 1−2
(

Cr
aN,T

)r
−Dr

(p2+Np)(s1+s2)r/2( pN ∨
N
p )

κrNr/4

for constants Cr and Dr only depending on r. Furthermore, with at least this probability
(i.e. on AN,T ∩ BN,T ), ∥∥β̂ − β∗∥∥ ≤ ξN,T√

NT
(7)

and ∥∥ĉ− c∗∥∥ ≤ ξN,T√
T

(8)

where ξN,T = 32aN,T max1≤t≤T ‖ε1,t‖Lr (p1/r√s1 +N1/r√s2) /κ2.

First, note that the more moments the covariates and the error terms possess (r
large) the smaller can λN,T and µN,T be chosen and hence the upper bounds on the
estimation error are smaller in accordance with Theorem 1. ξN,T may be interpreted as
the punishment on the convergence rate for not knowing the true model. Since aN,T will in
general be chosen to be an increasing sequence one sees that in the setting of fixed T, p, s1

and s2 the upper bound on
∥∥β̂ − β∗∥∥ is of the order aN,TN

1/r−1/2 (if κ2 is bounded away

from zero) which is not far from 1/
√
N if r is large and aN,T is increasing slowly.

If ε1,t is uniformly bounded in Lr, which is the case if they are e.g. identically dis-
tributed, then the term max1≤t≤T ‖ε1,t‖Lr can be disregarded in asymptotic considerations.

Furthermore, (8) confirms the well known fact that T must be large in order to estimate
c∗ precisely since there are only T observation per c∗i , i = 1, ..., N .

We also stress that Theorem 2 does not require sub-gaussianity of the covariates and
the error terms and in this respect it relaxes one of the standard assumptions in the
high-dimensional modeling literature. The next theorem is similar in spirit to Theorem 2
but strengthens the existence of r moments to sub-gaussian tails of the covariates as well
as the error terms, i.e. we invoke A2b) instead of A2a).

Theorem 3. Let assumption A1) and A2b) be satisfied and assume that κ2 > 0. Then,

choosing λN,T =
√

4NT log(p)3 log(aN,T )3 and µN,T =
√

4T log(N)3 log(aN,T )3 for any

sequence aN,T ≥ e one has P (AN,T ∩ BN,T ) ≥ 1 − Ap1−B log(aN,T ) − AN1−B ln(aN,T ) −
A(p2 + Np)e−B(t2N)1/3 for absolute constants A and B, t = κ2

(s1+s2)
(

ln(p)
ln(N)

∨ ln(N)
ln(p)

)3 and
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Nt2 ≥ 1. Furthermore, with at least this probability (i.e. on AN,T ∩ BN,T ),∥∥β̂ − β∗∥∥ ≤ ξN,T√
NT

(9)

and ∥∥ĉ− c∗∥∥ ≤ ξN,T√
T

(10)

where ξN,T = 16 log(aN,T )3/2
[
log(p)3/2√s1 + log(N)3/2√s2

]
/κ2.

The form of the upper bounds on the estimation errors is the same as in Theorem 2.
However, the definition of ξN,T has changed. In particular, ξN,T is now increasing slower
in the number of variables, p, in X and N in D, respectively. In the case where T, p, s1

and s2 are bounded the upper bound on
∥∥β̂ − β∗∥∥ is of order ln(aN,T )3/2 ln(N)3/2/

√
N

(if κ2 is bounded away from 0). In other words, the punishment for not knowing the true
model is now merely logartithmic in the sample size.

In lower bounding the probability of AN,T in Theorem 3 we have used a concentration
inequality for unbounded martingales due to Lesigne and Volnỳ (2001) which they show is
optimal.

So far, we have focussed on providing upper bounds on the estimation error. An obvious
question is now how tight these bounds are. It turns out that the established bounds are
indeed tight. In particular, we show next that no improvements can be made beyond
multiplicative constants. First, note that Theorem 3 implies that∥∥ST (γ̂ − γ∗)

∥∥ ≤ 2ξN,T(11)

with high probability3. The following theorem shows that the upper bound in (11) cannot
be improved in the case of gaussian error terms.

Theorem 4. Let A1) and A2b) be satisfied and assume that κ2 is bounded away from zero.
Assume that εi is N(0, σ2IT ) and φmin(ΓJ,J), κ2 are bounded from below and φmax(ΓJ,J)
is bounded from above. Choose λN,T and µN,T as in Theorem 3. Then when the Lasso
detects the correct sparsity pattern, it holds with probability at least 1 − exp(−c1|J |) −
A(p2 +Np)e−B(t2N)1/3 that ∥∥SJ,J(γ̂J − γ∗J)

∥∥ ≥ c2ξN,T(12)

for absolute constants c1, c2, A and B and t = κ2

(s1+s2)
(

ln(p)
ln(N)

∨ ln(N)
ln(p)

)3 as long as Nt2 ≥ 1

where ξN,T is as in Theorem 3.

Inequality (12) is the reverse inequality of (11) and shows that one cannot improve the
bounds in Theorem 3 except for multiplicative constants. Hence, our results are sharp
and we turn next towards the asymptotic implications of our finite sample bounds.

4. Asymptotic properties of the Lasso

In this section we show that the Lasso can estimate β∗ and c∗ consistently in even very
high-dimensional settings where the number of covariates increases exponentially in N . It
is also shown that no relevant variables will be discarded from the model as long as βmin

3To be precise, with at least the lower bound on P (AN,T ∩ BN,T ) provided in Theorem 3.
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and cmin do not tend to zero too fast. Let aN,T = N,T = Na, p = eN
b

and s1 = s2 = N c

for a, b, c ≥ 0. Then we have the following result which builds upon Theorem 3.

Theorem 5. Let assumptions A1) and A2b) be satisfied and assume that κ2 is bounded
away from zero. Then, if 9b+ 2c ≤ 1 as N →∞ one has with probability tending to one

(1) ∥∥β̂ − β∗∥∥→ 0 if 3b+ c < 1 + a∥∥ĉ− c∗∥∥→ 0 if 3b+ c < a

(2) β̂j will not be classified as zero for any j ∈ J1 if βmin > ξN,T /
√
NT . Similarly,

no ĉi will be classified as zero for i ∈ J2 if cmin > ξN,T /
√
T .

The first part of Theorem 5 shows that even when p increases exponentially in N , it is
possible for the Lasso to be consistent for β∗ as well as c∗. Put differently, the Lasso can
be consistent in even ultra high-dimensional models. However, and as can be expected,
one must have a > 0 in order to estimate c∗ consistently since only T = Na observations
are available to estimate each c∗i , i = 1, ..., N . In the case of standard large N asymptotics
(a = 0), the Lasso can still be consistent for β∗ as long as 9b + 2c ≤ 1. This is clearly
satisfied in the standard setting of fixed p, s1 and s2 (b = c = 0).

The second part of the theorem reveals that the Lasso can be used as a strong screening
device since no relevant variables will be excluded from the model if their coefficients
are not too close to zero. The necessity of such a ”beta-min” (or ”c-min”) condition
is not surprising since one cannot expect to be able to distinguish non-zero parameters
from zero ones if the distance between these is too small. It is not difficult to see that
in the standard large N setting of a = b = c = 0, the ”beta-min” condition requires
βmin ≥ log(N)3/

√
N . Hence, all non-zero parameters outside a disc centered at zero

with radius log(N)/
√
N will also be classified as non-zero by the Lasso. In the same

setting, the ”c-min” condition requires cmin ≥ ln(N)3 implying that in the limit only
ci ≥ ln(N)3, i ∈ J2 can be guaranteed to be classified as non-zero. Put differently, only
large c∗i can be guaranteed to be classified as non-zero. One must have a > 3b+ c in order
for this disc to have a radius which tends to zero, i.e. to make sure that any non-zero
c∗i will be classified as non-zero in fixed parameter asymptotics. The necessity of the
non-zero parameters being bounded away from zero is not surprising in the light of the
work of Pötscher and Leeb (2009) who document some of the limitations of the Lasso-type
estimators.

It is also worth mentioning that the conditions of Theorem 5 are merely sufficient. For
example it is also possible to let κ2 tend to zero at the price of slower growth rates in the
other variables without sacrificing consistency. Furthermore, one could also use Theorem
2 instead of Theorem 3 to deduce a theorem in the spirit of Theorem 5. Of course, the
models sizes would no longer be allowed to increase as fast as above.

5. The Adaptive Lasso

So far we have focussed on deriving upper bounds on the estimation error that hold with
high probability. Next, we turn to variable selection. The Lasso penalizes all parameters
equally much. This implies that it can only recover the correct sparsity pattern under
rather stringent assumptions. If one could penalize the truly zero parameters more than
the non-zero ones, one would expect a better performance. This idea was utilized by Zou
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(2006) to propose the adaptive Lasso in the standard linear regression model with a fixed
number of non-random regressors. He established that the adaptive Lasso can detect the
correct sparsity pattern asymptotically in such a setting. This motivates us to modify the
adaptive Lasso to make it applicable in the linear panel data model and to derive lower
bounds on the finite sample probabilities with which it selects the correct sparsity pattern.
The adaptive Lasso estimates β∗ and c∗ by minimizing the following objective function:

L̃(β, c) =

N∑
i=1

T∑
t=1

(
yi,t − x′i,tβ − ci

)2
+ λN,T

∑
k∈J1(β̂)

|βk|
|β̂k|

+ µN,T
∑

i∈J2(ĉ)

|ci|
|ĉi|

(13)

where J1(β̂) = {j : β̂j 6= 0} and J2(ĉ) = {i : ĉi 6= 0}. Denote the minimizers of L by β̃

and c̃, respectively. Note that if β̂j or ĉi equal zero, the corresponding variable is entirely
excluded from the model in the second step. Hence, the dimension of the second step
estimation can be of a much smaller order of magnitude than the first step estimation. If

β∗j = 0 then it follows by Theorems 2 and 3 that β̂j is likely to be small (or even 0) and

so the penalty on βj in (13) is large implying that β̃ is likely to be classified as being zero.
The reverse logic applies when β∗j 6= 0 (and similarly for c∗i ). Put differently, the adaptive
Lasso is a two-step estimator which uses more intelligent weights than the ordinary Lasso.
We shall see next, that these more intelligent weights imply that the adaptive Lasso can
select the correct sparsity pattern. As for the Lasso, we start with a purely deterministic
result to which we then attach probabilities by adding assumptions A1) and A2a) or A2b).
First, define the sets

C1,N,T =
{

max
k∈Jc1

max
l∈J1

1√
NT

N∑
i=1

T∑
t=1

xi,t,kxi,t,l ∨max
i∈J2

max
k∈Jc1

1√
T

T∑
t=1

xi,t,k ≤ K1,N,T

}
,

C2,N,T =
{

max
i∈Jc2

max
k∈J1

1√
T

T∑
t=1

xi,t,k ≤ K2,N,T

}
and DN,T =

{
φmin(ΨJ,J) ≥ φmin(ΓJ,J)/2

}
.

C1,N,T may be interpreted as the set where none of the irrelevant xj ’s has a too big inner
product (in `2), or covariance, with any of the relevant xj ’s or dummies in D. Similarly
C2,N,T is the set where none of the relevant dummies is too highly correlated with any of
the relevant xj ’s (all dummies are orthogonal by construction so no condition is needed
on their interdependence). On these sets, the problem is well-posed in the sense that the
relevant and irrelevant variables are not too highly correlated and hence we can distinguish
between them as we will see below. On the set DN,T , one basically has that ΨJ,J is
bounded away from singularity. With these definitions in place we may state the following
theorem.

