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Abstract

This survey focuses on two families of nonlinear vector time series
models, the family of Vector Threshold Regression models and that
of Vector Smooth Transition Regression models. These two model
classes contain incomplete models in the sense that strongly exoge-
neous variables are allowed in the equations. The emphasis is on
stationary models, but the considerations also include nonstationary
Vector Threshold Regression and Vector Smooth Transition Regres-
sion models with cointegrated variables. Model specification, estima-
tion and evaluation is considered, and the use of the models illustrated
by macroeconomic examples from the literature.
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1 Introduction

Since its appearance as a macroeconomic modelling tool more than thirty
years ago (Sims, 1980), the basic linear vector autoregressive (VAR) model
has been applied in various economic modelling situations and developed
further in many ways. For a concise overview of the linear VAR model
covering the basic statistical inference, interpretation of the estimated model
through the impulse response analysis, and forecasting, see Lütkepohl (2006).
Although linear VAR models have served economists well, there are situ-

ations where a nonlinear model would be appropriate. Economic theory may
suggest employing a nonlinear model. Alternatively, observed time series may
indicate that the variables of interest could be nonlinearly related. For exam-
ple, the recent financial crisis and the Great Recession suggest that describing
quantitative relationships between the financial sector and the macroecon-
omy would require a nonlinear model. Nonlinear models may also be useful
in analysing monetary policy. Positive and negative monetary policy shocks
may have asymmetric effects, and the effect may depend nonlinearly on the
size of the shock as opposed to linear models in which this effect is propor-
tional to the size of the shock. Nonlinear models may also have a role to play
in studies of effectiveness of fiscal policy. The effects of certain fiscal policy
measures may depend on the phase of the business cycle, and investigating
fiscal multiplier effects may require nonlinear tools.
There are different ways of modelling nonlinear relationships in economics.

The leading examples of parametric nonlinear VAR models are the vector
threshold autoregressive (VTAR), the vector smooth transition autoregres-
sive (VSTAR) and the vector Markov-switching autoregressive (VMSAR)
model. The first two models differ from the third one in that in the for-
mer all variables of the model are observable, whereas in the VMSAR model
an unobservable, ’latent’, variable plays a central rôle. In this survey the
focus will be on the VTAR and VSTAR models. Incomplete models that
contain strongly exogenous variables are considered as well: these are called
the vector switching regression (VSR) and vector smooth transition regres-
sion (VSTR) model, respectively. Statistical theory behind these models is
discussed and their use illustrated by empirical examples selected from the
literature. The focus is on stationary models, but statistical inference in non-
stationary models with cointegrated variables also receives attention. The
important class of VMSAR models and their applications deserve a survey
of their own and are not included in this review.
The choice between VTAR and VSTAR models depends on the economic

problem to be investigated. The VTAR model is designed to describe situ-
ations in which the dynamic behaviour of a set of random variables can be
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modelled by defining a limited number of linear states or regimes that the
process can visit. VSTAR models can be viewed as models with a continuum
of states, that is, the dynamic behaviour of the variables changes smoothly
between a number (often two) extreme states or regimes. An observable
switch or transition variable determines the regime that generates the next
observation.
The plan of this chapter is as follows. Single-equation switching regression

and smooth transition regression models are introduced in Section 2. The
VSR and VSTR models, including some special cases, are defined in Section
3. Parameter estimation by least squares is considered in Section 4. Section
5 is devoted to building adequate VSR and VSTR models: a modelling cycle
consisting of specification, estimation and evaluation of stationary models of
this kind is presented. Approaches to inference in nonstationary models with
cointegrated variables are considered as well. Section 6 contains a discussion
of the possibility that nonlinearity in these models can be eliminated by
a linear transformation, that is, nonlinearity in the individual equations of
the model is a common feature. Generalized impulse response functions are
considered in Section 7, and forecasting with VSR and VSTR models in
Section 8. The purpose of Section 9 is to illustrate the use of the models
by presenting applications to macroeconomic time series. Final remarks and
suggestions for further reading can be found in Section 10.

2 Background: single equation models

2.1 Switching regression model

The switching regression (SR) model was introduced by Quandt (1958), who
also discussed parameter estimation. Subsequently, Quandt (1960) consid-
ered linearity testing but did not yet solve the problem of the asymptotic null
distribution of his test statistic. A dynamic SR model is defined as follows:

yt =

q∑
i=1

(µi +

p∑
j=1

φijyt−j + γ ′ixt + εit)I(ci−1 < st ≤ ci) (1)

where yt and st are stationary random variables, xt is a vector of strongly
exogenous variables, {εit} ∼ iid(0, σ2

i ), µi and φij are parameters, i = 1, ..., q,
and j = 1, ..., p, γi, i = 1, ..., q, are n × 1 parameter vectors, c0 = −∞,
and cq = ∞. I(A) is an indicator function: I(A) = 1 when A occurs, zero
otherwise.
Later, Howell Tong introduced an autoregressive version of (1), γi = 0 for

all i, and called it the self-exciting threshold autoregressive (SETAR) model.
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In the SETAR model, st = yt−d, d > 0, hence the term ’self-exciting’. It
quickly became the most popular nonlinear univariate time series model in
many areas of application. Chan (1993) worked out the asymptotic theory
for least squares estimators of the SETAR model with a single threshold, and
Qian (1998) did the same for maximum likelihood estimators. In particular,
they showed that under certain conditions, the least squares estimator of
c1 is super consistent. For an excellent review of SETAR models, see Tong
(1990). For further developments of asymptotic inference, see Hansen (1997,
1999, 2000).
As an economic example, Pfann, Schotman and Tschernig (1996) used

a single-threshold SETAR model to describe the dynamic behaviour of the
three-month US T-bill interest rate. The time series extends from 1962(1)
to 1990(6). The results show that when the interest rate is suffi ciently low it
behaves like a random walk. At high values, the rate is mean-reverting. The
switch extends to the variance as in (11). The estimated variance is clearly
higher in the high rate than in the low rate regime.
One obtains another form of a SR or threshold model by assuming that

switching in (1) is controlled by a latent variable instead of an observable
one. This is done by defining a latent discrete random variable st with q
possible values and replacing the indicator in (1) by I(st = k). In economic
applications it is often assumed that st has memory. The most common case
is the one where {st} is a (first-order) Markov chain; see Lindgren (1978) for
this type of model.

2.2 Smooth transition regression model

The origins of smooth transition models can be traced back to Bacon and
Watts (1971) who suggested that instead of fitting two linear regression lines
to a bivariate point cloud, one could have a smooth transition from one line
to the other as a function of the explanatory variable. The smooth transition
regression (STR) model has the form

yt = φ0 +

p∑
j=1

φjyt−j + γ ′xt

+(ψ0 +

p∑
j=1

ψjyt−j + η′xt)G(γ, c; st) + εt (2)

where φj and ψj, j = 0, 1, ..., p, are parameters, γ and η are n × 1 para-
meter vectors, and G(γ, c; st) is a bounded continuous function of st, called
the transition function. The error sequence {εt} ∼ iid(0, σ2). The transi-
tion function of Bacon and Watts (1971) was a hyperbolic tangent function,
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and the parameters of the ensuing nonlinear model were estimated using
Bayesian methods. Maddala (1977, p. 396) suggested a logistic function for
the purpose, and that has become a standard choice. For c = c (scalar),

G(γ, c; st) = (1 + exp{−γ(st − c)})−1, γ > 0 (3)

where γ > 0 is an identifying restriction. Equations (2) and (3) define a
single-transition logistic STR model. A pure time series smooth transition
autoregressive (STAR) model, γ = η = 0 and st = yt−d, d > 0, in (2), was
introduced by Chan and Tong (1986). An alternative to the logistic function
(3) is the exponential transition function:

G(γ, c; st) = 1− exp{−γ(st − c)2} (4)

and (2) with (4) define an exponential STR (ESTR) model. Haggan and
Ozaki (1981) already considered a univariate version of this model in the
special case c = 0 in (4). Teräsvirta (1994) constructed a model building
strategy for STAR models that Eitrheim and Teräsvirta (1996) completed.
Smooth transition type models can describe aggregate dynamics in sit-

uations where individual agents respond differently to a stimulus. LSTAR
models are often an alternative to single-threshold TAR models. ESTAR
models have been used for modelling real exchange rates in cases where the
mean reversion is symmetric around an equilibrium and the strength of the
attraction depends nonlinearly on the size of the deviation from this equilib-
rium. See Taylor, Peel and Sarno (2001) for discussion and examples. More
discussion on all these models and modelling time series with them can be
found in Teräsvirta, Tjøstheim and Granger (2010). For forecasting with
STAR models, see also Lundbergh and Teräsvirta (2002), Teräsvirta (2006)
and Kock and Teräsvirta (2011).

2.3 Switching mean autoregressive model

Lanne and Saikkonen (2002) introduced a univariate threshold autoregressive
(TAR) model in which only the intercept is switching, whereas the autore-
gressive structure remains unchanged. Their model can be written as follows:

yt =

r∑
j=1

φ0jI(cj−1 < yt−d ≤ cj) +

p∑
j=1

φjyt−j + εt (5)

where εt ∼ iid(0, σ2). This specification is used for describing ’near unit root’
behaviour. That means modelling series which may ’look’nonstationary but
are stationary and fluctuate within bounds. Interest rate or unemployment
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rate series serve as examples. The switching intercept in (5) causes level shifts
in realisations, although the sequence {yt} itself is stationary and ergodic
when the roots of the lag polynomial 1 −

∑p
j=1 φjz

j lie outside the unit
circle.
One of the two examples in Lanne and Saikkonen (2002) consists of fit-

ting the intercept-switching TAR model with one and two thresholds to the
monthly UK Treasury bill series, 1964(1) to 1997(9). The results show that
the persistence (the sum of the autoregressive coeffi cients) considerably de-
creases when one moves from a pure linear autoregressive model, for which
the unit root hypothesis is not rejected, to the intercept-switching TARmodel
with two thresholds. When the TAR model is tested against a linear non-
stationary autoregressive model containing a unit root, the null hypothesis
is not rejected. For the test and the asymptotic theory behind it, see Lanne
and Saikkonen (2002).
The switching-mean autoregressive (SM-AR) model, see González and

Teräsvirta (2008) or González, Hubrich and Teräsvirta (2009), is a variant
of (5). In the SM-AR model the switching intercept has been replaced by an
explicitly nonstationary component. The model has the following form:

yt = δ(t) +

p∑
j=1

φjyt−j + εt. (6)

where εt ∼ iid(0, σ2). The deterministic time-varying intercept is defined as

δ(t) = δ0 +

q∑
j=1

δjG(γj, cj, t/T )

where δj, j = 0, 1, ..., q, are parameters and G(γj, cj, t/T ) logistic functions.
The roots of 1 −

∑p
j=1 φjz

j are assumed to lie outside the unit circle, so
{yt − δ(t)} is a stationary sequence. The unconditional (switching) mean is

Etyt = (1−
p∑
j=1

φjL
j)−1δ(t).

where Et indicates that the expectation is time-varying, and L is the lag
operator.
It is also possible to reparameterise (6) as follows:

yt = δ(t) +

p∑
j=1

φj{yt−j − δ(t− j)}+ εt. (7)
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In that case, Etyt = δ(t). This parameterisation is analogous to that in the
Markov-switching model Hamilton (1989) introduced. In that model the
deterministic δ(t) in (7) is replaced by a latent random variable µ(st), where
µ(st) represents the local (switching) mean of yt. The latent variable st is
assumed to have a (first-order) Markov structure, which implies that the
switching mean obtains q different values.

3 Vector models

3.1 General nonlinear dynamic vector model

A general nonlinear dynamic vector model can be written as follows:

yt = f(yt−1, ...,yt−p; xt;θ) + εt (8)

where yt is a stochastic m × 1 vector, xt is an n × 1 vector of exogenous
variables, εt is an m× 1 error vector with Eεt = 0 and cov(εt) = Σ > 0, and
θ is a parameter vector. The m×1 vector f(yt−1, ...,yt−p; xt;θ) has the form

f(yt−1, ...,yt−p; xt;θ) = (f1(yt−1, ...,yt−p; xt;θ), ..., fm(yt−1, ...,yt−p; xt;θ))′.
(9)

The n-vector xt may contain an intercept, other deterministic components
and strongly exogenous variables. In some cases the whole vector, excluding
the deterministic components, may be lagged. All variables in (8) are observ-
able and all parameters non-random. The sequence {yt} is often assumed
weakly stationary, but sometimes it is only assumed that the sequence of first
differences {∆yt} is weakly stationary.
This survey concentrates on special cases of (8). A useful simplification

is the one in which nonlinearity is additive. This means that the function f
defined in (9) can be decomposed as follows:

f(yt−1, ...,yt−p; xt;θ) = µ+

p∑
j=1

Φjyt−j + Γxt + f1(yt−1, ...,yt−p; xt;θ1) (10)

where µ is an m × 1 intercept vector (other deterministic components are
assumed away for notational simplicity), Φj is an m×m parameter matrix,
j = 1, ..., p, and Γ is anm×n parameter matrix. The models to be considered
below have this or a similar structure. The function f1 can sometimes be
linear in parameters, if not in variables.
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3.2 Vector threshold autoregressive model

3.2.1 Definition

The vector switching regression (VSR) or threshold autoregressive (VTAR)
model is a straightforward generalisation of the corresponding single-equation
model. The former term applies to incomplete models that contain strongly
exogenous regressors, whereas the VTAR model generalises the linear vector
autoregressive model. The stationary VSR model is defined as follows:

yt =

q∑
i=1

(µi +

p∑
j=1

Φijyt−j + Γixt + εit)I(ci−1 < st ≤ ci) (11)

where yt and εit, j = 1, ..., q, are stochastic m×1 vectors, and µi is an m×1
vector of intercepts, i = 1, ..., q. Furthermore, Φij are m × m coeffi cient
matrices, i = 1, ..., q, and j = 1, ..., p, Γi are m × n coeffi cient matrices,
i = 1, ..., q, c0 = −∞, and cq = ∞. When Γi = 0 for all i, (11) becomes
a VTAR model. The errors εit are serially uncorrelated with mean 0 and
positive definite covariance matrix Σi, i = 1, ..., q. The vector xt contains
n stationary variables that are strongly exogenous for the parameters of the
model. If the stationary variable st is replaced by t/T, where T is the number
of observations, (11) becomes a linear VR model with q − 1 breaks.
In (11), a single stationary and continuous switch-variable st determines

the regime of the whole system. This assumption has been relaxed by Tena
and Tremayne (2009) such that each equation may have a separate switch-
variable and some equations may even be linear. The authors argue that there
are good economic reasons for that, but in economic applications other than
theirs, see Section 9.1, this has not been the case. A systematic modelling
strategy for VSR or VTAR models with applications can be found in Tsay
(1998) and is discussed in Section 5.2.
Finally, it may be noted that substituting a latent indicator for the ob-

servable st in (11) yields the following vector regression model:

yt =

q∑
i=1

(µi +

p∑
j=1

Φijyt−j + Γixt + εit)I(st = νi) (12)

in which the indicator variable st is defined similarly to the single-equation
model of Lindgren (1978). Typically, the switches in all equations are con-
trolled by the same indicator function, as is the case in (12). This assump-
tion can be relaxed, however, see Sims, Waggoner and Zha (2008). Recent
economic applications include Sims and Zha (2006) and Hubrich and Tet-
low (2012). Their approach is Bayesian; for more details and discussion in
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the classical framework, see Krolzig (1997) and Jacobson, Lindh and Warne
(2002).

