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Abstract: We propose a model for the term structure of interest rates that is a generaliza-

tion of the discrete-time, Gaussian, affine yield-curve model. Compared to standard

affine models, our model allows for general linear dynamics in the vector of state vari-

ables. In an application to real yields of U.S. government bonds, we model the time

series of the state vector by means of a co-fractional vector autoregressive model. The

implication is that yields of all maturities exhibit nonstationary, yet mean-reverting,

long-memory behavior of the order d ≈ 0.87. The long-run dynamics of the state

vector are driven by a level, a slope, and a curvature factor that arise naturally from

the co-fractional modeling framework. We show that implied yields match the level

and the variability of yields well over time. Studying the out-of-sample forecasting

accuracy of our model, we find that our model results in good yield forecasts that

outperform several benchmark models, especially at long forecasting horizons.
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1 Introduction

One of the salient properties of short-term interest rates is their near unit-root behav-

ior. Figure 1 plots the U.S. one-month government bond rate rate over the past 40 years,

starting in January 1970. The time series is characterized by long and persistent upward

and downward trends. Typically, stationary autoregressive/moving-average (ARMA) time-

series models within the I(0) class cannot replicate such a dependence structure as they

impose an exponential decay of autocorrelations. The slow yet steady decay of autocor-

relation estimates over time (see e.g. Table 1) casts doubt that standard nonstationary

I(1) models such as the random walk present a more accurate modeling framework. One

possibility for modeling such strongly dependent interest rates is the near-integrated ap-

proach, where a statistical uncertainty is attributed to the order of integration of the series

(see, for instance, Jardet et al., 2013). Long-memory models, where the rate of decay of a

shock is described by a single fractional integration parameter, are a parsimonious alterna-

tive. In this work, we estimate the order of fractional integration, d, of the real monthly

short-term interest rate and find that the process is nonstationary yet mean-reverting, with

d ≈ 0.87. Using different sample periods, different data frequencies, and different estimators,

many other works suggest a very similar estimator, such as Gil-Alana (2004), Gil-Alana and

Moreno (2012), Iacone (2009), Shea (1991), Schotman et al. (2008), Sun and Phillips (2004).

The short-term interest rate is one of the main ingredients to most term-structure models

in the literature. Under the expectations hypothesis (EH), yields can be described by the

cumulative future expected short rate and potentially a constant term premium. Thus, the

dynamics of the short rate directly affect the volatility of the implied yield curve. For in-

stance Cochrane (2005) shows that a stationary AR model for the short-term interest rate

produces standard deviations of yields that are always smaller than the volatility of the

short-term interest rate. In fact, model-implied standard deviations decay exponentially as

maturity increases. A random-walk model for the short rate, in contrast, leads to a flat

volatility structure over maturities. Backus and Zin (1993) show that both models violate

the empirically observed slow decay of yield variation as time to maturity increases. They

provide evidence that the observed shape can instead be captured by allowing for fractional

integration in the factor that drives yields. The same issue arises in affine term-structure

models due to Duffie and Kan (1996), where the yield of a bond is assumed linear in a

(possibly multivariate) state vector. Arbitrage-free yields are derived as expectations of the

stochastic discount factor, which again depends on the short rate (see e.g. Duffee, 2002,

and Gürkaynak and Wright, 2012). It follows that a stationary VAR model for the state

vector, as is typically used in the literature (see, for instance, Ang and Piazzesi, 2003), will
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produce too little volatility at the long end of the yield curve. An example of this is the

benchmark model of Piazzesi and Schneider (2006).

The dynamic properties of the short rate and potentially other state variables are hence not

only important in modeling their time series, but also in fitting the cross section of yields.

The apparent incompatibility of the time-series properties of observed state variables with

the dynamics required to match the cross section of yields over different maturities is a well

documented stylized fact of term-structure models. According to Singleton (2006), this is

one of the criticisms of yield-curve models that is quoted most widely. For example, Brown

and Schaefer (1994) find that the strength of factor mean reversion that is necessary to cap-

ture the yield curve at a point in time is not consistent with the empirical dynamics of the

series. We suggest that explicitly accounting for long memory can provide a solution to this

conundrum. This insight makes it necessary to alter existing term-structure models in such

a way that they allow for a fractionally integrated specification of the factors that drive the

yield curve over time. Consequently, we define a model for zero-coupon government bond

yields that is a generalization of the class of discrete-time, Gaussian, affine term-structure

models of Duffie and Kan (1996) and Dai and Singleton (2000). Our model implies that

bond prices are defined as the sum of an initial (possibly time-varying) value, plus the sum

of current and past innovations to the state vector, scaled by term-structure loadings, plus

a term premium. Our model retains the attractive property of affine models, in that we

find a closed-form solution.

We model the state variables as a trivariate vector of yields, composed of the short rate,

an intermediate rate, and a long rate. Our term-structure model implies that yields across

all maturities inherit the persistence of the short-term interest rate. As we have evidence

that the short rate has a fractional order of integration, we model the state vector by a

multivariate long-memory model with low-frequency dynamics described by d. We further

detect fractional cointegration between the three yields, similarly to Nielsen (2010) and

Chen and Hurvich (2003a,b). As a consequence, we model the trivariate state vector by a

co-fractional model due to Johansen (2008a,b). The model implies that the low-frequency

dynamics of the short rate, and consequently of yields at all maturities, are driven by one

variable with nonstationary long memory that has the natural interpretation of a level fac-

tor, and two stationary linear combinations of yields, which can be viewed as the slope and

curvature factor. The seminal principal component analysis of yields up to a maturity of

30 years of Litterman and Scheinkman (1991) reveals that the first three factors are nec-

essary to capture the comovements in U.S. treasury yields. The first principal component,

or level factor, covers parallel shifts of the yield curve and, depending on the sampling
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period and frequency, can account for up to 89% of the total explained variation. The

second component, the slope factor, explains shifts in the slope of the yield curve, and the

third component, the curvature (or hump) factor, captures the curvature. In our frame-

work these traditional yield-curve factors arise naturally from the co-fractional relationship

between yields.

We find that the co-fractional model fits the dynamics of the state vector very well, and

we show that the term-structure loadings resulting from this model are very intuitive. In

the time-series dimension, the level -factor loadings that scale state-vector shocks decay only

very slowly, whereas the corresponding loadings for the slope-factor and curvature-factor

decline faster. In the cross-sectional dimension, i.e. across maturities, the first factor load-

ing is almost flat, the second one is curved, and the third loading exhibits a hump at short

maturities. The resulting yields are persistent and match the observed term structure well

in sample, especially for maturities above three years. More importantly, we can success-

fully forecast yields out of sample. Contrasting our forecasts to benchmark models such as

for instance Diebold and Li (2006), we find that our model produces superior forecasts at

long horizons up to ten years. Accurate long-horizon forecasts can be viewed as especially

important for insurance companies and pension funds. Yet, also central banks and trea-

suries rely on long-run predictions.

Recently, there has been an increasing amount of research in the term-structure literature

reaching the conclusion that the term premium, or risk premium, is rather stable and that

the expectations component of yield-curve models captures most of the variation in bond

yields. An example is Bauer (2011), who finds that imposing restrictions on risk prices that

are supported by the data leads to a model that is very close to the EH. Similar evidence

favoring that most volatility is generated from the expectations component and only little

from the term premium, is provided by Jardet et al. (2013) and Kim and Orphanides (2007,

2012). The method of Kozicki and Tinsley (2005), based on investors’ uncertainty about the

long-run level of inflation, provides a further argument in favor of constant term premiums.

Motivated by these findings, we model and estimate term premiums as depending only on

maturity1. As we find a good in-sample and out-of-sample fit of yields under this model-

ing assumption, we view our work as additional empirical support for the conclusions above.

Strictly speaking, assuming that the term premium is time invariant may be too restric-

tive. When investigating the predictability of excess bond returns, this can typically not

1We model term premiums as constants; nevertheless the theoretical affine model that we propose could
easily be extended to allow for time-varying term premiums.
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be rejected, which implies that term premiums must be time varying (see e.g. Fama and

Bliss, 1987, and Cochrane and Piazzesi, 2005, 2008). While this empirical evidence has also

been challenged by, for instance, peso-problem arguments, or persistent-variable explana-

tions (for an overview, see e.g. Gürkaynak and Wright, 2012)2, some doubt regarding the

time invariance of term premiums remains. In the context of this discussion, it should be

noted that we estimate our model on real yields of nominal bonds, however. Inflation is

hence implicitly included as an additional term-structure factor in our estimations. As we

model the yield-curve factors in a (fractional) error-correction model, the long-run level of

inflation and deviations from it in the short run are implicitly captured. This is very closely

related to the approach of Kozicki and Tinsley (2001a,b), who argue that we can move back

to EH if we account for shifts in the perception of the long-run inflation level. Our model

does not allow for shifts in expectations; yet we allow for a possibly very slow adjustment

to the long-run value3. Other evidence emphasizing the important role of inflation as a

term-structure factor is provided by e.g. Rudebusch and Wu (2008) and Diebold et al.

(2006).

The rest of this article is structured as follows. In Section 2, we define a generalized

Gaussian affine model for the term structure of interest rates, and derive closed-form so-

lutions for the parameters. Section 3 summarizes the time-series evidence in favor of long

memory in the state vector and presents the results of the co-fractional model. In Section

4 we discuss the fit of model-implied yields in sample, and in Section 5 we show the results

of the out-of-sample forecasts. Section 6 concludes.

2 Yield-curve model

We propose a term-structure model that is a generalization of the class of discrete-time affine

yield curve models originally developed by Duffie and Kan (1996) and further specified by

Dai and Singleton (2000). Let y
(n)
t denote the yield to maturity of a zero-coupon bond with

maturity n, where t = 1, 2, . . . , T and n = 1, 2, . . . , N . Denote the one-period logarithmic

short rate by rt and note that bond yields are related to prices by y
(n)
t = −(1/n)p

(n)
t . The

term-structure of interest rates model that we propose here has the solution for log prices

p
(n)
t = −p

(n)
0,t −

t−1
∑

j=0

(

U
(n)
j + V

(n)′

j ǫt−j

)

−W (n), (1)

2For instance Kim and Orphanides (2007) and Sack (2006) hint at the possibility that the predictability
of excess returns in Cochrane and Piazzesi (2005) may be overstated.