Theorem 6. On AN,T ∩C1,N,T ∩DN,T ∩{‖β̂ − β∗‖ ≤ βmin/2}∩{‖ĉ− c∗‖ ≤ cmin/2} one

has sign(β̃) = sign(β∗) if

2
√
|J |

φmin(ΓJ,J)

(
λN,T

2
√
NT
∨ µN,T

2
√
T

+
2λN,T√
NTβmin

∨ 2µN,T√
Tcmin

)
≤
√
NTβmin(14)

2|J |K1,N,T

φmin(ΓJ,J)

(
λN,T

2
√
NT
∨ µN,T

2
√
T

+
2λN,T√
NTβmin

∨ 2µN,T√
Tcmin

)
+
λN,T

2
≤ λN,T

‖β̂ − β∗‖
.(15)
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Similarly, on AN,T ∩C2,N,T ∩DN,T ∩{‖β̂ − β∗‖ ≤ βmin/2}∩ {‖ĉ− c∗‖ ≤ cmin/2} one has
sign(c̃) = sign(c∗) if

2
√
|J |

φmin(ΓJ,J)

(
λN,T

2
√
NT
∨ µN,T

2
√
T

+
2λN,T√
NTβmin

∨ 2µN,T√
Tcmin

)
≤
√
Tcmin(16)

2|J |K2,N,T

φmin(ΓJ,J)

(
λN,T

2
√
NT
∨ µN,T

2
√
T

+
2λN,T√
NTβmin

∨ 2µN,T√
Tcmin

)
+
µN,T

2
≤ µN,T
‖ĉ− c∗‖

.(17)

Note that just as Theorem 1, Theorem 6 is purely deterministic. Inequality (14) is
sufficient to ensure that no relevant xj ’s are excluded from the model. It is sensible that
the smaller βmin is the more difficult it is to avoid excluding relevant variables. This is
reflected in (14) in that the left hand side is deceasing in βmin while the right hand side is
increasing. Larger λN,T and µN,T also make it harder to satisfy the inequality since too
much shrinkage can result in relevant variables being discarded. On the other hand, as
in Theorem 1, the size of AN,T is increasing in these two quantities revealing the same
tradeoff as discussed previously.

Inequality (15) gives a sufficient condition for not classifying any irrelevant xjs as
relevant. Note that the more precise the initial Lasso estimator is the larger is the right
hand side and hence the more likely it is that the inequality is satisfied. Increasing K1,N,T

allows for larger dependence between relevant and irrelevant variables and thus makes it
harder to distinguish between these. Hence, it is sensible that the left hand side of (15) is
increasing in K1,N,T . On the other hand, the size of C1,N,T is increasing in K1,N,T . The
intuition behind inequalities (16) and (17) is the same for the preceding two inequalities.
At this point it is also worth mentioning that Theorem 6 does not assume the use of the

Lasso as initial estimator. The estimators β̂ and ĉ could be any estimators for which an
upper bound on the estimation error is available and – as can be seen – more precise
initial estimators will make the conditions of Theorem 6 more likely to be satisfied.

Next, we use the above theorem to give lower bounds on the probability with which
the adaptive Lasso selects the correct sparsity pattern by invoking assumptions A1) and
A2a) or A2b), respectively.

Corollary 1. (1) Let assumptions A1 and A2a) be satisfied and assume that (14)-(15)
are valid with λN,T and µN,T as in Theorem 2 and K1,N,T = |Jc1 |2/r|J1|2/r(NT )1/2aN,T .

Assume that βmin ≥ 2
ξN,T√
NT

and cmin ≥ 2
ξN,T√
T

with ξN,T as in Theorem 2. Then,

sign(β̃) = sign(β∗) with probability at least 1−2
(

Cr
aN,T

)r
−Dr

(p2+Np)(s1+s2)r/2( pN ∨
N
p )

κrNr/4
−

2

a
r/2
N,T

for constants Cr and Dr only depending on r. Similarly, if (16)-(17) are

valid with K2,N,T = |J1|1/r|Jc2 |1/rT 1/2aN,T then sign(c̃) = sign(c∗) with probability

at least 1− 2
(

Cr
aN,T

)r
−Dr

(p2+Np)(s1+s2)r/2( pN ∨
N
p )

κrNr/4
− 1

a
r/2
N,T

.

(2) Let assumptions A1 and A2b) be satisfied and assume that (14)-(15) are valid
with λN,T and µN,T as in Theorem 3 and K1,N,T = A log(1 + |Jc1 |) log(e +

|J1|)
√
NT log(aN,T ) for A > 0. Assume that βmin ≥ 2

ξN,T√
NT

and cmin ≥ 2
ξN,T√
T

with ξN,T as in Theorem 3. Then, sign(c̃) = sign(c) with probability at least

1−Ap1−B log(aN,T )−AN1−B ln(aN,T )−A(p2 +Np)e−B(t2N)1/3 − 4
aN,T

for absolute

constants A and B and t = κ2

(s1+s2)
(

ln(p)
ln(N)

∨ ln(N)
ln(p)

)3 as long as Nt2 ≥ 1. Similarly, if
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(16)-(17) are valid with K2,N,T = A log(1 + |J1|) log(1 + |Jc2 |)
√
T log(aN,T ) then

sign(c̃) = sign(c∗) with probability at least 1−Ap1−B log(aN,T ) −AN1−B ln(aN,T ) −
A(p2 +Np)e−B(t2N)1/3 − 2

aN,T
.

Corollary 1 gives lower bounds on the probability with which the adaptive Lasso detects
the correct sparsity pattern under the two sets of assumptions employed in Theorems
2 and 3, respectively. Corollary 1 can also be used to derive a crude lower bound on
P (sign(β̃) = sign(β∗), sign(c̃) = sign(c∗)). A tighter bound can be derived by optimizing
the proof slightly.

In order to get a feeling for the size of the models that the adaptive Lasso can detect
the correct sparsity pattern in, we shall use part (2) of the Corollary 1 to establish the
following asymptotic result. As with Theorem 5 we shall consider the asymptotic setting

where aN,T = N,T = Na, p = eN
b

and s1 = s2 = N c for a, b, c ≥ 0.

Theorem 7. Let assumptions A1 and A2b) be satisfied and let κ, βmin and cmin be
bounded away from 0. Assume furthermore, that 9b+ 2c ≤ 1. Then,

(1) P
(
sign(β̃) = sign(β∗)

)
→ 1 if 5b+ 3c < 1 + a

(2) P
(
sign(c̃) = sign(c∗)

)
→ 1 if 6b+ 3c < a.

Part one of Theorem 7 reveals that p may increase at a sub-exponential rate while the
number of relevant variables cannot increase faster than the square root of the sample
size (set b = 0 in 9b+ 2c ≤ 1 to conclude that c ≤ 1/2) if the adaptive Lasso is to detect
the correct sparsity pattern asymptotically. Actually, for a < 1/2 the number of relevant
variables must increase even slower. It is also worth noticing that sign consistency can be
achieved in a fixed T setting (a = 0). This is in opposition to part 2 of the theorem: for
the adaptive Lasso to be sign consistent for c∗ one needs a > 0. This is of course sensible
in the light of Theorem 5 since a > 0 is needed for the first step Lasso estimator to be
consistent.

6. Monte Carlo

In this section we investigate the finite sample properties of the Lasso as well as the
adaptive Lasso by means of Monte Carlo experiments. The Lasso is implemented using
the publicly available glmnet package for R. Since µN,T /λN,T is roughly equal to 1/

√
N

in Theorems 2 and 3 we can reduce the optimization problem to a search over only one
tuning parameter in the following way:

(1) Define D̃ =
√
ND.

(2) Minimize
∥∥y −Xβ − D̃c∥∥2

+λN,T
∑p
k=1 |βk|+λN,T

∑N
i=1 |ci| wrt. (β, c) by glmnet

and denote the minimizer by (β̂, ˆ̂c).

(3) Return (β̂, ĉ) = (β̂,
√
N ˆ̂c).

In step 2 above λN,T is chosen by BIC. It is our experience that more time consuming
procedures such as cross validation do not improve the results. The adaptive Lasso is
implemented in the following way:

(1) Define x̃j = xj β̂j j = 1, ..., p and d̃i =
√
Nĉidi, i = 1, ..., N .

(2) Minimize
∥∥y −∑p

j=1 x̃jβ −
∑N
i=1 d̃ici

∥∥2
+ λN,T

∑p
k=1 |βk| + λN,T

∑N
i=1 |ci| wrt.

(β, c) by glmnet and denote the minimizer by (
˜̃
β, ˜̃c).

(3) Return β̃j =
˜̃
βj β̂j , j = 1, ..., p and c̃i =

√
Nĉi˜̃ci.
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As for the Lasso, λN,T is chosen by BIC. The above implementation of the adaptive Lasso
is similar in spirit to the one described in Zou (2006). To provide a benchmark for the
Lasso and the adaptive Lasso, least squares including all variables is also implemented
whenever feasible. This procedure is denoted OLSA. At the other extreme, least squares
only including the relevant variables is applied to provide an infeasible target which we
are ideally aiming at. This procedure is called the OLS Oracle (OLSO). We measure the
performance of the proposed estimators along the following dimensions

(1) The average root mean square error of the parameter estimates of β∗ and c∗, i.e.
the average `2 estimation error.

(2) How often is the true model included in the model chosen. This is relevant since
even if the true model is not selected a good procedure should not exclude too
many relevant variables. This measure is reported for β∗ as well as c∗.

(3) How often is the correct sparsity pattern uncovered, i.e. how often is exactly the
correct model chosen. This measure is reported for β∗ as well as c∗.

(4) What is the mean number of non-zero parameters in the estimated model. This
measures how much the dimension of the model is reduced and is reported for β∗

as well as c∗.

The following experiments are carried out to gauge the performance along the above
dimensions (the number of Monte Carlo replications is always 1000).

• Experiment A: N=T=10 with β∗ having five entries of 1 and 20 of zero. The
non-zero entries are equidistant. c∗ has floor(N1/3) = 2 entries of 1 and the rest
zeros. The correlation between the ith and jth column of X is 0.75|i−j| and the
covariates in X possess two moments only.

• Experiment B: As experiment A but with N = 100 and c∗ having floor(N1/3) = 4.
• Experiment C: As experiment A but with T = 100.
• Experiment D: As experiment A but with gaussian covariates.
• Experiment E: As experiment B but with gaussian covariates.
• Experiment F: As experiment C but with gaussian covariates.
• Experiment G: As experiment A but now β∗ has five entries of one and 245 entries

of zero. The non-zero entries are equidistant.
• Experiment H: As experiment G but with gaussian covariates.
• Experiment I: N=T=10 with β∗ having 10 entries of 1 and 490 of zero. The

non-zero entries are equidistant. c∗ has floor(N1/3) = 2 entries of 1 and the rest
zeros. The correlation between the ith and jth column of X is 0.75|i−j| and the
covariates in X re gaussian.

Experiments A-C are meant to illustrate Theorem 2 and part 1 of Corollary 1. Note
that tails of the covariates and the error terms are extremely heavy in these experiments
since they merely allow for the existence of two moments. Similarly, Experiments D-F are
meant to illustrate Theorem 3 and part 2 of Corollary 1 as the tails of the covariates and
error terms are now subgaussian (in fact they are exactly gaussian) allowing the existence
of all (polynomial) moments. Experiments G-H intend to investigate the performance of
the Lasso and the adaptive Lasso in settings with more variables than observations and
various moment assumptions on the covariates and the error terms.

6.1. Results. Experiment A reveals that the Lasso as well as the adaptive Lasso estimate
β∗ and c∗ at a precision which lies in between the one of least squares including all
variables and the least squares oracle. The adaptive Lasso retains all non-zero β∗s in
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MSE(β) MSE(c) Sub(β) Sub(c) Spar(β) Spar(c) #β #c
E

x
p

A

Lasso 1.02 1.16 0.87 0.42 0.01 0.09 9.17 2.47
ALasso 0.87 1.31 0.75 0.34 0.31 0.13 5.90 1.84
OLSO 0.39 0.64 1.00 1.00 1.00 1.00 5.00 2.00
OLSA 2.04 1.89 1.00 1.00 0.00 0.00 25.00 10.00

E
x
p

B

Lasso 0.33 2.15 1.00 0.00 0.04 0.00 8.06 2.26
ALasso 0.14 2.83 1.00 0.00 0.89 0.00 5.12 2.02
OLSO 0.12 0.97 1.00 1.00 1.00 1.00 5.00 4.00
OLSA 0.54 5.45 1.00 1.00 0.00 0.00 25.00 100.00

E
x
p

C

Lasso 0.29 0.43 1.00 0.99 0.02 0.49 9.08 2.72
ALasso 0.14 0.28 1.00 0.99 0.91 0.84 5.11 2.16
OLSO 0.12 0.22 1.00 1.00 1.00 1.00 5.00 2.00
OLSA 0.51 0.54 1.00 1.00 0.00 0.00 25.00 10.00

Table 1. MSE(β) and MSE(c) are the average root mean square errors of
the parameter estimates. Sub(β) and Sub(c) indicate the fraction of times the
estimated model contains all the relevant variables (in X and D) while Spar(β)
and Spar(c) show how often exactly the correct subset of variables is chosen.
Finally, #β and #c give the average number of non-zero βs and cs, respectively.