3.2.2 Nested vector threshold autoregressive model

The VTAR model (11) may be generalised in various ways. It is possible to
add thresholds and threshold variables such that the switches are controlled
by more than variable. One of these models is a multivariate generalisation
of the univariate Nested TAR (NTAR) model by Astatkie, Watts and Watt
(1997). It is a four-regime model with the following form:

yt = {(µ11 +

p∑
j=1

Φ11jyt−j)I(c1 < s1t) + (µ12 +

p∑
j=1

Φ12jyt−j)I(c1 ≥ s1t)}

× I(c2 < s2t) + {(µ21 +

p∑
j=1

Φ21jyt−j)I(c1 < s1t)

+ (µ22 +

p∑
j=1

Φ22jyt−j)I(c1 ≥ s1t)}I(c2 ≥ s2t) + εt (13)

where the error process {εt} ∼ iid(0,Σ) and thus does not switch. In this
model, the first threshold variable s1t controls switching as in (11). But
then, the two states between which the process switches according to s1t can
change due to the other threshold variable s2t. The standard VTAR model
is thus nested in the more general Vector NTAR (VNTAR) model.
There may not be any applications of the VNTAR model (13) with sto-

chastic stationary threshold variables s1t and s2t to economic time series. A
special case, however, in which s2t = t, has been considered by Galvão (2006).
In this model, the two threshold regimes determined by s1t change once dur-
ing the observation period: the second threshold indicates a structural break
in the VTAR process. The author calls this model the Structural Break
Threshold Vector Autoregressive (SBTVAR) model. She discusses specifica-
tion and estimation issues and applies the model to predicting recessions, the
2001 recession in the US in particular.

3.2.3 Threshold vector error correction

Following the way linear cointegrated VAR models are parameterised, there
is an extension of the VTAR model applicable to nonstationary time series.
Balke and Fomby (1997) introduced this extension to allow discontinuous
changes in the attraction towards the equilibrium characterised by the cointe-
grating relationships. To define the model, assume for simplicity that Γi = 0
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for all i and that q = 3. The model (11) is then rewritten as follows:

∆yt =

3∑
j=1

(µj + Πjyt−1 +

p−1∑
k=1

Ψjk∆yt−k + εjt)I(cj−1 < st ≤ cj) (14)

for p ≥ 2.When p = 1, the weighted sum of lagged first differences vanishes.
Assume that in each regime, yt is integrated of order one (∆yt stationary in
the mean) and the m × m matrix Πj = AjB

′, where Aj, j = 1, ..., q, and
B arem×r matrices with full column rank. Furthermore, st is continuous and
stationary as before. If m = 2, say, then Aj = (α1j, α2j)

′ and B = (1,β2)′,
and the variables y1t and y2t are cointegrated with the cointegrating vector
B. This model is called the threshold vector error correction (TVEC) model.
The difference between the linear cointegrated VAR model and (14) with
q = 3 is that strength of the attraction varies in the three regimes according
toAj. The cointegrating relationships defined by the matrixB remain linear.
A special case with economic applications has q = 3 and A2 = 0. This

allows modelling relationships in which error correction operates outside an
interval, but is incomplete in the sense that there is a band within which
no adjustment takes place. The intercept is restricted in the cointegrating
relationship, so that

∆yt =
3∑
j=1

{Aj(B
′yt−1 − µj)

+

p−1∑
k=1

Ψjk∆yt−k + εjt}I(cj−1 < st ≤ cj) (15)

where µj is the regime-specific mean vector of B′yt−1. Model (15) is called
the band-TVEC model; see Lo and Zivot (2001) for discussion. The corre-
sponding univariate model is called the band-TAR model.
In applications of (15), the interval (c1, c2] often contains zero. For exam-

ple, when considering trade with identical commodities, transportation costs
help sustain a difference in the price of this commodity in two regions. Price
convergence can only occur when the absolute difference between the prices is
suffi ciently large, so profitable export or import is possible. In this example,
the transition variable st in (15) is the difference between the prices.

3.2.4 Stationarity in threshold vector error correction models

Stationarity and ergodicity of the equilibrium component B′yt−1 and the
differences ∆yt defined by the TVEC process (14) where are considered in
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Bec and Rahbek (2004). Let zt = (y′tB,∆y′t−1, ...,∆y′t−p+2)′. The focus is
on the case where the threshold variable st = ||zt−1|| and the indicator has
the form I(||zt−1|| ≥ c) in (14). This implies that the resulting three-regime
model is ’symmetric’: the mid-regime is different from the identical outer
regimes, A1 = A3 6= A2, and the two thresholds separating them are c1 = −c
and c2 = c > 0. Under the conditions given by Bec and Rahbek (2004), see
their Theorem 2, B′yt and ∆yt are geometrically ergodic, and assuming the
process starts at t = 0, they can be given initial distributions such that they
are stationary. Stationarity is seen to depend only on the parameters of
the outer regimes. For stationarity, the characteristic polynomial matrix for
those regimes or regime

Cj(z) = Im(1− z)−AjB
′z −

p−1∑
k=1

Ψjk(1− z)zk, j = 1 or 3

must have m − r roots equal to unity, while the remaining roots |z| > 1
(Johansen, 1995, Theorem 4.2). Bec and Rahbek (2004) also look at the case
in which st = ||B′yt−1|| but then they assume that Ψjk = Ψk, k = 1, ..., p,
that is, the short-run coeffi cients do not switch.
Saikkonen (2005) studies a rather general class of nonlinear error correc-

tion models with the error correction component B′yt as before. Conditional
heteroskedasticity in the errors is also allowed. A three-regime VTAR model
with A1 = A3 6= A2 is a member of this class. The threshold variable is a
function of zt−1 defined as before. Under the conditions given in the paper
and using a transformation of the general model, Saikkonen (2005) is able
to show that given a proper choice of initial distributions, B′yt and ∆yt are
both strictly and weakly stationary.
It should be mentioned, however, that the results in Bec and Rahbek

(2004) are not restricted to mere VTAR models either but apply to a more
general class containing, among other things, the case in which the threshold
is not completely observed but contains an unobserved random element. The
results in Saikkonen (2005) cover this extension as well. See also Section 3.3.3,
where extensions to smooth transition VEC models are discussed.

3.3 Vector smooth transition autoregressive model

3.3.1 Definition

When the stationary smooth transition regression model is generalised to the
vector case, one obtains a logistic vector STR (LVSTR) model of order p.
This model first appeared in Anderson and Vahid (1998) who were interested
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in testing common nonlinearities in vector models. Their approach to this
testing problem is discussed in Section 6.3. For notational simplicity, a single-
transition (two extreme regimes) version of the LVSTR model is considered
here. For more general representations, see Teräsvirta and Yang (2013). The
model may be defined as follows:

yt = µ0 +

p∑
j=1

Φjyt−j + Γxt + G(γ, c; st)

×{µ1 +

p∑
j=1

(Ψjyt−j + Ξxt)}+ εt

= µ0 + G(γ, c; st)µ1 +

p∑
j=1

{Φj + G(γ, c; st)Ψj}yt−j

+(Γ + G(γ, c; st)Ξ)xt + εt (16)

where yt is an m× 1 vector, µ0 and µ1 are m× 1 intercept vectors, Φj and
Ψj, j = 1, ..., p, are m×m parameter matrices, Γ and Ξ are m×n parameter
matrices, and

G(γ, c; st) = diag{G1(γ1, c1, s1t), ..., Gm(γm, cm, smt)} (17)

is an m × m diagonal matrix of bounded logistic transition functions. It
is usually assumed that {yt} defined by (16) and (17) is a stationary and
ergodic sequence.
Equation (16) defines quite a general LVSTR model. One way of sim-

plifying it is to assume that the transition variables as well as the para-
meters of the transition functions are the same for all equations. As al-
ready noted, a similar assumption is made in VTAR models. In that case,
G(γ, c; st) = G(γ, c; st)Im. The LVSTAR model suggested by Weise (1999)
contains this assumption. When γ → ∞, this model becomes a two-regime
VTAR model. Setting sjt = t, j = 1, ...,m, leads to an LVSTAR model that
defines the alternative model in testing parameter constancy of linear VAR
models by LM-type tests; see He, Teräsvirta and González (2009).
Another simplification is to assume that the LVSTAR model is intercept-

switching, that is, Ψj= 0, j = 1, ..., p, and Ξ = 0 in (16). The intercept-
switching model is already fairly flexible specification. Besides, as the in-
tercept µ0 + G(γ, c; st)µ1 is bounded for all values of st, the model has the
same stability condition as the linear VAR model. The expectation

Eyt = (Im −
p∑
j=1

ΦjL
j)−1{µ0 + EG(γ, c; st)µ1}
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can only be computed numerically. An empirical example of the intercept-
switching LVSTAR model can be found in Section 9.2. It would also be pos-
sible to generalise the intercept-switching AR model of Lanne and Saikkonen
(2002) to the vector case, but it seems that this has not been done in the
literature on vector TAR models.
It would be possible to define smooth transition counterparts to the VN-

TAR model (13) and its special case, the SBTVAR model. The latter in
fact exists as a univariate model and is called the Time-Varying STAR (TV-
STAR) model, see Lundbergh, Teräsvirta and van Dijk (2003).

3.3.2 Smooth transition vector error correction

A Smooth Transition Vector Error Correction (STVEC) model can be defined
along the same lines as the TVEC model (14). As an example, a single-
transition STVEC model (without exogenous variables) can be written as
follows:

∆yt = µ1 + A1B
′yt−1 +

p−1∑
k=1

Φk∆yt−k

+G(γ, c; st)(µ2 + A2B
′yt−1 +

p−1∑
k=1

Ψk∆yt−k) + εt (18)

where ∆yt is I(0), AjB
′, j = 1, 2, are reduced rank m × m matrices as

in (14) and G(γ, c; st) is a diagonal matrix defined in (17). Rothman, van
Dijk and Franses (2001) defined the STVEC model assuming G(γ, c; st) =
G(γ, c; st)Im. Camacho (2004) constructed a two-dimensional (m = 2) STVEC
model without this assumption. His application is discussed in Section
9.1. Goodwin, Holt and Prestemon (2012) also specified a two-dimensional
STVEC model without assuming identical transition functions and applied it
to modelling the exchange rate pass-through in timber products crossing the
border between Canada and the US. Their model could be viewed as being of
type (16) in the sense that it contains strongly exogenous variables. The au-
thors, however, closed the system by constructing separate linear equations
for these variables.

3.3.3 Stationarity in smooth transition vector error correction
models

Conditions for stationarity and ergodicity of nonstationary STVEC models
can be found as special cases of the general nonstationary model introduced
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in Saikkonen (2008). The general model in that paper is defined by

∆yt =

q∑
j=1

hj(S
′zt−1, ηt)(µ

∗
j + A∗jB

′yt−1 +

p−1∑
k=1

Φ∗jk∆yt−j)

+(

q∑
j=1

hj(S
′zt−1, ηt)Σj)

1/2εt (19)

where B and A∗j , j = 1, ..., q, are m × r matrices with full column rank,
εt ∼ iid(0,Σ), and S is typically a selection matrix or vector, selecting the
threshold or transition variable or a linear combination of variables from
the elements of zt−1 defined as before. For example, setting S′ = [Ir 0]
gives S′zt−1 = B′yt−1, and one can for example choose hj(S′zt−1, ηt) =
I(||B′yt−1|| > c) as in Bec and Rahbek (2004). Furthermore, ηt is a scalar
random variable making the threshold or the location parameter in the lo-
gistic transition function unobservable: here we set ηt = 0. It is assumed
that

∑q
j=1 hj(S

′zt−1, ηt) = 1. Since we are interested in STVEC models, we
assume that hj(s′zt−1), j = 1, ..., q, where s is a selection vector, are functions
of logistic functions. For example, for q = 2 we have

h1(s′zt−1) = G(γ, c, s′zt−1) = (1 + exp{−γ(s′zt−1 − c)})−1, γ > 0

so h2(s′zt−1) = 1 − G(γ, c, s′zt−1). This yields a reparameterised version of
(18) with a common transition function for all equations. Selecting q = 3,
one obtains

hj(s
′zt−1) = {

1−G(γ, c1; s′zt−1) for j = 1
G(γ, c1; s′zt−1)−G(γ, c2; s′zt−1) for j = 2

G(γ, c2; s′zt−1) for j = 3
(20)

where c1 < c2. The positive slope parameter γ is the same for both logistic
functions. The argument can also be a function of s′zt−1 such as ||s′zt−1||.
When γ → ∞, assuming A1 = A3 and that the transition variable equals
||B′yt−1|| the stationarity results forB′yt and∆yt in models with conditional
heteroskedasticity are obtained from Saikkonen (2005). When A1 6= A3,
this is no longer the case, and the corresponding results are worked out by
Saikkonen (2008).
In proving stationarity and ergodicity of the long-run equilibrium rela-

tions and the differences is that the relevant matrix polynomials

Cj(z) = Im(1− z)−AjB
′z −

p−1∑
k=1

Φ∗jk(1− z)zk (21)
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have m− r unit roots, whereas |z| > 1 for the rest. In our example with the
logistic transition function and q = 2 this concerns both C1(z) and C2(z).
When hj(s′zt−1), j = 1, 2, 3, are defined by (20), the relevant polynomials
are C1(z) and C3(z). The roots of C2(z) are not restricted.
The proof is based on a model transformation similar to the one in Saikko-

nen (2005) but requires additional conditions and is technically more complex
than its predecessor. For details, see Saikkonen (2008). These results apply
to the case in which all equations of the STVEC model have the same tran-
sition function. As yet, no results seem to be available for the more general
situation characterised by (16) and (17).