3For a discussion of the indistinguishability of long-memory series and data generated by level shifts in
finite sample, see e.g. Diebold and Inoue (2001).
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where ǫt is an innovation process of size K × 1 that follows and independent and identical

normal distribution (0,Σ). The term-structure parameters U
(n)
j and W (n) are scalar values,

and V
(n)
j is a vector of size K × 1. p

(n)
0,t denotes a function of the initial values of the price

of an n-period bond.

Model (1) collapses to a traditional Gaussian affine discrete-time yield-curve model of the

form y
(n)
t = A(n) + B(n)′xt, if the K × 1-state vector xt has a vector autoregressive repre-

sentation of the order q, VAR(q). If q = 1 with coefficient matrix D and intercept term

C, the usual affine-model parameters relate to the parameters in (1) by p
(n)
0,t = nB(n)′Dtx0,

U
(n)
j = nB(n)′DjC, V

(n)
j = nB(n)′Dj , and W (n) = nA(n). Our model allows for more

general dynamics assuming that the state vector is generated by the linear moving average

(MA) specification

xt = x0t +
t−1
∑

j=0

Φj (ǫt−j + µ) , (2)

where Φj is aK×K-matrix and µ aK×1 vector. x0t is a function of the initial values of xt. In

what follows, we will derive (1) for different modeling assumptions about the coefficients Φj .

Let the short rate be the third element of the state vector such that it holds that rt = e3′xt,

where e3 is the third unit vector, [0, 0, 1]′. Define the logarithmic stochastic discount

factor mt+1 = lnMt+1 as

mt+1 = −rt − 1
2λ

′Σλ+ λ′ǫt+1, (3)

where λ is the market price of risk and has size K × 1.

We obtain solution (1) by deriving bond prices as the expectation of the product of fu-

ture stochastic discount factors over different horizons. The basic pricing equation for

zero-coupon bonds is

P
(n+1)
t = Et

(

Mt+1P
(n)
t+1

)

, (4)

and in logarithmic form

p
(n+1)
t = −rt + Et

(

p
(n)
t+1

)

+ 1
2Vart

(

p
(n)
t+1

)

+ Covt

(

mt+1, p
(n)
t+1

)

. (5)

The price of a bond with maturity zero is equal to one, P
(0)
t = 1 and p

(0)
t = 0. Then, from

(5) it follows that p
(1)
t = −rt, because rt = −Et(mt+1) for n = 1.

Equations (3)-(5) describe bonds that have a riskless payoff in real terms. P
(n)
t and p

(n)
t

are real prices of real bonds with maturity n and mt is the real logarithmic stochastic dis-

5



count factor. In this study we focus on nominal bonds and model their prices and yields in

real terms. If we assume that the stochastic discount factor and inflation are independent,

Campbell et al. (1997) show that the real price of a nominal bond equals the real price

of a real bond times the expected future real value of money. Under the assumption that

inflation risk is not priced in our model, Equations (3)-(5) hold for real prices and yields of

nominal bonds.

If (1) is the solution to the pricing equation for bonds, it must hold that the elements

of (5) are equal to

Et

(

p
(n)
t+1

)

= −p
(n)
0,t+1 −

t−1
∑

j=0

U
(n)
j+1 −

t−1
∑

j=0

V
(n)′

j+1 ǫt−j −
(

W (n) + U
(n)
0

)

(6)

Vart

(

p
(n)
t+1

)

= V
(n)′

0 ΣV
(n)
0 (7)

Covt

(

mt+1, p
(n)
t+1

)

= −V
(n)′

0 Σλ. (8)

These solutions are derived in Appendix A.

Plugging the elements (6)-(8) into the recursion for bond prices (5), and relying on the

inital condition p
(1)
t = −rt, we thus find the following expressions for the term-structure

parameters.

p
(n)
0,t =

n−1
∑

i=0

e3′x0t+i (9)

U
(n)
j =

n−1
∑

i=0

e3′Φj+iµ (10)

V
(n)
j =

n−1
∑

i=0

Φ′
j+ie3 (11)

W (n) =
n−1
∑

i=1





i−1
∑

k=0

e3′Φkµ− 1

2

[

i−1
∑

k=0

Φ′
ke3

]′

Σ

[

i−1
∑

k=0

Φ′
ke3

]

+

[

i−1
∑

k=0

Φ′
ke3

]′

Σλ



 . (12)

Our term-structure model (1) permits a closed-formed solution for all parameters that de-

scribe bond prices. In addition, the parameters are fully determined by the data-generating

process of the state vector xt. The only exception is W (n), which depends on the market

price of risk.

Our term-structure model implies that the yield on a bond with maturity n is the av-

erage conditionally expected value of the sum of n successive investments in a one-period
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bond plus a constant, which is a function of the market price of risk. More precisely, yields

are determined by

y
(n)
t =

1

n

n−1
∑

i=0

e3′x0t+i + e3′
t−1
∑

j=0

1

n

n−1
∑

i=0

Φj+i (ǫt−j + µ) + f (λ) , (13)

where f(λ) = 1
n
W (n). Equation (13) suggests that the dynamics of yields reflect the time-

series properties of the short-term interest rate. To see this, assume for simplicity that xt

contains only rt, and rt is a univariate fractional white noise process of order d. We can

write coefficients Φj = (−1)j
(

−d
j

)

and we know that this can be approximated by jd−1/Γ(d)

as j → ∞ (see, for instance, Robinson, 2003b). Hence

1

n

n−1
∑

i=0

Φj+i ≈ 1

n

n−1
∑

i=0

(j + i)d−1

Γ(d)

≈ jd−1

Γ(d)

1

n

n−1
∑

i=0

(

1 +
i

j

)d−1

≈ jd−1

Γ(d)
as j → ∞, (14)

implying that y
(n)
t and rt have the same slow speed of decay of news impacts. Alternatively,

if the short rate has short memory captured by an AR(1) model with coefficient matrix c, it

holds that 1
n

∑n−1
i=0 Φj+i =

1
n
1−cn

1−c
cj . As in the long-memory case, the yield process inherits

the dynamic behavior of rt and its MA coefficients decay at exponential rate. In the general

case, where xt is multivariate, the low-frequency dynamics of yields are determined by the

low-frequency dynamics of rt. That is, if the time-series of short rates is integrated of the

order I(d), our term-structure model implies that yields of all maturities of integrated of

the same order d.

3 State-vector dynamics

Our term-structure model implies that the dynamics of yields at all maturities are almost

completely determined by the expectations of the short rate, rt. It follows that the closest

approximation to the actual data-generating process of the short rate and the resulting

conditional expectations can be expected to result in the best fit for yields. We assume that

the dynamics of rt can be described by its own past realizations and by the history of two

other yields, one at the short end of the maturity spectrum, y
(24)
t , and one at the long end

of the yield curve, y
(120)
t . Thus, the state vector xt = [y

(24)
t , y

(120)
t , rt]

′ is trivariate with

K = 3, where both t and n are denoted in monthly frequencies.
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In estimating term-structure models, it is common to rely on Fama and Bliss (1987)-type

data for yields (see e.g. Cochrane and Piazzesi, 2005, and Diebold and Li, 2006). We

obtain continuously compounded U.S. government zero-coupon bond yields computed as

unsmoothed Fama-Bliss rates from Hillebrand et al. (2012). The data is observed monthly

from January 1970 to December 2009 and spans 50 different maturities of one month to

ten years4. We transform the data into real yields, using CPI data from the Bureau of

Labor Statistics. The short rate, rt, is proxied by the real one-month yield, y
(24)
t and y

(120)
t

are two-year real yields and ten-year real yields, respectively. Table 1 presents summary

statistics of the elements of the state vector xt, and for real yields with maturity n =12, 36,

60, and 84 months.

The time-series averages of yields indicate that the term-structure of interest rates has

had a normal shape over the 40 sample years, that is the yield curve has been upward

sloping. The standard deviation of yields decays very slowly for n ≥ 12 as time to matu-

rity increases, which is in line with Backus and Zin (1993) and provides a cross-sectional

motivation for considering fractionally integrated models. The slowly decreasing autocor-

relations of the elements of xt in Table 1 provide a time-series motivation for a model that

permits persistent state-vector dynamics. A shock to the short rate dies out at a very slow

rate with almost 50% of the effect remaining in the system after two years. Based on these

stylized facts, we allow our state variables rt, y
(24)
t , and y

(120)
t to have a long-memory data

generating process.

3.1 Low-frequency dynamics

As a first step, we estimate the univariate low-frequency dynamics of the short rate rt, as

these determine the long-run dependence in yields by (13). We assume that the series rt is

a fractionally integrated process, defined as

(1− L)drt = ut, (15)

where ut is assumed to be stationary I(0) with zero mean and spectral density fu(λ) sat-

isfying fu(λ) ∼ τ for frequencies λ → 0+, where 0+ implies that the limit is approached

from above. τ is assumed a positive constant. L denotes the usual lag operator and d is

the fractional integration parameter. The fractional filter (1−L)d is defined as the infinite

sum (1− L)d = ∆d =
∑∞

i=0ΘiL
i, with Θi = (−1)i

(

d
i

)

.

4Hillebrand et al. (2012) do not compute higher-order yields beyond the maturity horizon of ten years
as this would involve bonds that are not actively traded. Further details concerning the computation of
Fama-Bliss rates can be found in their paper.
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For d = 0, the series follows a stationary I(0) process. If d = 1, the series is nonsta-

tionary with a unit root. In general, a process with d ∈ (− 1
2 ,

1
2) is stationary. In line with

Robinson (2003a), we say that rt is nonstationary if d ≥ 1
2 , yet mean-reverting for d ∈ [ 12 , 1)

5.