75% of the instances while only including 5.9 variables on average (recall that there are 5
relevant variables).

Increasing N to 100, Experiment B shows that β∗ is now estimated more precisely
while the opposite is the case for c∗. It is to be expected, however, that the mean square
error of ĉ increases since the vector now has 100 entries to be estimated as opposed to only
10 in Experiment A. The adaptive Lasso always retains all non-zero β∗s while detecting
exactly the right sparsity pattern in 89% of the cases. This is never the case for c∗, the
reason being the same as mentioned above.

In Experiment C, T is increased to 100 while N = 10. This results in a higher precision
of all estimators. In particular, the adaptive Lasso estimates β∗ and c∗ almost as precisely
as the least squares oracle. The number of selected variables is also close to the ideal
number.

Experiments D-F use gaussian covariates and error terms instead of ones with only
two moments. Comparing the results to those in Experiments A-C reveals that the Lasso
and the adaptive Lasso perform better now. Note for example, in Experiment D, the
adaptive Lasso does not estimate β∗ much less precisely than the least squares oracle
while in Experiment A it was more than twice as imprecise. Furthermore, all non-zero c∗

are classified as such by the Lasso in 81% of the Monte Carlo replications while in the
corresponding number in Experiment A was only 42%.

Moving from Experiment D to E all measures pertaining to β∗ improve – the parameters
are estimated more precisely (the adaptive Lasso is actually as precise as the least squares
oracle) and the correct sparsity pattern is selected more than 9 out of ten times. As can
be expected all measures pertaining to c∗ worsen since the number of parameters to be
estimated ten-doubles.

In Experiment F, the Lasso and the adaptive Lasso perform well along all dimensions.
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MSE(β) MSE(c) Sub(β) Sub(c) Spar(β) Spar(c) #β #c
E

x
p

D

Lasso 0.57 0.78 1.00 0.81 0.01 0.24 9.56 3.14
ALasso 0.34 0.72 1.00 0.74 0.62 0.41 5.55 2.30
OLSO 0.23 0.41 1.00 1.00 1.00 1.00 5.00 2.00
OLSA 1.14 1.14 1.00 1.00 0.00 0.00 25.00 10.00

E
x
p

E

Lasso 0.19 1.55 1.00 0.26 0.05 0.06 8.17 3.63
ALasso 0.08 1.40 1.00 0.23 0.93 0.09 5.08 3.17
OLSO 0.07 0.59 1.00 1.00 1.00 1.00 5.00 4.00
OLSA 0.31 3.20 1.00 1.00 0.00 0.00 25.00 100.00

E
x
p

F

Lasso 0.17 0.25 1.00 1.00 0.02 0.56 9.05 2.65
ALasso 0.07 0.14 1.00 1.00 0.96 0.92 5.04 2.08
OLSO 0.07 0.12 1.00 1.00 1.00 1.00 5.00 2.00
OLSA 0.29 0.31 1.00 1.00 0.00 0.00 25.00 10.00

Table 2. MSE(β) and MSE(c) are the average root mean square errors of
the parameter estimates. Sub(β) and Sub(c) indicate the fraction of times the
estimated model contains all the relevant variables (in X and D) while Spar(β)
and Spar(c) show how often exactly the correct subset of variables is chosen.
Finally, #β and #c give the average number of non-zero βs and cs, respectively.

Experiments G-H are the truly high-dimensional ones where the number of variables
is (much) larger than the sample size. Hence, we do not implement least squares using
all variables. Experiment G illustrates a rather difficult setting with many heavy-tailed
covariates. The Lasso does a decent job in reducing dimensionality without being over-

whelming either. The average number of non-zero β̂s is 36.97 which is still larger than the
five true non-zero coefficients. The adaptive Lasso removes ten more variables without
discarding (many) more relevant ones so the second step seems worth implementing.

In Experiment H the covariates are gaussian and the Lasso and the adaptive Lasso

perform much better than in the heavy-tailed Experiment G. The estimation error of β̂ is
more than halved compared to Experiment G and all relevant variables are retained in
the model. This does not come at the price of bigger models since the average number of
non-zero coefficients is now smaller than before. The adaptive Lasso only classifies 17.64
βs as zero (of which five are truly non-zero) resulting in a significant dimension reduction.

Experiment I doubles the number of variables in X compared to Experiment H. In

this light, it is reasonable that the estimation error of β̂ roughly doubles. Almost all
non-zero β∗ are also classified as such but unfortunately, though not unexpectedly, the
total number of βs classified as non-zero also roughly doubles. However, the adaptive
Lasso still manages to reduce the number of variables to less than one tenth of the original
number of variables.

7. Empirical illustration

In this section we illustrate the use of the panel (adaptive) Lasso on a large data set
for the G8 countries. In particular, we try to determine which variables are relevant for
explaining economic growth in these countries. The neoclassical growth model predicts
that higher initial wealth should lead to lower growth rates. The primary mechanism
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MSE(β) MSE(c) Sub(β) Sub(c) Spar(β) Spar(c) #β #c
E

x
p

G
Lasso 1.73 1.42 0.67 0.30 0.00 0.05 36.97 2.77

ALasso 1.66 1.51 0.62 0.26 0.05 0.05 26.93 2.45
OLSO 0.37 0.67 1.00 1.00 1.00 1.00 5.00 2.00
OLSA

E
x
p

H

Lasso 0.87 1.05 1.00 0.49 0.01 0.24 24.46 2.28
ALasso 0.66 0.94 1.00 0.48 0.20 0.25 17.54 2.13
OLSO 0.22 0.40 1.00 1.00 1.00 1.00 5.00 2.00
OLSA

E
x
p

I

Lasso 1.43 1.03 0.97 0.55 0.00 0.14 63.95 2.90
ALasso 1.20 0.99 0.93 0.49 0.04 0.17 38.27 2.43
OLSO 0.33 0.43 1.00 1.00 1.00 1.00 10.00 2.00
OLSA

Table 3. MSE(β) and MSE(c) are the average root mean square errors of
the parameter estimates. Sub(β) and Sub(c) indicate the fraction of times the
estimated model contains all the relevant variables (in X and D) while Spar(β)
and Spar(c) show how often exactly the correct subset of variables is chosen.
Finally, #β and #c give the average number of non-zero βs and cs, respectively.

behind this prediction is that countries with low capital to labor ratios tend to have
a higher marginal return to capital, Barro (1991). In this section we shall investigate
whether this prediction is true for some of the biggest economies in the world.

The data set has been obtained from the data bank of world development indicators.
The panel that we analyse consists of 8 countries with 20 annual observations for each
country for the period 1992-2011. The number of explanatory variables (excluding the
eight individual effects dummies) is 161. Hence, the number of variables is large compared
to the number of observations and the Lasso-type estimators come to use since they offer
a non ad hoc way of choosing the variables. Put differently, one can handle a much larger
conditioning set of variables than previous methods.

The variables cover broad categories such as economical, health, demographical and
technological ones. The GDP level is treated specially in the sense that it enters the right
hand side of the model with a lag of one year to enable us to test whether initial GDP
is related (negatively) to GDP growth. All right hand side variables are standardised to
have an `2-norm equal to the sample size. The Lasso as well as the adaptive Lasso are
implemented by the glmnet as in the Monte Carlo section.

Table 4 contains the results of the estimation. In the first round λN,T is chosen by BIC
for the Lasso as well as the adaptive Lasso. Then it is gradually reduced by choosing
decreasing fractions of this initial choice. This is done as a kind of sensitivity check to verify
the robustness of the sparsity. As can be seen from Table 4 the Lasso and the adaptive
Lasso indeed choose very sparse models when λN,T is chosen by BIC. In particular, they
include three and two variables, respectively. Note that all variables chosen are annual
growth rates. This is sensible since we are trying to explain the annual growth rate of
GDP. Furthermore, it is seen that initial GDP does not enter as an explanatory variable.
Hence, we find no support for the neoclassical growth hypothesis. However, it should
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be said that this hypothesis might be more relevant at explaining differences in growth
between developed and less developed countries while all countries in our sample are rather
developed. Furthermore, we use the GDP of the previous year as initial GDP which is
a choice that might not leave enough time for the transmission mechanisms to function
properly.

As can be expected, lowering λN,T results in more variables being included in the
model. This is manifested in Table 4 by the models becoming gradually larger as λN,T is
decreased. But only for λN,T = 0.1 · λBIC a dummy is included in the model by the Lasso
(for the United Kingdom).
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8. Conclusion

High-dimensional data is becoming increasingly available and one of the first choices
one has to make when building a model is which variables to include. Furthermore, panel
data models are a work horse tool for microeconometric analysis. For these reasons we
have studied the performance of the panel Lasso and adaptive Lasso in high-dimensional
panel data models. In particular, this paper has established finite sample upper bounds
on the estimation error of the panel Lasso estimator that hold with high probability. We
have also shown that the upper bounds are optimal in a sense made clear in Theorem 4.
Conditions for consistency in even very high-dimensional models were also provided.

Next, the panel adaptive Lasso was analyzed and we gave lower bounds on the probability
with which it selects the correct sign pattern in finite samples. These results were then
used to deduce asymptotic results.

The results were proven under various assumptions on the moment/tail behavior of the
covariates and the error terms. In particular we allowed for non-subgaussian behavior in
some of our theorems.

The methods were then applied to finding the variables that explain growth in the G8
countries over the last 20 years. A rather sparse model was found to explain the growth.

In this paper we have used BIC to select the tuning parameters but ideally one would
like a data driven way with theoretical guarantees. We leave this as an interesting avenue
for future research.

9. Appendix

We start with the following Lemma which is similar in spirit to Lemma B.1 in Bickel
et al. (2009).

Lemma 1. On AN,T the following inequalities are valid.