3.4 Vector shifting mean autoregressive model

Holt and Teräsvirta (2012) introduced a multivariate version of the shifting
mean autoregressive model. It is a straightforward generalisation of the uni-
variate model in Section 2.3. Accordingly, it can be defined in two ways,
either

yt = δ(t) +

p∑
j=1

Φjyt−j + εt (22)

where δ(t) = (δ1(t), ..., δm(t))′ with δj(t) = δj0 +
∑qj

i=1 δjiG(γji, cji, t/T ),
j = 1, ...,m, εt ∼ iid(0,Σ), Σ >0, or

yt = δ(t) +

p∑
j=1

Φj{yt−j−δ(t− j)}+ εt. (23)

In both cases, |I −
∑p

j=1 Φjz
j| 6= 0 for z ≤ 1, that is, yt − δ(t) is a weakly

stationary sequence. The transition functions are logistic:

G(γji, cji, t/T ) = (1 + exp{−γji(t/T − cji))−1, γji > 0

for all i and j. In (22), the shifting mean equals

Etyt = (I−
p∑
j=1

ΦjL
j)−1δ(t) (24)

whereas for (23), Etyt = δ(t). As in single-equation SM-AR models, the
intercept can be a very flexible function of time, and in some situations the
VSM-AR model can be viewed as a reasonable alternative to models with
unit roots and stochastic trends. Since δ(t) is bounded, the expectation (24),
even if time-varying, is also bounded.
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3.5 Vector contemporaneous-threshold model

Dueker, Psaradakis, Sola and Spagnolo (2011) introduced the multivariate
(or vector) contemporaneous-threshold (C-MSTAR) model which they write
belongs to the class of vector STAR models. It is actually an m-dimensional
mixture model consisting of q2 basic linear equations that are weighted to-
gether by time-varying probabilities. The first-order (for simplicity) model
can be written as follows:

yt =

q2∑
i=1

Gi(zt−1)(µi + Ai1yt−1 + Σ
1/2
i εt)

where εt ∼ iidN (0, Im), zt−1 is a linear function of yt−1,

Gi(zt−1) =
Φ(Σ

−1/2
i {ci − µi −Ai1yt−1})∑m2

j=1 Φ(Σ
−1/2
i {ci − µi −Ai1yt−1})

i = 1, ..., q2, is bounded between zero and one, Φ(·) is the cumulative dis-
tribution function of the standard normal distribution, and ci = (ci1, ci2)′,
i = 1, ..., q2, are the location vectors. For example, if q = 2, then c1 = (c1, c2)′,
c2 = (c1,−c2)′, c3 = (−c1, c2)′, and c4 = (−c1,−c2)′. The authors discuss
linearity testing (q = 1), stability, and maximum likelihood estimation of
the parameters, and apply their model to consider the relationship between
stock prices and interest rates using a long annual time series from 1900 to
2000. Since the number of parameters increases rapidly as a function of q
and the lag length, the applications of the C-MSTAR model are likely to be
low-dimensional.

4 Estimation

4.1 Estimation of vector switching regression models

Parameters of the VSR model (11) can be estimated using least squares.
This includes estimating the thresholds ci, i = 1, ..., r − 1. Consider the case
in which q = 2, so there is one threshold, c1. First set the threshold at c(i)

where c(i) is the ith value of the order statistic of the transition variable st.
Then form two sets of observations: T1 containing the n1 observations for
which st ≤ c(i) and T2 comprising the remaining T − n1 ones, and the sum
of squares function

Q(c(i)) = tr
∑
t∈T1

ε′t(c
(i))εt(c

(i)) + tr
∑
t∈T2

ε′t(c
(i))εt(c

(i))
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where εt(c(i)) = yt − (µi +
∑p

j=1 Φijyt−j + Γixt) for t ∈ Ti, i = 1, 2. The
parameters µi,Φij, j = 1, ..., p, Γi, i = 1, 2, are estimated by minimising
Q(c(i)) with respect to these parameters. The final estimates, including that
of c1, are obtained by repeating this for all c(i) ∈ C = {c(i) : c(q) ≤ c(i) ≤
c(1−q)} where c(q) is the qth quantile of the order statistic of st and selecting
the parameter estimates including c1 that minimise Q(c1):

Q(ĉ1) = arg min
c(i)∈C

Q(c(i)).

If T is very large, C can be replaced by a grid to save computations. Tsay
(1998) showed that under regularity conditions including the existence of
fourth moments for all variables and the error process, the least squares
estimators, including that c1, are consistent. As already mentioned, in the
univariate TAR case Chan (1993) and Qian (1998) showed that ĉ1 is super
consistent and that the estimators other than ĉ1 are asymptotically normal.
These results hold when the conditional mean E{yt|Ft−1} is discontinuous
at the threshold, see Tsay (1998) for discussion. Chan and Qian also showed
that if the transition variable is selected from a set S = {s(1)

t , ..., s
(D)
t } of

stationary switch-variables, then minimising Q(c1,S) even leads to consistent
selection of st, provided S contains the true switch-variable. The covariance
matrix is then estimated as

Σ̂ = n−1
1

∑
t∈T1

εt(ĉ1)εt(ĉ1)′ + (T − n1)−1
∑
t∈T2

εt(ĉ1)εt(ĉ1)′.

Seo (2011b) considers estimation of nonlinear error correction models.
One of his objects of interest is the TVEC model with one cointegrating
relationship such that the cointegrating vector is the transition variable de-
noted by st in (14). This was the case in the original TVEC model by
Balke and Fomby (1997). The model contains a single threshold, but as Seo
(2011b) points out, replacing st by |st|, a symmetric three-regime model (the
band-TVEC model (15) with c1 = −c2) is also included in his considera-
tions. The interesting result is that under assumptions given in the paper,
the least squares estimator of the cointegrating vector is T 3/2-consistent (the
convergence is extremely rapid), and the estimator of the threshold parame-
ter (there is one threshold if the transition variable is an absolute-valued) is
super consistent. Seo (2011b) suggests that estimation of these parameters
be carried out using a grid search; see also Hansen and Seo (2002).
VTAR models may also be estimated using heuristic (derivative-free)

methods such as simulated annealing and genetic algorithms. These meth-
ods can be useful in estimating TVEC models, in which the threshold and
cointegration parameters have to be estimated jointly for effi ciency. This is
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true in particular if the number of cointegrating vectors exceeds one. Hansen
and Seo (2002) have solved this estimation problem by a grid search, be-
cause their cointegrating vector only contained one parameter and the model
had just a single threshold. In higher-dimensional models, the grid search
could be very slow. Yang, Tian and Yuan (2007) suggested a hybrid genetic-
simulated annealing algorithm to this problem. El-Shagi (2011) compared
various genetic algorithms applied to estimating TVEC models. For a good
overview of heuristic methods, including genetic algorithms and simulated
annealing, see Winker and Gilli (2004).

4.2 Estimation of vector smooth transition regression
models

The single-transition VLSTAR model (16) can be estimated by nonlinear
least squares. If the transition functions are not assumed to be the same, es-
timation can proceed equation by equation as in single-equation STRmodels;
see for example Teräsvirta et al. (2010, Section 16.3). In the present sec-
tion the focus is on the case where all equations have the same transition
function. The model contains the parameters θ = {Φ1, ...,Φp; Ψ1, ...,Ψp;
Γ,Ξ;γ, c}. Set

B = (µ0,Φ1, ...,Φp,µ1,Ψ1, ...,Ψp,Γ,Ξ)

and

zt(γ, c) = (1′,y′t−1, ...,y
′
t−p, G(γ, c; st)1

′, G(γ, c; st)y
′
t−1, ..., G(γ, c; st)y

′
t−p,

x′t, G(γ, c; st)x
′
t)
′.

The NLS estimator of θ is obtained by solving the optimization problem

θ̂NLS = arg min
θ

T∑
t=1

(yt −Bzt(γ, c))
′Σ−1 (yt −Bzt(γ, c)) (25)

assumingΣ = I.When γ and c are known the solution forB is analytic. This
offers a key to simplifying the nonlinear optimisation problem. In general,
finding the optimummay be numerically demanding in the sense that conver-
gence may be slow and the algorithm may converge to some local minimum.
This is due to the shape of the sum of squares function in (25): the function
can be rather ’flat’in some directions and possess many local optima.
For this reason, finding a suitable starting-value of θ for the algorithm is

crucial. The search to find one can be carried out by means of a grid search
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similar to the one in the previous section. The basic idea is to construct a
discrete grid in the parameter space of γ and c and estimate the parameters
in B conditionally on each pair (γ, c) in the grid. Choosing the pair (γ, c)
which produces the smallest residuals sum of squares yields a starting-value
for the nonlinear optimization. More specifically, the corresponding average
residual sum of squares function is concentrated with respect toB. Therefore
the optimization is only performed with respect to γ and c.
The same procedure is employed in solving the nonlinear optimisation

problem (25). After estimating B conditionally on γ and c, one retains the
estimated B and solves the two-dimensional nonlinear estimation problem to
obtain new values for γ and c. The matrix B is then re-estimated condition-
ally on these new values of γ and c, and this is continued to convergence.
Dividing each iteration into these two components reduces the dimension
of the nonlinear estimation problem and thus saves computation time. If
the grid is dense, the initial step-length of any derivative-based optimisation
algorithm must be suffi ciently short so that optimisation with a high proba-
bility leads to the local maximum closest to the value found using the grid
approach and not to a lower local maximum further away.
The covariance matrix Σ can be estimated from the residual matrices

Ê′Ê =
T∑

t=p+1

(
yt − B̂zt(γ̂, ĉ)

)(
yt − B̂zt(γ̂, ĉ)

)′
as Σ̂ = (T − p)−1Ê′Ê. If a more effi cient estimator is desired, one has to
iterate the solution (25) by plugging in Σ̂−1 and applying generalised least
squares to solve the optimisation problem. In practice, the estimates of B,
γ and c are not likely to change much by these iterations, however.
It is also possible to apply heuristic methods such as simulated annealing

or genetic algorithms mentioned in Section 4.1 to solving the optimisation
problem (25). These methods may also be used for obtaining starting-values
for an appropriate derivative-based algorithm. There is not yet much empiri-
cal evidence available of how well they perform in LVSTARmodels. Auerbach
and Gorodnichenko (2012) estimated a three-dimensional LVSTAR model
with a single transition function with c = 0 by the Monte Carlo Markov
Chain method. A complication is that the error covariance matrix is as-
sumed time-varying and controlled by the same transition function as the
conditional mean. In our notation:

Σt = Σ0 +G(γ, c; st)Σ1

where Σ0 and Σ0 + Σ1 > 0. The authors simply assume this form for the
covariance matrix and do not test the hypothesis Σt ≡ Σ.
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5 Building nonlinear vector models

5.1 General considerations

In a few modelling situations, economic theory may offer guidance concerning
the form of the relationship the researcher wants to use for characterising
dynamic behaviour of a number of economic variables. For example, given
the model classes considered in this chapter, an appropriate economic or
other theory may suggest thresholds rather than smooth transitions, or the
other way round. It may also be clear already at the outset what the switch
or transition variable should be.
Nevertheless, there will almost always be choices to be made before set-

tling for a final specification. The choice between linearity and nonlinearity
is a very important one. It is possible that the linear model adequately de-
scribes the relationship considered, in which case a nonlinear model is not
needed. In fact, the first step of a proper modelling strategy is to test lin-
earity. This and other specification issues will be discussed below.
After the model has been specified, it has to be estimated, but that is

not enough. Before an estimated model can be put to use, it has to be eval-
uated. The purpose of the evaluation is to find out whether the assumptions
made when estimating the model appear satisfied, given the estimates. A
battery of misspecification tests are available for this purpose, and some of
them are discussed in Section 5.3.2. A complete modelling cycle thus con-
sists of specifying the model, estimating its parameters and evaluating the
estimated model. An early example is the cycle Box and Jenkins (1970)
constructed for building linear ARMA or ARIMA models. Tsay (1989) con-
sidered specification and estimation of univariate TAR models. A modelling
technique for STAR models was designed in Teräsvirta (1994) and Eitrheim
and Teräsvirta (1996), and an analogous cycle for STR models discussed in
Teräsvirta (1998).

