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ABSTRACT. This paper is concerned with high-dimensional panel data models where
the number of regressors can be much larger than the sample size. Under the assumption
that the true parameter vector is sparse we establish finite sample upper bounds on the
estimation error of the Lasso under two different sets of conditions on the covariates
as well as the error terms. Upper bounds on the estimation error of the unobserved
heterogeneity are also provided under the assumption of sparsity. Next, we show that
our upper bounds are essentially optimal in the sense that they can only be improved
by multiplicative constants. These results are then used to show that the Lasso can
be consistent in even very large models where the number of regressors increases at
an exponential rate in the sample size. Conditions under which the Lasso does not
discard any relevant variables asymptotically are also provided.

In the second part of the paper we give lower bounds on the probability with which
the adaptive Lasso selects the correct sparsity pattern in finite samples. These results
are then used to give conditions under which the adaptive Lasso can detect the correct
sparsity pattern asymptotically. We illustrate our finite sample results by simulations
and apply the methods to search for covariates explaining growth in the G8 countries.

Key words: Panel data, Lasso, Adaptive Lasso, Oracle inequality, Nonasymptotic
bounds, High-dimensional models, Sparse models, Consistency, Variable selection,
Asymptotic sign consistency.
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1. INTRODUCTION

When building an econometric model one of the first decisions one has to make is
which variables are to be included in the model and which are to be left out. Often this
decision is made based on economic theory but different theories might suggest different
explanatory variables and this leaves the researcher with a large set of potential variables.
In fact, one may often have access to many more variables than observations rendering
standard techniques inapplicable. Since this kind of high-dimensional data is becoming
increasingly available, the last 10-15 years have witnessed a great deal of research into
procedures that can handle such data sets. In particular, a lot of attention has been
given to penalized estimators. The Lasso of Tibshirani (1996) is the most prominent
of these procedures and a lot of subsequent research has focussed on investigating the
theoretical properties of the Lasso, see Zhao and Yu (2006), Meinshausen and Biihlmann
(2006), Bickel et al. (2009), Belloni and Chernozhukov (2011) and Biithlmann and Van
De Geer (2011) to mention just a few. Many other procedures have been investigated as
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well: the SCAD of Fan and Li (2001), the Adaptive LASSO of Zou (2006), the Bridge and
Marginal Bridge estimators of Huang et al. (2008), the Dantzig selector of Candes and
Tao (2007), the Sure Independence Screening of Fan and Lv (2008) and the square root
LASSO of Belloni et al. (2011). These procedures have become popular since they are
computationally feasible and perform variable selection and parameter estimation at the
same time.

Most focus in the literature has been on the standard linear regression model. However,
often objects (such as individuals, firms or countries) are sampled repeatedly over time
resulting in a panel data set. Since these data sets may often contain many variables it
is important to have procedures that can deal with them in a theoretically sound and
computationally feasible manner. In this paper we make a step in that direction by
investigating the properties of the Lasso and the adaptive Lasso in the linear fixed effects
panel data model

(1) Yip =T "+ +eg, i=1,.,N, t=1,..,T

where x; ; is a py7 x 1 vector of covariates and where py 7 is indexed by N and T to
indicate that the number of covariates can increase in the sample size. In the sequel we
shall omit this indexation. The cs are the unobserved time homogeneous heterogeneitys
(such as intelligence of a person) while the ¢;, are the error terms about which we shall
be more specific later. Even though economic theory may guide the researcher towards a
set of potential explanatory variables to be included in x; 4, large data sets are becoming
increasingly available nowadays and one may not want to take a strong stand a priori on
which variables to include in the model and which to leave out. This implies that z; ; can
be a very long vector — potentially much longer than the sample size. On the other hand,
only a few variables in x; ; might be relevant for explaining y; ; meaning that the vector
[* is sparse.

Oftent the unobserved heterogeneity c; ; is simply removed by a differencing or demean-
ing procedure. However, just like 5%, ¢* = (cf, ..., ¢}y) might be a sparse vector. Example
of this could be intelligence only having an effect for certain individuals when modeling
income or the culture of a country when modeling its growth. It is our goal to investigate
the properties of the Lasso for fixed effects panel data models in such situations. We shall
see that the Lasso can estimate the two parameter vectors almost as precisely as if the true
sparsity pattern had been known and only the relevant variables had been included from
the outset. For the adaptive Lasso we show that it selects the correct sparsity pattern
with high probability. In particular, we

(1) provide nonasymptotic oracle inequalities for the estimation error of the Lasso for
B* and ¢* under different sets of moment/tail assumptions on the covariates and
the error terms. More precisely, for a given sample size we provide upper bounds
on the estimation error which hold with at least a certain probability. In the first
of our settings we allow for much heavier tails than the usual sub-gaussian ones.

(2) show that our bounds are optimal in the sense that they can at most be improved
by a multiplicative constant.

(3) use the nonasymptotic bounds to give a set of sufficient conditions under which
the Lasso estimates f* and c¢* consistently. It turns out that the Lasso can be
consistent in even very high-dimensional models. We also provide conditions
under which the Lasso does not discard any relevant variables, i.e. conditions
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under which it can be used as a strong initial screening device removing irrelevant
variables and thus reducing the dimension of the model.

(4) establish nonasymptotic lower bounds on the probability with which the adaptive
Lasso unveils the correct sparsity pattern.

(5) use the nonasymptotic bounds to give conditions under which the adaptive Lasso
detects the correct sparsity pattern asymptotically.

(6) propose an efficient algorithm to implement the Lasso and the adaptive Lasso in
panel data models which reduces the estimation problem to a standard Lasso one.

(7) introduce a new restricted eigenvalue condition similar in spirit to Bickel et al.
(2009) and show how this can be valid even for data with non-gaussian, non-
independent rows, hence extending the work of Raskutti et al. (2010) and Vershynin
(2011). The proof of our Theorem 1 is also different than the one for the plain
cross sectional model due to the presence of two parameter vectors which have to
be treated separately.

(8) illustrate the methods by means of simulations and a real data example.

We believe that these results will be very useful for applied researchers since they provide
tools with which very large panel data sets can be handled in a theoretically sound way
without reducing the dimension of the model in an ad hoc way prior to estimation.

The rest of the paper is organized as follows: Section 2 introduces relevant notation
and the panel Lasso. Section 3 provides a range of non-asymptotic oracle inequalities for
the Lasso while Section 4 uses these inequalities to give asymptotic results for it. Next,
Section 5 is concerned with finite sample probabilities of the adaptive Lasso selecting the
correct sparsity pattern. It also gives sufficient conditions for when this probability tends
to one asymptotically. Section 6 provides a simulation study while Section 7 contains an
application to growth in the G8 countries. Finally, Section 8 concludes while all proofs
are deferred to the appendix.

2. SETUP AND NOTATION

Let Ji = {j: B8 #0} C {1,...,p} and Jo = {i:¢c; #0} C {1,.., N} be the sets of
active covariates and unobserved heterogeneities, respectively. Spin = min {| ﬁj*| 1j € Ji}
and cmin = min {|c}| : j € Jo} are the smallest nonzero entries of 3* and c*, respectively.
Denote by v* = (8*',¢*') and J = J; U Jy C {1,...,N + p}'. For any set A, |A| denotes
its cardinality while A° denotes its complement. In particular, |J1| = s1, |J2| = s2 and
|J]| = s.

For any = € R", |lzl| = /X ;- 77, llzll,, = X0y |wil and [lz]l, = maxi<icn |
denote {2, £1 and £ norms, respectively. For a random variable U, U], = (E|U|")Y"
denotes its L,-norm and for a symmetric square matrix M, ¢min(M) and ¢max(M) denote
the minimal and maximal eigenvalues of M.

For any vector € R™ and subset A of {1,...,n}, z; denotes the vector in RV only
consisting of the elements indexed by A. For a matrix R, R4 denotes the submatrix only
containing the columns indexed by A while R4 g denotes the submatrix with rows indexed
by A and columns indexed by B. Next, for any two real numbers a and b, a Ab = min(a, b)
and a V b = max(a,b). For any x € R", sign(z) denotes the sign function applied to each
component of x.

1Here J1 U J5 is understood as J; U (J2 + p) where Jo +p={s=r+p:r € Ja} such that J; U J2 C
{1,...,p+ N}. J shall be used to index p+ N x 1 vectors.
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Since our primary focus is high-dimensional models we shall sometimes tacitly assume
that p, N > e for the sole reason of keeping the presentation simple.

Define X; = (24,1, ...,x;,7) and X = (X1, ..., X)'. Letting ¢ denote the T x 1 vector of
ones, set D = Iy ®¢ (where ® denotes the Kronecker product) and define the NT x (p+ k)
matrix Z = (X, D). We shall refer to the jth column of X by z;, j =1,...,p and to the
ith column of D by d;, ¢ =1,..., N. Defining y; = (yi1,....¥:;,7) and € = (€1, ..., €.1)’
fori=1,...,N and setting y = (v}, ..., y)’ as well as € = (¢}, ..., €yy)’ one may equivalently
write (1) as

y=2v"+e

The properly scaled Gram matrix of Z will turn out to play an important role in the
sequel.

2.1. The panel Lasso. The panel Lasso estimates v* = (8*,¢*')’ by minimizing the
following objective function

N T p N
(2) L(B,c) = Z Z (i — 5,8 — Ci)2 +2ANT Z |Bk| + 2un,T Z |cil
k=1 1=1

i1 t=1
2
(3) =lly = 290" + 2An 218l + 2887l -

The Lasso estimator, denoted 4 = (8, &), is the solution of a minimization problem which
is the sum of the usual least squares objective function plus two terms that penalize 5
and ¢; for being different from 0. The size of the penalty is determined by the sequences
An,r and py,7. The larger these are, the more will the entries of B and ¢ be shrunk
towards zero. As will be seen later, two different regularization sequences (Ay 1 and pn 1)
are needed to establish desirable properties of 4 = (B’ ,¢)’. On an intuitive level this is
due to the fact that the number of effective observations for each B, k=1,...,pis NT
while it only is T for each ¢; i =1, ..., N.

2.2. The panel restricted eigenvalue condition. Since we are primarily interested
high-dimensional models the properly scaled Gram matrix of Z will often be ill-behaved
or even singular. However, Bickel et al. (2009) observed for the standard linear regression
model that the Lasso does not need the smallest eigenvalue of the scaled Grammian of Z
to be strictly positive on order to derive useful upper bounds on the estimation error. In
particular, it suffices that a so-called restricted eigenvalue is bounded away from 0. We
shall see next that a similar, though slightly more involved, observation can be made for
the panel Lasso.

Let S= (YN ° ) andset ¢y =S"12ZS1. Iif p+ N > NT it is well known
hat 0 VTIy
tha

§'Un 16 _zs 1)
min — 5 = n —_— = 0
SERPTN\{0} ||5|| SERPTN\{0} ||5||

In this case ordinary least squares is infeasible. However, for the Lasso it turns out that
we do not need to minimize the above Rayleigh-Ritz ratio over all of RPTY — it suffices to
minimize over a subset implying that the minimum can be non-zero even when ¥y 7 is

not of full rank. More precisely, letting 6* be p x 1 and 62 be N x 1 with 6 = (6%, 62")
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and Ry C {1,...,p} as well as Ry C {1,..., N} we define the RE(r1,72) panel restricted
eigenvalue as

|zs~5]

H5||2 16 € RPPNA {0}, |Ry| <71, |Ro| <o

Iii}N’T (r1,72) = min {

A )\
W DT, ), < 32 o, + 3“”ua&||h}>o-

The panel restricted eigenvalue condition looks similar to the one introduced in Bickel
et al. (2009). It extends it in that it allows for different penalty sequences for the two
groups of parameters. Similarly, for

define
2 . 6'Ts +N
K°(r1,72) = min 151 10 € RFTUANA{O}, |Ra] <711, [Ra| <o,

AN, " A I
SRl + S, <325 ol + 25l |

Note that for x? > 0 it suffices that I is of full rank which is a rather standard assumption
and independent of whether p + N < NT or not. I turns out that in order to get tight
upper bounds on the estimation error of the Lasso K%I,N.T should be as large as possible. In
Lemma 5 in the appendix we show that £ is close to x* if W is close to I'. Hence,
it suffices that x2 is bounded away from zero and that ¥ N, is close to I' in order to
bound KJ?I,NYT away from 0 with high probability. In Lemmata 6 and 7 in the Appendix
lower bounds on the probability with which &3, > x?/2 are provided using this idea
for heavy- and light-tailedness assumptions on the covariates and the error terms. While
the results for light-tailed (sub-gaussian) variables in Lemma 7 are to be expected in the
light of previous results in the literature (see e.g. Vershynin (2011)) the results on more
heavy-tailed random variables in Lemma 6 are to our knowledge new.