∥∥Z(γ̂ − γ∗)
∥∥2

+ λN,T
∥∥β̂ − β∗∥∥

`1
+ µN,T

∥∥ĉ− c∗∥∥
`1
≤ 4λN,T

∥∥β̂J1 − β∗J1∥∥`1 + 4µN,T
∥∥ĉJ2 − c∗J2∥∥`1

(18)

and

λN,T
∥∥β̂Jc1 − β∗Jc1∥∥`1 + µN,T

∥∥ĉJc2 − c∗Jc2∥∥`1 ≤ 3λN,T
∥∥β̂J1 − β∗J1∥∥`1 + 3µN,T

∥∥ĉJ2 − c∗J2∥∥`1
(19)

Proof. By the minimizing property of γ̂ it follows that∥∥y − Zγ̂∥∥2
+ 2λN,T

∥∥β̂∥∥
`1

+ 2µN,T ‖ĉ‖`1 ≤
∥∥y − Zγ∗∥∥2

+ 2µN,T
∥∥β∗∥∥

`1
+ 2µN,T ‖c∗‖`1

which, using that y = Zγ∗ + ε, yields∥∥Z(γ̂ − γ∗)
∥∥2 − 2ε′Z(γ̂ − γ∗) + 2λN,T

∥∥β̂∥∥
`1

+ 2µN,T ‖ĉ‖`1 ≤ 2λT
∥∥β∗∥∥

`1
+ 2µN,T ‖c∗‖`1

Or, equivalently∥∥Z(γ̂ − γ∗)
∥∥2 ≤ 2ε′Z(γ̂ − γ∗) + 2λN,T

(∥∥β∗∥∥
`1
−
∥∥β̂∥∥

`1

)
+ 2µN,T

(
‖c∗‖`1 − ‖ĉ‖`1

)
(20)
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So to bound
∥∥Z(γ̂ − γ∗)

∥∥2
one must bound 2ε′Z(γ̂ − γ∗). Note that on AN,T one has

2ε′Z(γ̂ − γ∗) = 2ε′X(β̂ − β∗) + 2ε′D(ĉ− c∗)

≤ 2
∥∥ε′X∥∥

`∞
‖β̂ − β∗‖`1 + 2

∥∥ε′D∥∥
`∞
‖ĉ− c∗‖`1

≤ λN,T
∥∥β̂ − β∗∥∥

`1
+ µN,T

∥∥ĉ− c∗∥∥
`1

Putting things together, on AN,T ,∥∥Z(γ̂ − γ∗)
∥∥2

≤ λN,T
∥∥β̂ − β∗∥∥

`1
+ 2λN,T

(∥∥β∗∥∥
`1
−
∥∥β̂∥∥

`1

)
+ µN,T

∥∥ĉ− c∗∥∥
`1

+ 2µN,T

(
‖c∗‖`1 − ‖ĉ‖`1

)
Adding λN,T

∥∥β̂ − β∗∥∥
`1

and µN,T
∥∥ĉ− c∗∥∥

`1
yields∥∥Z(γ̂ − γ∗)

∥∥2
+ λN,T

∥∥γ̂ − γ∗∥∥
`1

+ µN,T
∥∥ĉ− c∗∥∥

`1

≤ 2λN,T

(∥∥β̂ − β∗∥∥
`1

+
∥∥β∗∥∥

`1
−
∥∥β̂∥∥

`1

)
+ 2µN,T

(
‖ĉ− c∗‖`1 + ‖c∗‖`1 − ‖ĉ‖`1

)
(21)

Notice that∥∥β̂ − β∗∥∥
`1

+
∥∥β∗∥∥

`1
−
∥∥β̂∥∥

`1
=
∥∥β̂J1 − β∗J1∥∥`1 +

∥∥β∗J1∥∥`1 −∥∥β̂J1∥∥`1
In addition,

∥∥β̂J1 − β∗J1∥∥`1 +
∥∥β∗J1∥∥`1 −∥∥β̂J1∥∥`1 ≤ 2

∥∥β̂J1 − β∗J1∥∥`1 by continuity of the norm.

By exactly the same arguments ‖ĉ− c∗‖`1 + ‖c∗‖`1 − ‖ĉ‖`1 ≤ 2
∥∥ĉJ2 − c∗J2∥∥`1 . Using these

estimates in (21) yields inequality (18). Next notice that (18) gives

λN,T
∥∥β̂ − β∗∥∥

`1
+ µN,T

∥∥ĉ− c∗∥∥
`1
≤ 4λN,T

∥∥β̂J1 − β∗J1∥∥`1 + 4µN,T
∥∥ĉJ2 − c∗J2∥∥`1

which is equivalent to

λN,T
∥∥β̂Jc1 − β∗Jc1∥∥`1 + µN,T

∥∥ĉJc2 − c∗Jc2∥∥`1 ≤ 3λN,T
∥∥β̂J1 − β∗J1∥∥`1 + 3µN,T

∥∥ĉJ2 − c∗J2∥∥`1
and establishes inequality (19). �

Proof of Theorem 1. By (18) of Lemma 1 (which is valid on AN,T )∥∥Z(γ̂ − γ∗)
∥∥2 ≤ 4λN,T

∥∥β̂J1 − β∗J1∥∥`1 + 4µN,T
∥∥ĉJ2 − c∗J2∥∥`1(22)

Next, note that for b = S−1δ where b is partitioned as b = (b1
′
, b2
′
)′ with b1 being a p× 1

vector and b2 an N × 1 vector, the restricted eigenvalue condition (4) may be formulated
equivalently as

κ2
ψN,T (r1, r2) = min

{
‖Zb‖2

‖Sb‖2
: b ∈ Rp+N \ {0} , |R1| ≤ r1, |R2| ≤ r2,

λN,T
∥∥b1Rc1∥∥`1 + µN,T

∥∥b2Rc2∥∥`1 ≤ 3λN,T
∥∥b1R1

∥∥
`1

+ 3µN,T
∥∥b2R2

∥∥
`1

}
> 0

Hence, the restricted eigenvalue condition (which is applicable due to (19) yields∥∥Z(γ̂ − γ∗)
∥∥2 ≥ κ2

ΨN,T

∥∥S(γ̂ − γ∗)
∥∥2 ≥ κ2/2

[
NT

∥∥β̂ − β∗∥∥2
+ T

∥∥ĉ− c∗∥∥2
]

(23)
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where the last estimate holds on BN,T . By Jensen’s inequality

4λN,T
∥∥β̂J1 − β∗J1∥∥`1 + 4µN,T

∥∥ĉJ2 − c∗J2∥∥`1 ≤ 4λN,T
√
s1

∥∥β̂J1 − β∗J1∥∥+ 4µN,T
√
s2

∥∥ĉJ2 − c∗J2∥∥
≤ 4λN,T

√
s1

∥∥β̂ − β∗∥∥+ 4µN,T
√
s2

∥∥ĉ− c∗∥∥(24)

Inserting (23) and (24) into (22) yields

κ2

2

[
NT

∥∥β̂ − β∗∥∥2
+ T

∥∥ĉ− c∗∥∥2
]
≤ 4λN,T

√
s1

∥∥β̂ − β∗∥∥+ 4µN,T
√
s2

∥∥ĉ− c∗∥∥
or equivalently,∥∥β̂ − β∗∥∥2

+
1

N

∥∥ĉ− c∗∥∥2 −
8λN,T

√
s1

κ2NT

∥∥β̂ − β∗∥∥− 8µN,T
√
s2

κ2NT

∥∥ĉ− c∗∥∥ ≤ 0

For x = ‖β̂ − β∗‖ and y = ‖ĉ− c∗‖ this can be written as a quadratic inequality in two
variables:

x2 − ax+ by2 − cy ≤ 0, x, y ≥ 0(25)

4 with a =
8λN,T

√
s1

κ2NT , b = 1
N and c =

8µN,T
√
s2

κ2NT . First bound x = ‖β̂ − β∗‖. For every
y the values of x that satisfy (25) form an interval in R+. The right end point of this
interval is the desired upper bound on x. Clearly this right end point is a decreasing
function in by2− cy. Hence, we first minimize the polynomial by2− cy. This yields y = c

2b

and the corresponding value of by2 − cy is − c
2

4b . Hence, our desired upper bound on x is

the largest solution of x2 − ax− c2

4b ≤ 0. By the standard solution formula for the roots of
a quadratic polynomial this yields∥∥β̂ − β∗∥∥ = x ≤

a+
√
a2 + c2/b

2
(26)

Switching the roles of x and y, one gets a similar bound on y = ‖ĉ− c∗‖, namely∥∥ĉ− c∗∥∥ = y ≤ c+
√
c2 + ba2

2b
(27)

Inserting the definitions of a, b and c into (26) yields

∥∥β̂ − β∗∥∥ ≤ 8λN,T
√
s1

κ2NT +

√(
8λN,T

√
s1

κ2NT

)2

+
(

8µN,T
√
s2

κ2NT

)2

N

2
≤

8λN,T
√
s1

κ2NT
+

4µN,T
√
s2

κ2
√
NT

by subadditivity of x 7→
√
x. Similarly,

∥∥ĉ− c∗∥∥ ≤ 8µN,T
√
s2

κ2NT +

√(
8µN,T

√
s2

κ2NT

)2

+ 1
N

(
8λN,T

√
s1

κ2NT

)2

2/N
≤

8µN,T
√
s2

κ2T
+

4λN,T
√
s1

κ2
√
NT

�

Before stating the next lemma we shall remark that when no further distinction between
subscripts i and t is needed we shall sometimes use xj,k to denote the jth entry of the kth
variable xk = (x1,1,k, x1,2,k, ..., x1,T,k, x2,1,k, ..., xN,T,k)′ with 1 ≤ j ≤ NT . Similarly, we
will write εj for the jth entry of ε = (ε1,1, ε1,2, ..., ε1,T , ε2,1, ..., εN,T )′ 1 ≤ j ≤ NT where

4Note that this inequality is trivially satisfied by x = y = 0, corresponding to no estimation error.
However, we are looking for an upper bound on x and y.
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Lemma 2. Let λN,T = 4aN,T p
1/r(NT )1/2 max1≤t≤T ‖ε1,t‖Lr and µN,T = 4aN,TN

1/rT 1/2 max1≤t≤T ‖ε1,t‖Lr
for some sequence aN,T . Then, under assumption A1) and A2a)

P
(
AcN,T

)
= P

({
‖X ′ε‖`∞ >

λN,T
2

}
∪
{
‖D′ε‖`∞ >

µN,T
2

})
≤ 2

(
Cr
aN,T

)r
(28)

Proof of Lemma 2. First bound
∥∥max1≤k≤p

∣∣∑NT
j=1 xj,kεj

∣∣∥∥
Lr

. To this end, note that for

any collection of random variables {Uk}pk=1 ⊆ Lr,

∥∥∥∥ max
1≤k≤p

Uk

∥∥∥∥
Lr

= [E(| max
1≤k≤p

Uk|r)]1/r ≤

E( p∑
k=1

|Uk|r
)1/r

≤ p1/r max
1≤k≤p

‖Uk‖Lr

Next, bound
∥∥∑NT

j=1 xj,kεj
∥∥
Lr

uniformly in 1 ≤ k ≤ p. Denote by Fn = σ
({
X, εj , 1 ≤ j ≤ n

})
the σ-field generated by X and εj , 1 ≤ j ≤ n and set Sn,k =

∑n
j=1 xj,kεj . Then

{(Sn,k,Fn), 1 ≤ n ≤ NT} is a martingale for all 1 ≤ k ≤ p under assumptions A1 and
the given moment assumptions. Hence, by Rosenthal’s inequality for martingales (see
Hitczenko (1990) or Hall and Heyde (1980)) for a constant Cr depending only on r,5

∥∥∥∥∥
NT∑
j=1

xj,kεj

∥∥∥∥∥
Lr

≤ Cr


(
E

(
NT∑
j=1

E(x2
j,kε

2
j |Fj−1)

)r/2)1/r

+

(
E

[
max

1≤j≤NT
|xj,kεj |r

])1/r



≤ Cr


(
E

(
NT∑
j=1

x2
j,k ‖εj‖

2
L2

)r/2)1/r

+

(
E

NT∑
j=1

|xj,kεj |r
)1/r


≤ Cr

((NT )r/2−1
NT∑
j=1

E|xj,k|r ‖εj‖rL2

)1/r

+ (NT )1/r max
1≤t≤T

∥∥x1,t,k

∥∥
Lr

∥∥ε1,t∥∥Lr


≤ Cr

((NT )r/2−1NT max
1≤t≤T

E|x1,t,k|r ‖ε1,t‖rL2

)1/r

+ (NT )1/r max
1≤t≤T

∥∥x1,t,k

∥∥
Lr

∥∥ε1,t∥∥Lr


≤ Cr
[
(NT )1/2 max

1≤t≤T

∥∥x1,t,k

∥∥
Lr
‖ε1,t‖L2

+ (NT )1/r max
1≤t≤T

∥∥x1,t,k

∥∥
Lr

∥∥ε1,t∥∥Lr
]

≤ 2Cr(NT )1/2 max
1≤t≤T

∥∥ε1,t∥∥Lr
In the above display we have used Loeve’s cr-inequality and by Hitczenko (1990) we know
that Cr ≤ 10r. Hitczenko (1990) actually shows that the optimal constant Cr ∈ O(r/ ln(r))

5By independence of xj,k and εj their product is in Lr and Rosenthal’s inequality yields a nontrivial

upper bound.
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as r →∞. Hence,∥∥∥∥∥ max
1≤k≤p