5.2 Building stationary vector switching regression mod-
els

5.2.1 Testing linearity

It is not advisable to fit a VSR model to any set of stationary time series
without first testing linearity. An obvious practical reason is that the linear
VR model is easier to work with than a VSR model, so linearity should
be checked first. There is also an important statistical reason: the VSR
model is not identified when the data-generating process is linear. If the
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model contains only one regime, the time series are not informative about
the switch-point which therefore cannot be estimated consistently. This lack
of identification invalidates the standard testing approach: the asymptotic
null distribution of the likelihood ratio statistic is unknown and does not
have an analytic expression. This diffi culty and how to deal with it was
first discussed by Davies (1977). For a recent overview, see Teräsvirta et al.
(2010, Chapter 5).
In VSR models, this identification problem can be handled in different

ways. Following Tsay (1998), let

yt = Θzt + εt (26)

where Θ = (µ Φ1 ... Φp Γ) and zt = (1′,y′t−1, ...,y
′
t−p,x

′
t)
′ be a linear VR

model (only one regime in (11)) with independent errors. In order to test
this VR model against a VSR model with one threshold and the threshold or
switch variable st, arrange the observations in the ascending order according
to the values of st. Since the error vectors εt are independent, this can be
done without affecting the dynamic properties of the model. Let the arranged
model be

yt(i) = Θzt(i) + εt(i), i = 1, ..., T. (27)

Next, estimate Θ from (27) using the first K arranged observations, call the
least squares estimator Θ̃(K), and compute the residuals

ε̃t(i) = yt(i) − Θ̃(K)zt(i), i = 1, ..., K

and the predictive residuals

η̃t(i) = ε̃t(i)(1 + z′t(i)(V
(K))−1zt(i))

−1, i = 1, ..., K

where V(K) = (1/K)
∑K

i=1 zt(i)z
′
t(i). Do this for K = T0 + 1, ..., T, where

T0 ≥ dim(zt) and form the regression

η̃t(i) = Ψzt(i) + υt(i), i = T0 + 1, ..., T.

If (26) is the true model, the predictive residuals are asymptotically vector
white noise and uncorrelated with zt(i). Testing H0: Ψ = 0 against H1: Ψ 6= 0
thus reveals misspecification in (26). Under regularity conditions, the test
statistic, based on the residuals η̃t(i) and υ̃t(i) and given in Tsay (1998), has
an asymptotic χ2-distribution under H0.
This test does not explicitly have the VSR model as the alternative hy-

pothesis. Another possibility would be to generalise the approach of Hansen
(1996) to VSR models. The test would be carried out as follows:
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1. Estimate the VR (or VAR) model (26) and a VSR (or a VTAR) model
with a single threshold (the threshold variable is assumed known). Test
the null hypothesis that (26) is the true model. For example, this can
be done using a Wald statistic for testing the hypothesis that the co-
effi cients in the two regimes are identical. The problem is that the
resulting statistic is a function of the unknown nuisance parameter c
(the threshold) and thus not operational. To solve the problem, carry
out the test for a set of values of c ∈ C. Typically, C contains the values
between the β and 1− β quantiles of the empirical distribution of the
assumed threshold variable. Often β = 0.15. Calculate the maximum
or the average value of these statistics over c ∈ C. This yields two nui-
sance parameter free statistics, call them supW (c) and aveW (c). The
null distribution of these statistics is obtained numerically as follows:

2. Generate T observations from the estimated VR model either by simu-
lation (drawing the error vectors from a distribution) or by a bootstrap
using the estimated residuals, estimate a VR model and a VSR model
from these observations and calculate the value of supW (c) or aveW (c)
as in the previous step.

3. Repeat the second step N times. Arrange the N values of the test
statistic obtained this way to form its empirical cumulative distribution
function.

4. Compare the original value of the statistic with the distribution. If
it exceeds the (1 − α)th quantile of the distribution (large values are
critical), reject the null hypothesis at the significance level α.

Balke (2000) and Atanasova (2003) may be mentioned as examples of the
use of this method. They applied the Wald test but the likelihood ratio test
would also be a possibility.
A third, and so far untested, possibility would be to generalise the ap-

proach of Strikholm and Teräsvirta (2006) to vector models. This would
require testing the linear VR model against a vector STR model by a test
described in Section 5.3.1. Since the alternative hypothesis only contains the
VSR model as a special case, this method must have lower power than that
of Hansen (1996). Its main advantage would be computational simplicity.
Specification of lag lengths, exogenous variables and the switch- or thresh-

old variable requires estimation. This has already been discussed in Section
4.1 in the case where q = 2. Generalising this to a larger number of regimes is
obvious. However, the single-threshold model seems to be the most popular
one in applications to stationary time series.
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5.2.2 Testing for threshold cointegration

Cointegration is a major issue in the analysis of vectors of nonstationary
time series. Consequently, testing the null hypothesis of no cointegration is
an important problem in building TVEC models presented in Section 3.2.3.
There exist tests testing linear against threshold cointegration and testing
the null of no cointegration against threshold cointegration. The early tests
assume a two-regime (single threshold) model as the alternative. Hansen
and Seo (2002) developed a supremum LM-test of testing a VAR with linear
cointegration against a TVEC model in the case where both the null model
and the alternative contain a single cointegrating vector and the cointegrat-
ing vector (the error correction term) is the threshold variable. The LM
approach makes it possible to use the cointegrating vector estimated under
the null hypothesis in the test. Seo (2006) constructed a supremum Wald
test of no cointegration against a TVEC model in this framework. He also
showed how to approximate the small-sample distribution of the test using a
residual-based bootstrap in order to reduce the size distortion present in the
asymptotic test.
Gonzalo and Pitarakis (2006) generalised the approach of Hansen and Seo

(2002) for testing linear against threshold cointegration such that the coin-
tegration rank is not restricted to one. Furthermore, the threshold variable
can be other than the error correction term. It has to be strictly stationary
and ergodic, however. An additional restriction is that the threshold variable
is what the authors call ’external’: it is independent of the iid error vector at
all lags and leads. Under these and other assumptions Gonzalo and Pitarakis
(2006) derived the limiting null distribution of their supremum Wald statis-
tic that they tabulated for some values of m. Recently, Krishnakumar and
Neto (2012) constructed a supremum Wald test of no cointegration against
the band-TVEC model. In their case, the threshold variable is assumed sta-
tionary and ergodic with a continuous and symmetric distribution. A set of
critical values for the test can be found in the paper.
Finally, it may be mentioned that the tests are derived for alternatives

in which the short-run coeffi cients of the model do not switch and the error
covariance matrices remain constant. These models are therefore somewhat
less general than the ones defined by equations (14) and (15) in Section 3.2.3.

5.2.3 Evaluation

As already mentioned, the estimated VSR model has to be evaluated be-
fore putting it into use. This implies testing the model by appropriate
misspecification tests. Tsay (1998) mentions testing for serial correlation
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and conditional heteroskedasticity, without providing any details. Testing is
straightforward in cases where the objective function is discontinuous at the
threshold, because the estimator of the threshold is super or T -consistent
instead of being

√
T -consistent like the other estimators. This does not,

however, concern tests of the switch parameter. The existing tests relate to
single-equation models; see Hansen (1997, 2000) and Section 6.4 for discus-
sion. The faster convergence rate means that in testing the threshold may
be assumed known, which in turn implies that the standard test of no error
autocorrelation for linear VAR or VR models is available in this case as well.
Other available tests include tests of constancy of the error covariance

matrix. The test by Eklund and Teräsvirta (2007) makes use of the de-
composition of the conditional covariance matrix by Bollerslev (1990) and
contains several parametric alternatives to the null hypothesis. There is also
a recent test by Yang (2013) that relies on the spectral decomposition of
the covariance matrix. Under the alternatives the eigenvalues of the covari-
ance matrix vary over time. These tests, however, require the errors to be
independent and normal.
As Strikholm and Teräsvirta (2006) pointed out, super consistency of the

threshold parameter estimator also allows using the linearity test against
STAR to select the number of regimes in the SR model. This generalises
to VSR models, although at this moment small sample properties of this
technique are not known. It may be expected, however, that the LM-type
test discussed in Section 5.3.1 is size-distorted in small samples and has to
be modified to correct the bias.
One can also check stability of the estimated AR model. In the ab-

sence of analytical stability results, this may be done by simulation. One
then switches off the noise and generates observations from the estimated
model using different initial values or ’histories’. If the generated realisations
converge to the same point, the conclusion is that the simulations do not
contradict the stability assumption. They cannot confirm it either, but then
a single realisation converging to a different point suffi ces to invalidate this
assumption.

5.3 Building stationary vector smooth transition re-
gression models

5.3.1 Specification and estimation

Camacho (2004) was the first to develop a modelling strategy for station-
ary vector STR models. He considered bivariate single-transition models.
Teräsvirta and Yang (2013) generalised this to multitransition multivari-
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ate LVSTR models. As already discussed, the modelling strategy has three
stages: specification, estimation, and evaluation. Specification involves test-
ing linearity and, if the null hypothesis is rejected, finding the number of
transitions. Furthermore, possibilities to reduce the size of the model, i.e.,
imposing parameter restrictions, are considered, which already requires esti-
mation.

Testing linearity As already mentioned, the first step of the specification
stage is to test linearity of the model against VLSTAR. The arguments for
doing so are the same as in the VSR case. The linear VR model is easier
to handle than the VLSTAR one, and the latter is not identified when the
data-generating process is linear.
The way linearity is tested depends on how the model is defined. If the

model is (16), linearity can be tested equation by equation. Lagrange mul-
tiplier tests are preferred, because they only require estimating the model
under the linearity hypothesis. A computationally easy way to perform the
test is to approximate the transition function by a Taylor series expansion
around the null hypothesis γj = 0 (the jth equation) and base the test on this
approximation, as Luukkonen, Saikkonen and Teräsvirta (1988) suggested.
This LM-type test has an asymptotic χ2-distribution under the null hypoth-
esis. Alternatively, one may construct the empirical distribution of the test
statistic as in Hansen (1996). Doing so is computationally more demanding
than performing the Taylor series alternative, but the advantage is that the
test has higher power than the corresponding LM-type test if the true alter-
native is indeed a STAR equation. See Teräsvirta et al. (2010, Chapter 5)
for discussion.
If it is assumed that the transition function is the same for the whole sys-

tem, one can carry out a systemwise test as discussed in Yang and Teräsvirta
(2013). Consider the m-dimensional two-regime logistic VSTR model

yt = B′1zt + GtB
′
2zt + εt (28)

where B′1 = (µ0 Φ1 ... Φp Γ), B′2 = (µ1 Ψ1 ... Ψp Ξ), zt = (1′,y′t−1, ...,y
′
t−p,

x′t)
′, the sequence {εt} ∼ iidN (0,Ω), and G(γ, c; st) = G(γ, c; st)Im. The

null hypothesis of linearity can be written as H0: γ = 0. When the null is
true, Gt ≡ (1/2)Im and (28) becomes linear. Neither the location parameter
c in the logistic function nor the parameters in the linear combination B1 +
(1/2)B2 are identified. The alternative hypothesis H1: γ > 0. Using a
third-order Taylor expansion approximation of the logistic transition function
G(γ, c; st) around γ = 0 helps circumvent the identification problem and
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yields

Gt = diag{a01 + a11(γ)st + a21(γ2)s2
t + a31(γ3)s3

t + r1t, ..., a0m + a1m(γ)st

+a2m(γ2)s2
t + a3m(γ3)s3

t + rmt}
= A0 + A1st + A2s

2
t + A3s

3
t + Rt (29)

where A0 =diag(a01, ..., a0m), Aj = diag(aj1(γj), ..., ajm(γj)), j = 1, 2, 3, are
functions of γ such that γ = 0 implies aji(γj) = 0, andRt = diag(r1t, ..., rmt).
Inserting (29) into (28) gives

yt = B′1zt + (A0 + A1st + A2s
2
t + A3s

3
t + Rt)B

′
2zt + εt

= (B′1 + A0B
′
2) zt + A1B

′
2ztst + +A2B

′
2zts

2
t + A3B

′
2zts

3
t + RtB

′
2zt + εt

= Θ′0zt + Θ′1ztst + Θ′2zts
2
t + Θ′3zts

3
t + ε∗t (30)

where Θ0 = B1 + B2A0, Θj = B2Aj, j = 1, 2, 3, and ε∗t = RtB
′
2zt + εt. The

null hypothesis implies A0 = (1/2)Im, Aj = 0, j = 1, 2, 3, and Rt = 0 in
(30).
Thus, under the null hypothesis, the model (28) is linear, with Θ0 =

B1+(1/2)B2 andΘj = 0, j = 1, 2, 3. The linearity test is therefore equivalent
to the test of H0 : Θj = 0, j = 1, 2, 3, in (30). Moreover, due to the fact that
Rt = 0 under the null hypothesis, the error term ε∗t = εt when H0 holds.
Since the Lagrange multiplier test only requires estimating the model under
the null hypothesis, the remainder term does not affect the normality of the
errors or the standard asymptotic inference.
The corresponding Lagrange multiplier test under the null is derived from

the score

∂ logL(θ̃)

∂Θ1

=
T∑
t=1

(ztst zts
2
t zts

3
t )
(
yt − B̃′1zt

)′
Ω̃
−1

= Z′3

(
Y − Z0B̃1

)
Ω̃
−1

(31)
where

Y =


y′1
y′2
...

y′T

 , Z0 =


z′1
z′2
...

z′T

 , Z3 =


z′1s1 z′1s

2
1 z′1s

3
1

z′2s2 z′2s
2
2 z′2s

3
2

...
...