3. RESULTS FOR THE LASSO
Before stating our first result we introduce the following two sets

T
) HDIG‘ 14

An = {”X/GHZOO <

The set A is the set where none of the covariates X or D are too highly correlated with
the error term. This requirement limits the number of variables in X and D. Working
on the set By r means restricting attention to settings where the restricted eigenvalue of
Wy 7 is not too small.

Theorem 1 gives upper bounds on the estimation error of the Lasso on Ax 7 N By 1
and will be our main tool to derive further bounds under more specific assumptions on
the covariates and the error terms. It is worth emphasizing that it is a purely algebraic
result without any probabilities attached to it yet.

KN,T _f,.2 2
< 2 } and BNvT_{K\I/N,T 2K /2}
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Theorem 1. On Ay 1 N By with k2 > 0 one has for any positive sequences AN, and

UN,T

. 8AN,TV51 | ApN,T/52
5 _ * < 9 El
() Hﬁ B H =  K2NT . Kk2\/NT
and

o < S8un,Tv/52  4AN,T+/51
c—¢ || — 2 2 .
k2T k*VNT

We stress that the claims in Theorem 1 are deterministic. Probabilities will be attached
to the bounds once we have made statistical assumptions on the covariates and the error
terms.

The bounds in Theorem 1 reveal that the further 2 is away from zero the more precisely
can one estimate the parameters of the model. This is reasonable since it means that
the problem is in some sense far from a singular one. However, the set By 1 is clearly
decreasing in k2, revealing a tradeoff between the sharpness of the upper bounds on the
estimation error and the size of the set on which the bounds hold. The same tradeoff is
present for Ay 7 and py 1 — the set Ay 7 is increasing in both of these but the same is
true for the upper bounds on the estimation error. Put differently, small values of Ay 1
and pn,7 give tight bounds on the estimation error but the bounds are only valid on a
smaller set. Our next two theorems investigate the tradeoff further under different sets of
assumptions on the tail behaviour of the covariates and the error terms. First, we shall
put forward the statistical assumptions of the panel data model:

Al a) {X;, ei}iil are identically and independently distributed
b) X; and ¢; are independent for i =1,..., N
c) {el,t}le are independent with mean zero.

Assumption Ala) is standard in the panel data literature, see e.g. Wooldridge (2002) or
Arellano (2003). Part b) is also relatively standard but slightly stronger than E(e;|X;) = 0
which is often assumed. However, for most applied work involving panel data it is
hard to come up with realistic examples where E(e;:|X;) = 0 but X; and ¢; are not
independent?. Alc) is standard. Note that we are not assuming that {61,t}tT:1 are
identically distributed. In particular, they may be heteroscedastic. Put differently, for
every i =1,...,N (€1,...,€ 1) is distributed the same way, but the marginal distributions
of the individual elements may be non-identical.

Furthermore, the upper bounds on the estimation errors in (5) and (6) as well as the
probability with which they hold, depend on the number of moments the error terms and
covariates possess. We shall give results under two different sets of conditions.

A2a) E(|z14k]"), E(le14]”) < oo for some r >2and t =1,..,T, k=1,...,p. Actually,
we shall assume maxy<;<p E|z1,1]" < 1forall k=1,...,p.

Assumption A2a) is a moment assumption stating that the covariates as well as the

error terms possess 7 moments. maxi<;<r El|r1.%| < 1 for all £k = 1,...,p is merely a

normalization for technical convenience and to keep expressions simple. All results remain
valid without this normalization.

20f course it is possible to construct examples where E(€;+|X;) = 0 but X; and ¢; are not independent.
See e.g. Stoianov (1997).
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A2b) z1, and €, are uniformly subgaussian, i.e. there exist constants C' and K such
that P (|z10k] > 1), P (e > 1) < 1Ke O forall 1 <t <Tand 1<k < p.
Assumption A2b) controls the tail behaviour of the covariates and the error terms (and
hence also its moments). It is a standard assumption in the high-dimensional statistics
literature and much more restrictive than A2a) which only assumes the existence of r
moments. However, we will see that the dimension of the models considered can be a lot
larger under A2b) than under A2a).

We are now ready to transform the deterministic statement in Theorem 1 into proba-
bilistic ones. We stress that the bounds below are finite sample bounds, i.e. for a given
sample size we provide upper bounds on the estimation error that hold with at least a
certain probability. First, we work under assumption A2a):

Theorem 2. Let assumption A1) and A2a) be satisfied and assume that k* > 0. Then,

choosing Ay, = 4aN7Tp1/T(NT)1/2 maxi<;<T ||€17t||LT and un T = Zlctj\erl/rTl/2 maxi<;<T |\617t||LT
(P2 +Np)(s1+s2)"/2(% V)

T KTNT/4

for constants C, and D, only depending on r. Furthermore, with at least this probability

(i.e. on -AN,T N BN,T);

T
for any positive sequence anr one has P (Axr N Bnr) > 1-2 (ag—TT) -D

. EN,T
™ 13- 81l < 2
and
(8) é-@”<5MT

where {n,r = 32an,7 maxi<i< [lenll (pt/7/s1 + NY"\/353) /K.

First, note that the more moments the covariates and the error terms possess (r
large) the smaller can Ay and pun 1 be chosen and hence the upper bounds on the
estimation error are smaller in accordance with Theorem 1. {x 7 may be interpreted as
the punishment on the convergence rate for not knowing the true model. Since ay,r will in
general be chosen to be an increasing sequence one sees that in the setting of fixed T, p, s1
and s the upper bound on ||B — B*| is of the order ay,N'/7=1/2 (if k2 is bounded away
from zero) which is not far from 1/ VN if r is large and an,r is increasing slowly.

If €, + is uniformly bounded in L,, which is the case if they are e.g. identically dis-
tributed, then the term maxi<¢<r ||€1¢|| 1, can be disregarded in asymptotic considerations.
Furthermore, (8) confirms the well known fact that 7" must be large in order to estimate
¢* precisely since there are only 7" observation per ¢}, i =1,...,N.

We also stress that Theorem 2 does not require sub-gaussianity of the covariates and
the error terms and in this respect it relaxes one of the standard assumptions in the
high-dimensional modeling literature. The next theorem is similar in spirit to Theorem 2
but strengthens the existence of » moments to sub-gaussian tails of the covariates as well
as the error terms, i.e. we invoke A2b) instead of A2a).

Theorem 3. Let assumption A1) and A2b) be satisfied and assume that k% > 0. Then,
choosing An,r = /ANT log(p)?log(an,)? and py,r = /4T log(N)3log(an,1)? for any

sequence an, > e one has P(AxyrNBnr) > 1 — Apt—Bloglant) _ AN1-Bln(anT) _
2

A(p? + Np)e=BEN'* for absolute constants A and B, t = - s and
(sr-+2) (R VG
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Nt? > 1. Furthermore, with at least this probability (i.e. on An1 N Bn.T),

5 ox EN,T
(9) 18- 87| < Nies
and
(10) é—c < vz

VT
where n 1 = 161log(an )2 [log(p)3/2\/§—|— log(N)3/2\/£] /K2

The form of the upper bounds on the estimation errors is the same as in Theorem 2.
However, the definition of {; 7 has changed. In particular, {x 7 is now increasing slower
in the number of variables, p, in X and N in D, respectively. In the case where T, p, s1
and sy are bounded the upper bound on ||B — B*|| is of order In(an1)%? In(N)*2/vVN
(if 2 is bounded away from 0). In other words, the punishment for not knowing the true
model is now merely logartithmic in the sample size.

In lower bounding the probability of Ay 7 in Theorem 3 we have used a concentration
inequality for unbounded martingales due to Lesigne and Volny (2001) which they show is
optimal.

So far, we have focussed on providing upper bounds on the estimation error. An obvious
question is now how tight these bounds are. It turns out that the established bounds are
indeed tight. In particular, we show next that no improvements can be made beyond
multiplicative constants. First, note that Theorem 3 implies that

(11) [S7(F = )| < 26nr

with high probability®. The following theorem shows that the upper bound in (11) cannot
be improved in the case of gaussian error terms.

Theorem 4. Let A1) and A2b) be satisfied and assume that k2 is bounded away from zero.
Assume that €; is N(0,0%Ir) and ¢min(LJ.5), 5% are bounded from below and ¢max(T7.)
is bounded from above. Choose An 1 and pn 1 as in Theorem 3. Then when the Lasso
detects the correct sparsity pattern, it holds with probability at least 1 — exp(—c1|J|) —

A(p? + Np)e=BEN'Y?
(12) 155,07 = v5)|| = c2énr

for absolute constants ¢, ca, A and B and t = L s as long as Nt? > 1

In In(N
(s1-+s2) (25 v 2D )

where En.r s as in Theorem 3.

Inequality (12) is the reverse inequality of (11) and shows that one cannot improve the
bounds in Theorem 3 except for multiplicative constants. Hence, our results are sharp
and we turn next towards the asymptotic implications of our finite sample bounds.

4. ASYMPTOTIC PROPERTIES OF THE LASSO

In this section we show that the Lasso can estimate 5* and ¢* consistently in even very
high-dimensional settings where the number of covariates increases exponentially in N. It
is also shown that no relevant variables will be discarded from the model as long as Bmin

3To be precise, with at least the lower bound on P(An,7 N By,7) provided in Theorem 3.
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b

and cmin do not tend to zero too fast. Let ayr = N,T = N p= eN” and s; = s9 = N©
for a,b,c¢ > 0. Then we have the following result which builds upon Theorem 3.

Theorem 5. Let assumptions A1) and A2b) be satisfied and assume that k? is bounded
away from zero. Then, if 90+ 2c <1 as N — oo one has with probability tending to one

(1)
|B8-5| = 0if3b+c<l+a
|é—c*|| = 0if3b+ec<a

(2) Bj will not be classified as zero for any j € Jy if Bmin > En/VNT. Similarly,
no ¢ will be classified as zero for i € Jo if cmin > fN’T/\/T.

The first part of Theorem 5 shows that even when p increases exponentially in N, it is
possible for the Lasso to be consistent for 5* as well as ¢*. Put differently, the Lasso can
be consistent in even ultra high-dimensional models. However, and as can be expected,
one must have a > 0 in order to estimate c* consistently since only 7' = N observations
are available to estimate each ¢}, ¢ =1,..., N. In the case of standard large N asymptotics
(a = 0), the Lasso can still be consistent for 5* as long as 9b 4+ 2¢ < 1. This is clearly
satisfied in the standard setting of fixed p, s; and sy (b = ¢ =0).