∣∣∣∣NT∑
j=1

xj,kεj

∣∣∣∣
∥∥∥∥∥
Lr

≤ max
1≤k≤p

p1/r

∥∥∥∥∥
NT∑
j=1

xj,kεj

∥∥∥∥∥
Lr

≤ p1/r2Cr(NT )1/2 max
1≤t≤T

∥∥ε1,t∥∥Lr
By Markov’s inequality,

P

(
max

1≤k≤p

∣∣∣∣NT∑
j=1

xj,kεj

∣∣∣∣ > λN,T
2

)
≤ 1(

λN,T /(4p1/rCr(NT )1/2 max1≤t≤T
∥∥ε1,t∥∥Lr ))r =

(
Cr
aN,T

)r

In a similar way as above it follows by Rosenthal’s inequality

∥∥∥∥∥
T∑
t=1

εi,t

∥∥∥∥∥
Lr

≤ Cr


 T∑
t=1

E(ε2i,t)

1/2

+

(
E
(

max
1≤t≤T

|εi,t|r
))1/r


≤ Cr

[
T 1/2 max

1≤t≤T
‖ε1,t‖L2

+ T 1/r max
1≤t≤T

‖ε1,t‖Lr

]
≤ 2CrT

1/2 max
1≤t≤T

‖ε1,t‖Lr

This implies that∥∥∥∥∥ max
1≤i≤N

T∑
t=1

εi,t

∥∥∥∥∥
Lr

≤ max
1≤i≤N

N1/r

∥∥∥∥∥
T∑
t=1

εi,t

∥∥∥∥∥
Lr

≤ N1/r2CrT
1/2 max

1≤t≤T
‖ε1,t‖Lr

And so, by Markov’s inequality,

P

 max
1≤i≤N

T∑
t=1

εi,t >
µN,T

2

 ≤ 1(
µN,T /(4N1/rCrT 1/2 max1≤t≤T ‖ε1,t‖Lr )

)r =

(
Cr
aN,T

)r

It follows that

P

({
‖X ′ε‖`∞ >

λN,T
2

}
∪
{
‖D′ε‖`∞ >

µN,T
2

})
≤ 2

(
Cr
aN,T

)r

�

Lemma 3. Let {Ui,Fi}ni=1 be a martingale difference sequence and assume that there
exist δ,M > 0 such that E exp(δ|Ui|) ≤M for all i = 1, ..., n. Then, there exists positive
constants A and B such that for all x ≥ a/

√
n

P

(∣∣∣ n∑
i=1

Ui

∣∣∣ > nx

)
< Ae−B(x2n)1/3(29)
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Proof. In the proof of their Theorem 3.2 Lesigne and Volnỳ (2001) show that if E exp(|Ui|) ≤
M for all i = 1, ..., n, then for any x > 0 and t ∈ (0, 1) one has6

P

(∣∣∣ n∑
i=1

Ui

∣∣∣ > nx

)

<

(
2 +

M

(1− t)2

[1

4
t4/3(x−2n−1)1/3 + t2/3(x−2n−1)2/3 + 2x−2n−1

])
e−(1/2)t2/3(x2n)1/3

(30)

But note that P
(
|
∑n
i=1 Ui| > nx

)
= P

(
|
∑n
i=1(δUi)| > n(δx)

)
where {δUi}ni=1, by as-

sumption, now satisfy the conditions of Theorem 3.2 in Lesigne and Volnỳ (2001) and so
replacing x by δx in (30) yields

P

(∣∣∣ n∑
i=1

Ui

∣∣∣ > nx

)
<

(
2 +

M

(1− t)2

[1

4
t4/3δ−2/3(x−2n−1)1/3 + t2/3δ−4/3(x−2n−1)2/3 + 2δ−2x−2n−1

])
e−(1/2)t2/3δ2/3(x2n)1/3

Restricting x to be greater than a/
√
n, implying that x−2n−1 ≤ 1/a2, and using that M, t

and δ are constants the conclusion of the lemma follows. �

For the proof of Lemma 4 below, we shall use Orlicz norms as defined in Van Der Vaart
and Wellner (1996): Let ψ be a non-decreasing convex function with ψ(0) = 0. Then, the
Orlicz norm of a random variable X is given by

‖X‖ψ = inf
{
C > 0 : Eψ

(
|X|/C

)
≤ 1
}

where, as usual, inf ∅ =∞. We will use Orlicz norms for ψ(x) = ψp(x) = ex
p − 1 for

p = 1, 2.

Lemma 4. Assume that assumptions A1 and A2b are satisfied. Then, for aN,T ≥ e

P
(
‖X ′ε‖`∞ ≥ λN,T /2

)
≤ Ap1−B log(aN,T ) for λN,T =

√
4NT log(p)3 log(aN,T )3

and

P
(
‖D′ε‖`∞ ≥ µN,T /2

)
≤ AN1−B ln(aN,T ) for µN,T =

√
4T log(N)3 log(aN,T )3

Proof. First note that for all 1 ≤ j ≤ NT and 1 ≤ k ≤ p one has for all t > 0

P
(
|xj,kεj | > t

)
≤ P

(
|xj,k| >

√
t
)

+ P
(
|εj | >

√
t
)
≤ K exp(−Ct)

and so it follows from Lemma 2.2.1 in Van Der Vaart and Wellner (1996) that ‖xj,kεj‖ψ1
≤

1+K
C and so E exp

(
C

1+K |xj,kεj |
)
≤ 2 by the definition of the Orlicz-norm. Hence, δ = C

1+K

works in Lemma 3 for all 1 ≤ k ≤ p. Next, denote by Fn = σ
({
X, εj , 1 ≤ j ≤ n

})
the

σ-field generated by X and εj , 1 ≤ j ≤ n and set Sn,k =
∑n
j=1 xj,kεj . Then it is clear

that {(Sn,k,Fn), 1 ≤ n ≤ NT} is a martingale for all 1 ≤ k ≤ p. From a union bound it
follows from Lemma 3 (with a = 1) that7

P
(
‖X ′ε‖`∞ ≥ λN,T /2

)
= P

(
‖X ′ε‖`∞ ≥

λN,T /2

NT
NT

)
≤ pAe−B

(
λ2NT
4NT

)1/3
= Ap1−B log(aN,T )

6See the last expression in the proof of their Theorem 3.2.
7Lemma ? is applicable since aN,T and p are assumed greater than e.
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Next, by the subgaussianity of εi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T , it follows from Lemma

2.2.1 in Van Der Vaart and Wellner (1996) that ‖εi,t‖ψ2
≤
( 1+K/2

C

)1/2
, and so ‖εi,t‖ψ1

≤( 1+K/2
C

)1/2
log(2)−1/2 by the second to last inequality on page 95 in Van Der Vaart

and Wellner (1996). Hence, E exp
((

C
1+K/2

)1/2
log(2)1/2|εi,t|

)
≤ 2.8 Furthermore, for all

i = 1, ..., N , {εi,t}Tt=1 are independent and so by the union bound and Lemma 3 9 (with
a = 1)

P
(
‖D′e‖`∞ ≥ µN,T /2

)
≤ NP

(
‖D′e‖`∞ ≥

µN,T /2

T
T
)
≤ NAe−B

(µ2N,T
4T

)1/3
≤ AN1−B log(aN,T )

�

Lemma 5. Let A and B be two positive semi-definite (p+N)× (p+N) matrices and
assume that A satisfies the restricted eigenvalue condition RE(s1, s2) for some κA. Then,
for δ = max1≤i,j≤p+N |Ai,j −Bi,j |, one also has κ2

B ≥ κ2
A − 16δ(s1 + s2)m2

N,T where

mN,T =
λN,T√
NµN,T

∨
√
NµN,T
λN,T

Proof. The proof is similar to Lemma 10.1 in Van De Geer and Bühlmann (2009). Let x1 be

p×1, x2 be N×1 and define x = (x′1, x
′
2)′ and assume that

λN,T√
NT
‖x1Jc1

‖
`1

+
µN,T√
T
‖x2Jc2

‖
`1
≤

3
λN,T√
NT
‖x1J1‖`1 + 3

µN,T√
T
‖x2J2‖`1 . Defining

V =

(
λN,T√
NT

I|J1| 0

0
µN,T√
T
I|J2|

)
and Vc =

(
λN,T√
NT

I|Jc1 | 0

0
µN,T√
T
I|Jc2 |

)
this can also be expressed as‖VcxJc‖`1 ≤ 3‖V xJ‖`1 . For any (non-zero) (p+N)×1 vector
x satisfying this restriction one has∥∥xJc∥∥`1 =

∥∥V −1
c VcxJc

∥∥
`1
≤
∥∥V −1

c

∥∥
`1

∥∥VcxJc∥∥`1 ≤ 3
∥∥V −1

c

∥∥
`1

∥∥V xJ∥∥`1 ≤ 3
∥∥V −1

c

∥∥
`1

∥∥V ∥∥
`1
‖xJ‖`1

Since ∥∥V −1
c

∥∥
`1

∥∥V ∥∥
`1

=
λN,T√
NµN,T

∨
√
NµN,T
λN,T

= mN,T

one gets

|x′Ax− x′Bx| = |x′(A−B)x| ≤ ‖x‖`1 ‖(A−B)x‖`∞ ≤ δ ‖x‖
2
`1
≤ δ(‖xJ‖`1 + ‖xJc‖`1)2

≤ δ (1 + 3mN,T )
2‖xJ‖2`1 ≤ 16δ(s1 + s2)m2

N,T ‖xJ‖
2 ≤ 16δ(s1 + s2)m2

N,T ‖x‖
2

where the last estimate follows from the fact that mN,T ≥ 1 and Jensen’s inequality.
Hence,

x′Bx ≥ x′Ax− 16δ(s1 + s2)m2
N,T ‖x‖

2

8We note that this estimate is slightly suboptimal since we are not taking full advantage of the
subgaussianity of the εi,t by merely using it to deduce subexponentiality and then invoking Lemma

Lesigne and Volnỳ (2001). One could use the full strength of the subgaussianity by strengthening
E exp(|ε|) ≤ K to E exp(ε2) ≤ K in Lemma 3.2 of Lesigne and Volnỳ (2001). Doing so, and adjusting
Lemma 3 accordingly yields that the exponent 1/3 in (29) can be increased to 1/2 and hence µN,T can in

turns be reduced to
√

4T log(N)2 log(aN,T )2. As a third route, one could use Hoeffding’s inequality in

combination with a truncation of the εi,t. This does not reduce µN,T significantly either.
9In principle, the constants A and B need not be the same as above but by simply using the worst

ones they can be chosen to be identical. Also, we have used aN,T , N ≥ e.
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or equivalently,

x′Bx

x′x
≥ x′Ax

x′x
− 16δ(s1 + s2)m2

N,T ≥ κ2
A − 16δ(s1 + s2)m2

N,T

Minimizing the left hand side over {x ∈ Rp+N \ {0} : ‖VcxJc‖`1 ≤ 3 ‖V xJ‖`1} yields the
claim. �

In the following two lemmas we shall use Lemma 5 with

A = Γ =

(
E
(
X′X
NT

)
0

0 IN

)
and B = ΨN,T =

 X′X
NT

X′D√
NT

D′X√
NT

IN


in order to establish that ΨT satisfies the restricted eigenvalue condition with high
probability. Furthermore, define

B̃N,T =
{

max
1≤i,j≤p+N

|ΨT,i,j − Γi,j | ≤
κ2

32(s1 + s2)m2
N,T

}
(31)

Lemma 6. Under assumptions A1 and A2a, P
(
κ2

ΨT
≥ κ2/2

)
≥ P (B̃N,T ) ≥ 1−Dr

(p2+Np)(s1+s2)r/2( pN ∨
N
p )

κrNr/4

for a constant Dr only depending on r.