...
z′T sT z′T s

2
T z′T s

3
T


and B̃1 and Ω̃ are estimates from the restricted model. Under regularity
conditions, the score converges to a matricvariate normal distribution with
zero mean and variance Z′3 (IT −PZ) Z3 ⊗Ω−1, where PZ ≡ Z0(Z′0Z0)−1Z′0
is the projection matrix.
Luukkonen et al. (1988) pointed out that the third-order Taylor expan-

sion is strictly needed only when the only nonlinear term in the equation is
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the intercept, i.e., B2 = (β21 0) and st equals one of the remaining stochastic
elements in zt. In that case the test based on the first-order Taylor expan-
sion has only trivial power against the alternative. The second-order Taylor
expansion does not remedy this problem, as a2j(γ

2) = 0 whenever cj = 0.
The test can be performed in two vector regressions as follows:

1. Estimate the restricted model: regress Y on Z0. Collect the residuals
Ẽ = (IT − PZ)Y, and compute the matrix residual sum of squares
RSS0 = Ẽ′Ẽ.

2. Run an auxiliary regression of Ẽ on (Z0,Z3). Compute the residuals Ê

and the matrix residual sum of squares RSS1 = Ê′Ê.

3. Compute the test statistic

LM = T tr{RSS−1
0 (RSS0 −RSS1)}

= T (m− tr{RSS−1
0 RSS1}). (32)

The joint test statistic defined in (31) and (32) collapses into the univari-
ate LM-type linearity test statistic when m = 1. This joint test can also
be applied to any subset of equations in the system, for instance, to check
whether some equations in the system are nonlinear with a common tran-
sition variable. It is also possible to test subhypotheses. For example, it
may be assumed that the exogenous variables xt only enter (28) linearly, i.e.,
Ξ = 0.
In small samples, the empirical size of this LM-type test is sensitive to the

dimension of the model. The size distortion increases withm. If the errors are
assumed independent and identically distributed, Rao’s F-test (Rao, 1973,
Section 8c.5) effectively corrects the size. If the errors contain higher-order
dependence, the problem can be solved by applying the wild bootstrap. These
alternatives are discussed in Yang and Teräsvirta (2013).
It should be noted, however, that a rejection of the null hypothesis does

not automatically imply that all m equations of the alternative VLSTAR
model have the same transition function. This is because the same approx-
imation (30) can also be obtained by assuming that all equations have the
same transition variable but not necessarily the same transition function.
Harvill and Ray (1999) generalised the univariate linearity test of Tsay

(1986) to vector series. The test is based on the following model:

yt =

p∑
j=1

Φjyt−j + Ψvech(ztz
′
t) + εt
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where zt = (y′t−1, ...,y
′
t−p)

′ is an mp× 1 vector, Ψ is an m×mp(mp + 1)/2
parameter matrix, and εt ∼ iidN (0,Σ). The null hypothesis is Ψ = 0. It is
tested using Wilks’s Λ:

Λ =
|RSS0|

|RSS0 + RSS1|
(33)

where, as previously, RSS0 is the residual sum of squares matrix from esti-
mating the null model, andRSS1 is obtained by regressing the residuals from
that regression on yt−1, ...,yt−p and vech(ztz

′
t). Statistic (33) has an approx-

imate F-distribution under H0, see Harvill and Ray (1999) for details. One
could also use Rao’s F-statistic instead of (33). Simulations in Yang and
Teräsvirta (2013) suggest that although Wilks’s Λ is less size-distorted in
small samples than most other statistics, Rao’s F-test is the best performer.
Weise (1999) has yet another solution. Take a linear VAR model (Ξ = 0

in (16) but a generalisation is possible) and test linearity equation by equation
as in Teräsvirta (1998) using the Taylor expansion approach and the same
transition variable. Let Let ε̃t = (ε̃1t, ..., ε̃mt)

′ be the residual vector of the
estimated linear VAR model and η̃t = (η̃1t, ..., η̃mt)

′ the corresponding vector
from the m auxiliary regressions. Form the covariance matrices Σ̃ε = (T −
p)−1

∑T
j=p+1 ε̃tε̃

′
t and Σ̃η = (T − p)−1

∑T
j=p+1 η̃tη̃

′
t and the likelihood ratio

-type test statistic
LR = T (ln |Σ̃ε| − ln |Σ̃η|)

that has an asymptotic χ2-distribution with pm2 degrees of freedom when the
linearity hypothesis holds. This approach provides results both for individual
equations and for the whole system. Weise (1999) simulates the statistic and
finds its small-sample behaviour satisfactory. For an application, see Section
9.2.

Finding the number of transitions When linearity is rejected, the VL-
STAR model with a single transition is estimated. The next step is to test
one transition against two. This is either done equation by equation or for
the whole system, depending on the situation. In the former case, the rele-
vant single-equation test of no additive nonlinearity is described in Teräsvirta
(1998). If it is assumed that one transition function controls the whole sys-
tem, the same test is designed for the whole system, see Yang and Teräsvirta
(2013).

Specifying the lag structure Linearity testing is, when the number of
observations allows it, preferably carried out with a null model that is free
of error autocorrelation, because it may distort the empirical size of the test.
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It is then desirable to find and impose restrictions on the parameters of the
VLSTAR model. There are three types of intraequation restrictions. As an
example, consider the parameter matrices Φj = [φij] and Ψj = [ψij] in (16).
First, the jth lag yi,t−j may only enter linearly: ψij = 0. Second, this lag
may be completely redundant: φij = ψij = 0. Third, the effect of yi,t−j is
nonlinear and zero at low values of st: φij = 0. Finally, the effect of yi,t−j is
nonlinear and approaches zero at high values of st: φij = −ψij. Testing these
restrictions and imposing them requires estimation of the VLSTAR model.

5.3.2 Evaluation

Misspecification tests Misspecification tests are the most important and
useful tool for evaluating VLSTR models. Out-of-sample forecasting may
also be used to select between different models. The available tests include
the test of no serial correlation, no remaining nonlinearity, and the test of
parameter constancy. For space reasons it is not possible to consider all
these tests in detail. Suffi ce it so say that the estimated model can be tested
equation by equation see Teräsvirta (1998), or as a system. As an example of
the latter, the test of no error autocorrelation can be carried out by assuming
that under the alternative, the error sequence {εt} in (16) has the following
structure:

εt =

q∑
j=1

Λjεt−j + ηt

where ηt ∼ iidN (0,Ση); see Camacho (2004) or Yang and Teräsvirta (2013).
Under the null hypothesis, Λj = 0, j = 1, ..., q. If the corresponding hypoth-
esis is tested equation by equation, the contemporaneous cross-correlations
between errors are ignored. The tests of no additive nonlinearity and para-
meter constancy can likewise be conducted either equation by equation or
jointly for the whole system.
These tests have been discussed in the situation in which the equations

contain a single transition, but they can be generalised to multitransition
equations. As in the case of VTARmodels, it is possible to test the constancy
of the error covariance matrix against various parametric alternatives using
the tests of Eklund and Teräsvirta (2007) and Yang (2013). The stability of
a VLSTAR model may be checked numerically in the same way as that of
the VTAR model.
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5.3.3 Bayesian approach to building vector smooth transition au-
toregressive models

It is possible to construct VSTAR models using Bayesian techniques, as
shown by Gefang and Strachan (2010). The authors consider a bivariate
(m = 2) variant of the logistic (16) with x = 0 andG(γ, c; st) = G(γ, c; st)I2.
Determination of prior distributions contains one detail worth mentioning.
As γ = 0 in the logistic transition function implies linearity and an uniden-
tified LVSTAR model, this value is excluded from the support of the prior
distribution of γ. For a general discussion of this identification problem in
the Bayesian framework, see Bauwens, Lubrano and Richard (1999, pp. 241-
242).
Specification of the model consists of estimating a large number of mod-

els with varying transition functions and lag lengths (these are not fixed in
advance) and using Bayes factors to choose between models. Since linearity
cannot be excluded a priori, the set of models compared also contains linear
VAR models. Posterior distributions of the parameters are estimated using
Gibbs sampling. The aim of the application in Gefang and Strachan (2010)
is to study (pairwise) business cycle linkages between the UK, the US and
Germany. They find that nonlinear VLSTAR models are superior to linear
VARs in describing these relationships.

5.4 Inference in nonstationary vector smooth transi-
tion autoregressive models

The statistical inference discussed in the preceding section builds on the
assumption that {yt} is stationary. The situation becomes more complex
when that is no longer true. Inference in STVEC models is studied in Kris-
tensen and Rahbek (2010, in press). In the former paper the authors consider
maximum likelihood estimation of an m-dimensional nonlinear vector error
correction model in which the adjustment is symmetric and the lags of ∆yt
enter linearly. The model is written as follows:

∆yt = h(B′yt−1,θ) +

p−1∑
j=1

Φj∆yt−j + +εt (34)

where {εt} ∼ iid(0,Σ). The symmetry arises from the fact that

h(B′y,θ) = A1B
′y + o(||B′y||)
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for some m× r matrix A1 as ||B′y|| → ∞. The characteristic polynomial

C1(z) = Im(1− z)−A1B
′z −

p−1∑
k=1

Φk(1− z)zk

hasm−r unit roots, whereas |z| > 1 for the remaining ones. The ’symmetric’
STVEC model is obtained as a special case of (34) by defining

h(B′yt−1,θ) = A1B
′ + A2B

′[1 + exp{(B′yt−1 − ω)′C(B′yt−1 − ω)]−1 (35)

whereC is a positive definite matrix, and θ = (ω′,vech(C)′,vec(A1)′,vec(A2)′)′.
A single transition function controls nonlinearity in all equations, and the
transition variable is a function of the r error-correcting vectors. Under reg-
ularity conditions for h(B′yt−1,θ) that exclude VTAR models, and other
conditions given in the paper, Kristensen and Rahbek (2010) derive consis-
tency and the asymptotic distribution of the (quasi) maximum likelihood
estimators of the parameters of (the normalized version of) (34). The short-
run parameter vector estimators θ̂ and vec(Φ̂k), k = 1, ..., p − 1, are

√
T -

consistent, whereas the estimator of (normalized) B is super or T -consistent.
The estimators have nonstandard distributions, so confidence intervals have
to be constructed numerically.
Kristensen and Rahbek (in press) consider the same model as in Kris-

tensen and Rahbek (2010) but allow what they call asymmetric adjustment:
the transition function in (34) equals (Saikkonen, 2008)

Gt(yt−1,θ) = [1 + exp{s′(B′yt−1 − ω)}]−1 (36)

where s is an r × 1 vector. In the former case (symmetric adjustment),
||B′yt−1 − ω|| → 0 as ||yt−1|| → ∞, whereas in the latter, the nonlin-
ear component will contribute to ∆yt even when ||yt−1|| → ∞. The au-
thors derive tests for testing hypothesis about the short-run parameters
θ = (ω′, s′,vec(A1)′,vec(A2)′)′ and vec(Φj), j = 1, ..., p, and the long-run
parameters vec(B). Note that the hypothesis vec(A2) = 0 is a special case
because it is a linearity hypothesis. As in the stationary case, testing it di-
rectly, that is, without approximating the alternative (see below), leads to
nonstandard asymptotic inference because ω and vech(C) in (35) or ω and
s in (36) are not identified when the null hypothesis holds. Testing linear
against nonlinear cointegration will be discussed next.

5.5 Testing for nonlinear cointegration in smooth tran-
sition error correction models

Kristensen and Rahbek (in press) discuss the standard solution to testing H0:
vec(A2) = 0; see for example Hansen (1996). First define a set Θ1 of values of
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θ1 = (ω′,vech(C)′)′ (symmetric model) or θ1 = (ω′, s′)′ (asymmetric model)
and compute the test statistic using these values in turn. These statistics are
not operational because they are functions of θ1. The proposed test statistic
is the supremum statistic, for example the LM statistic LMNL is defined by

LMNL = sup
θ1∈Θ1

LM(θ1)

where LM(θ1) is an inoperational statistic. The empirical null distribution
of LMNL is computed by simulation as discussed in Section 5.2.1. The power
of the test strongly depends on the number of values in Θ1 and the selected
values of θ1.
Seo (2011a) also tests linear cointegration against nonlinear one. Further-

more, he presents a test of linearity of the short-run component. In testing
linear against nonlinear cointegration, the model is

∆yt = A{B′yt−1 + g(yt−1)}+

p−1∑
j=1

Φj∆yt−j + ut (37)

where {ut} is a martingale difference sequence with respect to yt−j, j ≥ 1,
and no specific parametric structure is assumed for the r× 1 vector g(yt−1).
The null hypothesis is that g(yt−1) = 0. When the null hypothesis concerns
the short-run parameters, the alternative model is

∆yt = AB′yt−1 +

p−1∑
j=1

Φj∆yt−j + h(B′yt−1,∆yt−1) + ut (38)

where∆yt−1 = vec(∆yt−1, ...,∆yt−p+1). The null hypothesis is that h(B′yt−1,
∆yt−1) = 0. The argument is that under the null hypothesis, ut is neither
dependent on yt−1 in (37), nor on B′yt−1 or ∆yt−1 in (38). The idea of
the test is to approximate the alternative, which is done by replacing the
nonlinear component by a polynomial approximation. Thus in (37),

g(yt) ≈ Z′1tδ1

where Z1t is an s1× r matrix, whose elements are powers and cross-products
of the elements of yt, and δ is an s1×1 parameter vector. The null hypothesis
is δ1 = 0. Analogously, in (38), it is assumed that

h(B′yt−1,∆yt−1) ≈ Z′2tδ2

where the s2× p matrix Z2t consists of powers and cross-products of the ele-
ments of B′yt−1 and ∆yt−1, and the null hypothesis is δ2 = 0. The resulting
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tests have the advantage that assuming ut ∼ iidN (0,Σ) the test statistics
have a χ2-distribution under H0; for details see Seo (2011a). The test of
δ2 = 0 can be viewed as a generalisation of the univariate linearity test by
Luukkonen et al. (1988) or the one in Teräsvirta, Lin and Granger (1993),
see also Section 5.3.1.
Kapetanios, Shin and Snell (2006) test the null hypothesis of no coin-

tegration against smooth transition cointegration in VAR models assuming
that under the alternative the model contains exactly one cointegrating re-
lationship. This implies that the A1,A2, and B in (18) are m × 1 vectors.
Compared to (18), the model of Kapetanios et al. (2006) does not contain
intercepts, and the lags of ∆wt enter the model linearly. Writing the (nor-
malized) cointegrating relationship as

ut = y1t −B′wt

where wt = (y2t, ..., ymt)
′, the alternative can be expressed as the following

transformed system:

∆y1t = α1ut−1 +

p−1∑
j=1

φ′j∆yt−j + φ′0∆wt

+ {α2ut−1 exp{−γ(ut−1 − c)2}+

p−1∑
j=1

ψ′j∆yt−j + ε1t, γ > 0

∆wt =

p−1∑
j=1

Φ′2j∆yt−j + ε2t (39)

Several things are worth noticing in (39). First, ∆wt is assumed exogenous to
the parameters of interest in the equation of∆y1t. Second, the nonlinearity is
ESTAR or ’symmetric’type. Third, the transition variable is the lagged error
correction term itself. Finally, nonlinearity is not extended to the short-run
dynamic structure of the model.
Testing is carried out by first regressing y1t onwt assuming that y2t, ..., ymt

are weakly exogenous to the parameters of interest in this equation. The
residuals are ũt = y1t − β̃

′
wt, t = 1, ..., T. Then, following Luukkonen et al.