The second part of the theorem reveals that the Lasso can be used as a strong screening
device since no relevant variables will be excluded from the model if their coefficients
are not too close to zero. The necessity of such a "beta-min” (or ”c-min”) condition
is not surprising since one cannot expect to be able to distinguish non-zero parameters
from zero ones if the distance between these is too small. It is not difficult to see that
in the standard large N setting of a = b = ¢ = 0, the "beta-min” condition requires
Bmin > log(N)3/v/N. Hence, all non-zero parameters outside a disc centered at zero
with radius log(N)/v/N will also be classified as non-zero by the Lasso. In the same
setting, the "c-min” condition requires ¢y, > In(N)? implying that in the limit only
¢; > In(N)3, i € Jy can be guaranteed to be classified as non-zero. Put differently, only
large ¢} can be guaranteed to be classified as non-zero. One must have a > 3b + ¢ in order
for this disc to have a radius which tends to zero, i.e. to make sure that any non-zero
c; will be classified as non-zero in fixed parameter asymptotics. The necessity of the
non-zero parameters being bounded away from zero is not surprising in the light of the
work of P6tscher and Leeb (2009) who document some of the limitations of the Lasso-type
estimators.

It is also worth mentioning that the conditions of Theorem 5 are merely sufficient. For
example it is also possible to let k2 tend to zero at the price of slower growth rates in the
other variables without sacrificing consistency. Furthermore, one could also use Theorem
2 instead of Theorem 3 to deduce a theorem in the spirit of Theorem 5. Of course, the
models sizes would no longer be allowed to increase as fast as above.

5. THE ADAPTIVE LASSO

So far we have focussed on deriving upper bounds on the estimation error that hold with
high probability. Next, we turn to variable selection. The Lasso penalizes all parameters
equally much. This implies that it can only recover the correct sparsity pattern under
rather stringent assumptions. If one could penalize the truly zero parameters more than
the non-zero ones, one would expect a better performance. This idea was utilized by Zou
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(2006) to propose the adaptive Lasso in the standard linear regression model with a fixed
number of non-random regressors. He established that the adaptive Lasso can detect the
correct sparsity pattern asymptotically in such a setting. This motivates us to modify the
adaptive Lasso to make it applicable in the linear panel data model and to derive lower
bounds on the finite sample probabilities with which it selects the correct sparsity pattern.
The adaptive Lasso estimates 8* and ¢* by minimizing the following objective function:

N T
(13) L(B,c) = Z Z (Yie — 2748 — Ci)2 + AN Z 15| N,T Z :?:

i=1 t=1 keJi(B) 1Bl i€J2(8)

where Ji(8) = {j: B; # 0} and JQ( ) = {i: ¢ #0}. Denote the minimizers of L by j
and ¢, respectively. Note that if BJ or ¢; equal zero, the corresponding variable is entirely
excluded from the model in the second step. Hence, the dimension of the second step
estimation can be of a much smaller order of magnitude than the first step estimation. If
B; = 0 then it follows by Theorems 2 and 3 that B; is likely to be small (or even 0) and
so the penalty on 3; in (13) is large implying that B is likely to be classified as being zero.
The reverse logic applies when 37 # 0 (and similarly for ¢}). Put differently, the adaptive
Lasso is a two-step estimator which uses more intelligent weights than the ordinary Lasso.
We shall see next, that these more intelligent weights imply that the adaptive Lasso can
select the correct sparsity pattern. As for the Lasso, we start with a purely deterministic
result to which we then attach probabilities by adding assumptions A1) and A2a) or A2b).
First, define the sets

ClNT:{maxmaX E E xth”\/maxmax g Tith < KlNT}
” keJi ey /NT & 4= i€z keJ¢ /T phi =

ConT = {Izréfafx gg}f — sz tk < Kz,N,T} and Dy,7 = {Pmin(Vs,5) > dmin(T,0)/2} -

Ci,n,r may be interpreted as the set where none of the irrelevant z;’s has a too big inner
product (in ¢3), or covariance, with any of the relevant x;’s or dummies in D. Similarly
Co, n,7 is the set where none of the relevant dummies is too highly correlated with any of
the relevant z;’s (all dummies are orthogonal by construction so no condition is needed
on their interdependence). On these sets, the problem is well-posed in the sense that the
relevant and irrelevant variables are not too highly correlated and hence we can distinguish
between them as we will see below. On the set Dy 1, one basically has that ¥ ; is
bounded away from singularity. With these definitions in place we may state the following
theorem.

Theorerr} 6. On AN,T ﬂCLN,T ﬁDN’Tﬁ {HB - B*H < Bmin/2}’ N {Hé — C*H < cmin/2} one
has sign(B) = sign(8*) if

2¢/|J| ( ANT  BNT 2AN,T 2uN,T ) SN
14 - V — ; V - S NTﬁmin
( ) ¢min(F J, J) 2 V NT 2\/> Vv NT/@min \/Tcmin
(15) 2|J| K1, N, ( /\NT y b 22N T v 2unT ) AN, T < AN, T
¢min<FJ,J) \/ 2\/7 \/ Bmln \/Tcrnin 2 B ||ﬁ - B*”
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Similarly, on Ax 7 NConTNDN TN {||B = B*|| < Bmin/2} N{]|¢ = ¢*|| < Cmin/2} one has
sign(¢) = sign(c*) if

2¢/|J| < ANT |, UN,T 2\N,T 2uN,T ) =
16 : \Y : + . V - < Tcmin
(16) Gmin(L7,7) \2/NT 2T  VNTBmin VTCmin/)
2|J| K A 2\ 2
(17) || 2,N,T< NT  ANT | 2ANT |, 2PN ) L BNr v
Smin(T7) \2/NT 2T  VNTBwin VTCmin 2 llé — |

Note that just as Theorem 1, Theorem 6 is purely deterministic. Inequality (14) is
sufficient to ensure that no relevant x;’s are excluded from the model. It is sensible that
the smaller S, is the more difficult it is to avoid excluding relevant variables. This is
reflected in (14) in that the left hand side is deceasing in Byi, while the right hand side is
increasing. Larger Ay, and py,7 also make it harder to satisfy the inequality since too
much shrinkage can result in relevant variables being discarded. On the other hand, as
in Theorem 1, the size of Ay 7 is increasing in these two quantities revealing the same
tradeoff as discussed previously.

Inequality (15) gives a sufficient condition for not classifying any irrelevant x;s as
relevant. Note that the more precise the initial Lasso estimator is the larger is the right
hand side and hence the more likely it is that the inequality is satisfied. Increasing K n,r
allows for larger dependence between relevant and irrelevant variables and thus makes it
harder to distinguish between these. Hence, it is sensible that the left hand side of (15) is
increasing in K; n 7. On the other hand, the size of C; y r is increasing in K y . The
intuition behind inequalities (16) and (17) is the same for the preceding two inequalities.
At this point it is also worth mentioning that Theorem 6 does not assume the use of the
Lasso as initial estimator. The estimators 3 and ¢ could be any estimators for which an
upper bound on the estimation error is available and — as can be seen — more precise
initial estimators will make the conditions of Theorem 6 more likely to be satisfied.

Next, we use the above theorem to give lower bounds on the probability with which
the adaptive Lasso selects the correct sparsity pattern by invoking assumptions Al) and
A2a) or A2b), respectively.

Corollary 1. (1) Let assumptions Al and A2a) be satisfied and assume that (14)-(15)
are valid with An. 1 and pn 7 as in Theorem 2 and K1 n 1 = |Jf\2/’”|J1|2/T(NT)1/2aN7T.

Assume that Bmin > 25/% and Cmin > Q&Vf’TT with En.r as in Theorem 2. Then,
~ r 2 s1482)/2 (v
sign(8) = sign(8*) with probability at least 1—2 (air ) -D, (» +Np)(mtvf/)4 (FVy)

—2- for constants C,. and D, only depending on r. Similarly, if (16)-(17) are
an,T

valid with Ko np = |J1|Y7|JS|Y " T 2ay 1 then sign(é) = sign(c*) with probability
c. \" (P +Np)(s1+s2)" /2 (FVvE)
at least 1 — 2 (m> - D, X _ a;vl/zr
(2) Let assumptions A1 and A2b) be satisfied and assume that (14)-(15) are valid
with An,r and pyr as in Theorem 8 and Ky nr = Alog(l + |Jf|)log(e +

|J1])VNT log(an,r) for A > 0. Assume that Bmin > 2% and Cpin > 2§Nf’TT

with Ex,r as in Theorem 3. Then, sign(é) = sign(c) with probability at least
1 — Ap'~Bloglanr) _ AN1-Blnlan1) _ A(p? + Np)e_B(tzN)l/3 - TjT for absolute

K2

In(p) |, In(N)
(51+52)(1n<}3>v Tn(p) )

constants A and B and t = s as long as Nt? > 1. Similarly, if
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(16)-(17) are valid with Ky x 7 = Alog(1 + |J1|) log(1 + |J§))VT log(an.r) then
sign(¢) = sign(c*) with probability at least 1 — Ap'~Bloglanr) _ gAN1-Bln(anr) _
Ap? + Np)e—PEN 2

an,T”’

Corollary 1 gives lower bounds on the probability with which the adaptive Lasso detects
the correct sparsity pattern under the two sets of assumptions employed in Theorems
2 and 3, respectively. Corollary 1 can also be used to derive a crude lower bound on
P(sign(,/;’) = sign(5*), sign(¢) = sign(c*)). A tighter bound can be derived by optimizing
the proof slightly.

In order to get a feeling for the size of the models that the adaptive Lasso can detect
the correct sparsity pattern in, we shall use part (2) of the Corollary 1 to establish the
following asymptotic result. As with Theorem 5 we shall consider the asymptotic setting

where aN,T:N,T:N“,p:er and s; = so = N°€ for a,b,c > 0.

Theorem 7. Let assumptions A1 and A2b) be satisfied and let k, Bmin and cmin be
bounded away from 0. Assume furthermore, that 9b 4+ 2¢ < 1. Then,

(1) P (sign(ﬁ) =sign(8*)) = 1 ifbb+3c<1l+a

(2) P (sign(¢) = sign(c*)) = 1 if 6b+ 3¢ < a.

Part one of Theorem 7 reveals that p may increase at a sub-exponential rate while the
number of relevant variables cannot increase faster than the square root of the sample
size (set b =0 in 9b+ 2¢ < 1 to conclude that ¢ < 1/2) if the adaptive Lasso is to detect
the correct sparsity pattern asymptotically. Actually, for a < 1/2 the number of relevant
variables must increase even slower. It is also worth noticing that sign consistency can be
achieved in a fixed T setting (e = 0). This is in opposition to part 2 of the theorem: for
the adaptive Lasso to be sign consistent for ¢* one needs a > 0. This is of course sensible
in the light of Theorem 5 since a > 0 is needed for the first step Lasso estimator to be
consistent.

6. MONTE CARLO

In this section we investigate the finite sample properties of the Lasso as well as the
adaptive Lasso by means of Monte Carlo experiments. The Lasso is implemented using
the publicly available glmnet package for R. Since pn /AN, is roughly equal to 1/ VN
in Theorems 2 and 3 we can reduce the optimization problem to a search over only one
tuning parameter in the following way:

(1) Define D = v/ ND.
S -2
(2) Minimize ||y — X8 — Dc|| +)\N;T Zzﬂ |8k |+ AN, T Zfil lei] wrt. (B, ¢) by glmnet
and denote the minimizer by (8, ¢).
(3) Return (53,¢) = (B, VN¢).