It is common to rely on semiparametric techniques for the estimation of the long-memory

parameter, d, given that the short-memory structure of the data is usually not known a

priori. The exact local Whittle estimator (ELW) of Shimotsu and Phillips (2005) is well

suited for our estimation as it is generally robust and efficient (Henry and Zaffaroni, 2002)

and asymptotically normally distributed for any value of d, with
√
m(d̂− d) ∼ N(0, 1

4). m

is the size of the spectral window and its value determines the speed of convergence. Some

academic work has been devoted to the determination of an optimal bandwidth in spectral

analysis (see e.g. Henry and Robinson, 1996, and Henry, 2001), but a unanimous conclusion

is still absent. In line with Schotman et al. (2008), we therefore rely on a simple rule of

thumb and let m = T o, where o = 0.45.

The resulting point estimate for the fractional differencing parameter of rt, dr, is equal

to 0.8620. The short rate exhibits nonstationary long memory behavior, yet remains mean

reverting. This is in line with previous findings by Shea (1991), Sun and Phillips (2004),

and Schotman et al. (2008), among others. According to our term-structure model (13), the

substantial persistence in the short rate implies that long-term bond yields asymptotically

exhibit the same slow decay of shocks to the process and are, thus, also nonstationary. This

coincides with the existing empirical evidence, as discussed by Diebold and Li (2006), for

instance. The standard error of dr is 0.1213. A standard t-test reveals that we clearly reject

the null hypothesis that d is equal to zero. Using a one-sided t-test, we can further reject

that dr =
1
2 in favor of the alternative dr >

1
2 . Given the fairly narrow bandwidth that we

choose for the estimation, the t-test for the hypothesis that dr = 1 against dr < 1 cannot

be rejected at the 5% level, however.

Our theoretical term-structure of interest rates model implies that yields of all maturi-

ties have equal integration order. We assess this implication for the elements of the state

vector xt by a Wald test. Testing the equality of dy(24) = dy(120) results in a Wald statistic

of 0.1356, which is smaller than the 5% χ2(1) critical value of 3.841. Similarly, the Wald

statistic for H0 : dy(24) = dr is 0.0845, and for H0 : dy(120) = dr is 0.0060. Hence, we fail to

reject the equality of all fractional integration orders, which provides evidence in favor of

5The term mean reversion has to be interpreted with care, here. In case of d > 1
2 , the unconditional

mean is not defined, yet the conditional mean (such as E0(rt)) does exist.
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the restrictions imposed by the term-structure model (1)-(13).

3.2 Co-fractional VAR estimation

The state vector xt is fractionally integrated with dx ≈ 0.8620, according to the univariate

estimates. In addition, y
(120)
t , y

(24)
t , and rt can be expected to cointegrate fractionally6. Our

term-structure model implies that yields of all maturities are driven by the same process rt.

This implies that yields with different maturities cannot be independent stochastic trends.

Rather, we expect yields to cointegrate with one common stochastic trend. Therefore, we

model the trivariate process xt by a co-fractional VAR due to Johansen (2008a,b). The

co-fractional VAR, CFVARd(q), is defined as

∆dxt = γ
[

δ′
(

1−∆d
)

xt + ρ′
]

+

q
∑

i=1

Γi∆
d
(

1−∆d
)i

xt + ǫt, (16)

where ǫt is independently and identically distributed with (0,Σ). γ is the adjustment vector

of size 3×s, where s = 2 is the cointegrating rank, and δ is the cointegrating vector of same

size. ρ is a restricted constant of size 1× s. Johansen and Nielsen (2012) show that we can

estimate model (16) by maximum likelihood (ML)7.

Before estimating model (16), we have to determine the number of lags q. To that end,

we estimate the model for several different lags lengths under the hypothesis of full rank

s = K as is commonly done in the traditional I(0)/I(1) cointegration literature. The

Bayesian-Schwartz information criterion (BIC) is minimized for q = 1. We condition the

estimation of the trivariate process on the first ten initial values of xt to avoid inaccura-

cies due to the application of the truncated fractional filter. Table 2 summarizes our ML

estimation results. The corresponding 95% confidence intervals are obtained from a wild

bootstrap as we cannot exclude heteroskedasticity in the residuals8. The multivariate es-

timate for the long-run persistence is d = 0.8871. Hence, this parametric estimate is very

close to the univariate semiparametric estimate from the previous section. The estimate is

statistically larger than 1
2 and smaller than one, again suggesting that yields are nonstation-

ary long-memory processes. The adjustment parameters for the short-rate equation, e3′γ,

are both positive, whereas in the equation for the long-term yields, y
(120)
t , they are both

negative. y
(24)
t adjusts positively to the first cointegrating vector and negatively to the sec-

6For a derivation of term-structure cointegration implications in a traditional I(0)/I(1) framework, see
e.g. Hall et al. (1992) and Engsted and Tanggaard (1994). An extension to fractional and co-fractional
processes is discussed in Nielsen (2010).

7The corresponding Matlab code has been provided by Nielsen and Morin (2012).
8For a treatment of the wild bootstrap, see e.g. Davidson and MacKinnon (2007), Davidson and Flachaire

(2008), and Cavaliere et al. (2010a,b).
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ond. The reported R2 values suggest that the model captures the dynamics of xt very well9.

The normalized the cointegrating vector is given by

δ =









2 0

−1 1

δ(31) δ(32)









. (17)

Let a(ij) denote the element in row i and column j of any vector or matrix a. We can write

the equation for the short rate that is implied by the CFVARd(1) as

rt =
(

1−∆d
)

{

rt + γ(31)

(

2y
(24)
t − y

(120)
t + δ(31)rt + ρ(11)

)

+ γ(32)

(

y
(120)
t + δ(32)rt + ρ(12)

)}

+e3′Γ1∆
d
(

1−∆d
)

xt + e3′ǫt. (18)

Equation (18) implies that the long-run dynamics of the short rate are driven by three

terms. Firstly, the infinite history of the variable itself, since (1 − ∆d) = −∑∞
i=1ΘiL

i.

This component is very persistent, i.e. it is integrated of the order d̂ = 0.8871. Thus, it

can be interpreted as a level factor, with a factor loading of 1. Secondly, the short rate is

determined by the entire history an I(0) linear combination of the three elements of the

state vector 2y
(24)
t − y

(120)
t + δ̂(31)rt, plus a constant. If δ(31) were equal to -1, the inter-

pretation of this second driver of rt would be that of a curvature factor, as in Diebold and

Li (2006), with a factor loading of γ(31). We estimate δ(31) to be equal to -1.2369. Hence,

the value is close to -1 and it is statistically indistinguishable from -1. The final driver of

low-frequency dynamics of the short rate is a zero-mean stationary linear combination of

the long rate, y
(120)
t , and rt. Our estimate for δ(32) is equal to -1.0076, and we cannot reject

that it is statistically equal to -1 at a 95% confidence level. We conclude that this third

driver resembles the traditional slope factor with a factor loading of γ(32).

It is well known that the level factor is highly persistent. For instance, Ang and Piazzesi

(2003) find that the first yield-curve factor has a VAR(1) coefficient estimate of above 0.99.

In our model, it exhibits nonstationary long memory. The slope factor is persistent, as

well. Among others, Diebold et al. (2006) find that the impact of shocks on the second

term-structure factor declines only slowly over time. Considering the autocorrelations in

Table 1, we find the same results for the slope vector resulting from the co-fractional VAR.

The first three autocorrelation estimates are fairly high; yet after the first three lags they

decay rapidly as expected for an I(0) process. The curvature factor is the least persistent

of the three as is typically found in the literature.

9Note that R2 values have to be interpreted with care here, however, since xt is nonstationary. Thus, as
T → ∞, it holds that R2 → 1.
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In estimating model (16), we made two a priori assumptions. Firstly, we assumed that

the three elements of xt share one common trend, which implies a cointegration rank of

s = 2. We can check this assumption by computing the likelihood ratio (LR) statistic

of Johansen and Nielsen (2012) that provides a test for the null hypothesis that s ≤ 2

against the alternative that s ≤ p. The resulting estimate of the LR statistic is 1.1475.

The asymptotic distribution of the LR statistic is non-standard and depends on fractional

type-II Brownian motions. Yet, MacKinnon and Nielsen (2012) tabulate the corresponding

numerical critical value, which is 8.7616 at a 5% significance level. We strongly fail to reject

that the cointegrating rank is two or smaller.

Secondly, we imposed the restriction that the strength of the cointegrating relation between

the elements of xt, b, is equal to the order of fractional integration d in the co-fractional

model. Stating this differently, we restricted the cointegrating relations, δ′xt, in (16) to I(0)

processes. We can test this assumption in several ways. First, we re-estimate a generalized

version of the co-fractional VAR model (16) by maximum likelihood without imposing the

restriction that d = b 10. The resulting estimates are d̂ =0.8769 and b̂ =0.8769. As they

are identical, this lends support to the imposed restriction. A second test relies on the fact

that if we estimated a model with d = b, but the true b were unequal to d, the remaining

low-frequency dynamics would appear in the residuals of the regression. We estimate the

integration order of our estimated residuals from (16) and check whether they are I(0). The

ELW estimates (using the same bandwidth size as above) are 0.1492, -0.1066, and -0.1234

for the residuals of the equations for y
(24)
t , y

(120)
t , and rt respectively. The corresponding

standard error is 0.1213, which implies that we fail to reject that the residuals are integrated

of the order zero. Finally, a more general misspecification test is examining the residuals

for serial correlation. A standard Lagrange-Muliplier (LM) test results in p-values 0.1163,

0.6428, and 0.7373 for the three residual series. We have no evidence of serial correlation

in ǫt up to the eighth lag. However, we discover heteroskedasticity in the residuals of the

CFVARd(1); this motivates the application of the wild bootstrap.