(1988), exp{−γ(ut−1 − c)2} is approximated with its first-order Taylor ex-
pansion at γ = 0 and the auxiliary regression

∆y1t = δ1ũt−1 + δ2ũ
2
t−1 + δ3ũ

3
t−1 +

p−1∑
j=1

φ′j∆yt−j + φ′0∆wt + ε∗1t

formed to test the null hypothesis δ1 = δ2 = δ3 = 0. The resulting tests are
LM-type tests.
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5.6 Bayesian approach to building smooth transition
vector error correction models

Building smooth transition vector error correction models using Bayesian
techniques is discussed in Gefang (2012). The purpose of the paper is to
study Granger causality between money and output using monthly US time
series from 1959(1) to 2006(12) using a four-dimensional STVEC model. The
model can be written as follows:

∆yt = µ1 + A1B
′
1yt−1 +

p−1∑
j=1

Φj∆yt−j

+ {µ2 + A2B
′
2yt−1

p−1∑
j=1

Ψj∆yt−j}G(γ, c; st) + εt, γ > 0 (40)

where yt is a m× 1 vector of nonstationary variables such that ∆yt is I(0),
and εt ∼ iidN (0,Σ). The matrices A1 and B1 are both m × r1, r1 < m,
whereas A2 and B2 are m × r2, r2 < m, The ranks r1 and r2 are not fixed
in advance, and they are not assumed equal. This means that the extreme
regimes corresponding to G(γ, c; st) = 0 and G(γ, c; st) = 1, respectively, can
contain a different number of cointegrating relationships. In the application,
m = 4, so the ranks can be between one and three, which implies nine
possible combinations for r1 and r2. How to interpret the changing ranks
(and the ’fractional’ ranks when G(γ, c; st) 6= 0) is not discussed. Models
without cointegration in (40) are not considered separately, as the author
argues that they are special cases of models with ranks between one and three,
A1 = 0 and A2 = 0. In that case, the ranks are not identified, however. The
transition variable st is not predetermined, and the set of possible candidates
is defined. Some of the stochastic ones used in the study are nonstationary,
which means that the local dynamic structure of the corresponding model
mostly changes in one direction and does not fluctuate between the two
extreme regimes.
As in the stationary case in Section 5.3.3, the posterior distributions are

obtained using Gibbs sampling. Model selection is carried out analogously
to the stationary case using Bayes factors. The most frequently selected
models support the assumption of nonlinear Granger causality from money
to output. They are in fact ones in which r1 6= r2.
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6 Common nonlinearities

6.1 Definitions

In a system of nonlinear equations such as the VTAR or VLSTAR model in
which nonlinearity is additive, common nonlinearities may occur. Anderson
and Vahid (1998) were the first to consider this possibility. They discussed
both the general case in which the nonlinear model (8) is additive as in
(10), and the common nonlinearity in the VLSTAR and VTAR models. The
concept of common nonlinearity is defined as follows. Consider the model (8)
with (10) assuming that it contains m equations. Suppose now that there is
an m× r matrix M, r < m, such that

M′f1(yt−1, ...,yt−p; xt;θ1) = 0.

Consequently, nonlinearity in the relationship in (8) with (10) can be elim-
inated by defining a linear combination zt = M′yt which removes the non-
linear component f1(yt−1, ...,yt−p; xt;θ1) from the system. Using the ter-
minology of Engle and Kozicki (1993), nonlinearity is a feature, and if it
is eliminated by left-multiplying the equation (10) by M′, it is a common
feature.
Apply now this concept to the VLSTAR model (16). A necessary but not

suffi cient condition for common nonlinearity is that the transition function
matrix

G(γ, c; st) = diag{G1(γ1, c1, s1t), ..., Gm(γm, cm, smt)} = G(γ, c; st)Im (41)

that is, that the transition is common to all equations in the model. In (16),
define the m× ((p+ 1)m+ n) coeffi cient matrix Π = (µ1 Ψ1 ... Ψp Ξ). For
common nonlinearity it is required that M′Π = 0, that is, the m× r matrix
M, r < m, rk(M) = r, eliminates the nonlinear component from (16). This
is a very strong condition if m, n, and p are large, as it requires that Π
has a reduced rank. For this reason it is useful to define partial common
nonlinearity such that the orthogonality condition only applies to a subset of
columns of Π. For example, consider the following m-dimensional first-order
VLSTAR model

yt = µ0 + Φ1yt−1 + (µ1 + Ψ1yt−1)G(γ, c; st) + εt (42)

where εt ∼ iidN (0,Σ). The interest may now be focussed on finding out
whether the model may be transformed into a model in which there are
r < m linear combinations of the elements of yt defined by M such that the
resulting r-dimensional model is intercept-switching, i.e., M′Ψ1= 0 in (42).
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The definition of common nonlinearity is similar to that of co-breaking.
As defined in Hendry and Massmann (2007), the matrix M is co-breaking of
order q if left-multiplying a linear vector model with breaks with M′ elim-
inates the breaks. A similar definition can be developed for a vector TAR
model with a common threshold. Consider the following two-regime gener-
alisation of the VTAR model (11):

yt = µ1 +

p∑
j=1

Φ1jyt−j + Γ1xt

+I(st > c1)(µ2 +

p∑
j=1

Φ2jyt−j + Γ2xt) + εt (43)

where the m×m indicator matrix

I(st > c1) = diag(I(s1t > c1), ..., I(smt > cm)). (44)

A necessary condition for a common threshold is

I(st > c1) = I(st > c1)Im (45)

that is, s1t = ... = smt and c11 = ... = c1m in (44). This may be completed by
a condition analogous to the one for vector STAR or STR models. As already
discussed, the condition (45) is satisfied in the original VTAR or VSR model
(11) of Tsay (1998).

6.2 Co-shifting

Common nonlinearity in shifting-mean vector autoregressive models is called
co-shifting. In this case, the transition functions have the same transition
variable, and so a necessary condition for strong co-shifting is

Gj(γj, cj; t/T ) = G(γj, cj; t/T )Im, j = 1, ..., q. (46)

This requires that all equations of the model have the same number of shifts.
If q, the number of shifts, is less than m, the number of equations, the
condition (46) is also suffi cient. If q ≥ m, then the necessary condition has
to be completed by the condition

M′(δ1, δ2, ..., δq) = 0

where M is again an m × q matrix, rk(M) = q. Partial co-shifting may
be defined analogously to partial common nonlinearity. There may then
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be a subset of diagonal matrices Gj(γj, cj; t/T ) satisfying (46), and if their
number q1 < m, then this is suffi cient for weak co-shifting. For an application
of co-shifting see Holt and Teräsvirta (2012) who fit an VSM-AR model to
a pair of annual hemispheric temperature series and discuss comovements in
them.

6.3 Testing common nonlinearity in VSTR models

Anderson and Vahid (1998) consider testing common nonlinearity in a non-
linear model of additive type (10). In their notation, zt is the n × 1 vector
of nonlinear regressors. It is implicitly assumed that the nonlinear model is
linear in parameters. As an example, suppose that one is testing linearity
against STAR equation by equation assuming that the transition variable is
st using the technique of Luukkonen et al. (1988). Consider the ith equation
of (42). Then, if st is not an element in zt, the auxiliary regression has the
following form:

yit = θ′izt + θ′iztst + θ′izts
2
t + θ′izts

3
t + ε∗it.

and zt = (z′tst, z
′
ts

2
t , z
′
ts

3
t )
′ is a 3(p + 1 + n)× 1 vector. Let y†t and z†t be the

corresponding variables after the linear influence of these variables have been
eliminated. Then, there is common nonlinearity of at least dimension one, if
there exists an m× 1 vector m1 such that

E(m′1y
†
t ⊗ z†t) = 0.

This vector can be estimated using the generalised method of moments and
the normalisation constraint m′1Y

′Ym1 = 1, where Y = (y†′1 , ...,y
†′
T )′. An-

derson and Vahid (1998) show that the solution is the eigenvector of y†t
that corresponds to the smallest squared canonical correlation λ2

1 between y†t
and z†t . Under regularity conditions, the test statistic QT = Tλ2

1 has a χ
2-

distribution with 3(p+1+n)×1 degrees of freedom when the null hypothesis
of a single common nonlinearity vector is valid. If one tests the null hypoth-
esis of q < m common nonlinearities, the statistic is QT = T

∑q
i=1 λ

2
i , where

λ2
i , i = 1, ..., q, are the q smallest squared canonical correlations between y†t
and z†t .
For a full information maximum likelihood approach to this testing prob-

lem using techniques originally developed for cointegration analysis, see Hungnes
(2012).

6.4 Testing common nonlinearity in VSR models

Anderson and Vahid (1998) base a test of common nonlinearity on the
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arranged regression of Tsay (1998) considered in Section 5.2.1; see their pa-
per for details. Testing the hypothesis (45) directly against the alternative
that the equations have the same switch variable but different switch-points
or thresholds would be diffi cult, because there is no statistical theory for
testing the hypothesis c11 = ... = c1m in the VTAR model (43). There
is, however, asymptotic distribution theory for testing the null hypothesis
c1 = c0

1 in a univariate two-regime TAR model, q = 2 in (1). The likelihood
ratio test statistic is

LRT (c0
1) = T

Q(c0
1)−Q(ĉ1)

Q(ĉ1)

where Q(c0
1) is the sum of squared residuals from the model estimated under

the null hypothesis, andQ(ĉ1) is the same from the estimated alternative, Un-
der a set of assumptions including εit = εt ∼ iidN (0, σ2); see Hansen (1997,
2000), LRT (c0

1) has an analytic (nonstandard) asymptotic null distribution,
and Hansen tabulates critical values for customary significance levels.
Tena and Tremayne (2009) use this result to test (45). They estimate a

VTAR model equation by equation and choose an estimated threshold from
one of the equations to represent c0

1 and test this null hypothesis in the other
equations. This is repeated for all equations. They also suggest testing the
hypothesis c1i = 0 equation by equation for i = 1, ...,m and comparing the
results, because c0

1 = 0 is a sensible value in the application the authors are
working with. Doing so only provides indirect evidence against the null hy-
pothesis, but in some cases the results may be suffi ciently convincing for the
researcher to reject the null hypothesis, albeit without a formal significance
level to support the decision.

7 Generalised impulse response functions

Interpreting the coeffi cient estimates of a VLSTAR model is not possible,
except possibly for γ̂ and ĉ that indicate the shape and location of the tran-
sition function. A similar remark is valid for VTAR models. In order to
understand the dynamic behaviour of the model, impulse response functions
are most helpful. As Koop, Pesaran and Potter (1996) have pointed out, es-
timating impulse response functions for nonlinear models is not as easy as it
may be for linear VAR models. The reason is that the impulse response is no
longer proportional to the size of the shock, nor is it independent of the ’his-
tory’, that is, the starting-values. These authors thus defined the so-called
generalized impulse response (GIR) function which is a random variable and
a function of both the size of the shock and the history. It is defined as

37



follows:

GIRF (h, εt,Ωt−1) = E{yt+h|εδt ,Ωt−1} − E{yt+h|Ωt−1} (47)

where εδt is the vector of shocks, and Ωt−1 = {ωt−j : j ≥ 1} is the set
of possible histories but can be replaced by an appropriate subset. The
conditioning variables in (47), εδt and Ωt−1, are assumed random. That Ωt−1

is random means that its values in computing densities of the random GIR
function are drawn from the set {ωt−j : j ≥ 1} or a subset.
As is the case for standard impulse responses from VAR models, estimat-

ing the GIR function requires ordering the variables in the vector yt. This
is equivalent to making weak exogeneity assumptions in the model. Once
this has been done, the GIR function can be estimated by simulation or
bootstrapping the residuals of the estimated model. How this is done is de-
scribed in Tena and Tremayne (2009). First draw a history from the set
of histories. Second, form the Cholesky decomposition of the residual co-
variance matrix: Σ̂ = ĈĈ′, where Ĉ is a lower triangular matrix defined
by the appropriate weak exogeneity assumptions. Then orthogonalize the
residuals: es = Ĉ−1ε̂s, s = p + 1, ..., T. Next, either sample from the dis-
tribution of es or draw the residuals {e∗t , e∗t+1, ..., e

∗
t+h} from this set with

replacement. Suppose one wants to shock the ith variable. Then form an-
other set by replacing the ith element of e∗t by a shock e

δ
i drawn from a set

of shocks. For example, one may be interested in shocks that are at least as
large as the 75% quantile of the (empirical) distribution of the transformed
residual. This yields another sequence of residuals {eδt , e∗t+1, ..., e

∗
t+h}, where

eδt = (e1t, ..., ei−1,t, e
δ
i , ei+1,t, ..., emt)

′. Transform back to the original residuals:
ε̂∗t+j = Ĉe∗t+j, j = 1, ..., h, and ε̂δt = Ĉeδt . Generate two sequences of yt+j,
j = 0, 1, ..., h, from the estimated models using the two sequences of residuals
and compute the difference element by element. This gives one observation
of (47) for periods t, t+ 1, ..., t+ h, when the system is shocked at time t.
An estimate of the conditional distribution of the random GIR function

given Ωt−1 is generated by repeating these steps by new draws for eδt and
thus generating new observations of (47) . Repeating everything up until
this phase with histories drawn from the whole set yields an unconditional
empirical distribution of (47) . This distribution may also be conditional if
the size of the shock and/or a subset of histories is restricted. For example,
the interest may lie in finding out whether certain shocks affect the output
differently when the economy is in a recession than when it is in expansion.
One may then estimate a GIR function for both cases by selecting appropriate
subsets of histories and shocks and compare the results.
If one computes GIR functions for several horizons, as is normally the

case, the question is how to present them. The highest density regions
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(HDR) for characterizing distributions, see Hyndman (1996) or Teräsvirta
et al. (2010, Ch. 15), can be recommended for the purpose. They may
be conveniently graphed using fan charts, see for example Wallis (1999) or
Lundbergh and Teräsvirta (2002). Teräsvirta and Yang (2013) apply box
and whiskers graphs. The latter have the drawback that they miss potential
multimodality of the HDR, so the user of those has to make sure that the
estimated HDR is unimodal.