In step 2 above Ay 7 is chosen by BIC. It is our experience that more time consuming
procedures such as cross validation do not improve the results. The adaptive Lasso is
implemented in the following way:

(1) Define ; = xjﬂAj j=1,..,pand d; = VNé&d;, i =1,...,N.
. . . ~ 1 2
(2) Minimize Hy — ?:1 ;6 — Zi\il dicl-H + )‘N,T~ZZ:1 1Bk + An.T Zszl les| wrt.
(8,¢) by glmnet and denote the minimizer by (5, ¢).
(3) Return Bj = BijJ =1,...,pand & = VNé&é;.
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As for the Lasso, Ay, 7 is chosen by BIC. The above implementation of the adaptive Lasso
is similar in spirit to the one described in Zou (2006). To provide a benchmark for the
Lasso and the adaptive Lasso, least squares including all variables is also implemented
whenever feasible. This procedure is denoted OLSA. At the other extreme, least squares
only including the relevant variables is applied to provide an infeasible target which we
are ideally aiming at. This procedure is called the OLS Oracle (OLSO). We measure the
performance of the proposed estimators along the following dimensions

(1) The average root mean square error of the parameter estimates of 8* and c*, i.e.
the average /5 estimation error.

(2) How often is the true model included in the model chosen. This is relevant since
even if the true model is not selected a good procedure should not exclude too
many relevant variables. This measure is reported for 8* as well as c*.

(3) How often is the correct sparsity pattern uncovered, i.e. how often is exactly the
correct model chosen. This measure is reported for 5* as well as c*.

(4) What is the mean number of non-zero parameters in the estimated model. This
measures how much the dimension of the model is reduced and is reported for 5*
as well as c*.

The following experiments are carried out to gauge the performance along the above
dimensions (the number of Monte Carlo replications is always 1000).

e Experiment A: N=T=10 with g* having five entries of 1 and 20 of zero. The

non-zero entries are equidistant. ¢* has floor(N'/3) = 2 entries of 1 and the rest

zeros. The correlation between the ith and jth column of X is 0.75/"77 and the
covariates in X possess two moments only.

Experiment B: As experiment A but with N = 100 and ¢* having floor(N'/3) = 4.

Experiment C: As experiment A but with 7" = 100.

Experiment D: As experiment A but with gaussian covariates.

Experiment E: As experiment B but with gaussian covariates.

Experiment F: As experiment C but with gaussian covariates.

Experiment G: As experiment A but now S* has five entries of one and 245 entries

of zero. The non-zero entries are equidistant.

Experiment H: As experiment G but with gaussian covariates.

e Experiment I: N=T=10 with §* having 10 entries of 1 and 490 of zero. The
non-zero entries are equidistant. ¢* has floor(N'/3) = 2 entries of 1 and the rest
zeros. The correlation between the ith and jth column of X is 0.75/*~7! and the
covariates in X re gaussian.

Experiments A-C are meant to illustrate Theorem 2 and part 1 of Corollary 1. Note
that tails of the covariates and the error terms are extremely heavy in these experiments
since they merely allow for the existence of two moments. Similarly, Experiments D-F are
meant to illustrate Theorem 3 and part 2 of Corollary 1 as the tails of the covariates and
error terms are now subgaussian (in fact they are exactly gaussian) allowing the existence
of all (polynomial) moments. Experiments G-H intend to investigate the performance of
the Lasso and the adaptive Lasso in settings with more variables than observations and
various moment assumptions on the covariates and the error terms.

6.1. Results. Experiment A reveals that the Lasso as well as the adaptive Lasso estimate
£* and c¢* at a precision which lies in between the one of least squares including all
variables and the least squares oracle. The adaptive Lasso retains all non-zero 8*s in
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MSE(8) MSE(¢) Sub(8) Sub(c) Spar(8) Spar(c) #0 #c

Lasso 1.02 1.16 0.87 0.42 0.01 0.09 9.17 247
ALasso 0.87 1.31 0.75 0.34 0.31 0.13 5.90 1.84
OLSO 0.39 0.64 1.00 1.00 1.00 1.00 5.00  2.00
OLSA 2.04 1.89 1.00 1.00 0.00 0.00  25.00 10.00

Lasso 0.33 2.15 1.00 0.00 0.04 0.00 8.06  2.26
ALasso 0.14 2.83 1.00 0.00 0.89 0.00 5.12  2.02
OLSO 0.12 0.97 1.00 1.00 1.00 1.00 5.00  4.00
OLSA 0.54 5.45 1.00 1.00 0.00 0.00  25.00 100.00

Lasso 0.29 0.43 1.00 0.99 0.02 0.49 9.08  2.72
ALasso 0.14 0.28 1.00 0.99 0.91 0.84 5.11 2.16
OLSO 0.12 0.22 1.00 1.00 1.00 1.00 5.00  2.00
OLSA 0.51 0.54 1.00 1.00 0.00 0.00  25.00 10.00

TABLE 1. MSE(B) and MSE(c) are the average root mean square errors of
the parameter estimates. Sub(8) and Sub(c) indicate the fraction of times the
estimated model contains all the relevant variables (in X and D) while Spar(f)
and Spar(c) show how often exactly the correct subset of variables is chosen.
Finally, #8 and #c give the average number of non-zero s and cs, respectively.

Exp A

Exp B

Exp C

75% of the instances while only including 5.9 variables on average (recall that there are 5
relevant variables).

Increasing N to 100, Experiment B shows that * is now estimated more precisely
while the opposite is the case for ¢*. It is to be expected, however, that the mean square
error of ¢ increases since the vector now has 100 entries to be estimated as opposed to only
10 in Experiment A. The adaptive Lasso always retains all non-zero 5*s while detecting
exactly the right sparsity pattern in 89% of the cases. This is never the case for ¢*, the
reason being the same as mentioned above.

In Experiment C, T is increased to 100 while N = 10. This results in a higher precision
of all estimators. In particular, the adaptive Lasso estimates 8* and c¢* almost as precisely
as the least squares oracle. The number of selected variables is also close to the ideal
number.

Experiments D-F use gaussian covariates and error terms instead of ones with only
two moments. Comparing the results to those in Experiments A-C reveals that the Lasso
and the adaptive Lasso perform better now. Note for example, in Experiment D, the
adaptive Lasso does not estimate $* much less precisely than the least squares oracle
while in Experiment A it was more than twice as imprecise. Furthermore, all non-zero c*
are classified as such by the Lasso in 81% of the Monte Carlo replications while in the
corresponding number in Experiment A was only 42%.

Moving from Experiment D to E all measures pertaining to §* improve — the parameters
are estimated more precisely (the adaptive Lasso is actually as precise as the least squares
oracle) and the correct sparsity pattern is selected more than 9 out of ten times. As can
be expected all measures pertaining to ¢* worsen since the number of parameters to be
estimated ten-doubles.

In Experiment F, the Lasso and the adaptive Lasso perform well along all dimensions.
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MSE(8) MSE(¢) Sub(8) Sub(c) Spar(8) Spar(c) #0 #c
Lasso 0.57 0.78 1.00 0.81 0.01 0.24 9.56 3.14

i ALasso 0.34 0.72 1.00 0.74 0.62 0.41 9.55 2.30
& OLSO 0.23 0.41 1.00 1.00 1.00 1.00 5.00  2.00
OLSA 1.14 1.14 1.00 1.00 0.00 0.00  25.00 10.00
. Lasso 0.19 1.55 1.00 0.26 0.05 0.06 8.17  3.63
o, ALasso 0.08 1.40 1.00 0.23 0.93 0.09 5.08  3.17
é OLSO 0.07 0.59 1.00 1.00 1.00 1.00 5.00  4.00
OLSA 0.31 3.20 1.00 1.00 0.00 0.00  25.00 100.00

Lasso 0.17 0.25 1.00 1.00 0.02 0.56 9.06 2.6
ALasso 0.07 0.14 1.00 1.00 0.96 0.92 5.04  2.08
OLSO 0.07 0.12 1.00 1.00 1.00 1.00 5.00  2.00
OLSA 0.29 0.31 1.00 1.00 0.00 0.00  25.00 10.00

TABLE 2. MSE(B) and MSE(c) are the average root mean square errors of
the parameter estimates. Sub(8) and Sub(c) indicate the fraction of times the
estimated model contains all the relevant variables (in X and D) while Spar(f)
and Spar(c) show how often exactly the correct subset of variables is chosen.
Finally, #8 and #c give the average number of non-zero s and cs, respectively.

Exp F

Experiments G-H are the truly high-dimensional ones where the number of variables
is (much) larger than the sample size. Hence, we do not implement least squares using
all variables. Experiment G illustrates a rather difficult setting with many heavy-tailed
covariates. The Lasso does a decent job in reducing dimensionality without being over-
whelming either. The average number of non-zero (s is 36.97 which is still larger than the
five true non-zero coefficients. The adaptive Lasso removes ten more variables without
discarding (many) more relevant ones so the second step seems worth implementing.

In Experiment H the covariates are gaussian and the Lasso and the adaptive Lasso
perform much better than in the heavy-tailed Experiment G. The estimation error of B is
more than halved compared to Experiment G and all relevant variables are retained in
the model. This does not come at the price of bigger models since the average number of
non-zero coefficients is now smaller than before. The adaptive Lasso only classifies 17.64
Bs as zero (of which five are truly non-zero) resulting in a significant dimension reduction.

Experiment I doubles the number of variables in X compared to Experiment H. In
this light, it is reasonable that the estimation error of B roughly doubles. Almost all
non-zero 3* are also classified as such but unfortunately, though not unexpectedly, the
total number of Bs classified as non-zero also roughly doubles. However, the adaptive
Lasso still manages to reduce the number of variables to less than one tenth of the original
number of variables.

7. EMPIRICAL ILLUSTRATION

In this section we illustrate the use of the panel (adaptive) Lasso on a large data set
for the G8 countries. In particular, we try to determine which variables are relevant for
explaining economic growth in these countries. The neoclassical growth model predicts
that higher initial wealth should lead to lower growth rates. The primary mechanism
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MSE(5) MSE(c) Sub(8) Sub(c) Spar(f) Spar(c) #B  #c
Lasso 1.73 1.42 0.67 0.30 0.00 0.05 36.97 2.77

Q; ALasso 1.66 1.51 0.62 0.26 0.05 0.06  26.93 2.45
l’-ﬁ OLSO 0.37 0.67 1.00 1.00 1.00 1.00 5.00 2.00

OLSA

Lasso 0.87 1.05 1.00 0.49 0.01 0.24 2446 2.28
EQ ALasso 0.66 0.94 1.00 0.48 0.20 0.25 1754 2.13
5 OLSO 0.22 0.40 1.00 1.00 1.00 1.00 5.00  2.00

OLSA

Lasso 1.43 1.03 0.97 0.55 0.00 0.14  63.95 2.90
HQ ALasso 1.20 0.99 0.93 0.49 0.04 0.17  38.27 2.43
& OLSO 0.33 0.43 1.00 1.00 1.00 1.00  10.00 2.00

OLSA

TABLE 3. MSE(B) and MSE(c) are the average root mean square errors of
the parameter estimates. Sub(8) and Sub(c) indicate the fraction of times the
estimated model contains all the relevant variables (in X and D) while Spar(f)
and Spar(c) show how often exactly the correct subset of variables is chosen.
Finally, #8 and #c give the average number of non-zero s and cs, respectively.

behind this prediction is that countries with low capital to labor ratios tend to have
a higher marginal return to capital, Barro (1991). In this section we shall investigate
whether this prediction is true for some of the biggest economies in the world.

The data set has been obtained from the data bank of world development indicators.
The panel that we analyse consists of 8 countries with 20 annual observations for each
country for the period 1992-2011. The number of explanatory variables (excluding the
eight individual effects dummies) is 161. Hence, the number of variables is large compared
to the number of observations and the Lasso-type estimators come to use since they offer
a non ad hoc way of choosing the variables. Put differently, one can handle a much larger
conditioning set of variables than previous methods.