3.3 Impulse responses of the co-fractional VAR model

To compute yields according to our term-structure model (1)-(13), we need the initial values

x0t of the state vector as well as the impulse responses Φj . We invert the co-fractional model

(16) to find a MA solution for xt given by

xt = −Ξ−1
+ (L)Ξ−(L)xt + Ξ−1

+ (L)
(

ǫt + γρ′
)

, (19)

10Note that we cannot estimate ρ, if d 6= b, as the parameter is not identified.
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where Ξ+(L) =
∑t−1

j=0 ΞjL
j and Ξ−(L) =

∑∞
j=t ΞjL

j , as shown by Johansen and Nielsen

(2012). For the CFVARd(1) model, the elements of the AR polynomial Ξ(L) are given by

Ξ0 = IK×K , and Ξj = (IK×K + γδ′)Θj + Γ1
∑j−1

k=0ΘkΘj−k ∀j ≥ 1.

Solution (19) is only defined, if the conditions for inversions are satisfied. Johansen and

Nielsen (2012) show that it must hold that |γ′⊥ (IK×K − Γ1) δ⊥| 6= 0. In our estimation,

this value is equal to 3.6145, and thus different from zero. Secondly, the roots z of the

characteristic polynomial |(1− z)IK×K −γδ′z−Γ1(1− z)z| = 0 must be either equal to one

or outside a complex disk Cmax(d,1). Figure 2 shows that all roots fulfill that condition, and

hence our model has solution (19).

As a final step, we re-write the solution (19) in the form of the state-vector representa-

tion (2) in the previous section. µ is equal to γρ′. We find that the MA coefficients are

given by the following recursion

Φj = −
j−1
∑

k=0

ΦkΞj−k ∀ j ≥ 1, (20)

with initial condition Φ0 = IK×K . The initial values, x0t , are given by

x0t =
∞
∑

j=0

t−1
∑

k=0

ΦkΞt+j−kL
t+jxt. (21)

All solutions are derived in Appendix B. The expression for the initial values, (21), involves

an infinite sum. In computing initial values, we truncate this initial sum after 10 observa-

tions using the first 10 observations on xt that we conditioned on in the ML estimation to

compute x0t .

Solution (19) allows us to analyze the conditional correlations between the three factors

that we identified as drivers of the low-frequency dynamics of the short-term interest rate,

rt. We can denote the level factor as e3′xt, and the slope and curvature factor as δ′xt+ρ′ (see

Equation (18)). The conditional (co-)variance between the factors that describe long-run

short-rate movements, that is Vart([x
′
t+1e3, x

′
t+1δ + ρ]′), is given by

Et

[(

e3′xt+1

δ′xt+1 + ρ′

)

− Et

(

e3′xt+1

δ′xt+1 + ρ′

)][(

e3′xt+1

δ′xt+1 + ρ′

)

− Et

(

e3′xt+1

δ′xt+1 + ρ′

)]′

=

(

e3′Σe3 e3′Σδ

δ′Σe3 δ′Σδ

)

. (22)
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The conditional correlation between the short rate and the slope factor is equal to -0.8633,

and the corresponding value for short-rate and curvature-factor correlation is -0.5827. The

second and third factor are strongly negatively correlated with the first factor, that is with

the long-run level factor. Hence, the term-structure factors in our model are related in a way

that is consistent with the results in Dai and Singleton (2000), who find that conditional

factor correlations should be negative. The conditional correlation among the second and

the third factor is positive, however.

4 Results

4.1 Term-structure factor loadings

The term-structure model (1) suggests bond prices are a function of the residuals of the

CFVARd(1) model scaled by loadings −V
(n)
j . By the inverse relation between prices and

yields it holds that the loading for yields are equal to (1/n)V
(n)
j . The raw residuals capture

shocks to the state variables y
(24)
t , y

(120)
t , and rt, respectively. To interpret the shocks as

shocks to the level, slope, and curvature factor instead, we rely on the permanent-transitory

shock decomposition of Gonzalo and Ng (2001). That is, we re-parametrize shocks ǫt from

the CFVARd(1) model by multiplying with a vector G, given by

G =

(

γ′⊥

δ′

)

, (23)

where γ⊥ has size (K × (K − s)) and is defined by γ′⊥γ = 0. The re-scaled shocks are

ǫ̃t = Gǫt. The interpretation of ǫ̃t is that the first element is a permanent11 level shock,

whereas the second and third element are transitory shocks to the curvature factor and the

slope factor. The corresponding impulse responses are Φ̃j = ΦjG
−1. This decomposition is

not unique as it depends on the normalization of γ⊥. Yet, we can compute unique orthog-

onalized shocks with covariance matrix IK×K . Let H be the Cholesky decomposition of ǫ̃t.

Then ǭt = H−1ǫ̃t are orthogonalized shocks with MA parameters Φ̄j = Φ̃jH. For these, we

compute the corresponding yield loadings as V̄
(n)
j = (1/n)

∑n−1
i=0 Φ̄′

j+ie3.

Figures 3, 4, and 5 plot these orthogonalized loadings on yield-curve factor shocks. Figure

3 shows that the loadings on the level -factor shock decay only very slowly, both over time

and over maturity. It also demonstrates that the further we go back in the history of the

process, the slower is the rate of decay over maturities n. The rate of decay of the loadings

over lags j does not change much over different maturities n, however. As expected, shocks

11Strictly speaking, the first shock γ′
⊥ǫ in our setup is not permanent. Its impact decays very slowly over

time, however, exhibiting nonstationary long-memory behavior.
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to the level factor have a very persistent effect on yields.

Figure 4 plots the effect of a slope shock on yields. By definition, the contemporary ef-

fect of a shock to the slope, or to the term spread, on the short-term interest rate (with

maturity n = 1) is negative. Beyond n = 1, the effect is slowly upward sloping for increasing

maturities, such that the shape of V̄
(n)
0 very much resembles the shape of the average yield

curve. That is, the effect marginally diminishes (in absolute value), as n increases. Just like

for level shocks, we observed that the impacts of slope shocks exhibit a slower decay rate

over n, as the lags j increase. In contrast to shocks to the level factor, we observe that the

effect decays relatively quickly over time, however. The same is true for the curvature-shock

effect, plotted in Figure 5. Again, the impact is negative for j = 0 and n = 1, by definition.

The usual initial ‘hump’ that the curvature factor is known to possess, is well visible as lags

j increase. Less visible, but still present, is the ‘hump’ as n increases. For small values of j,

the effect of the curvature factor first increase for low values of n and decreases thereafter.

All in all, the term-structure factors that arise naturally from the co-fractional modeling

framework exhibit the typical time-series and cross-sectional characteristics of a level, slope,

and curvature that have been established in the literature.

4.2 Implied yield curve

We calibrate the prices of risk, λ, such that average yields from model (13) match observed

yields at maturities equal to 12 months, five years, and ten years. More precisely, the mar-

ket price of risk is estimated at the short end, the intermediate end, and the long end of the

yield curve by the generalized method of moments (GMM). Using the resulting estimate as

well as the estimates for the dynamics of the state vector, xt, from Section 3, we compute

the term-structure parameters from Section 2 and model-implied yields.

Figure 6 plots fitted versus observed yields for six different maturities, n = {1, 12, 24,

36, 60, 120}, over time. Overall, yields implied by our affine term-structure model together

with co-fractional state-vector dynamics track the time series of observed yields very closely.

At maturity n = 1, model-implied and observed yields are virtually indistinguishable. As

the time to maturity increases, the fit gets marginally worse. Yet, even at maturity n = 120,

the match is exemplary. Over all of the 50 different maturities, for which we have observed

data, the R2 measure for the in-sample model fit fluctuates between 0.8881 and 1.0000. Our

model captures the lowest proportion of yield variation at maturity n = 96 and the largest

percentage at n = 1. Since we are working under the maintained assumption that the

short rate and hence yields are nonstationary long-memory processes, caution is required

in conducting inference on the basis of R2. As an alternative, we suggest to evaluate the
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fit of the term-structure model by regressing observed yields of different maturities on the

yields implied by Model (13). That is, we regress

y
(n)
OBS,t = α(n) + β(n)y

(n)
MODEL,t + u

(n)
t , (24)

where the subscripts ‘OBS’ and ‘MODEL’ denote observed and modeled values, respec-

tively. We estimate β(n) in (24) by narrow-band frequency domain least squares (FDLS)

due to Robinson (1994), which is more efficient than OLS in this setting. As before, the

size of the spectral window is limited to m = T o, with o = 0.4512. As the asymptotic distri-

bution of the FDLS estimate is non-standard (see, for instance, Robinson and Marinucci,

2001), we again resort to the application of the wild bootstrap to construct 95% confidence

intervals.

Figure 8(i) depicts the resulting estimates for β(n) and corresponding confidence inter-

vals. Across all maturities, the estimated β(n) is close to one. At the initial maturities, we

somewhat underestimate the variability of yields, yet for maturities n ≥ 33 we always find

that β(n) = 1 statistically. At higher maturities, the most persistence factor will dominate

the dynamics of yields. In our estimations, this is a nonstationary long-memory factor. The

results in Figure 8(i) therefore confirm that a long-memory model can generate the correct

amount of variation in yields at the long end, which is in line with the findings of Backus

and Zin (1993). The coefficient estimate for α(n) measures how well our model captures the

level of yields over time. The estimated value is plotted in Figure 7(i). We slightly over-

estimate the level of yields at initial maturities, but for n ≥ 22, we cannot reject that the

level of observed and modeled yields is identical. We conclude that yields that are modeled

by our affine term-structure model in (1)-(13) together with a CFVARd(1) model for xt fits

the observed term structure well and for maturities n ≥ 33 the level and variability of yields

are matched exactly.