8 Forecasting with vector threshold autore-
gressive and smooth transition models

The forecasts considered here are conditional means: the forecast of yT+h

given the conditioning information FT at time T, denoted yT+h|T , in theory
equals

yT+h|T = E{yT+h|FT}. (48)

Supposing that there is a nonlinear model, such as the VTAR or VSTAR
model, FT = ΩT , the history of {yt} up until T. This means that fore-
casting yT+h has computationally much in common with computing GIR
functions. Forecasting is in fact simpler as history is not a random variable.
Furthermore, the residuals need not be orthogonalised if the error sequences
{ε(i)

T+1, ..., ε
(i)
T+h}, i = 1, ..., B, are generated by a bootstrap, i.e., by B in-

dependent draws from the set of residuals {ε̂p+1, ..., ε̂T}. Some researchers
construct the forecast by assuming εT+1 = ... = εT+h = 0, but this simpli-
fication leads to biased forecasts. For discussion, see for example Teräsvirta
(2006), Kock and Teräsvirta (2011) or Teräsvirta et al. (2010, Chapter 14).
The forecast, an unbiased approximation of the conditional mean in (48),
becomes

yT+h|T = (1/B)
B∑
j=1

y
(j)
T+h

where y
(j)
T+h is the jth realization of yT+h obtained from the model, given

the history ΩT , and the error sequence {ε(j)
T+1, ..., ε

(j)
T+h}. Note that if one

makes an assumption of the multivariate distribution of εt it becomes possible
to also draw the error sequence from this distribution using the estimated
error covariance matrix Σ̂. This requires that the errors are homoskedastic,
whereas the bootstrap allows unconditional heteroskedasticity.
It seems that most applications focus on describing macroeconomic re-

lationships rather than forecasting. The paper by Galvão (2006) mentioned
in Section 3.2.2 constitutes an exception. This may be a reason for the fact
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that as yet there are few studies (Galvão’s is one) comparing forecasting per-
formance of nonlinear VAR models to that of linear VARs. Consequently,
usefulness of VTAR and VSTAR models in macroeconomic forecasting is still
an open question.

9 Applications

Vector TAR and STAR models have been fitted to macroeconomic and fi-
nancial time series. These models have been used to describe asymmetries,
for example in the response of real variables to changes in monetary pol-
icy. A relevant question for monetary policy decisions and their evaluation
is whether or not the response of these variables to monetary policy shocks
varies nonlinearly according to the business cycle. The recent financial crisis
has made the dependence of the interaction between the financial sector and
the macroeconomy on the financial conditions an interesting research topic.
In the following we consider four macroeconomic applications of vector TAR
and STAR models that illustrate how these models can be used to address a
variety of relevant economic questions. In addition to the empirical results,
we highlight several model-building issues and choices.

9.1 Applications of Vector TAR models

Both stationary VTAR and nonstationary TVEC models have been consid-
ered in the empirical literature. In this section we discuss two examples to
illustrate both economic issues that might be investigated with this model
class and different modelling approaches. We begin by considering Balke
(2000) who discusses the possibility that credit plays a role of a nonlinear
propagator of shocks to US macroeconomic variables. The author constructs
a four-dimensional TVAR model in which the variables appear in the follow-
ing order: output growth, inflation, the Fed funds rate and an indicator of
credit conditions (measured in a number of alternative ways). A noteworthy
detail is that the two-regime TVAR model is in a triangular form:

yt = Ayt+B(L)yt−1+(Cyt+D(L)yt−1)I(st−d < c) + υt (49)

where A and C are 4× 4 upper triangular matrices with zeroes on the main
diagonal, B(L) =

∑pb
j=1 BjL

j, D(L) =
∑pd

j=1 DjL
j, υt is the error vector with

uncorrelated elements, and st is the regime indicator. The upper triangular
matrices determine the contemporaneous ’structural’relationships between
the four variables and thus identify the shocks.
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Since one does not know which one of the potential credit condition vari-
ables, if any, would be the switch or threshold variable, the analysis begins by
testing linearity against (49). This is done by applying the method of Hansen
(1996) and generating the null distribution of the test statistic by simulation.
Balke considers both the supremum and the average Wald tests, as discussed
in Section 5.2.1. His tests reject the linearity hypothesis for all three credit
condition variables: the spread of the 4—6 month commercial paper and the
six-month Treasury bill, the mix of bank loans and commercial paper in to-
tal firm external finance, and difference of growth rate in short-term debt
in small and large manufacturing firms. Balke then estimates a triangular
TVAR model using each of these indicators as the threshold variable. He
notes that the three indicators split the sample into two regimes in more or
less the same way.
Balke (2000) does not report any evaluation results for the estimated

model(s) but concentrates on generalized impulse responses. The set of his-
tories is divided into periods of ’normal’and ’tight’credit conditions, and
the shock is plus/minus one or two standard deviations computed from the
distribution of the corresponding residuals. Results for both regimes are re-
ported separately for the four different shocks assuming that the shocked
variable is any of the four included in yt.What is graphed is not the density
of the estimated GIR function but rather its mean. The shocks are identified
as the model is triangular with properly ordered equations, and the errors
independent. It is found that the shocks generally have a larger (average)
effect on output growth in when the economy is in the tight credit regime
than when the opposite is true. Evidence of asymmetry in the response to
shocks is also found.
Tena and Tremayne (2009) apply the VTAR model to studying the trans-

mission of monetary policy to industrial output in the UK. Their paper con-
tains both a general (aggregate output) and a sectoral analysis, of which
only the former is considered here. The reason why we review this particular
application is that in setting up the model the authors do not assume a com-
mon threshold a priori, and modelling proceeds equation by equation. The
seasonally adjusted quarterly time series are the industrial production index,
the retail price index, an interest rate, and the Pound sterling/US Dollar
exchange rate. The models are built on first differences of these series, and
the period of observation is 1972(1)—2007(1). The variables appear in the
vector to be modelled in the aforementioned order that is based on relevant
weak exogeneity assumptions.
Linearity is tested using the lagged industrial production growth rate as

the threshold variable. This is due to the fact that the interest lies in the
asymmetries in the transmission mechanism which depends on the state of
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the economy. It turns out that the inflation (growth rate of the retail price
index) equation is linear. Parameters are estimated equation by equation
following Hansen (1997). The hypothesis of a common threshold for the
three threshold equations is tested as discussed in Section 6.4 and rejected.
Evaluation involves testing for another threshold (Hansen, 2000), but the
null hypothesis of a single threshold is not rejected.
The sectoral analysis also contains estimating GIR functions. Due to the

focus on monetary policy, the interest rate is shocked. The size of the shock
comprises two values, and a separate GIR function is estimated for them.
Two sets of histories are considered: expansionary and recessionary episodes
(measured using the industrial output). The whole HDR is not reported, but
95% confidence intervals from the estimated densities are given for horizons
extending from one to ten quarters. The main conclusion is that negative
interest rate shocks have a bigger impact on output than positive ones.
Most applications of the VTAR or TVEC model have been to macroeco-

nomic series. But then, validity of the Law of One Price has been investigated
by a TVEC model using prices of individual commodities in different cities
as in Lo and Zivot (2001). Further, an empirical example in Tsay (1998)
concerns the high-frequency (one-minute) S&P 500 stock index and the cor-
responding index futures data. These time series have also been modelled
using the TVEC model; see Martens, Kofman and Vorst (1998). A compre-
hensive list of applications of TAR models, both vector and univariate ones,
can be found in Hansen (2011).

9.2 Applications of Vector STAR and STR models

Camacho (2004) makes good use of the modelling strategy described in Sec-
tion 5.3 when building a VSTAR model for describing the relationship be-
tween the quarterly US GDP (y1t) and the Composite Leading Indicator
(CLI) of the Conference Board (y2t). The time period is 1959(1)—2002(1).
The latter variable is monthly, and the last month of every quarter is taken
to construct a quarterly series to match the quarterly GDP series. Choosing
the STVEC model as the starting-point allows for the possibility that these
two nonstationary variables be cointegrated. Cointegration is tested for us-
ing the nonparametric cointegration test of Bierens (1997), the result being
that the two variables are not cointegrated. This leads to eliminating the
cointegration terms from (18).
The next step is to test linearity, which is done equation by equation.

This is done using the Taylor expansion approach LM-type tests in Luukko-
nen et al. (1988). Camacho (2004) also consider the Exponential VSTAR
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(EVSTAR) model, which is (16) with the exponential transition function

Gj(γj, cj; sjt) = 1− exp{−γj(sjt − cj)2}, γj > 0

in (17). Even a third VSTAR model, the so-called LVSTAR-D model is
considered but not discussed in detail here. The linearity tests reject the null
hypothesis for most transition variables, and test sequences as in Teräsvirta
(1994) are used to select the transition function. This leaves the model
builder with three alternatives: an LVSTAR, an EVSTAR and an LVSTAR-
D model. A final choice is left to the evaluation stage. In the LVSTAR
model, st = ∆y1,t−2 and in the EVSTAR one st = ∆y2,t−2 (in both cases
the same transition variable for both equations). The estimated equations
only contain one lag of each variable, except for the transition variables. A
noteworthy detail is that the estimated models are intercept-switching STAR
models; see Section 3.3.1.
The results of the evaluation stage indicates that the LVSTAR model is

superior to the other two VSTAR variants. It has the best fit and passes
most misspecification tests that include testing the hypotheses of no error
autocorrelation, no additive nonlinearity, and parameter constancy. Further-
more, one-quarter-ahead real-time forecasts for the GDP growth from this
model are more accurate than the corresponding ones from the other two
models.
Camacho (2004) also carries out tests of equal forecasting ability with

forecasts from the LVSTARmodel as the benchmark. The idea is to construct
the one-period-ahead forecasts from 1978(1) to 2002(2) in such a way that
they as accurately as possible reflect the forecasting situation, that is, the
information available for the forecasters at the time of forecasting. The
details of this can be found in the paper. The main outcome is that all tests
reject the null hypothesis of equal forecastability in favour of the intercept-
switching LVSTAR forecasts.
The goals of Weise (1999) are to investigate whether (a) positive and

negative monetary shocks have asymmetric effects on output and prices; (b)
whether the effects of monetary shocks vary over the business cycle; and (c)
whether the effects of monetary shocks vary disproportionately with the size
of the shock. After first developing a simple structural model incorporating
asymmetric nominal rigidities and discussing its potential implications for
the nonlinear econometric model, the author chooses an LVSTAR framework
(16) to pursue his goals. The quarterly US time series of first differences
of the logarithmic industrial production, the consumer price index, and M1
cover the period from 1960(2) to 1995(2). Before proceeding, the series are
filtered by regressing them separately on a constant, seasonal dummies, two

43



intercept dummies accounting for presumed structural breaks, a linear trend,
and two breaking linear trends in which the breaks are synchronized with the
intercept dummies. This makes the filtered series stationary.
A linear trivariate VAR model with four lags forms the basis of the analy-

sis. Linearity is tested using the likelihood ratio test approach discussed in
Section 5.3.1. It is found that linearity is never rejected when the transition
variable is money (M1). Lags of the other two variables produce rejections,
some of which are very strong. Selection of final models based on the results
of the tests yields three LVSTAR models with the first lag of industrial pro-
duction, the second lag of the consumption prices and the first lag of their
differences as transition variables.
The models are estimated by assuming a single transition function and

fixing the location parameter so it is not estimated. Estimation is equa-
tion by equation as discussed in Section 4.2. No evaluation of the estimated
models is carried out, but the dynamic properties of the estimated models
are investigated by impulse response analysis. The interest lies in the re-
sponse of output and prices to monetary shocks. As discussed in Section 7,
the functions are generated by drawing from different sets of histories and
shocks. Monetary shocks are identified in the customary way by appropri-
ately ordering the equations and applying the Cholesky decomposition in
generating the shocks. Randomness of the GIR functions is not taken fully
into account, however, as only averages and not complete estimated densi-
ties are reported. Shocks to the money supply are found to have stronger
output effects and weaker price effects when output growth is initially low
than when it is high. Positive and negative monetary shocks have nearly
symmetric effects to these variables. Only shocks of ±1 and ±2 standard
deviations have been considered.
Vector STAR and STR models have been applied less frequently than

their threshold counterparts. Rothman et al. (2001) specify and estimate an
LVSTAR model to investigate the direction of nonlinear Granger causality in
the relationship between money and output in the United States. Rahman
and Serletis (2010) apply the LVSTAR model to studying asymmetries in the
effects of oil price and monetary policy shocks to output growth in the US.
Also using US time series, Auerbach and Gorodnichenko (2012) investigate
whether fiscal policy is more effective in recessions than in expansions. Dif-
ferences across regimes are allowed in the variance-covariances of the shocks
and in the transmission. The authors find that fiscal policy is more effective
in recessions. They also investigate fiscal multipliers of disaggregate spend-
ing variables and find that military spending has the largest multiplier of the
ones considered.
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10 Final remarks

Nonlinear models have become a useful tool in modelling economic relation-
ships given the experiences gained and conclusions drawn from the financial
crisis and the Great Recession. The purpose of this chapter is to provide an
overview of vector threshold autoregressive and smooth transition models.
This includes modelling nonstationary cointegrated variables with models of
this kind. Model building is emphasised, and various testing situations de-
scribed. Space limitations have made it necessary to restrict the discussion
of applications to a few interesting examples.
Readers interested in more details about modelling strategies and issues

of vector threshold autoregressive and smooth transition models discussed in
this survey are referred to Tsay (1998) for vector TAR models and to Ca-
macho (2004), Teräsvirta and Yang (2013) and Yang and Teräsvirta (2013)
for their smooth transition counterparts. Hansen (2011) provides a compre-
hensive review of both univariate and vector TAR models and contains a
large number of references. Gonzalo and Pitarakis (2006) present a useful
survey of testing for cointegration in the TVEC framework; for an update
see Gonzalo and Pitarakis (2013). For a more general discussion on vector
nonlinear models, see Teräsvirta et al. (2010, Chapter 11).