Proof. By Lemma 5 it follows that κΨN,T ≥ κ2/2 on B̃N,T Since the lower right N ×N
blocks of ΨN,T and Γ are identical it suffices to bound the entries of X′X

NT − E
(
X′X
NT

)
and

X′D√
NT

. A typical element of X
′X
NT −E

(
X′X
NT

)
is of the form 1

N

∑N
i=1

(
1
T

∑T
t=1

[
xi,t,kxi,t,l − E(xi,t,kxi,t,l)

])
for some k, l ∈ {1, ..., p}. Next note that for any sequence of mean zero i.i.d. variables
Z1, ..., ZN in Lr it follows from Rosenthal’s inequality that∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
Lr

≤ Cr

([ N∑
i=1

EZ2
i

]1/2

+

[
E max

1≤i≤N
|Zi|r

]1/r
)
≤ Cr

(
N1/2‖Z1‖L2

+N1/r‖Z1‖Lr

)
≤ 2CrN

1/2‖Z1‖Lr(32)

Furthermore,∥∥∥∥ 1

T

T∑
t=1

[
x1,t,kx1,t,l − E(x1,t,kx1,t,l)

]∥∥∥∥
Lr/2

≤ max
1≤t≤T

∥∥x1,t,kx1,t,l − E(x1,t,kx1,t,l)
∥∥
Lr/2

≤ 2 max
1≤t≤T

∥∥x1,t,kx1,t,l

∥∥
Lr/2
≤ 2

where the last estimate follows from the Cauchy-Schwarz inequality. Using this in (32)
(with r replaced by r/2) yields∥∥∥∥ 1

N

N∑
i=1

( 1

T

T∑
t=1

[
xi,t,kxi,t,l − E(xi,t,kxi,t,l)

])∥∥∥∥
Lr/2

≤ 4Cr/2N
−1/2.

Markov’s inequality yields that for any ε > 0

P

(∣∣∣∣ 1

N

N∑
i=1

( 1

T

T∑
t=1

[
xi,t,kxi,t,l − E(xi,t,kxi,t,l)

])∣∣∣∣ > ε

)
≤

(4Cr/2)r/2

εr/2Nr/4
(33)
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Next, consider a typical term in X′D√
NT

. Such a term is on the form
∑T
t=1 xi,t,k√
NT

for i = 1, ..., N

and k = 1, ..., p. Since∥∥∥∥ 1√
NT

T∑
t=1

xi,t,k

∥∥∥∥
Lr

≤ 1√
N

max
1≤t≤T

∥∥xi,t,k∥∥Lr ≤ 1√
N

it follows by Markov’s inequality that for any ε > 0

P
(∣∣ 1√

NT

T∑
t=1

xi,t,k
∣∣ > ε

)
≤ 1

εrNr/2
=

1

(εr/2Nr/4)2
(34)

Combining (33) and (34) yields via a union bound over (p2 +Np) terms

P
(

max
1≤i,j≤p+N

|Ai,j −Bi,j | > ε
)
≤ (p2 +Np)

(
(4Cr/2)r/2

εr/2Nr/4
∨ 1

(εr/2Nr/4)2

)
≤ Dr

p2 +Np

εr/2Nr/4

10where the last estimate follows from the fact that without loss of generality (since
otherwise the upper bound is greater than one) one may assume εr/2Nr/4 ≥ 1 and so
εr/2Nr/4 ≤ (εr/2Nr/4)2. Dr = ([4Cr/2]r/2 ∨ 1) is a constant only depending on r. Using

ε = κ2

32(s1+s2)m2
N,T

yields the lemma upon noting that mN,T =
(
p
N ∨

N
p

)1/r
and merging

all constants into Dr. �

Lemma 7. Let t = κ2

(s1+s2)
(

ln(p)
ln(N)

∨ ln(N)
ln(p)

)3 and let Nt2 ≥ 1. Then, under assumptions A1

and A2b), P
(
κ2

ΨT
≥ κ2/2

)
≥ P (B̃N,T ) ≥ 1−A(p2 +Np)e−B(t2N)1/3 for absolute constants

A and B.

Proof. By Lemma 5 it follows that κ2
ΨN,T

≥ κ2/2 on B̃N,T . Since the lower right N ×N
blocks of ΨN,T and Γ are identical it suffices to bound the entries of X′X

NT − E
(
X′X
NT

)
and

X′D√
NT

. A typical element of X
′X
NT −E

(
X′X
NT

)
is of the form 1

N

∑N
i=1

(
1
T

∑T
t=1

[
xi,t,kxi,t,l − E(xi,t,kxi,t,l)

])
for some k, l ∈ {1, ..., p}. First, note that for all 1 ≤ i ≤ N , 1 ≤ t ≤ T and 1 ≤ k, l ≤ p

one has for all ε > 1/
√
N

P
(
|xi,t,kxi,t,l| > ε

)
≤ P

(
|xi,t,k >

√
ε
)

+ P
(
|xi,t,l| >

√
ε
)
≤ K exp(−Cε)

and so it follows from Lemma 2.2.1 in Van Der Vaart and Wellner (1996) that ‖xi,t,kxi,t,l‖ψ1
≤

1+K
C . Next, note that by subadditivity of the Orlicz norm and Jensen’s inequality∥∥∥∥ 1

T

T∑
t=1

[
xi,t,kxi,t,l − E(xi,t,kxi,t,l)

]∥∥∥∥
ψ1

≤ 2 max
1≤t≤T

∥∥xi,t,kxi,t,l∥∥ψ1
≤ 2

1 +K

C

10Note that the first estimate in the display may be replaced by the slightly sharper estimate

P
(

max
1≤i,j≤p+N

|Ai,j −Bi,j | > ε
)
≤ p2

(4Cr/2)r/2

εr/2Nr/4
+Np

1

(εr/2Nr/4)2

However, for p ≥ N this will lead to no improvement asymptotically, while the improvement is minor for
N > p.
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Hence, E exp( C
2(1+K) |xi,t,kxi,t,l|) ≤ 2. It now follows by the independence across i =

1, ..., N (using Lemma 3) there exists constants A and B such that for any ε > 1
32
√
N

P

(∣∣∣ 1

N

N∑
i=1

( 1

T

T∑
t=1

[
xi,t,kxi,t,l − E(xi,t,kxi,t,l)

])∣∣∣ ≥ ε) ≤ Ae−B(ε2N)1/3(35)

Next, consider a typical term in X′D√
NT

. Such a term is on the form
∑T
t=1 xi,t,k√
NT

for i = 1, ..., N

and k = 1, ..., p. Since ‖xi,t,k‖ψ2
≤
( 1+K/2

C

)1/2
by Lemma 2.2.1 in ?? one gets∥∥∥∥ 1√

NT

T∑
t=1

xi,t,k

∥∥∥∥
ψ2

≤ 1√
N

max
1≤t≤T

∥∥xi,t,k∥∥ψ2
≤ 1√

N

(1 +K/2

C

)1/2

:=
M√
N
.

It follows by Markov’s inequality and 1 ∧ ψ2(x)−1 = 1 ∧ (ex
2 − 1)−1 ≤ 2e−x

2

that for any
ε > 0

P
(∣∣ 1√

NT

T∑
t=1

xi,t,k
∣∣ > ε

)
≤ 1 ∧ 1

e(ε
√
N/M)2 − 1

≤ 2e−(ε
√
N/M)2 ≤ Ae−Bε

2N(36)

where the last estimate follows by choosing A and B sufficiently large/small for (35) and
(36) both to be valid. Combining (35) and (36) yields via a union bound over (p2 +Np)
terms

P
(

max
1≤i,j≤p+N

|Ai,j −Bi,j | > ε
)
≤ A(p2 +Np)

(
e−B(ε2N)1/3 ∨ e−Bε

2N
)

Using ε = κ2

32(s1+s2)m2
N,T

with mN,T = ln(p)3/2

ln(N)3/2
∨ ln(N)3/2

ln(p)3/2
means that ε ≥ 1

32
√
N

since

t2N ≥ 1. Hence,

P
(

max
1≤i,j≤p+N

|Ai,j −Bi,j | > ε
)
≤ A(p2 +Np)

(
e−B((1/32)2t2N)1/3 ∨ e−B(1/32)2t2N

)
= e−B(t2N)1/3

where the (1/32)2 have been merged into B and we have used that t2N ≥ 1. �

Proof of Theorem 2. P (AN,T ∩ BN,T ) ≥ 1 − 2
(

Cr
aN,T

)r
− Dr

(p2+Np)(s1+s2)r/2( pN ∨
N
p )

κrNr/4
fol-

lows from Lemmas 2 and 6. Hence, the estimates in Theorem 1 are valid with at least
this probability. Inserting the definitions of λN,T and µN,T into (5) and (6) yields (7) and
(8). �

Proof of Theorem 3. The lower bound on P (AN,T ∩ BN,T ) by combining Lemmas 4 and
7. Hence, the estimates in Theorem 1 are valid with a probability bounded from below by
this estimate. Inserting the definitions of λN,T and µN,T into (5) and (6) yields (9) and
(10). �

Before we prove Theorem 4 below we define the weighted Lasso as the minimizer of the
following objective function,

‖y − Zγ‖2 + 2

p+N∑
j=1

wj |γj |(37)

where wj , j = 1, ..., p+N are the weights. Note that in the plain Lasso, wj = λN,T for
all j = 1, ..., p and wj = µN,T for j = p+ 1, ..., p+N . From standard convex analysis we
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know that a vector γ̃ minimizes (37) if and only if there exists a subgradient v of ‖γ‖`1
such that

−Z ′j(y − Zγ̃) + wjvj = 0 for all j = 1, ..., p+N(38)

where vj = sign(γ̃j) if γ̃j 6= 0 and vj ∈ [−1, 1] if γ̃j = 0. The following Lemma will be
used in the proof of Theorems 4 and 6.

Lemma 8. Suppose that |vj | < 1 for all γ̃j = 0 in (38) and that Z ′JZJ is invertible. Then
sign(γ̃) = sign(γ∗) if

sign
(
γ∗J +

(
Z ′JZJ

)−1 [
Z ′Jε− rJ

])
= sign(γ∗J)(39)

(here r is the (p+N)× 1 vector with jth entry wjvj) and∣∣−Z ′jZJ (Z ′JZJ)−1 [
Z ′Jε− rJ

]
+ Z ′jε

∣∣ < wj(40)

for all j ∈ Jc

Proof. The proof combines ideas from Wainwright (2009) and Zhou et al. (2009). Clearly,
sign(γ̃) = sign(γ∗) if and only if i) γ̃ solves (38) and ii) sign(γ̃) = sign(γ∗). Using
y = Zγ∗ + ε the first order condition (38) is equivalent to

Z ′Z(γ̃ − γ∗)− Z ′ε+ r = 0

Using γ̃Jc = γ∗Jc = 0 it follows by the invertibility of Z ′JZJ that

γ̃J − γ∗J =
(
Z ′JZJ

)−1 [
Z ′Jε− rJ

]
(41)

which yields sign(γ̃J) = sign(γ∗J) under the stated conditions. Furthermore, we have

0 = Z ′JcZJ(γ̃J − γ∗J)− Z ′Jcε+ rJc = Z ′JcZJ
(
Z ′JZJ

)−1 [
Z ′Jε− rJ

]
− Z ′Jcε+ rJc

Hence, we must have

wjvj = rj = −Z ′jZJ
(
Z ′JZJ

)−1 [
Z ′Jε− rJ

]
+ Z ′jε

for all j ∈ Jc which means (using |vj | < 1)∣∣−Z ′jZJ (Z ′JZJ)−1 [
Z ′Jε− rJ

]
+ Z ′jε

∣∣ < wj(42)

for all j ∈ Jc. Next, |vj | < 1 may be used to show that any solution γ̄ of the minimization
problem must have γ̄j = 0 if γ̃j=0. This can be done by mimicking the argument in
the proof of Lemma 2.1 in Bühlmann and Van De Geer (2011). Finally, using that
γ̃Jc = 0 and that Z ′JZJ is invertible (37) is seen to be strictly convex and so γ̃′ =(
γ∗′ +

(
Z ′JZJ

)−1 [
Z ′Jε− rJ

]′
, 0′
)

is indeed the only solution. �

Proof of Theorem 4. By (41) one gets

SJ,J(γ̃J − γ∗J) =
(
S−1
J,JZ

′
JZJS

−1
J,J

)−1 [
S−1
J,JZ

′
Jε− S−1

J,JrJ

]
which implies∥∥SJ,J(γ̃J − γ∗J)

∥∥ ≥∥∥∥(S−1
J,JZ

′
JZJS

−1
J,J

)−1

S−1
J,JrJ

∥∥∥−∥∥∥(S−1
J,JZ

′
JZJS

−1
J,J

)−1

S−1
J,JZ

′
Jε
∥∥∥
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Next, note that using arguments similar to those in (5) it is seen that on B̃N,T one has