The variables cover broad categories such as economical, health, demographical and
technological ones. The GDP level is treated specially in the sense that it enters the right
hand side of the model with a lag of one year to enable us to test whether initial GDP
is related (negatively) to GDP growth. All right hand side variables are standardised to
have an £s-norm equal to the sample size. The Lasso as well as the adaptive Lasso are
implemented by the glmnet as in the Monte Carlo section.

Table 4 contains the results of the estimation. In the first round Ay 7 is chosen by BIC
for the Lasso as well as the adaptive Lasso. Then it is gradually reduced by choosing
decreasing fractions of this initial choice. This is done as a kind of sensitivity check to verify
the robustness of the sparsity. As can be seen from Table 4 the Lasso and the adaptive
Lasso indeed choose very sparse models when Ay 1 is chosen by BIC. In particular, they
include three and two variables, respectively. Note that all variables chosen are annual
growth rates. This is sensible since we are trying to explain the annual growth rate of
GDP. Furthermore, it is seen that initial GDP does not enter as an explanatory variable.
Hence, we find no support for the neoclassical growth hypothesis. However, it should
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be said that this hypothesis might be more relevant at explaining differences in growth
between developed and less developed countries while all countries in our sample are rather
developed. Furthermore, we use the GDP of the previous year as initial GDP which is
a choice that might not leave enough time for the transmission mechanisms to function
properly.

As can be expected, lowering Ay r results in more variables being included in the
model. This is manifested in Table 4 by the models becoming gradually larger as Ay 7 is
decreased. But only for Ay, = 0.1- Aprc a dummy is included in the model by the Lasso
(for the United Kingdom).
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8. CONCLUSION

High-dimensional data is becoming increasingly available and one of the first choices
one has to make when building a model is which variables to include. Furthermore, panel
data models are a work horse tool for microeconometric analysis. For these reasons we
have studied the performance of the panel Lasso and adaptive Lasso in high-dimensional
panel data models. In particular, this paper has established finite sample upper bounds
on the estimation error of the panel Lasso estimator that hold with high probability. We
have also shown that the upper bounds are optimal in a sense made clear in Theorem 4.
Conditions for consistency in even very high-dimensional models were also provided.

Next, the panel adaptive Lasso was analyzed and we gave lower bounds on the probability
with which it selects the correct sign pattern in finite samples. These results were then
used to deduce asymptotic results.

The results were proven under various assumptions on the moment/tail behavior of the
covariates and the error terms. In particular we allowed for non-subgaussian behavior in
some of our theorems.

The methods were then applied to finding the variables that explain growth in the G8
countries over the last 20 years. A rather sparse model was found to explain the growth.

In this paper we have used BIC to select the tuning parameters but ideally one would
like a data driven way with theoretical guarantees. We leave this as an interesting avenue
for future research.

9. APPENDIX

We start with the following Lemma which is similar in spirit to Lemma B.1 in Bickel
et al. (2009).

Lemma 1. On Ay 1 the following inequalities are valid.

(18)
125 = 7)) + An.z||B - 87

o mrlle = el < el B, - 85, + A, -,

and
(19)
Anr||Bre — Be

ot pnr||éss — e o S8ANT Br, = B3, o, +3unr|én — e,

Proof. By the minimizing property of 4 it follows that

’|y_23/|2+2)\N,T e 2+2MN,THB*

|, + 26N, e, <|lv— 27" o, 20N el

which, using that y = Zv* + ¢, yields

123 =~%) ’2 —26Z(H =)+ 2>\N,THBH1gl +2unr léll, <278

o T2 €y,

Or, equivalently

(20) (|27 =7 < 2¢2(5 =) + 2w (|87

|5

o I3l ) +26mx (1", = N, )
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So to bound HZW — 'y*)”2 one must bound 2¢’Z(4 — v*). Note that on Ay, one has
2 Z(5 —7*) = 2¢ X (B — B*) + 26 D(é — ¢*)
<2l X, _ 118 = 8"l + 2l D], le—c1,,

< )\N,THB -5 0 + punr||é— C*Hgl
Putting things together, on Ay r,
1ZG =)
< )\N,THB — ﬁ* |£1 + 2/\N,T (‘ 6* o B 51) +MN,TH6_ C*Hel + 2/”'N,T (Hc*Hél - ||é||€1)

Adding )\N’THBA - B*HA and ,uN’THé - c*Hé1 yields

126 =+ Awe o =77l + mvrlle =],
@) <2 (188, 18], ~l8ll,, ) +20r (12 = " ll, + eI, = lely,)

Notice that

‘B - B Eh 0 _HBHZl =||Bsn — B,

In addition, [| 3, = 85, ||, +[187,1l,, =[18nl,, <2
By exactly the same arguments [|¢ — ¢*[|,, + [|c*|l,, — lléll,, < 2]|és, — ¢, Hel' Using these

£y

0 + 0 + ﬁ?}l BhHel

BJI - B3 HE1 by continuity of the norm.

estimates in (21) yields inequality (18). Next notice that (18) gives

ArllB = 8], + mrlle - ', < el - 85,

which is equivalent to

21 + 4'LLN’TH6J2 - 032 Hel

Anl|Bas = Bell, + s = cll, < 3AvrlBa 83,1, +3unrllesn — <,
and establishes inequality (19). O
Proof of Theorem 1. By (18) of Lemma 1 (which is valid on Ay 1)

(22) 12 —29)|° < 4wl B, — 57,

Next, note that for b = S~1§ where b is partitioned as b = (bll, bgl)' with b being a p x 1
vector and b? an N x 1 vector, the restricted eigenvalue condition (4) may be formulated
equivalently as

21 + 4'U/]V’,THéJ2 - 032 ||E1

|z8]” .
B

K (T1,72) = min{ be RPFFNA{0}, |Ra| <1, |Rof <o,

M, + v i, < BAwrllbhl, + 3nnr ol } >0

Hence, the restricted eigenvalue condition (which is applicable due to (19) yields

@) 26— 2 K, ISG - = w22 | NTI|B - 57| + T — e ﬂ
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where the last estimate holds on By 7. By Jensen’s inequality
4)\N,T||1@J1 - ﬂ?}l ||€1 + 4/“‘LN,TH6J2 - Cikfz Hél < 4>\N7T\/§HBJ1 - /831 H + 4IU’N,T\/£||6J2 - C?}g ||

(24) S4/\N,T\/§HB—5* —|—4MN7T\/5H€:—C*H
Inserting (23) and (24) into (22) yields

2 A ~
S NTIB = 8"+ Tle - || < AwarvELllB - 8| + duno /5| - ¢
or equivalently,
R 1 8AN. T/ - 8 v/
B=p |+ glle— el - =18 - 87 - T e -t <0

For z = || — 8*| and y = ||¢ — ¢*|| this can be written as a quadratic inequality in two
variables:

(25) 2> —ar+by  —cy <0, 2,y >0
1 with a = %, b=+ and ¢ = %T/E. First bound z = || — 8*|. For every

y the values of x that satisfy (25) form an interval in Ry. The right end point of this
interval is the desired upper bound on z. Clearly this right end point is a decreasing
c

function in by? — cy. Hence, we first minimize the polynomial by? — cy. This yields y =

and the corresponding value of byz2 —cy is —i—z. Hence, our desired upper bound on z is
the largest solution of 2 — ax — % < 0. By the standard solution formula for the roots of
a quadratic polynomial this yields

N a+ /a4 c2/b
(26) 13- crveral

Switching the roles of z and y, one gets a similar bound on y = ||¢ — ¢*||, namely

y < c+ V2 + ba?
- 2b

:xg

(27) |é—c*

Inserting the definitions of a,b and ¢ into (26) yields

2 2
8AN,T+/S 8AN,T+/S 8N, T+/S
e (Zr) (=)

R K 8\ S 4 S
Hﬁ B 5*| < N,TV/51 n IN,T+/52
2 KZNT 52\/NT

by subadditivity of x + /z. Similarly,

<

2 2
8uUN, T /52 + 81N, /52 + 1 [ 8An,T/51
K2NT K2NT N K2NT

L 8uUN,Tv/S2  4ANT+/51
e =l < 2/N = k2T + K2/ NT

O

Before stating the next lemma we shall remark that when no further distinction between
subscripts ¢ and ¢ is needed we shall sometimes use x; 1 to denote the jth entry of the kth
variable z; = (1,1 k, 1.2.ky s T1,T k> L2,1 ks -, TN, 1) With 1 < j < NT. Similarly, we
will write €; for the jth entry of € = (€1,1,€1,2,...,€1,7,€2,1,...,en,7) 1 < j < NT where

4Note that this inequality is trivially satisfied by = y = 0, corresponding to no estimation error.
However, we are looking for an upper bound on = and y.
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Lemma 2. Let /\N,T = 4aN7Tp1/T (NT)1/2 maxiy<t<T ||€1,t HL and UN,T = 4(ZN,TN1/TT1/2 maxi<t<T ||€17t||L
for some sequence an . Then, under assumption A1) and A2a)

. A e\
(28) P ?VT)=P({||X’e|e > N’T}u{nD’enz >’“”})gz( )
, oo 2 oo 2 an.T

Proof of Lemma 2. First bound Hmax13k§p|2;-\g xj,k€j|||L . To this end, note that for

any collection of random variables {Uy},_, C L,,
1/r
P
= [B(| max Uy|")]"/" < | B (Z Uk|r> < p/" max U,
L

max Uy
1<k<p P 1<k<p

1<k<p

Next, boundHZ;\Z xj’kejHLr uniformly in 1 < k < p. Denote by F,, = o ({X, €, 1 <7< n})
the o-field generated by X and ¢;, 1 < j < n and set S, = Z;lzl Zjk€;. Then
{(Snk, Fn), 1 <n < NT} is a martingale for all 1 < k < p under assumptions Al and

the given moment assumptions. Hence, by Rosenthal’s inequality for martingales (see
Hitczenko (1990) or Hall and Heyde (1980)) for a constant C, depending only on 7,

NT NT r/2\ M7 1r
Za:j’kej <C, (E <Z E(xikeﬂ}'jl)) ) + (E |:1<I§'1?§T xj,k€j|r:|>
Jj=1 L, j=1 =/=
NT N NT 1/r
2 T
<C (E (wak 6j|L2> ) + <E > lwjke] )
j=1 j=1
[ NT 1/r
<C, ((NT)T/2—1 ZE|:EJ-J€|T ||e]||22> + (NT)l/T lrgtiXTHxl’tkaLrHel’t‘ L,
j=1 ==
- 1/r
< Co || (NT)/?7INT max Elxy o] lersl’ + (NT)Y" max quk’ €1l
- 1<t<T " L 1<t 1R L DL,

< G |(VD)Y? [ Nlevell, + (VD)7 o [l Jlerd

Lr

<200 (NT)V? ma flewd]l,

In the above display we have used Loeve’s ¢,-inequality and by Hitczenko (1990) we know
that C, < 10r. Hitczenko (1990) actually shows that the optimal constant C,. € O(r/In(r))

5By independence of x; 1 and €; their product is in L, and Rosenthal’s inequality yields a nontrivial
upper bound.
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as r — 0o. Hence,

E xj k?€j

max

< max pl/
1<k<p

1<k<p

< p"/720,(NT)'? mas [ler|,,

By Markov’s inequality,

E Tj, k€

/\N T 1 Cy '
max = =
1<k<P o (/\N7T/(4p1/TCT(NT)1/2 maxlStSTHeLtHLr)) an, T

In a similar way as above it follows by Rosenthal’s inequality

1/2
T T 1/r
S <o |(SE@a] (£ (mmlad))
t=1 L. t=1 ==
<C, [T1/2 max [ler |, + 7" max. }
1<t<T ’ 2 1<t<
<20, TY?* max |lerq,
1<t<T
This implies that
T T
max €it < max N7 Zem < NY720,T'? max lewell
1SN & L IsiEN po . 1<t<T r

And so, by Markov’s inequality,

T
MN T 1 Cy
< p—
11<nzzzx Z Cit > - : " ( >

(ko /(ANYTC. T2 maxi<i<r llenell ) an,T

It follows that

A e\
P(dIXel, > 2L U3 Dl > EEL L) <o
e 2 o0 2 aN,T

O

Lemma 3. Let {U;, F;}!_, be a martingale difference sequence and assume that there
exist §, M > 0 such that E exp(8|U;|) < M for alli=1,...,n. Then, there exists positive
constants A and B such that for all x > a/\/n

(29) P (‘ :1

il > mc) < Ae~B@*m)'?
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Proof. In the proof of their Theorem 3.2 Lesigne and Volny (2001) show that if E exp(|U;|) <
M for all i = 1, ...,n, then for any > 0 and ¢ € (0,1) one has®

P Qz": U;| > mc)
i=1

(30)

< <2+ q {425)2 Et4/3(x—2n—1)1/3 +t2/3(x_2n_1)2/3—&—23:_271_1}) o~ (1/2)t3(a"n)'/?