4.3 Comparison with other models

To obtain an understanding of the comparative fit of our term-structure model, when the

state vector is modeled by a CFVARd(1), we contrast our results to a VAR(q) model for

the state vector xt. In the existing literature, it is very common to fit a VAR model (see,

for instance, Ang and Piazzesi, 2003). In that case, the term-structure model in (1)-(13)

collapses to the usual affine model for yields. According to the BIC, we select q = 2 for

the trivariate state vector. Any VAR(q) model can be inverted to find solution (2) and

12The estimate of α(n) is obtained in the second step. As its value should capture the intercept over the
entire frequency spectrum, we estimate α by setting m = T − 1, which is equivalent to OLS.
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we can obtain the term-structure parameters for (13) from this representation. If we com-

pare model-implied yields with observed yields in terms of R2, we find a maximal value

of 1.000 at maturity n = 1 and a minimum value of 0.7004 at n = 120. As pointed out

before, the R2 value may be misleading as an absolute measure of fit, yet it can be used

to infer the relative fit of models. Comparing the R2 of the VAR(2) with the one from the

CFVARd(1), we observe that the former always produces a worse yield fit than the latter,

with one exception at n = 2. The fit also becomes relatively worse compared to the co-

fractional model, as maturity increases. Figure 8(ii) clarifies why; it plots the estimates of

β(n) of Equation (24) for the VAR(2) model. The estimated value is well above one and the

degree of underestimation of the variability in yields increases as maturity increases. The

underestimation of yield variability with a stationary VAR model13, especially at the long

end of the yield curve, is a well-known result. The coefficients of the MA solution of the

(stationary) VAR(q) model decay at exponential rate over time; by (13) this implies a fast

decay of the term-structure of yield volatilities over maturities, as well14. The coefficient

β(n) is only statistically indistinguishable from one at very low maturities n ∈ [1, 5]. The

95% parameter confidence interval is increasingly wider than the corresponding interval

for the co-fractional model. It follows that modeling yields from a state vector with VAR

dynamics also implies relatively more parameter uncertainty. Figure 7(ii) shows that the

stationary VAR model statistically significantly overestimates the level of yields, in addition

to underestimating the variability in yields. The resulting negative α(n) estimate is only

statistically equal to zero at n = {1, 2}. As for β(n), the 95% confidence interval for α(n) is

increasingly wider than the one of the CFVARd(1), with the exception of n < 5.

We further compare our implied yields from (1)-(13) with a co-fractional model for xt,

with a unit-root model for xt. Many empirical studies conclude that yields are I(1) series

(see e.g. Engsted and Tanggaard, 1994, and Nielsen, 2010). As a consequence, it is not un-

common to impose a unit root on the dynamics of the state vector, as for instance done by

Dewachter and Lyrio (2006) and Christensen et al. (2011). To capture such very persistent

long-run dynamics in xt, while correcting for potential short-run dependence, we estimate

a VAR(1) in first differences. The fitted yields from this model compare to observed yields

with a maximal R2 of 1.000 at n = 1. All three models for xt thus result in an equally

well in-sample fit for rt. The lowest R2 that results from the VAR(1) in first differences is

below zero, however. Overall, the fit of yields from this model is always worse than from

13Note that the largest root of the VAR(2) model for xt has modulus 0.9858. The model is therefore
stationary.

14In the context of this discussion, it should be noted that one can always model a restricted VAR model
for xt that will perfectly fit the variability of yields. Yet, all tests in this section are based on unrestricted
VAR models, estimated from the time series of observed xt.
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the CFVARd(1). Figures 7(iii) and 8(iii) plot the estimates of α(n) and β(n) in Equation

(24), respectively. 7(iii) shows that the unit-root model strongly overestimates the level of

yields at initial maturities. The estimate for α(n) is only statistically equal to zero at matu-

rities n = {12, 60, 63, 66, 72, 108}. The 95% confidence interval for α(n) for the unit root

model is at almost all marturities substantially wider than the correspoding interval for the

co-fractional model, again suggesting more uncertainty within this modeling framework. In

contrast to the level, the slope of yields over time is captured fairly well by the VAR(1)

model in first differences. Only at n = 120 do we statistically significantly overestimate the

variablility of yields; yet, again confidence intervals are substantially wider at all maturities

compared to the CFVARd(1).

To summarize, the co-fractional model for xt results in yields that mostly have the cor-

rect level and dynamic properties to match observed yields. The stationary VAR(2) model

overestimates the level and underestimates the slope of yields over time. The unit-root

model does not come close to matching the level of yields, yet it introduces almost the right

amount of yield dynamics. The disappointing results from the stationary and unit-root

model are one of the reasons why previous studies called for highly volatile term premiums.

If term premiums have a lot of variability, they can move to correct these over- and under-

estimations of the level and slope of yields over time. With a co-fractional model we show

that we can obtain a good fit even when term premiums are constant.

The term-structure model of Diebold and Li (2006), henceforth DL model, has become

a benchmark in the yield-curve literature as it is very successful in capturing the dynamics

of yields over time as well as over maturity. As a final comparison, we contrast our implied

yields to yields resulting from the DL model. At each time t, we evaluate a cross-sectional

regression over 50 observed maturities given by

y
(n)
t = b1,t +

(

1− e−κn

κn

)

b2,t +

(

1− e−κn

κn
− e−κn

)

b3,t + η
(n)
t . (25)

This results in a time-series of factors bi,t, with corresponding loadings F (n), where

F (n) =

[

1,
1− e−κn

κn
,
1− e−κn (1 + κn)

κn

]′

.

We estimate κ by GMM, such that average estimated and observed yields at maturities 12,

60, and 120 months match. The resulting value for R2 varies between 0.9870 and 0.9989 for

different maturities. We observe the lowest R2 value at maturity n = 1 and the highest at

n = 25. Hence, the in-sample fit of the DL model is exceptionally good and the resulting
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R2 is always larger than the corresponding figure from the term-structure model (1)-(13)

together with a CFVARd(1) for xt, except at maturity n = 1. Figures 7(iv) and 8(iv)

demonstrate that the estimates for α(n) and β(n) in Equation (24) are never statistically

different from zero and one, respectively. In addition, the confidence intervals of the DL

model are somewhat narrower than the corresponding ones from the affine term-structure

model together with CFVARd(1) state-vector dynamics.

What explains the outperformance of the DL model in sample? The approach of Diebold

and Li (2006) to yield curve modeling is very distinct from the method that this paper

relies on. In this work, we first model the dynamics of an observed state vector and from

that we infer yields. The DL approach reverses this methodology; the first step consists

in fitting the cross section of yields, from which one can then infer the dynamics of a la-

tent state vector. In that respect, it may not come as a complete surprise that DL-fitted

yields are closer to observed yields, as at every point in time t one obtains the best cross-

maturity yield fit. Diebold and Li (2006) assume their yield curve factors, bt, follow a

VAR(1) process. This implies that we can write bt in the form of xt in (2). Our affine

term-structure model (1) then implies the following factor specifications: p
(n)
0,t = nF (n)′b0t ,

U
(n)
j = nF (n)′Φjµ, V

(n)
j = nΦ′

jF
(n), and W (n) = 0. The term-structure parameters in the

DL model are exogenously derived from a Nelsen-Siegel exponential components model, to-

gether with dynamics of three factors that match the cross section of yields. In contrast, the

yield-curve parameters in our model are derived from a time-series model for the short rate

together with equilibrium dynamics for the stochastic discount factor. The affine model (1)

that we propose is arbitrage free, whereas the DL model is not guaranteed to be arbitrage

free15. We expect this difference between the models to become an important factor, when

forecasting the yield curve out of sample. Especially when forecasting over long horizons,

we expect our arbitrage-free framework together with explicitly modeling the low-frequency

dynamics of the state vector, as we do in the CFVARd(1), to be well suited.

5 Forecasting Yields

Our term-structure model together with a CFVARd(1) model for the state vector xt results

in a good fit of the yield curve in sample. This fit was investigated by modeling the dynam-

ics of xt by accounting for the fractional integration and cointegration in the state variables,

using 40 years of observed data. From these estimates, we inferred yield dynamics for the

same sample period. Potentially more important than fitting yields in sample is the ability

15In an extension of the model, Christensen et al. (2009) introduce a maturity-dependent constant term
into yield dynamics as well, i.e. W (n) 6= 0, which renders the term-structure model arbitrage free.
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of a term-structure model to provide accurate yield-curve forecasts, when the dynamics of

the state vector are estimated in an earlier separate sample. Such a forecasting ability,

especially over long horizons, could be very beneficial to asset managers of portfolios with

long-dated investment horizons that are typically faced by pension funds and (life) insur-

ances. In this section, we investigate the out-of-sample forecast accuracy of term-structure

model (1)-(13).

If prices of zero-coupon bonds follow our term-structure specification in Section 2, we can

compute k-step ahead forecasts by the following recursion.

Etp
(n)
t+k = Etp

(n+1)
t+k−1 + e3′Etxt+k−1 −

1

2
V

(n)′

0 ΣV
(n)
0 + V

(n)′

0 Σλ, (26)

where the initial price forecast and the forecasts of the state vector are given by

Etp
(n)
t+1 = p

(n+1)
t + e3′xt −

1

2
V

(n)′

0 ΣV
(n)
0 + V

(n)′

0 Σλ (27)

Etxt+k−1 = x0t+k−1 +
t−1
∑

j=0

Φj+k−1ǫt−j +
t+k−2
∑

j=0

Φjµ. (28)

From Equation (26), we can obtain forecasts for yields from the identity y
(n)
t = −(1/n)p

(n)
t .

We compare yield-curve forecasts from our term-structure model together with a CFVARd(1)

model for xt, with the three competing models from the previous section. To that end we

rely on the mean-squared forecast error (MSE). Forecasts for the DL model are obtained

by assuming that bt follows a VAR(1) model, as in Diebold and Li (2006)16. We consider

forecasting horizons from one month to ten years, k = 1, 2, . . . , 120, and employ a rolling-

window forecasting framework. We fit a model to xt (respectively bt) on the basis of 260

months initial observations, and forecast xt as well as yields for all observed 50 maturities

between one month and ten years beyond that. We repeat this 221 times. Thus, for k = 1

we obtain 221 time-series observations of the yield curve to compare to the target, and for

k = 120 the time-series of out-of-sample forecasts has length 102.