φmax

(
S−1
J,JZ

′
JZJS

−1
J,J

)
≤ 2φmax(ΓJ,J) and so∥∥∥(S−1

J,JZ
′
JZJS

−1
J,J

)−1

S−1
J,JrJ

∥∥∥2

≥ φmin

[(
S−1
J,JZ

′
JZJS

−1
J,J

)−1
] ( |J1|λ2

N,T

NT
+
|J2|µ2

N,T

T

)
≥ 1

φmax

(
S−1
J,JZ

′
JZJS

−1
J,J

) ( |J1|λ2
N,T

NT
+
|J2|µ2

N,T

T

)
≥ 1

2φmax

(
ΓJ,J

) ( |J1|λ2
N,T

NT
+
|J2|µ2

N,T

T

)
Furthermore, by the independence of ZJ and ε and the gaussianity of ε, it follows that

conditional on ZJ ,
(
S−1
J,JZ

′
JZJS

−1
J,J

)−1

S−1
J,JZ

′
Jε is gaussian with mean zero and covariance

σ2
(
S−1
J,JZ

′
JZJS

−1
J,J

)−1

. Hence, for any s > 0 letting ε̃ ∈ R|J| be a standard gaussian vector

we have

P
(∥∥∥(S−1

J,JZ
′
JZJS

−1
J,J

)−1

S−1
J,JZ

′
Jε
∥∥∥2

≤ s
)

= P
(
ε̃′σ2

(
S−1
J,JZ

′
JZJS

−1
J,J

)−1

ε̃ ≤ s
)

But since ε̃′ε̃ is χ2(|J |) it follows from expression (54a) in Wainwright (2009)11 that there
exists a constant c1 such that P (ε̃′ε̃ ≥ 3|J |) ≤ exp

(
−c1|J |

)
ε̃′σ2

(
S−1
J,JZ

′
JZJS

−1
J,J

)−1

ε̃ ≤ ε̃′ε̃φmax

((
S−1
J,JZ

′
JZJS

−1
J,J

)−1)
= ε̃′ε̃

1

φmin

(
S−1
J,JZ

′
JZJS

−1
J,J

)
Now by arguments similar to the one in the proof of Lemma 5 one has on B̃N,T that

1/φmin

(
S−1
J,JZ

′
JZJS

−1
J,J

)
≤ 2/φmin(ΓJ,J) and so

P
(
ε̃′σ2

(
S−1
J,JZ

′
JZJS

−1
J,J

)−1

ε̃ ≤ s
)
≥ 1− exp

(
−c1|J |

)
−A(p2 +Np)e−B(t2N)1/3

for s = 3|J | · 2/φmin(ΓJ,J). Hence, with probability at least 1 − exp
(
−c1|J |

)
− A(p2 +

Np)e−B(t2N)1/3 for constants d1, d2 and c∥∥SJ,J(γ̃J − γ∗J)
∥∥ ≥√ 1

2φmax

(
ΓJ,J

) ( |J1|λ2
N,T

NT
+
|J2|µ2

N,T

T

)
−
√

3|J | · 2/φmin(ΓJ,J)

≥ d1(
√
|J1|λN,T /

√
NT +

√
|J2|µN,T /

√
T )− d2(

√
|J1|+

√
|J2|)

= d1

√
|J1|λN,T /

√
NT

(
1− d2

√
NT

d1λN,T

)
+ d1

√
|J2|µN,T /

√
T
(

1− d2

√
T

d1µN,T

)
≥ c
√
|J1|λN,T /

√
NT + c

√
|J2|µN,T /

√
T

= c2ξN,T

where the first estimate used Jensen’s inequality on the concave x 7→
√
x for the first

(constants merged into d1) term and the subadditivity of the same function on the second
term. The existence of the constants d1 and d2 follows from the fact that φmax

(
ΓJ,J

)
and

11More precisely, (54a) in Wainwright (2009) states that given a centered χ2-variable X with d degrees

of freedom, then for any t ∈ (0, 1/2) one has P (X ≥ d(1 + t)) ≤ exp
(
− 3

16
dt2
)
. Hence, for an uncentered

χ2-variable Y with d degrees of freedom

P (Y ≥ 3d) ≤ P (Y ≥ d+ (1 + t)d) = P (Y − d ≥ (1 + t)d) = P (X ≥ (1 + t)d) ≤ exp
(
−

3

16
dt2
)

= exp
(
−c1d

)
where the first estimate follows from d ∈ (0, 1/2) and the last equality by fixing some t ∈ (0, 1/2)
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φmin

(
ΓJ,J

)
are bounded from above and below, respectively. The last inequality follows

by choosing aN,T sufficiently large while the last equality follows from the definitions of
λN,T , µN,T and ξN,T and the fact that κ2 is bounded from below. �

Proof of Theorem 5. We start with the consistency part. The conclusion follows from
Theorem 3 if we show that P (AN,T ∩ BN,T ) → 1 and that ξN,T /

√
NT, ξN,T /

√
T → 0.

All notation is as in the statement of Theorem 3. To establish that P (AN,T ∩ BN,T )→ 1

it suffices to show that A(p2 +Np)e−B(t2N)1/3 → 0 Note that, ignoring constants,

t2N =
N(

N c
)2 ( Nb

ln(N) ∨
ln(N)
Nb

)6 = N1−2c−6b ln(N)6 →∞

because 6b+ 2c ≤ 9b+ 2c ≤ 1. Since t2N →∞ and p increases exponentially in N it is

enough to show that p2e−B(t2N)1/3 → 0. But this is the case, since

p2e−B(t2N)1/3 = exp(2N b) exp(−BN (1/3−(2/3)c−2b) ln(N)2)→ 0

because 9b+ 2c ≤ 1. Next, note that, ignoring constants, ξN,T = log(N)3/2N (3/2)bN c/2 +

log(N)3N c/2 which implies that

ξN,T /
√
NT = log(N)3/2N (3/2)b+c/2−1/2−(1/2)a + log(N)3N c/2−1/2−(1/2)a → 0

since 3b+ c < 1 + a. Similarly,

ξN,T /
√
T = log(N)3/2N (3/2)b+c/2−(1/2)a + log(N)3N c/2−(1/2)a → 0

since 3b+c < a. Regarding the second part we have already established that P (AN,T ∩ BN,T )→
1 since 9b+ 2c ≤ 1. Hence, ‖β̂ − β∗‖ ≤ ξN,T /

√
NT with probability tending to one. But

β̂j = 0 for some j ∈ J1 implies ‖β̂ − β∗‖ > ξN,T /
√
NT . This is a contradiction and so

it can’t be the case that β̂j = 0 for any j ∈ J1. A similar argument applies to ĉi for
i ∈ J2. �

Lemma 9. Under assumption A1) and A2a)

(1) P (C1,N,T ) ≥ 1− 2

a
r/2
N,T

for K1,N,T = |Jc1 |2/r|J1|2/r(NT )1/2aN,T

(2) P (C2,N,T ) ≥ 1− 1
arN,T

for K2,N,T = |J1|1/r|Jc2 |1/rT 1/2aN,T

Proof. First, note that∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

xi,t,kxi,t,l

∥∥∥∥
Lr/2

≤
√
NT max

1≤t≤T

∥∥x1,t,kx1,t,l

∥∥
Lr/2
≤
√
NT

where the last estimate follows from the Cauchy-Schwarz inequality. Hence,
∥∥maxk∈Jc1 maxl∈J1

1√
NT

∑N
i=1

∑T
t=1 xi,t,kxi,t,l

∥∥
Lr/2
≤

|Jc1 |2/r|J1|2/r
√
NT . It follows from Markov’s inequality that

P
(

max
k∈Jc1

max
l∈J1

1√
NT

N∑
i=1

T∑
t=1

xi,t,kxi,t,l ≥ K1,N,T

)
≤ |J

c
1 ||J1|(NT )r/4

K
r/2
1,N,T

=
1

a
r/2
N,T

Next, ∥∥∥∥ 1√
T

T∑
t=1

xi,t,k

∥∥∥∥
Lr

≤
√
T max

1≤t≤T

∥∥xi,t,k∥∥Lr ≤ √T
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This implies,
∥∥maxi∈J2 maxk∈Jc1

1√
T

∑T
t=1 xi,t,k

∥∥
Lr
≤ |Jc1 |1/r|J2|1/r

√
T and Markov’s in-

equality yields

P
(

max
i∈J2

max
k∈Jc1

1√
T

T∑
t=1

xi,t,k ≥ K1,N,T

)
≤ |J

c
1 ||J2|T r/2

Kr
1,N,T

=
|J2|

|Jc1 ||J1|2Nr/2arN,T
≤ 1

a
r/2
N,T

where the last estimates follows from |J2| ≤ Nr/2 and aN,T ≥ 1. The conclusion of the
first part of the lemma now follows by a union bound. The second part of the lemma is
proved in a similar manner. �

Lemma 10. Under assumption A1) and A2b)

(1) P (C1,N,T ) ≥ 1− 4
aN,T

for K1,N,T = A log(1 + |Jc1 |) log(e+ |J1|)
√
NT log(aN,T )

(2) P (C2,N,T ) ≥ 1− 2
aN,T

for K2,N,T = A log(1 + |J1|) log(1 + |Jc2 |)
√
T log(aN,T )

for a constant A > 0.

Proof. First, note that∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

xi,t,kxi,t,l

∥∥∥∥
ψ1

≤
√
NT max

1≤t≤T

∥∥x1,t,kx1,t,l

∥∥
ψ1
≤
√
NT

1 +K

C

where the last estimate follows from
∥∥x1,t,kx1,t,l

∥∥
ψ1
≤ 1+K

C
:= A as argued in the

proof of Lemma 7. Hence,
∥∥maxk∈Jc1 maxl∈J1

1√
NT

∑N
i=1

∑T
t=1 xi,t,kxi,t,l

∥∥
ψ1

≤ A log(1 +

|Jc1 |) log(e + |J1|)
√
NT . By Markov’s inequality, the definition of the Orlicz norm, and

the fact that 1 ∧ ψ(x)−1 = 1 ∧ (ex − 1)−1 ≤ 2e−x,

P
(

max
k∈Jc1

max
l∈J1

1√
NT

N∑
i=1

T∑
t=1

xi,t,kxi,t,l ≥ K1,N,T

)
≤ 1 ∧ 1

exp(K1,N,T /A log(1 + |Jc1 |) log(1 + |J1|)
√
NT )− 1

=
2

aN,T

Next, since xi,t,k is subgaussian it is also subexponential, and so there exists a constant
A > 0 such that ∥∥∥∥ 1√

T

T∑
t=1

xi,t,k

∥∥∥∥
ψ1

≤
√
T max

1≤t≤T

∥∥xi,t,k∥∥ψ1
≤
√
TA

This implies,
∥∥maxi∈J2 maxk∈Jc1

1√
T

∑T
t=1 xi,t,k

∥∥
ψ1

≤ A log(1 + |Jc1 |) log(1 + |J2|)
√
T and

Markov’s inequality yields by similar arguments as above12

P
(

max
i∈J2

max
k∈Jc1

1√
T

T∑
t=1

xi,t,k ≥ K1,N,T

)
≤ 1 ∧ 1

exp(K1,N,T /A log(1 + |Jc1 |) log(1 + |J2|)
√
T )− 1

≤ 2 exp
(
−A log(1 + |Jc1 |) log(e+ |J1|)

√
NT log(aN,T )

A log(1 + |Jc1 |) log(1 + |J2|)
√
T

)
≤ 2

aN,T

12The constant A may take different values throughout.
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where the last estimate follows from log(1 + |J2|) ≤ N1/2, log(e+ |J1|) ≥ 1 and aN,T ≥ 1.
The conclusion of the first part of the lemma now follows by a union bound. The second
part of the lemma is proved in a similar manner. �

Before we prove Theorem 6 note that B̃N,T ⊆ BN,T (see the definition of B̃N,T in (31))
as already argued in the proofs of Lemmas 6 and 7. Furthermore, an argument similar
to the one in Lemma 5 reveals that DN,T = {φmin(ΨJ,J) ≥ 1

2φmin(ΓJ,J)} occurs if the

maximal entry of |ΨJ,J − ΓJ,J | is less than or equal to
φmin(ΓJ,J )
2(s1+s2) . But this latter event

clearly contains B̃N,T and so B̃N,T ⊆ DN,T .