But note that P (|> 0, U] > nz) = P (|21, (0U;)| > n(6z)) where {6U;};_,, by as-
sumption, now satisfy the conditions of Theorem 3.2 in Lesigne and Volny (2001) and so
replacing z by dz in (30) yields

P (’i U;| > nx)
i=1

< (2+ M [1t4/352/3(x2n1)1/3+t2/354/3(:r2n1)2/3+252x2n1De(1/2”2/352/3@2”)”3

1—12 L1

Restricting x to be greater than a/\/n, implying that x=2n~! < 1/a?, and using that M, ¢
and ¢ are constants the conclusion of the lemma follows. O

For the proof of Lemma 4 below, we shall use Orlicz norms as defined in Van Der Vaart
and Wellner (1996): Let 1) be a non-decreasing convex function with ¢ (0) = 0. Then, the
Orlicz norm of a random variable X is given by

1X1l, =inf {C>0: By (1X]/C) <1}

where, as usual, inf ) = co. We will use Orlicz norms for ¢(z) = 1, (z) = e* — 1 for
p=1,2.

Lemma 4. Assume that assumptions A1 and A2b are satisfied. Then, for a1 > e

P (Hx'en,v,m > Ayt /2) < Apt=Blogan) for Ay 4 = \/4NT log(p)3 log(ay.1)3

and

P (||D'e||£m > MN,T/2) < AN~ Blant) £ UNT = \/4T10g(N)310g(aN,T)3

Proof. First note that for all 1 < j < NT and 1 < k < p one has for all ¢ > 0

P (|lzjkejl > t) < P (|zjnl > V) + P (|| > V) < K exp(—Ct)
and so it follows from Lemma 2.2.1 in Van Der Vaart and Wellner (1996) that [|z; x€;ll,, <
% and so Eexp (H%|xj,kej |) < 2 by the definition of the Orlicz-norm. Hence, § = HLK
works in Lemma 3 for all 1 < k < p. Next, denote by F,, = ¢ ({X, €, 1<5< n}) the
o-field generated by X and €j, 1 < j <n and set S, = >;_, x;x€;. Then it is clear
that {(Snk, Fn), 1 <n < NT} is a martingale for all 1 <k < p. From a union bound it
follows from Lemma 3 (with a = 1) that”

P / _ / >‘N,T/2 73(%77")1/3 _ 1—Blog(an,T)
(1Xell, = Av.r/2) = P (IX"el,, > NT) <pae ") — 4 ’

- NT

63ee the last expression in the proof of their Theorem 3.2.
"Lemma ? is applicable since an,7 and p are assumed greater than e.
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Next, by the subgaussianity of ¢;;, 1 <7 < N, 1 <t < T, it follows from Lemma

1/2
2.2.1 in Van Der Vaart and Wellner (1996) that [le; .|, < (1+g/2) / ;and so flegf,, <

1/2
(%) / log(2)*1/2 by the second to last inequality on page 95 in Van Der Vaart
and Wellner (1996). Hence, F exp ((ﬁ)l/z log(2)'/2|e; ¢|) < 2.% Furthermore, for all
i1=1,...,N, {Ez‘,t}tT:l are independent and so by the union bound and Lemma 3 © (with
a=1)
1/3

2 R,
P(ID'el,. = unr/2) < NP (D], > %T) < NaeB(5E) < gnt-Blostavs)
O

Lemma 5. Let A and B be two positive semi-definite (p+ N) x (p+ N) matrices and
assume that A satisfies the restricted eigenvalue condition RE(s1, $2) for some k4. Then,
for & = maxi<; j<pyn [Aij — Bijl, one also has k% > k% — 166(s1 + s2)m%, o where

m __ANT VNun,T
NT = \/NHN,T AN, T
Proof. The proof is similar to Lemma 10.1 in Van De Geer and Biithlmann (2009). Let 21 be

px1, x5 be N x1 and define x = (z}, z4)" and assume that \A/% ||x1J1cHel+‘”V7’TT Hl'gjgngl <

3:\/% w1, lle, + 355 w2l - Defining
AN, T An
Y I O 7’[ c O
V = VT |1l - and V, = VNT 15 e
0 VT UFA 0 ﬁjuﬂ

this can also be expressed as||Vex <, <3|V, . For any (non-zero) (p+ N) x 1 vector
x satisfying this restriction one has

leselly, =V Vel <OV Vel < 3V IVl < 31V IV el
Since
1 _ANT VNunr
IV H&HVH&_\/NMN,T\/ ANT = mn,T
one gets

2
|2’ Az — 2’ Bx| = |2/ (A — B)z| < ||z, I(A = B)zl,_ <dllzly, <d(llzsll, + lzsell,,)?
<51+ 3myr)’asll;, < 166(s1 + s2)mi g |z || < 166(s1 + s2)m3 1 ||z
where the last estimate follows from the fact that myr > 1 and Jensen’s inequality.
Hence,

' Bx > ' Az — 166(s1 + 82)771?\/,:/1 ||$||2

8We note that this estimate is slightly suboptimal since we are not taking full advantage of the
subgaussianity of the €; ; by merely using it to deduce subexponentiality and then invoking Lemma
Lesigne and Volny (2001). One could use the full strength of the subgaussianity by strengthening
Eexp(le]) < K to Eexp(e?) < K in Lemma 3.2 of Lesigne and Volny (2001). Doing so, and adjusting
Lemma 3 accordingly yields that the exponent 1/3 in (29) can be increased to 1/2 and hence pn 7 can in

turns be reduced to /4T log(N)2 log(an,T)2. As a third route, one could use Hoeffding’s inequality in
combination with a truncation of the €; ;. This does not reduce ux, 7 significantly either.

9n principle, the constants A and B need not be the same as above but by simply using the worst
ones they can be chosen to be identical. Also, we have used ay,7, N > e.
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or equivalently,

2'Bx _ o' Az

—160(s1 + sz)m?\,j > k5 — 166(s1 + s2)miy

z'z 'z

Minimizing the left hand side over {z € RP*N \ {0} : ||Voz s e, <3Vl } yields the
claim. 0

In the following two lemmas we shall use Lemma 5 with

X'X S
A=T= E(§r) 0 and B=Uyr=|( py VNT
0 Iy vr AN

in order to establish that Wp satisfies the restricted eigenvalue condition with high
probability. Furthermore, define

FE2

1<i,j<p+N

(31) NT max [Pri; gl = 32(s1 + 52)m§v7T

J(s1+52)"*(F V)

~ 2
Lemma 6. Under assumptions A1 and A2a, P (K%I,T > ,%2/2) > P(Bnr) > 1-D, (" +NVp
for a constant D, only depending on 7.

KT NT/4

Proof. By Lemma 5 it follows that kg, , > k*/2 on By.r Since the lower right N x N

blocks of ¥ 1 and I' are identical it suffices to bound the entries of )J(V/—;f - F (%) and

’ . ’ ’ . N T
%. A typical element of %fE (%) is of the form % Y oich (% it [:Ci%kl‘i’t_’l - E(l'i,t,kxi,t,l)])
for some k,l € {1,...,p}. Next note that for any sequence of mean zero i.i.d. variables

Z1,...,ZnN in L, it follows from Rosenthal’s inequality that

N N 1/2
S zi|| <c ( [Z EZE]
i=1 =1

1/r
+ [Elrgni%mr] ) <C, <N1/2||Zl||L2 +N1/T|21IILT>

L,
(32) < 20N\ 21|,
Furthermore,
1 T
HT t—zl (21,0 k71,00 — B(21,0071,0,0)] < lgltaSXTHxl,t,kxl,t,l = By erri)lly, ,

L./

<2 1I£ta§XTHx17t’k$1’t’lHLr/2 =2

where the last estimate follows from the Cauchy-Schwarz inequality. Using this in (32)
(with r replaced by r/2) yields

1 T

N
1 (

— E = E (@it 1ot —E(Jii,t,kwi,t,z)])

HN pat T

t=1

<40, sN7V2,

L,/

Markov’s inequality yields that for any € > 0

N T
1 1 4C,. 5)"/?
(33) P <’N ; (T > (@i kwies — E(xi,t,kxi,t,z)})’ > 6) < 7(@/2;\2[2/4

t=1



ORACLE INEQUALITIES FOR HIGH-DIMENSIONAL PANEL DATA MODELS 27

Next, consider a typical term in \Xﬁ[; Such a term is on the form % fori=1,..,.N

and kK =1,...,p. Since

H ! ET::E < 1 ma. H < 1
- ; < < <
VNT &7 L VN aseEr T VN
it follows by Markov’s inequality that for any € > 0

1
(34) ( Zzl t k| > 6) — erNr/Z = (67"/2Nr/4)2

Combining (33) and (34) yields via a union bound over (p? + Np) terms

(4G22 1 b P Np
er/2NT/4 (€T/2Nr/4)2 = TTer/2NT/4

. _ B . < (p?
P(_max  |4ij = Bis| > €) < (p* + Np) (
O%here the last estimate follows from the fact that without loss of generality (since
otherwise the upper bound is greater than one) one may assume €"/2N7/* > 1 and so
€"/ENT/A < (¢"/2NT/4)2. D, = ([4C,5]"/? V 1) is a constant only depending on r. Using

2

€= W yields the lemma upon noting that my,r = (% \Y, %)l/r and merging
N, T

all constants into D,.. O

Lemma 7. Let t = K2 5 and let Nt?> > 1. Then, under assumptions A1

(s1+s2) ( DV T )
and A2b), P (k3 > K%/2) > P(Bnr) > 1—A(p2—|—Np)e_B(t2N)l/3 for absolute constants
A and B.