We re-estimate the model parameters in each on of the 221 in-sample periods. The only

exception is the fractional differencing parameter d, which remains equal to its full-sample

estimated value d̂ = 0.8871. The reason is that we view long memory as a long-run sta-

tistical property of the respective series. The fact that others such as Shea (1991), Sun

and Phillips (2004), and Schotman et al. (2008) find comparable estimates for d for the

16Diebold and Li (2006) argue that uncorrelated AR(1) models for each element of bt, bi,t, produce better
forecasts than a VAR(1) model. For our data, we cannot confirm this conclusion. The resulting MSEs from
both specification are virtually indistinguishable.
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short-term interest rate in different samples, supports this assumption. In addition, e.g.

Orphanides and Wei (2012) find that the persistence of the short rate is stable throughout

their sample. Finally, roughly 22 years of data, which corresponds to the in-sample period,

may not be sufficient to correctly infer low-frequency dynamics.

Figures 9 and 10 plot the resulting MSE for all but two (n = 2, 4) maturities in our sample.

We start the discussion of the results by comparing the DL model to the affine model with

co-fractional dynamics. Figures 9 and 10 show that forecasts from the latter model are

always more accurate than the corresponding DL-model forecasts at long horizons. The

only deviations from that rule occur at very short maturities. For n = 1 the predictions

from the CFVARd(1) yield model are better than DL forecasts at any forecasting horizon

k. Thus, the short rate is predicted more precisely by a co-fractional model. At short

maturities n ∈ [2, 5], the DL model provides superior forecasts, even slightly so at very

large k. Beyond that, that is for n ≥ 6, long-run forecasts from the CFVARd(1) are more

accurate than DL forecasts. For maturities n ∈ [9, 57], the co-fractional model consistently

produces lower MSE values than the DL model for approximately k ≥ 30. At all other

maturities the CFVARd(1) outperforms the DL model in terms of MSE for horizons larger

than k ∈ [40, 50]. Thus, for forecasting horizons longer than approximately four years, the

forecast error is minimized by the affine term-structure model based on equilibrium yield

dynamics with co-fractional dynamics for xt, relative to the DL model (except for n = {3,
5}).

How do yield forecasts from the CFVARd(1) model compare to the other two specifica-

tions for the state-vector presented in Section 4? If we forecast xt with a VAR(2) model

in levels, we find that the co-fractional model produces more accurate yield forecasts, es-

pecially at long forecasting horizons. As for the DL model, the only exceptions are yields

with very low maturities, n ∈ [2, 5], where the VAR(2) forecasts yields more precisely. For

maturities n ∈ [6, 10], the co-fractional model outperforms the VAR(2) only in terms of

long-run forecasts. For all remaining maturities, n > 10, the latter model always produces

larger MSE values for any k. These results are very much in line with the findings from the

in-sample analysis, where we showed that the VAR(2) did not fit the observed data very

well, except at low maturities. We attribute this evidence to the fact that the stationary

VAR(2) model does not introduce sufficient persistence into the model, which is especially

important for fitting the long end of the yield curve, and for forecasting over long horizons.

Although less severely, the DL model seems to suffer partly from the same problem. In fact,

Figures 9 and 10 demonstrate that the mean-square forecast errors of the VAR(2) and the

DL model converge as k grows.
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Yield forecasts following from a VAR(1) specification for ∆xt are generally substantially

worse than forecasts from the other models. Noting that Figures 9 and 10 have a logarith-

mic scale, they demonstrate that this model produces mostly very high MSE values. Yet,

there is one exception. At maturities, where the level of yields is explicitly modeled in the

in-sample estimation period, long-run forecasts from the model that imposes a unit root on

the state vector are superior. More precisely, this occurs at maturity n = 1, where the level

and dynamics of rt are estimated by a CFVARd(1) model, and at n ≈ {12, 60, 120}, where
the level of yields is matched by the market price of risk. We conclude that the unit-root

model for xt introduces too much volatility into model-implied yields. This results in a

continuous over-shooting and under-shooting of the level of yields, except at those points

on the yield curve, where the level is explicitly matched. One possibility to remedy this

short-coming is to introduce volatile term premiums that correct for the strong deviations

from the level of yields. The alternative that is suggested in this paper, does not require

the introduction of more (or less) volatility through term premiums. The previous discus-

sion shows that one can obtain good long-run yield forecasts from an equilibrium model

with constant term premiums, when modeling state vector dynamics as a co-fractional pro-

cess. Our term-structure model is hence much closer to the expectations hypothesis, as

recommended by e.g. Bauer (2011).

5.1 Model-confidence sets

Graphs 9 and 10 suggest that the forecasting performance of our term-structure model

together with co-fractional dynamics is superior at long horizons for most maturities. How-

ever, the figures do not indicate whether this outperformance is statistically significant. We

remedy this shortcoming by computing forecast model confidence sets (MCS) due to Hansen

et al. (2003, 2011). For several different forecast horizons, k = {1, 3, 6, 12, 24, 36, 48, 60,
72, 84, 96, 108, 120}, we compute the set of models that contains the best forecasting model

for a yield with an average maturity with a confidence level of 95%. The best model is the

one for which MSE is minimized.

In addition to the forecasting models considered above, we add some more candidates.

The first addition consists of yield forecasts from the affine term-structure model (1)-(13)

together with CFVARd(1) dynamics for the state vector, where d is re-estimated in each

rolling in-sample period, as opposed to keeping its value fixed as above. Secondly, we

add DL-forecasts, where the vector bt is assumed to have three univariate AR(1) specifi-

cations, as Diebold and Li (2006) find this model to produce superior forecasts compared

to a VAR(1). Furthermore, we consider random-walk forecasts, where Ety
(n)
t+k = y

(n)
t . The
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random walk is an obvious candidate, since it is well known that it produces yield forecasts

that are hard to beat by equilibrium affine models (see e.g. Duffee, 2002). Finally, we con-

sider a historical mean model, that is Etyt+1 = 1
t

∑t
i=1 yt+1−i and for k > 1 forecasts can

be obtained recursively, which is a standard benchmark in the equity-premium literature

(see e.g. Campbell and Thompson, 2008, and Goyal and Welch, 2008).

Table 3 summarizes our results. As indicated by the findings in the previous section, the

affine term-structure model with CFVARd(1) dynamics for xt provides superior forecasts at

long horizons. When the forecast target lies five years or more in the future, we conclude

that our model is within the set of best predictor models. At these horizons, k ≥ 60, we can

discard all other models as having significantly worse predictive ability, with one exception.

The MCS at long horizons suggest that we cannot reject that our model with co-fractional

dynamics and the random walk are equally good prediction models.

For forecasting horizons from one to four years, our co-fractional interest rate model is

also within the set of best forecasting models. For these values of k, the MCS contains

many other models as well, however. That is, both specifications of the DL model and the

random walk are in the MCS, as well. The MCS methodology is known to acknowledge the

limitations of the data (Hansen et al., 2003). Thus, for these horizons where the MCS has

many elements, the data are simply not informative enough to select a smaller set of best

models, and it cannot be ruled out that several models possess equal predictive ability in

population. For very short forecast horizons, k ≤ 6, the model of Diebold and Li (2006)

together with the random walk provide superior forecasts, again suggesting that accounting

for long memory in the way it is done in this paper, is especially important for long-horizon

forecasts. Finally, we note that a yield with average maturity cannot be forecasted well by

our term-structure model with VAR-dynamics for xt in levels or first differences, nor by the

historical average. These models are found to have statistically inferior forecasting ability

relative to the competing models, at all forecast horizons.

6 Conclusion

Affine models for the term-structure of interest rates are subject to the criticism that the

dynamic properties required to match the time-series properties of state variables seem in-

compatible with the persistence required to match the cross-section of yields over different

maturities. In this article, we tackle this problem by allowing for a more flexible specifi-

cation in the state-vector dynamics. The resulting yield curve model is a generalization

of discrete time, Gaussian, affine term-structure models. Even though more flexible, the
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yield-curve model maintains the attractive property of affine models in that it produces a

closed-form solution for the term-structure parameters.

We model the state-vector dynamics by a co-fractional VARmodel due to Johansen (2008a,b).

This model generates yields that are fractionally integrated. More precisely, implied yields

exhibit long-memory yet mean-reverting behavior with a fractional integration coefficient of

d ≈ 0.87. Hence, implied yields are very persistent, which matches their empirical proper-

ties (see e.g. Diebold and Li, 2006). The co-fractional VAR specification fits the dynamics

of the state vector well. Three low-frequency factors arise from the specification, that have

the natural interpretation as level, slope, and curvature factors.

Predicting yields from the generalized affine model and co-fractional dynamics for the state

vector results in a good term-structure fit, both in sample as well as out of sample. In

sample, the model captures the level and the variability of yields well, especially at longer

maturities. The out-of-sample forecasting exercise reveals that the model produces good

long-horizon forecasts that outperform other well-established benchmark models and are

equally accurate as random-walk forecasts.