References

Anderson, H. M. and Vahid, F.: 1998, Testing multiple equation systems for
common nonlinear components, Journal of Econometrics 84, 1—36.

Astatkie, T., Watts, D. G. and Watt, W. E.: 1997, Nested threshold autore-
gressive (NeTAR) models, International Journal of Forecasting 13, 105—
116.

Atanasova, C.: 2003, Credit market imperfections and business cycle dynam-
ics: A nonlinear approach, Studies in Nonlinear Dynamics & Economet-
rics 7, Issue 4, Article 5.

Auerbach, A. J. and Gorodnichenko, Y.: 2012, Measuring the output re-
sponses to fiscal policy, American Economic Review: Economic Policy
4, 1—27.

Bacon, D. W. and Watts, D. G.: 1971, Estimating the transition between
two intersecting straight lines, Biometrika 58, 525—534.

45



Balke, N.: 2000, Credit and economic activity: Credit regimes and nonlinear
propagation of shocks, Review of Economics and Statistics 82, 344—349.

Balke, N. S. and Fomby, T. B.: 1997, Threshold cointegration, International
Economic Review 38, 627—645.

Bauwens, L., Lubrano, M. and Richard, J.-F.: 2000, Bayesian Inference in
Dynamic Econometric Models, Oxford University Press, Oxford.

Bec, F. and Rahbek, A.: 2004, Vector equilibrium correction models with
non-linear discontinuous adjustments, Econometrics Journal 7, 628—651.

Bierens, H. J.: 1997, Nonparametric cointegration analysis, Journal of
Econometrics 77, 379—404.

Bollerslev, T.: 1990, Modelling the coherence in short-run nominal exchange
rates: A multivariate generalized ARCH model, Review of Economics
and Statistics 72, 498—505.

Box, G. E. P. and Jenkins, G. M.: 1970, Time Series Analysis, Forecasting
and Control, Holden-Day, San Francisco.

Camacho, M.: 2004, Vector smooth transition regression models for US GDP
and the composite index of leading indicators, Journal of Forecasting
23, 173—196.

Chan, K. S.: 1993, Consistency and limiting distribution of the least squares
estimator of a threshold autoregressive model, Annals of Statistics
21, 521—533.

Chan, K. S. and Tong, H.: 1986, On estimating thresholds in autoregressive
models, Journal of Time Series Analysis 7, 178—190.

Davies, R. B.: 1977, Hypothesis testing when a nuisance parameter is present
only under the alternative, Biometrika 64, 247—254.

Dueker, M. J., Psaradakis, Z., Sola, M. and Spagnolo, F.: 2011, Multivari-
ate contemporaneous-threshold smooth transition autoregressive mod-
els, Journal of Econometrics 160, 311—325.

Eitrheim, Ø. and Teräsvirta, T.: 1996, Testing the adequacy of smooth tran-
sition autoregressive models, Journal of Econometrics 74, 59—75.

Eklund, B. and Teräsvirta, T.: 2007, Testing constancy of the error covari-
ance matrix in vector models, Journal of Econometrics 140, 753—780.

46



El-Shagi, M.: 2011, An evolutionary algorithm for the estimation of threshold
vector error correction models, International Economics and Economic
Policy 8, 341—362.

Engle, R. F. and Kozicki, S.: 1993, Testing for common features, Journal of
Business and Economic Statistics 11, 369—386.

Galvão, A. B. C.: 2006, Structural break threshold VARs for predicting US
recessions using the spread, Journal of Applied Econometrics 21, 463—
487.

Gefang, D.: 2012, Money-output causality revisited - A Bayesian logistic
smooth transition VECM perspective, Oxford Bulletin in Economics
and Statistics 74, 131—151.

Gefang, D. and Strachan, R.: 2010, Nonlinear impacts of business cycles
on the U.K. - A Bayesian smooth transition VAR approach, Studies in
Nonlinear Dynamics and Econometrics 14, Issue 1, Article 2.

González, A., Hubrich, K. and Teräsvirta, T.: 2009, Forecasting inflation
with gradual regime shifts and exogenous information, CREATES Re-
search Paper 2009-3, Aarhus University.

González, A. and Teräsvirta, T.: 2008, Modelling autoregressive processes
with a shifting mean, Studies in Nonlinear Dynamics and Econometrics
12, No. 1, Article 1.

Gonzalo, J. and Pitarakis, J.-Y.: 2006, Threshold effects in multivariate error
correction models, in T. C. Mills and K. Patterson (eds), Palgrave Hand-
books of Econometrics, Vol. 1, Econometric Theory, Palgrave Macmillan,
Basingstoke, pp. 578—609.

Gonzalo, J. and Pitarakis, J.-Y.: 2013, Estimation and inference in thresh-
old type regime switching models, in N. Hashimzade and M. A. Thorn-
ton (eds), Handbook of research methods and applications in empirical
macroeconomics, Edward Elgar, Cheltenham, pp. 189—204.

Goodwin, B. K., Holt, M. T. and Prestemon, J. P.: 2012, Exchange rate
pass-through in timber products: The case of oriented strand board in
Canada and the United States, Technical report, University of Alabama
at Tuscaloosa.

Haggan, V. and Ozaki, T.: 1981, Modelling non-linear random vibrations
using an amplitude-dependent autoregressive time series model, Bio-
metrika 68, 189—196.

47



Hamilton, J. D.: 1989, A new approach to the economic analysis of nonsta-
tionary time series and the business cycle, Econometrica 57, 357—384.

Hansen, B. E.: 1996, Inference when a nuisance parameter is not identified
under the null hypothesis, Econometrica 64, 413—430.

Hansen, B. E.: 1997, Inference in TAR models, Studies in Nonlinear Dynam-
ics and Econometrics 2, 1—14.

Hansen, B. E.: 1999, Testing for linearity, Journal of Economic Surveys
13, 551—576.

Hansen, B. E.: 2000, Sample splitting and threshold estimation, Economet-
rica 68, 575—603.

Hansen, B. E.: 2011, Threshold autoregression in economics, Statistics and
Its Interface 4, 123—127.

Hansen, B. E. and Seo, B.: 2002, Testing for two-regime threshold coin-
tegration in vector error-correction models, Journal of Econometrics
110, 293—318.

Harvill, J. L. and Ray, B. K.: 1999, A note on tests for nonlinearity in a
vector time series, Biometrika 86, 728—734.

He, C., Teräsvirta, T. and González, A.: 2009, Testing parameter constancy
in vector autoregressive models against continuous change, Econometric
Reviews 28, 225—245.

Hendry, D. F. and Massmann, M.: 2007, Co-breaking: Recent advances and
a synopsis of the literature, Journal of Business and Economic Statistics
25, 33—51.

Holt, M. T. and Teräsvirta, T.: 2012, Global hemispheric temperature trends
and co—trending: A shifting mean vector autoregressive analysis, CRE-
ATES Research Paper 2012-54, Aarhus University.

Hubrich, K. and Tetlow, R. J.: 2012, Financial stress and economic dynam-
ics: The transmission of crises, Finance and economics discussion series
2012-82, The Federal Reserve Board.

Hungnes, H.: 2012, Testing for co-non-linearity, Discussion Paper 699, Sta-
tistics Norway, Research Department.

48



Hyndman, R. J.: 1996, Computing and graphing highest density regions,
American Statistician 50, 120—126.

Jacobson, T., Lindh, T. and Warne, A.: 2002, Growth, saving, financial
markets and Markov switching regimes, Studies in Nonlinear Dynamics
and Econometrics 5, Issue 4, Article 1.

Johansen, S.: 1995, Likelihood-based inference in cointegrated vector autore-
gressive models, Oxford University Press, Oxford.

Kapetanios, G., Shin, Y. and Snell, A.: 2006, Testing for cointegration in
nonlinear smooth transition error correction models, Econometric The-
ory 22, 279—303.

Kock, A. B. and Teräsvirta, T.: 2011, Forecasting with nonlinear time series
models, inM. P. Clements and D. F. Hendry (eds), The Oxford Handbook
of Economic Forecasting, Oxford University Press, Oxford, pp. 61—87.

Koop, G., Pesaran, M. H. and Potter, S. M.: 1996, Impulse response analysis
in nonlinear multivariate models, Journal of Econometrics 74, 119—147.

Krishnakumar, J. and Neto, D.: 2012, Testing uncovered interest rate par-
ity and term structure using a three-regime threshold unit root VECM
An application to the Swiss ’isle’of interest rates, Oxford Bulletin of
Economics and Statistics 74, 180—202.

Kristensen, D. and Rahbek, A.: 2010, Likelihood-based inference for coin-
tegration with nonlinear error-correction, Journal of Econometrics
158, 78—94.

Kristensen, D. and Rahbek, A.: in press, Testing and inference in nonlinear
cointegrating vector error correction models, Econometric Theory .

Krolzig, H.-M.: 1997, Markov-Switching Vector Autoregressions Modelling,
Statistical Inference and Applications to Business Cycle Analysis,
Springer, Berlin.

Lanne, M. and Saikkonen, P.: 2002, Threshold autoregressions for strongly
autocorrelated time series, Journal of Business and Economic Statistics
20, 282—289.

Lindgren, G.: 1978, Markov regime models for mixed distributions and
switching regressions, Scandinavian Journal of Statistics 5, 81—91.

49



Lo, M. C. and Zivot, E.: 2001, Threshold cointegration and nonlinear ad-
justment to the law of one price, Macroeconomic Dynamics 5, 533—576.

Lundbergh, S. and Teräsvirta, T.: 2002, Forecasting with smooth transition
autoregressive models, in M. P. Clements and D. F. Hendry (eds), A
Companion to Economic Forecasting, Blackwell, Oxford, pp. 485—509.

Lundbergh, S., Teräsvirta, T. and van Dijk, D.: 2003, Time-varying smooth
transition autoregressive models, Journal of Business and Economic
Statistics 21, 104—121.

Luukkonen, R., Saikkonen, P. and Teräsvirta, T.: 1988, Testing linearity
against smooth transition autoregressive models, Biometrika 75, 491—
499.

Lütkepohl, H.: 2006, Vector autoregressive models, in T. C. Mills and K. Pat-
terson (eds), Palgrave Handbook of Econometrics, Vol. 1, Econometric
Theory, Palgrave Macmillan, Basingstoke, pp. 477—510.

Maddala, D. S.: 1977, Econometrics, McGraw-Hill, New York.

Martens, M., Kofman, P. and Vorst, T. C. F.: 1998, A threshold error-
correction models for intraday futures and index returns, Journal of
Applied Econometrics 13, 245—263.

Pfann, G. A., Schotman, P. C. and Tschernig, R.: 1996, Nonlinear inter-
est rate dynamics and implications for the term structure, Journal of
Econometrics 74, 149—176.

Qian, L.: 1998, On maximum likelihood estimators for a threshold autore-
gression, Journal of Statistical Planning and Inference 75, 21—46.

Quandt, R. E.: 1958, The estimation of parameters of a linear regression sys-
tem obeying two separate regimes, Journal of the American Statistical
Association 53, 873—880.

Quandt, R. E.: 1960, Tests of the hypothesis that a linear regression sys-
tem obeys two separate regimes, Journal of the American Statistical
Association 55, 324—330.

Rahman, S. and Serletis, A.: 2010, The asymmetric effects of oil price and
monetary policy shocks: A nonlinear VAR approach, Energy Economics
32, 1460—1466.

50



Rao, C. R.: 1973, Linear Statistical Inference and its Applications, Wiley,
New York.

Rothman, P., van Dijk, D. and Franses, P. H.: 2001, A multivariate STAR
analysis of the relationship between money and output, Macroeconomic
Dynamics 5, 506—532.

Saikkonen, P.: 2005, Stability results for nonlinear error correction models,
Journal of Econometrics 127, 69—81.

Saikkonen, P.: 2008, Stability of regime switching error correction models
under linear cointegration, Econometric Theory 24, 294—318.

Seo, B.: 2011a, Nonparametric testing for linearity in cointegrated error-
correction models, Studies in Nonlinear Dynamics and Econometrics
15, Issue 2, Article 6.

Seo, M.: 2006, Bootstrap testing for the null of no cointegration in a threshold
vector error correction model, Journal of Econometrics 134, 129Ű150.
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