Proof. By Lemma 5 it follows that ”?p > k?/2 on Z;’N 7. Since the 1ovver right N x N

blocks of Uy and I' are 1dentlca1 it sufﬁces to bound the entries of == —F ()1(\1/7)“( ) and
\/»T A typical element of -F ( ) is of the form - ~ Zi:l (T thl [:Eiyt’kmm_,l — E(xi,t,kxi,t,l)])

for some k,l € {1,...,p}. Flrst, note that foralll1 <i< N,1<t<Tand1<kI<p
one has for all € > 1/vV/N

P (Jwi g piei] > €) < P (lzienr > vVe) + P (lzied] > Ve) < Kexp(—Ce)

and so it follows from Lemma 2.2.1 in Van Der Vaart and Wellner (1996) that ||z ¢z ¢ o S

HK Next, note that by subadditivity of the Orlicz norm and Jensen’s inequality

1« 1+ K
H T tz:; [-Ti,t,kxi,t,l — E(aji7t7kxi,t71)} H <2 1IélaX Hl‘z t,kTLit,l ||1ZJ < QT

1

10Note that the first estimate in the display may be replaced by the slightly sharper estimate

(4CT/2)T/2 1

. _ B . 2
P( max |A;;—Bij|>¢)<p 2N +Np(€7"/2N7"/4)2

1<i,j<p+N

However, for p > N this will lead to no improvement asymptotically, while the improvement is minor for
N > p.
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) < 2. It now follows by the independence across i =

. . 1
1,..., N (using Lemma 3) there exists constants A and B such that for any € > BIN

c
Hence, E exp(m |4, 6T 0

BN/
(35) <‘ N Z Tit kTitl — E(xzthztz)])‘ > e) < AeB(EN) 3
t:l

Next, consider a typical term in %. Such a term is on the form iy \ﬁ; L fori=1,..,.N

1/2
(%) / by Lemma 2.2.1 in 7?7 one gets

and k =1,...,p. Since ||zikll,, <
_ 1 losell, < - <1+K/2 2 M
> ﬁ lréltang Lit,k g = ﬁ T) = ﬁ
It follows by Markov’s inequality and 1 Ay(z)"t=1A (e“”2 1)t < 2¢~ that for any
e>0

HfTZx”’“

]. 2 2
- *(GW/M) —Be*N
(36) P(fTletk|>E)<1/\6(6\/W/M)271§2€ < Ae
where the last estimate follows by choosing A and B sufficiently large/small for (35) and
(36) both to be valid. Combining (35) and (36) yields via a union bound over (p? + Np)
terms

2 —B(e2N)'/3 —BE2N
P(_max A= Bigl > ) < AQP + Np) (e 20y o0

In(p)3/2 In(N)3/2

1
In(N)3/72 Tn(pys/> 1n€ans that ¢ >

32V N

Using € = with myr = since

K,2
32(51+52)m?\],T
t?N > 1. Hence,

.. _RB. . < 2 ( —B((1/32)2t2N)1/3 —B(1/32)2t2N) _ _B(tQN)l/B
P (191,1]'12;(4-1\/ |Aij = Bijl > €) < A(p® + Np) (e Ve e

where the (1/32)2 have been merged into B and we have used that t2N > 1. O

r 2 S148.)"/2( 2y N
Proof of Theorem 2. P (An 1 NBnT) >1—2< ) - D (7 +Np) (o1 +e2) T F V)

fol-

an,T T kT INT/4
lows from Lemmas 2 and 6. Hence, the estimates in Theorem 1 are valid with at least
this probability. Inserting the definitions of Ay 7 and py 7 into (5) and (6) yields (7) and
O

(8).

Proof of Theorem 3. The lower bound on P (An,r N By r) by combining Lemmas 4 and
7. Hence, the estimates in Theorem 1 are valid with a probability bounded from below by
this estimate. Inserting the definitions of Ay 1 and ux 7 into (5) and (6) yields (9) and
(10). O
Before we prove Theorem 4 below we define the weighted Lasso as the minimizer of the

following objective function,

p+N

2

(37) ly = Zy1* +2 > wjlyl

j=1
where wj, j =1,...,p+ N are the weights. Note that in the plain Lasso, w; = Ay 7 for
allj=1,...,pand w; = unr for j =p+1,..,p+ N. From standard convex analysis we
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know that a vector 4 minimizes (37) if and only if there exists a subgradient v of ||v|,,
such that

(38) ~Zi(y — Z7) +wjv; =0forall j=1,...,p+ N

where v; = sign(%;) if 4; # 0 and v; € [-1,1] if 4; = 0. The following Lemma will be
used in the proof of Theorems 4 and 6.

Lemma 8. Suppose that |vj| <1 for all 7; = 0 in (38) and that Z';Z; is invertible. Then
sign(y) = sign(y*) if

(39) sign (73 + (22,) ™" [Zhe = 1,] ) = sign(1)

(here r is the (p + N) x 1 vector with jth entry w;v;) and

(40) |22 (225) " [Zhe —rs] + Zhe| < w;

forall j € J¢

Proof. The proof combines ideas from Wainwright (2009) and Zhou et al. (2009). Clearly,
sign(¥) = sign(y*) if and only if i) 4 solves (38) and ii) sign(§) = sign(y*). Using
y = Z~v* + € the first order condition (38) is equivalent to

Z'Z7—~v)—Z'e+r=0

Using J7e = v5. = 0 it follows by the invertibility of Z’,Z; that
(a1) 5=y = (2y25) " [Zhe — )]
which yields sign(%,;) = sign(v’%) under the stated conditions. Furthermore, we have

0= 25215 —73) = Zyee+rye = 2525 (25 25) " [Ze —1g] = Zyee+ e
Hence, we must have

wiv; =715 = —Z;7; (Z’JZJ)_l [Zhe—rs] + Zje

for all j € J° which means (using |v;| < 1)
(42) 2125 (225)"" [Zhe —rs] + Zhe| < w;

for all j € J°. Next, |v;| < 1 may be used to show that any solution ¥ of the minimization
problem must have 7; = 0 if 4;=0. This can be done by mimicking the argument in
the proof of Lemma 2.1 in Bithlmann and Van De Geer (2011). Finally, using that
Ase = 0 and that Z,;Z; is invertible (37) is seen to be strictly convex and so 4 =
(v + (Z'JZJ)_1 [Z)e — rJ]I ,0") is indeed the only solution. O

Proof of Theorem 4. By (41) one gets
-1
Sustrs =)= (353 2520578) " [55325e- 855
which implies

—1 —1
1800 G =) 2| (8532520535)  875ra|| || (S35252555%) S35 24e
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Next, note that using arguments similar to those in (5) it is seen that on BN,T one has
Gmax (575252157 ) < 26max(Ls,s) and so

_ I NP _ 17 /IR | Jo |3
H(S‘L}JZL/]ZJSJ}]) SJ7L1]7’J ‘ > ¢min [(SJ,}Z}ZJSJ73) 1] ( 1NCZ]:],T + QTN,T)

- 1 (\J1|/\?V,T |J2|.u%\I,T) 1 <|J1|)\?V,T \J2|ﬂ?v,T)
- ¢Inax (S;’.ljZ‘/]ZJS;"l]) NT T - 2¢max (FJ,J) NT T

Furthermore, by the independence of Z; and e and the gaussianity of €, it follows that

o 1 -1 —1 - . . .
conditional on Z;, (SJVJZJZJSJ”]) S jZ}¢€ is gaussian with mean zero and covariance

1
o? (Sin}ZJS;LII) . Hence, for any s > 0 letting € € RI’I be a standard gaussian vector
we have
—1 v P S 2 ) 1
P(|(si3z52s535)  s7h2he| <) =P (e0? (S53252,873)  e<s)

But since &€ is x2(].J]) it follows from expression (54a) in Wainwright (2009)*! that there
exists a constant ¢; such that P(¢€ > 3|J|) < exp (—c1]J])

~1 ~1 1
¢0% (S5425287)) €< @etmu ((S75252487)) ) = — —
Pmin (SJ,JZ}ZJSJ,J)
Now by arguments similar to the one in the proof of Lemma 5 one has on BN,T that

1 win (S752525855 ) < 2/Gumin(Ts,s) and so

-1
P (€’02 (Si},Z}Z,;S;;) €< s) >1—exp(—ci|J]) — A(p* + Np)e B&N'?

for s = 3[J| - 2/¢min(T's,s). Hence, with probability at least 1 — exp (—cy|J|) — A(p* +
N]))e_B(t2]\7)l/3 for constants d,ds and ¢

N . 1 PAPY: | J2| A
HSJvJ(’YJ_’YJ)H = \/2¢ (FJJ) ( 1N1]—Y,T ’ NT) \/3|J‘ 2/¢mm(FJJ)

> dy(v/]J1] ANT/W*‘- \/|T2#N,T/f da (V|| + /| J2])
doV/NT dovV/'T
div/[J1] ANT/F( >+d1\/|J2|MNT/\f<1—7>

di\n dipnT
> cy/ |J1|>\N,T/V NT + cv/ |J2 /JN7T/\/T
= c2éN,T

where the first estimate used Jensen’s inequality on the concave x — /x for the first
(constants merged into di) term and the subadditivity of the same function on the second
term. The existence of the constants d; and ds follows from the fact that ¢ax (F J, J) and

HMore precisely, (54a) in Wainwright (2009) states that given a centered x2-variable X with d degrees

of freedom, then for any ¢ € (0,1/2) one has P(X > d(1+1t)) < exp (——dtQ) Hence, for an uncentered

x2-variable Y with d degrees of freedom

P(Y >3d) < P(Y >d+ (1+8)d) = P(Y —d> (1+t)d) = P(X > (1+t)d) < exp <713—6dt2) = exp <fcld)

where the first estimate follows from d € (0,1/2) and the last equality by fixing some ¢ € (0,1/2)
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Pmin (F J, J) are bounded from above and below, respectively. The last inequality follows
by choosing an 7 sufficiently large while the last equality follows from the definitions of
An,T, pn, and En,r and the fact that %2 is bounded from below. O

Proof of Theorem 5. We start with the consistency part. The conclusion follows from
Theorem 3 if we show that P (Axr N By r) — 1 and that {y o /VNT, §N7T/\/T — 0.
All notation is as in the statement of Theorem 3. To establish that P (Axr NBn 1) — 1

it suffices to show that A(p? + Np)e’B(tQN)l/3 — 0 Note that, ignoring constants,

’N = 5 al 5 =N Im(N)S - oo
(V)" (mwy v )

because 6b + 2¢ < 9b + 2¢ < 1. Since t> N — oo and p increases exponentially in N it is

enough to show that p e~ BEN)Y® . But this is the case, since

p2e_B(t2N)1/3 = exp(2N?) exp(— BN1/3=(2/3e=20) 1n(N)2) 5 0
because 9b + 2¢ < 1. Next, note that, ignoring constants, £y 7 = log(N)3/2NG/2)b Ne/2 4
log(N)3N¢/? which implies that
§N T/\/ﬁ — log(N)3/2N(3/2)b+c/2—1/2—(1/2)a + log(N)3Nc/2—1/2—(1/2)a N 0
since 3b + ¢ < 1 4 a. Similarly,
éN T/\/T _ log(N)3/2N(3/2)b+c/2—(1/2)(1 + 1Og(N)3Nc/2—(1/2)a 0
since 3b+c < a. Regarding the second part we have already established that P (Axr N By 1) —
1 since 9b 4 2¢ < 1. Hence, || — 8*|| < én7/vNT with probability tending to one. But
3; = 0 for some j € J; implies || — 8*|| > éxr/v/NT. This is a contradiction and so

it can’t be the case that §; = 0 for any j € J;. A similar argument applies to ¢; for
1€ Jo. O

Lemma 9. Under assumption A1) and A2a)
(1) P(Cinr) 21— =55 for King = [J{P/7 [P (NT) Payr
N, T

(2) PConr) 21— 7 for Konr = | H[V7 LIS T 2an 1

T
an

Proof. First, note that

1 L
H \/ﬁ Z Z Lit,kTit,l

i=1 t=1 Ly

< VNT max Hm,t,km,t,zHL
1<t<T "

2S\/NT

where the last estimate follows from the Cauchy-Schwarz inequality. Hence,
|J¢|?/7J1|>/"V/NT. Tt follows from Markov’s inequality that

N T
! HIAINTY 1
P (max max Tt kTitl 2 Kl,N,T) <= =
keJeicdi /NT ;; KI/J\QTT arN/QT

)

1 N T
|manle maXies, /N7 D i1 2at—1 Tit kT

Next,

1 T
H\/T tzzlxi,t,k . < \/TlrgntaéXTHl.i’tkaLr = \/T
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This implies, || max;e , maxye se ﬁ SE xi,tkaLu < T¢I |7/ T and Markov’s in-
equality yields

T
1 EAIEAS /2] 1
P(maxmax— E Titp > K ) <= =
i€z keJ¢ /T pot Ltk = BLNT | = Ki nor |JEN| T 2N 2ahy ¢ — Q%QT

where the last estimates follows from |Jo| < N /2 and an,7 > 1. The conclusion of the
first part of the lemma now follows by a union bound. The second part of the lemma is
proved in a similar manner. O

Lemma 10. Under assumption A1) and A2b)
(1) P(CLN,T) >1-— ﬁ for KLN,T = Alog(l + |ch|)10g<€ + ‘Jll)\/ NTlOg((ZN)T)
(2) P(CQ,N,T> > 1-— 2 fO’f’ KQ,N,T = AlOg(l + |J1|)10g(1 + |J§|)\/Tlog(aN7T)

anN,T
for a constant A > 0.