Appendix

A Derivation of the term-structure model

We derive the generalized Gaussian affine term-structure model in Equations (1)-(12). We

assume that logarithmic state-vector dynamics xt, logarithmic prices of zero-coupon bond

with maturity n, p
(n)
t , the log short rate rt = −p

(1)
t , and the logarithmic stochastic discount

factor, mt, have to following specifications.

xt = x0t +
t−1
∑

j=0

Φj (ǫt−j + µ) (A1)

p
(n)
t = −p

(n)
0,t −

t−1
∑

j=0

(

U
(n)
j + V

(n)′

j ǫt−j

)

−W (n) (A2)

rt = e3′xt (A3)

mt+1 = −rt − 1
2λ

′Σλ+ λ′ǫt+1. (A4)
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From (A2), we obtain conditional moments of prices by

Et

(

p
(n)
t+1

)

= −p
(n)
0,t+1 −

t
∑

j=1

(

U
(n)
j + V

(n)′

j ǫt+1−j

)

−
(

U
(n)
0 +W (n)

)

(A5)

Vart

(

p
(n)
t+1

)

= Et

{

[

p
(n)
t+1 − Et

(

p
(n)
t+1

)] [

p
(n)
t+1 − Et

(

p
(n)
t+1

)]′
}

= Et

{

[

−V
(n)′

0 ǫt+1

] [

−V
(n)′

0 ǫt+1

]′
}

= V
(n)′

0 ΣV
(n)
0 (A6)

Covt

(

p
(n)
t+1,mt+1

)

= Et

{[

p
(n)
t+1 − Et

(

p
(n)
t+1

)]

[mt+1 − Et (mt+1)]
′
}

= Et

{[

−V
(n)′

0 ǫt+1

]

[

λ′ǫt+1

]′
}

= −V
(n)′

0 Σλ. (A7)

The basic recursive pricing equation for a zero-coupon bond in levels is P
(n+1)
t = Et(Mt+1P

(n)
t+1),

where capital letters are the level analogue of the logarithmic counterparts. Imposing Gaus-

sianity, we can solve for log bond prices recursively.

p
(n+1)
t = −rt + Et

(

p
(n)
t+1

)

+ 1
2Vart

(

p
(n)
t+1

)

+ Covt

(

p
(n)
t+1,mt+1

)

= −e3′x0t −
t−1
∑

j=0

e3′Φj (ǫt−j + µ)− p
(n)
0,t+1 −

t−1
∑

j=0

(

U
(n)
j+1 + V

(n)′

j+1 ǫt−j

)

−
(

U
(n)
0 +W (n)

)

+ 1
2V

(n)′

0 ΣV
(n)
0 − V

(n)′

0 Σλ

= −
(

e3′x0t + p
(n)
0,t+1

)

−
t−1
∑

j=0

(

Φ′
je3 + V

(n)
j+1

)′

ǫt−j

−
t−1
∑

j=0

(

e3′Φjµ+ U
(n)
j+1

)

−
(

U
(n)
0 +W (n) − 1

2V
(n)′

0 ΣV
(n)
0 + V

(n)′

0 Σλ
)

(A8)

Equation (A8) shows that bond prices with maturity n + 1 can be expressed in the same

form as (A2) with corresponding parameters

p
(n+1)
0,t = e3′x0t + p

(n)
0,t+1 (A9)

V
(n+1)
j = Φ′

je3 + V
(n)
j+1 (A10)

U
(n+1)
j = e3′Φjµ+ U

(n)
j+1 (A11)

W (n+1) = U
(n)
0 +W (n) − 1

2V
(n)′

0 ΣV
(n)
0 + V

(n)′

0 Σλ. (A12)

From the equality of the price of a zero-coupon bond with maturity n = 1 with the negative

short rate, i.e. from p
(0)
t = −rt = −e3′x0t −

∑t−1
j=0 e3

′Φj (ǫt−j + µ), we can derive the initial
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condition for the bond pricing recursion in (A9)-(A12) as

p
(1)
0,t = e3′x0t (A13)

V
(1)
j = Φ′

je3 (A14)

U
(1)
j = e3′Φjµ (A15)

W (1) = 0. (A16)

Combining the recursive parameter expressions (A9)-(A12) with the initial values (A13)-

(A16), we obtain closed form solutions for p
(n)
0,t by

p
(2)
0,t = e3′x0t + p

(1)
0,t+1 = e3′x0t + e3′x0t+1

p
(3)
0,t = e3′x0t + p

(2)
0,t+1 = e3′x0t + e3′x0t+1 + e3′x0t+2

...

p
(n)
0,t = e3′x0t + p

(n−1)
0,t+1 =

n−1
∑

i

e3′x0t+i. (A17)

The closed-form expression for V
(n)
j is defined by

V
(2)
j = Φ′

je3 + V
(1)
j+1 = Φ′

je3 + Φ′
j+1e3

V
(3)
j = Φ′

je3 + V
(2)
j+1 = Φ′

je3 + Φ′
j+1e3 + Φ′

j+2e3

...

V
(n)
j = Φ′

j+1e3 + V
(n−1)
j+1 =

n−1
∑

i=0

Φ′
j+1e3, (A18)

and for U
(n)
j we find

U
(2)
j = e3′Φjµ+ U

(1)
j+1 = e3′Φjµ+ e3′Φj+1µ

U
(3)
j = e3′Φjµ+ U

(2)
j+1 = e3′Φjµ+ e3′Φj+1µ+ e3′Φj+2µ

...

U
(n)
j = e3′Φjµ+ U

(n−1)
j+1 =

n−1
∑

i=0

e3′Φj+iµ. (A19)

26



The closed-form solution for the parameter W (n) is obtained by

W (2) = U
(1)
0 +W (1) − 1

2V
(1)′

0 ΣV
(1)
0 + V

(1)′

0 Σλ

= U
(1)
0 − 1

2V
(1)′

0 ΣV
(1)
0 + V

(1)′

0 Σλ

W (3) = U
(2)
0 +W (2) − 1

2V
(2)′

0 ΣV
(2)
0 + V

(2)′

0 Σλ

=

2
∑

i=1

(

U
(i)
0 − 1

2V
(i)′

0 ΣV
(i)
0 + V

(i)′

0 Σλ
)

...

W (n) = U
(n−1)
0 +W (n−1) − 1

2V
(n−1)′

0 ΣV
(n−1)
0 + V

(n−1)′

0 Σλ

=
n−1
∑

i=1

(

U
(i)
0 − 1

2V
(i)′

0 ΣV
(i)
0 + V

(i)′

0 Σλ
)

.

Replacing V
(n)
0 and V

(n)
0 by their solutions from (A18) and (A19), we find

W (n) =
n−1
∑

i=1





i−1
∑

k=0

e3′Φkµ− 1

2

[

i−1
∑

k=0

Φ′
ke3

]′

Σ

[

i−1
∑

k=0

Φ′
ke3

]

+

[

i−1
∑

k=0

Φ′
ke3

]′

Σλ



 . (A20)

B Inversion of the CFVARd(1) model

The co-fractional CFVARd,b(q) model of Johansen (2008a,b) with one lag, q = 1, and with

the strength of the co-fractionality equal to the order of fractional integration, d = b, has

the representation

∆dxt = γ
[

δ′
(

1−∆d
)

xt + ρ′
]

+ Γ1∆
d
(

1−∆d
)

xt + ǫt. (B1)

We start the derivation of the inversion by re-writing Equation (B1) as follows.

xt =
[

I + γδ′
]

(

1−∆d
)

xt + γρ′ + Γ1∆
d
(

1−∆d
)

xt + ǫt

= −
[

I + γδ′
]

∞
∑

j=1

ΘjL
jxt + γρ′ − Γ1





∞
∑

j=0

ΘjL
j









∞
∑

j=1

ΘjL
j



xt + ǫt

= −
∞
∑

j=1

[

(

I + γδ′
)

Θj + Γ1

j−1
∑

k=0

ΘkΘj−k

]

xt−j + γρ′ + ǫt. (B2)
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From (B2), the autoregressive representation of the process xt is given by

xt +

∞
∑

j=1

[

(

I + γδ′
)

Θj + Γ1

j−1
∑

k=0

ΘkΘj−k

]

xt−j = γρ′ + ǫt

∞
∑

j=0

Ξjxt−j = γρ′ + ǫt

Ξ(L)xt = γρ′ + ǫt, (B3)

where Ξ0 = I. Let Ξ+(L) =
∑t−1

j=0 ΞjL
j and Ξ−(L) =

∑∞
j=t ΞjL

j . It follows that (B3) can

be expressed as

Ξ+(L)xt + Ξ−(L)xt = γρ′ + ǫt (B4)

Ξ+(L)
−1Ξ+(L)xt + Ξ+(L)

−1Ξ−(L)xt = Ξ+(L)
−1
(

γρ′ + ǫt
)

. (B5)

We want to find a moving-average solution for xt, such that the right-hand side of (B5) can

be written as

Ξ+(L)
−1
(

γρ′ + ǫt
)

=

t−1
∑

j=0

Φj

(

γρ′ + ǫt−j

)

. (B6)

Note that it has to hold that Ξ+(L)
−1Ξ+(L)+Ξ+(L)

−1Ξ−(L) = Ξ+(L)
−1Ξ(L). Expanding

these polynomials, we obtain

Ξ+(L)
−1Ξ(L) =





t−1
∑

j=0

ΦjL
j









∞
∑

j=0

ΞjL
j





=
t−1
∑

j=0

j
∑

k=0

ΦkΞj−kL
j +

∞
∑

j=0

t−1
∑

k=0

ΦkΞt+j−kL
t+j . (B7)

Equation (B7) consist of two terms. The first polynomial involves only in-sample values for

t = 1, 2, . . . , T , whereas the second sum involves pre-sample values, that is initial values of

the process xt. We therefore conclude that

Ξ+(L)
−1Ξ+(L)xt =

t−1
∑

j=0

j
∑

k=0

ΦkΞj−kxt−j (B8)

Ξ+(L)
−1Ξ−(L)xt =

∞
∑

j=0

t−1
∑

k=0

ΦkΞt+j−kx0−j . (B9)

Imposing the condition that Ξ+(L)
−1Ξ+(L) = I, we can find solutions for the moving-

average coefficients Φj . For identification, and without loss of generality, we impose that

28



Φ0 = I. It follows that

Φj = −
j−1
∑

k=0

ΦkΞj−k ∀j ∈ [1, t− 1]. (B10)

From recursion (B10), we can further compute the parameters Ξ+(L)
−1Ξ−(L)xt and obtain

a solution/inversion for xt equal to

xt = x0t +
t−1
∑

j=0

Φj

(

γρ′ + ǫt−j

)

, (B11)

where x0t = −∑∞
j=0

∑t−1
k=0ΦkΞt+j−kx0−j .
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Tables

Table 1: Summary statistics

The table reports summary statistics for monthly real yields with maturities n = {1, 12, 24,
36, 60, 84, 120}. All yields are quoted in % per month and are continously compounded. The
lower part of the table contains summary statistics for the slope and curvature factors, implied

by our co-fractional model (16). The former is defined as slope: y
(120)
t + δ̂(32)rt + ρ̂(12) and the

latter as curvature: 2y
(24)
t − y

(120)
t + δ̂(31)rt + ρ̂(11), where a hat represents an estimate.