Proof of Theorem 6. We shall prove the first part of the theorem since the proof of
the second part follows along exactly the same lines (except for replacing C1,N,T by
C2,N,T in the following arguments). Throughout we work on AN,T ∩ C1,N,T ∩ DN,T ∩
{‖β̂ − β∗‖ ≤ βmin/2}∩{‖ĉ− c∗‖ ≤ cmin/2} and verify that (39) and (40) are valid on this

set with w = (w′1, w
′
2)′ and w1j = λN,T / |β̂j | , j = 1, ..., p as well as w2j = µN,T / |ĉj |,

j = 1, ..., N and the convention that 1/0 = ∞. First note that since SJ,J is a diagonal
matrix with positive entries on the diagonal (39) is equivalent to

sign
(
SJ,Jγ

∗
J + SJ,J

(
Z ′JZJ

)−1
SJ,J(SJ,J)−1

[
Z ′Jε− rJ

])
= sign(γ∗J)

Focussing on an Xj with j ∈ J1 it hence suffices to show that13∣∣(SJ,J (Z ′JZJ)−1
SJ,J(SJ,J)−1

[
Z ′Jε− rJ

])
j

∣∣ ≤ √NTβmin

The left hand side in the above display may be upper bounded by∥∥SJ,J (Z ′JZJ)−1
SJ,J

∥∥
`∞

∥∥(SJ,J)−1
[
Z ′Jε− rJ

]∥∥
`∞

. Since

‖SJ,J
(
Z ′JZJ

)−1
SJ,J‖`∞ ≤

√
|J | ‖SJ,J

(
Z ′JZJ

)−1
SJ,J‖

and on DN,T one has∥∥SJ,J (Z ′JZJ)−1
SJ,J

∥∥ = φmax

(
SJ,J

(
Z ′JZJ

)−1
SJ,J

)
=

1

φmin(ΨJ,J)
≤ 2

φmin(ΓJ,J)
(43)

it follows that

‖SJ,J
(
Z ′JZJ

)−1
SJ,J‖`∞ ≤

2
√
|J |

φmin(ΓJ,J)

Furthermore, because ‖β̂ − β∗‖ ≤ βmin/2 (by assumption)

|β̂j | ≥ β∗j − |β̂j − β∗j | ≥ βmin − ‖β̂ − β∗‖ ≥ βmin/2

for all j ∈ J1. By a similar argument ĉj ≥ cmin/2 for all j ∈ J2. Hence,∥∥(SJ,J)−1rJ
∥∥
`∞

=
∥∥∥ λN,T√

NTβ̂J1

∥∥∥
`∞

∨
∥∥∥ µN,T√

T ĉJ2

∥∥∥
`∞

≤ 2λN,T√
NTβmin

∨ 2µN,T√
Tcmin

Next, on AN,T∥∥(SJ,J)−1Z ′Jε
∥∥
`∞
≤

∥∥∥∥∥ X ′J1ε√
NT

∥∥∥∥∥
`∞

∨

∥∥∥∥∥D′J2ε√
T

∥∥∥∥∥
`∞

≤ λN,T

2
√
NT
∨ µN,T

2
√
T

13Here, without causing confusion, we assume that Xj , j ∈ J1 is indeed the jth variable.
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It follows that∥∥(SJ,J)−1
[
Z ′Jε− rJ

]∥∥
`∞
≤
∥∥(SJ,J)−1Z ′Jε

∥∥
`∞

+
∥∥(SJ,J)−1rJ

∥∥
`∞

≤ λN,T

2
√
NT
∨ µN,T

2
√
T

+
2λN,T√
NTβmin

∨ 2µN,T√
Tcmin

(44)

Hence, putting the pieces together, (39) is satisfied for all j ∈ J1 if

2
√
|J |

φmin(ΓJ,J)

(
λN,T

2
√
NT
∨ µN,T

2
√
T

+
2λN,T√
NTβmin

∨ 2µN,T√
Tcmin

)
≤
√
NTβmin

Next, (40) is equivalent to∣∣−Z ′jZJ(SJ,J)−1SJ,J
(
Z ′JZJ

)−1
SJ,J(SJ,J)−1

[
Z ′Jε− rJ

]
+ Z ′jε

∣∣ < wj(45)

for all j ∈ Jc. The left hand side in the above display is bounded from above by∥∥Z ′jZJ(SJ,J)−1SJ,J
(
Z ′JZJ

)−1
SJ,J

∥∥
`1

∥∥(SJ,J)−1
[
Z ′Jε− rJ

]∥∥
`∞

+
∣∣Z ′jε∣∣

Assume again that Zj is an Xj . Then, on C1,N,T and by (43)∥∥Z ′jZJ(SJ,J)−1SJ,J
(
Z ′JZJ

)−1
SJ,J

∥∥
`1
≤
√
|J |
∥∥Z ′jZJ(SJ,J)−1SJ,J

(
Z ′JZJ

)−1
SJ,J

∥∥
≤ |J |

∥∥Z ′jZJ(SJ,J)−1
∥∥
`∞

∥∥SJ,J (Z ′JZJ)−1
SJ,J

∥∥
≤ 2|J |K1,N,T

φmin(ΓJ,J)

where the second estimate follows by considering SJ,J
(
Z ′JZJ

)−1
SJ,J as a bounded linear

operator from `2(R|J|)→ `2(R|J|) with induced operator norm given by φmax

(
SJ,J

(
Z ′JZJ

)−1
SJ,J

)
.

Putting the pieces together, and using that we are on AN,T and by (44) the left hand side
in (45) may be upper bounded by

2|J |K1,N,T

φmin(ΓJ,J)

(
λN,T

2
√
NT
∨ µN,T

2
√
T

+
2λN,T√
NTβmin

∨ 2µN,T√
Tcmin

)
+
λN,T

2

Finally, the right hand side in (45) may be bounded from below by λN,T / ‖β̂ − β∗‖ and
the result follows. �

Proof of Corollary 1. We know from Theorem 6 that sign(β̃) = sign(β∗) on AN,T ∩
BN,T ∩C1,N,T ∩DN,T ∩{‖β̂ − β∗‖ ≤ βmin/2}∩{‖ĉ− c∗‖ ≤ cmin/2} if (14)-(15) is satisfied14.

Furthermore, if βmin ≥ 2ξN,T√
NT

one has AN,T ∩B̃N,T ∩C1,N,T ⊆ AN,T ∩BN,TC1,N,T ∩DN,T ∩
{‖β̂ − β∗‖ ≤ βmin/2} ∩ {‖ĉ− c∗‖ ≤ cmin/2} 15. The lower bound on the probability of

{sign(β̃) = sign(β∗)} now follows by Lemmas 2, 6 and 9 in case of part one of the corollary.
In case of part 2 of the corollary Lemmas 4, 7 and 10 are used. A similar argument gives the
lower bound on the probability with which sign(c̃) = sign(c∗) by verifying (16)-(17). �

14Actually, we know from Theorem 6 that sign(β̃) = sign(β∗) on the larger set AN,T ∩C1,N,T ∩DN,T ∩
{‖β̂ − β∗‖ ≤ βmin/2} ∩ {‖ĉ− c∗‖ ≤ cmin/2}. As will be seen, this distinction will turn out not to make
any difference for our lower bounds on the probability of the events.

15The inclusion follows from the fact that B̃N,T ⊆ BN,T ∩DN,T as argued prior to the proof of Theorem

6. Also the inclusion has used that on AN,T ∩ BN,T one has ‖β̂ − β∗‖ ≤ ξN,T√
NT

and ‖ĉ− c∗‖ ≤ ξN,T√
T

such that βmin ≥
2ξN,T√
NT

and cmin ≥
2ξN,T√

T
imply that {‖β̂ − β∗‖ ≤ βmin/2} and {‖ĉ− c∗‖ ≤ cmin/2},

respectively.
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Proof of Theorem 7. We proceed by verifying the conditions related to the sign consis-
tency of β̃ and c̃ in part 2 of Corollary 1 and showing that the lower bound on the
probability with which sign(β̃) = sign(β∗) and sign(c̃) = sign(c∗) tends to one. We focus

on P
(
sign(β̃) = sign(β∗)

)
→ 1 since the second part of the theorem follows by identical

arguments.
First, we verify that 14 is satisfied asymptotically. To do so it suffices to show that√
|J|λN,T
NT → 0 and

√
|J|µN,T√
NT

→ 0. Now, ignoring constants, and using the definition of

λN,T √
|J |λN,T
NT

=

√
|J | log(p)3/2 log aN,T

3/2

√
NT

= N c/2+ 3
2 b−a/2−1/2 logN3/2 → 0

since 3b+ c < 1 + a. Similarly, using the definition of µN,T√
|J |µN,T√
NT

=

√
|J | log(N)3

√
NT

= N c/2−a/2−1/2 log(N)3 → 0

since c < a + 1. Next, we verify that (15) is valid asymptotically. To do so it suffices

to show that
|J|K1,N,T√

NT
‖β̂ − β∗‖ → 0,

|J|K1,N,TµN,T /λN,T√
T

‖β̂ − β∗‖ → 0 and ‖β̂ − β∗‖ → 0.

For this purpose, note that K1,N,T ≤ A log(1 + |p|) log(e + |J1|)
√
NT log(aN,T ) which

is of order log(|p|) log(|J1|)
√
NT log(aN,T ) = N bc log(N)2

√
NT = N b+1/2+a/2 log(N)2.

Furthermore, ‖β̂ − β∗‖ ≤ ξN,T /
√
NT on AN,T∩BN,T which we are working on in Corollary

1 16 (where ξN,T is as defined in Theorem 3). Hence, ignoring constants,

‖β̂ − β∗‖ ≤ ξN,T /
√
NT ≤ log(N)3N

3
2 b+c/2−1/2−a/2 → 0(46)

since 3b+ c < 1 + a. Also,

|J |K1,N,T√
NT

‖β̂ − β∗‖ ≤ N cN b+1/2+a/2 log(N)2 log(N)3N
3
2 b+c/2−1/2−a/2N−1/2−a/2

= N
5
2 b+

3
2 c−1/2−a/2 log(N)5 → 0

since 5b+ 3c < 1 + a. Similarly, since µN,T /λN,T = log(N)3/2√
N log(p)3/2

= log(N)3/2
√
NN

3
2
b

|J |K1,N,TµN,T /λN,T√
T

‖β̂ − β∗‖ = N cN b+1/2+a/2 log(N)2 log(N)3/2

√
NN

3
2 b

log(N)3N
3
2 b+c/2−1/2−a/2N−a/2

= N b+ 3
2 c−1/2−a/2 log(N)13/2 → 0

since 2b+ 3c < 1 + a. Furthermore, βmin ≥ 2
ξN,T√
NT

since
ξN,T√
NT
→ 0 when 3b+ c < 1 + a

as seen from (46) while βmin is bounded away from 0. Finally, we note that 9b+ 2c ≤ 1
suffices to ensure that the lower bound on the probability in part 2 of Corollary 1 tends
to one as was already argued in the proof of Theorem 5. �
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Bühlmann, P. and S. Van De Geer (2011). Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer-Verlag, New York.

Candes, E. and T. Tao (2007). The dantzig selector: statistical estimation when p is much
larger than n. The Annals of Statistics, 2313–2351.

Fan, J. and R. Li (2001). Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association 96 (456), 1348–1360.

Fan, J. and J. Lv (2008). Sure independence screening for ultrahigh dimensional feature
space. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 (5),
849–911.

Hall, P. and C. Heyde (1980). Martingale limit theory and its application, Volume 142.
Academic press New York.

Hitczenko, P. (1990). Best constants in martingale version of rosenthal’s inequality. The
Annals of Probability , 1656–1668.

Huang, J., J. L. Horowitz, and S. Ma (2008). Asymptotic properties of bridge estimators
in sparse high-dimensional regression models. The Annals of Statistics 36 (2), 587–613.
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