Proof. First, note that

1 N T
H \/ﬁ Z Z Lit,kLit,l

=1 t=1 P

1+ K
S \/NTlréltaSXTH!ELt’kth’lel S VNTT
1

where the last estimate follows from ||x1’t’kx1’t’le1 < % := A as argued in the
N T

proof of Lemma 7. Hence, ||maxk€J1c maxje J, ﬁ Doic1 Dt xi’t’kxi’t’lel < Alog(1 +

|J§]) log(e + |J1])V NT. By Markov’s inequality, the definition of the Orlicz norm, and

the fact that 1A ¢(z) 1 =1A (e® —1)7! < 2e72,

N T
1
hersien JNT ; ; TRbRTLL = BN
1 2
exp(K1 nr/Alog(l+ |J¢])log(1 + | 1|)VNT) -1  anT

Next, since x;; x is subgaussian it is also subexponential, and so there exists a constant
A > 0 such that

<1A

< VT max Hxi’t’kHw <VTA
1<t<T 1

73
— Z Lit,k
This implies, || max;e , maxyes; - S xi7t7k||w1 < Alog(1 + |J§|) log(1 + | Jo|)V/T and

Markov’s inequality yields by similar arguments as above!?

1 I
P (rzlé’fl]i( iléi?lg 7T ;wi,t,k > K1,N,T)
1
exp(K1,nr/Alog(1 + | Jf|) log(1 + [J2)VT) — 1
 Alog(1 + | Jf|) log(e + |J1|)\/ﬁlog(aN’T)) < 2

Alog(1 + |J¢|) log(1 + | )VT

<1A

< 2exp ( <
an,T

12The constant A may take different values throughout.
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where the last estimate follows from log(1 + |J2|) < N'/2  log(e + |J1|) > 1 and ay 1 > 1.
The conclusion of the first part of the lemma now follows by a union bound. The second
part of the lemma is proved in a similar manner. O

Before we prove Theorem 6 note that BNyT C Bn 1 (see the definition of BN,T in (31))
as already argued in the proofs of Lemmas 6 and 7. Furthermore, an argument similar
to the one in Lemma 5 reveals that Dy 1 = {¢min(¥s.y) > %qﬁmin(l"k]’])} occurs if the

$min(l's.7) Byt this latter event

maximal entry of ¥y ; —T'y ;| is less than or equal to TRy

clearly contains BMT and so l§N7T C Dn,r.

Proof of Theorem 6. We shall prove the first part of the theorem since the proof of
the second part follows along exactly the same lines (except for replacing Ci nr by
Ca,n,r in the following arguments). Throughout we work on Ay NCy nr N Dy, N
{13 = 8%l < Bumin/2} N{]|é — ¢*|| < cmin/2} and verify that (39) and (40) are valid on this
set with w = (w},w})" and wi; = An.r/1B;], § = 1,....,p as well as wy; = pun.r/ |&],
j =1,...,N and the convention that 1/0 = co. First note that since S; ; is a diagonal
matrix with positive entries on the diagonal (39) is equivalent to

sign (SJ,J%*/ + S5 (Z}ZJ)_l S1.5(S1.0)"" [Zhe - TJ]) = sign(v})
Focussing on an X; with j € J; it hence suffices to show that!3
|(Ss, (Z}ZJ)_l S50(S50)"" [Z)e - TJ])J-| < VNT Buin

The left hand side in the above display may be upper bounded by
15,5 (Z"]ZJ)il SJ,JHEOOH(SJJ )t [Zf,e -] ||é . Since

155, (ZIJZJ) _<VWISss (2525) LSyl

and on Dy r one has
157, (Z‘I]ZJ)il 577\ = émax (Ss. (Z'JZJ) Sy) =

it follows that

1 < 2
¢mm(\IIJJ) N ¢min(FJ,J>

-1 2/|J|
10,0 (25Z5) " Ssall,_ < Smm(To)
Furthermore, because || — 8*|| < Bmin/2 (by assumption)
|Bj| Z B’F - |Bj - 6*| Z 5min - ||/6A) - 6*” 2 Bmin/2

for all j € J1. By a similar argument ¢é; > cmin/2 for all j € J,. Hence,

AN, T H H UNT H 2ANT 2unT

e e —
> NTﬁJl \/>CJ ﬁmm \/Tcmin

Next, on .ANyT
X e ANT MN T

2\ﬁ

S Zye], < H

1
HDJQ

3

13Here7 without causing confusion, we assume that X;, j € J1 is indeed the jth variable.
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It follows that
185074 [Z5e =il <S50 Zgel|, +][(Sr) ™ rall,

ANT . UNT 2A\NT 2puNT
44 < Y ’ -
( ) o 2\/ NT 2\/T Vv NTﬂmin \/Tcmin

Hence, putting the pieces together, (39) is satisfied for all j € J; if

2¢/1J| <>\N,T b 22N, T v 2#N,T><mﬁv

Guin(T7,7) \2/NT = 2T  VNTBmin VT Cmin
Next, (40) is equivalent to
_ —1 _
(45) |=Z5Z5(S5,0) " S0.0(2525) " S1.0(85,.0) 7" [Z5e —r5] + Zje| < w;

for all j € J¢. The left hand side in the above display is bounded from above by
12;2(55,0) 7 85,5 (2325) " Sa,, (2.0~ [Z5e =], +|Z5e]
Assume again that Z; is an X;. Then, on C; nr and by (43)
| Z;Z(S5.0)"" 55 (Z}ZJ)_l SJ)JHZI <V||Z,25(S55)"S1.4 (Z}ZJ)_l Sy
< |J|||ZJ/‘ZJ(5J,J)71H%OHSJ»J (ZIJZJ)i1 SJJH

< 2|J| KN,

" Gmin(T',7)
where the second estimate follows by considering Sy, (Z "z ‘])71 Sj.7 as a bounded linear
operator from £ (R‘J‘) — 0 (R‘J‘) with induced operator norm given by ¢ax (SJJ (Z}ZJ)_l SJ,J).

Putting the pieces together, and using that we are on Ay 7 and by (44) the left hand side
in (45) may be upper bounded by

2|J| Ky N1 ( AN,T v b, 2AN,T y 2uN,T >+)\N,T
Swin(Cs7) \2NT = 2T  VNTBwmin VT Cmin 2

Finally, the right hand side in (45) may be bounded from below by Ax.r/ |3 — 5*|| and
the result follows. d

Proof of Corollary 1. We know from Theorem 6 that sign(f) = sign(5*) on Ayxr N
BN,TOCLN,TQDN,TQ{HB — ﬂ*H < ﬂmin/Q}ﬂ{Hé — C*H < Cmin/2} if (14)—(15) is satisfied!?.

Furthermore, if Bmin Z 2\5% one has -AN,T QBNNJ“ ﬂCI,N,T Q -AN,T mBN,Tcl,N,T m'DN7T n

{18 = 8%l < Bumin/2} N {]|é = ¢*| < cmin/2} *°. The lower bound on the probability of
{sign(B) = sign(5*)} now follows by Lemmas 2, 6 and 9 in case of part one of the corollary.
In case of part 2 of the corollary Lemmas 4, 7 and 10 are used. A similar argument gives the
lower bound on the probability with which sign(¢) = sign(c*) by verifying (16)-(17). O

14Actually, we know from Theorem 6 that sign(é) = sign(B*) on the larger set Ax 7 NC1 Ny, 7 NDn,7N
{18 = 8%l < Bmin/2} N {l|é = ¢*|| < emin/2}. As will be seen, this distinction will turn out not to make
any difference for our lower bounds on the probability of the events.

15The inclusion follows from the fact that B~N7T C BN,7rNDy, T as argued prior to the proof of Theorem

: : A énN, N éN,
6. Also the inclusion has used that on Ay 7 N By, one has || — %] < \/]% and ||¢ — c¢*|| < %

2¢ 2¢ . - .
such that Bpin > \/?\%T and cpmin > \%T imply that {||8 — 8*|| < Bmin/2} and {||¢ — c¢*|| < cmin/2},

respectively.
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Proof of Theorem 7. We proceed by verifying the conditions related to the sign consis-
tency of B and ¢ in part 2 of Corollary 1 and showing that the lower bound on the
probability with which sign(5) = sign(8*) and sign(¢) = sign(c*) tends to one. We focus
on P (sign(,é) = sign(B*)) — 1 since the second part of the theorem follows by identical
arguments.

First, we verify that 14 is satisfied asymptotically. To do so it suffices to show that
7% — 0 and 7% — 0. Now, ignoring constants, and using the definition of

AN, T

VIIANT VI log(p)*/? logaN,TS/Q _ ne/2+3b—a/2-1/2 3/2
NT = ~7 =N 2 log N°/* — 0

since 3b + ¢ < 1 4 a. Similarly, using the definition of pn 7
VI N T _V |J[log(N)? — Ne/2—a/2-1/2 log(N)3 0

VNT VNT

since ¢ < a + 1. Next, we verify that (15) is valid asymptotically. To do so it suffices

to show that LA |3 — || — 0, MIELTbrr /AT 15— g+l — 0 and |8 — 8% — 0.

For this purpose, note that Ky v < Alog(1l + |p|)log(e + |J1])V NT log(an, ) which
is of order log(|p|) log(|J1|)V'NT log(an ) = N’clog(N)?>V/NT = NU1/2+a/2]og(N)2.
Furthermore, ||B — B <é&nr/VNT on Ay rNBn 1 which we are working on in Corollary
116 (where ¢ ~,7 is as defined in Theorem 3). Hence, ignoring constants,
(46) I8 = 57| < énr/VNT < log(N)PN20+e/21/2me/2 g
since 3b + ¢ < 1+ a. Also,

|J| K1 N T

VvVNT

HBfﬂ*H < Nch+1/2+a/2 log(N)Z log(N)SN%b+c/271/27a/2N71/27a/2

— N5btie—1/2—a/2 log(N)5 0

log(N)*/?  _ log(N)*/?

VNlog(p)3/2 — /NN3?

210g(N)3/2
VNNzb

_ Nb+%cfl/2fa/2 10g(N)13/2 0

since 2b + 3¢ < 1 4 a. Furthermore, Bnin > 2% since f/]jva —0when3b+c<1l+a

as seen from (46) while B, is bounded away from 0. Finally, we note that 96+ 2¢ <1
suffices to ensure that the lower bound on the probability in part 2 of Corollary 1 tends

to one as was already argued in the proof of Theorem 5. O

since 5b + 3¢ < 1 + a. Similarly, since py /AN =

J|IK A 3
|J| Ky, NN /ANT 18— B*| = NeNbtL/2+a/2 log(N)

log(N 3Ngb+c/2—1/2—a/2N—a/2
s g(NV)
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