Autocorrelations
Ave. StDev. 1 2 3 12 24 36

1-m TBond rt 0.470 0.249 0.960 0.931 0.908 0.729 0.483 0.355

1-y TBond y
(12)
t 0.520 0.260 0.974 0.950 0.928 0.775 0.555 0.439

2-y TBond y
(24)
t 0.542 0.253 0.981 0.959 0.939 0.796 0.608 0.510

3-y TBond y
(36)
t 0.559 0.243 0.983 0.963 0.947 0.816 0.645 0.551

5-y TBond y
(60)
t 0.581 0.230 0.985 0.967 0.951 0.830 0.687 0.604

7-y TBond y
(84)
t 0.597 0.222 0.985 0.967 0.951 0.834 0.704 0.618

10-y TBond y
(120)
t 0.604 0.214 0.987 0.971 0.956 0.830 0.708 0.631

Slope -0.019 0.121 0.859 0.794 0.742 0.354 0.008 -0.212
Curvature 0.004 0.086 0.599 0.529 0.480 0.175 0.013 -0.129
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Table 2: CFVARd(1) estimates

The table reports estimates of the CFVARd(1) model

∆dxt = γ
[

δ′
(

1−∆d
)

xt + ρ′
]

+

q
∑

i=1

Γi∆
d
(

1−∆d
)i

xt + ǫt.

Entries denote maximum parameter estimates, following Nielsen and Morin (2012). In addition, we provide
heteroskedasitcity robust 95% confidence intervals for the parameter estimates, obtained from 20,000
repetitions of the wild bootstrap.

estimate 95% confidence interval

d 0.8871 [0.5072, 0.9874]

γ





−0.0434 0.0034
−0.0312 −0.0249
0.1487 0.0267









[-0.1502,0.0398] [-0.0568,0.0751]
[-0.0952,0.0328] [-0.0909,0.0092]
[0.0292,0.2896] [-0.0701,0.1273]





δ





2 0
−1 1

−1.2369 −1.0076









− −
− −

[-1.4570,-0.9474] [-1.9407,-0.3368]





ρ′
(

0.1053
−0.1490

) (

[0.0073,0.1881]
[-0.4184,0.1630]

)

Γ1





0.0981 0.2012 0.0382
0.2312 −0.0019 −0.0207
0.5240 −0.0611 −0.1946









[-0.1972,0.7501] [-0.1286,0.4824] [-0.1022,0.1734]
[0.0321,0.4292] [-0.2320,0.7517] [-0.1178,0.0694]
[0.1041,1.0584] [-0.4524,0.2973] [-0.3604,0.1058]





Σ





0.0019 0.0010 0.0015
0.0010 0.0010 0.0008
0.0015 0.0008 0.0038





R2
y(24) 0.9712 [0.9120, 0.9951]

R2
y(120) 0.9789 [0.9237, 0.9963]

R2
r 0.9400 [0.8358, 0.9882]
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Table 3: Model confidence sets for yield forecasts

The table reports the members of a 95% model confidence set for out-of-sample yield forecasts,
indicated by a tick. The target is a time series of yields that are averaged accross 50 maturities.
The length of the block bootstrap window is set to six, i.e. half a year, which corresponds to
Newey-West’s rule of thumb. The results are based on 10,000 resampled values. The loss
function is the mean-sqaured error and the test statistic is maxT (see, Hansen et al. (2003)
and Hansen et al. (2011)). Forecasts are produced from eight different candidate models,
indiciated by numbers (1)-(8), which correspond to:

(1) Affine term-structure model (1)-(13), where xt is modeled by CFVARd(1) and d is re-
estimated in each rolling sample

(2) Affine term-structure model (1)-(13), where xt is modeled by CFVARd(1) and d is fixed
at its full-sample value

(3) Affine term-structure model (1)-(13), where xt is modeled by VAR(2)

(4) Affine term-structure model (1)-(13), where ∆xt is modeled by VAR(1)

(5) Diebold and Li (2006) model, where bt is modeled by VAR(1)

(6) Diebold and Li (2006) model, where bi,t is modeled by AR(1)

(7) Random Walk

(8) Historical Mean

.

Forecast Horizon (1) (2) (3) (4) (5) (6) (7) (8)

1 month ✓ ✓

3 months ✓ ✓

6 months ✓ ✓

1 year ✓ ✓ ✓ ✓

2 years ✓ ✓ ✓ ✓ ✓

3 years ✓ ✓ ✓ ✓ ✓

4 years ✓ ✓ ✓ ✓

5 years ✓ ✓ ✓

6 years ✓ ✓ ✓

7 years ✓ ✓ ✓

8 years ✓ ✓ ✓

9 years ✓ ✓ ✓

10 years ✓ ✓ ✓
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Figure 1: Evolution of the US 1-month zero-coupon U.S. government bond yields
- The figure plots the continuously compounded monthly real yield of a the nominal U.S.
government zero-coupon bond yield with maturity one month for the period 01.1970 -
12.2009 (black line). The blue dashed line is the time-series average of the series, computed
over the same sample period.
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Figure 2: Roots of the characteristic polynomial - The figure plots the roots of the
characteristic equation |(1− z)IK×K − γδ′z − Γ1(1− z)z| = 0, indicated by the blue stars.
The red line is the image of the complex disk Cd, for d = 0.8871. The black line represents
the image of the unit disk. For invertibility of the co-fractional VAR, all roots must be
equal to one or lie out side the disk Cmax(d,1).

Figure 3: Level factor - The figure plots the impact of an orthogonalized permanent shock
to the state vector on yields. The effect is computed as the first element of the vector

V̄
(n)
j = (1/n)

∑n−1
i=0 Φ̄′

j+ie3, where Φ̄j are the MA coefficients orthogonal shocks that have
a permanent-transitory decomposition, as defined in Section 4.1.
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Figure 4: Slope factor - The figure plots the impact of an orthogonalized transitory shock
to the state vector on yields. The effect is computed as the third element of the vector

V̄
(n)
j = (1/n)

∑n−1
i=0 Φ̄′

j+ie3, where Φ̄j are the MA coefficients orthogonal shocks that have
a permanent-transitory decomposition, as defined in Section 4.1.

Figure 5: Curvature factor - The figure plots the impact of an orthogonalized transitory
shock to the state vector on yields. The effect is computed as the second element of the

vector V̄
(n)
j = (1/n)

∑n−1
i=0 Φ̄′

j+ie3, where Φ̄j are the MA coefficients orthogonal shocks that
have a permanent-transitory decomposition, as defined in Section 4.1.
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Figure 6: Observed and model-implied yields - The figure plots real yields of ob-
served continuously compounded zero-coupon bonds against their model-implied counter-
parts. The figure depicts yields over the sample period Jan-1970 to Dec-2009 at maturities
n = {1, 12, 24, 36, 60, 120} months. A black line represents the observed yield, and a red
line corresponds to the modeled yield. Modeled yields result from a CFVARd(1) model for
the state vector, and are computed as in Equations (1)-(13).
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Figure 7: Estimates for α(n) in (24) - The figure plots the estimate for the intercept in
Regression (24) and the corresponding 95% confidence interval. The estimates are depicted
by black dots, and the confidence intervals by gray shaded areas. The x-axis represents
maturities n in months, and the y-axis resembles the size of the estimate for α(n). In Figures
(i), (ii), (iii), yields are estimated from the term-structure model in Section 2, whereas in
Figure (iv) they result from a Diebold and Li (2006) model (DL). The state vector xt is
estimated by a CFVARd(1) in (i), a VAR(2) in (ii), and a VAR(1) in first differences in
(iii). In Figure (iv), factors bt follow a VAR(1).

42



10 20 30 40 50 60 70 80 90 100 110 120

0.9

0.95

1

1.05

1.1

1.15

1.2

(i) xt: CFVARd(1) and y
(n)
MODEL,t: Model (13)

10 20 30 40 50 60 70 80 90 100 110 120
1

1.2

1.4

1.6

1.8

2

2.2

(ii) xt: VAR(2) and y
(n)
MODEL,t: Model (13)

10 20 30 40 50 60 70 80 90 100 110 120

0.6

0.7

0.8

0.9

1

1.1

1.2

(iii) ∆xt: VAR(1) and y
(n)
MODEL,t: Model (13)

10 20 30 40 50 60 70 80 90 100 110 120

0.92

0.94

0.96

0.98

1

1.02

1.04

(iv) bt: VAR(1) and y
(n)
MODEL,t: DL model

Figure 8: Estimates for β(n) in (24) - The figure plots the estimate for the slope in
Regression (24) and the corresponding 95% confidence interval. The estimates are depicted
by black dots, and the confidence intervals by gray shaded areas. The x-axis represents
maturities n in months, and the y-axis resembles the size of the estimate for β(n). In Figures
(i), (ii), (iii), yields are estimated from the term-structure model in Section 2, whereas in
Figure (iv) they result from a Diebold and Li (2006) model (DL). The state vector xt is
estimated by a CFVARd(1) in (i), a VAR(2) in (ii), and a VAR(1) in first differences in
(iii). In Figure (iv), factors bt follow a VAR(1).
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Figure 9: Out-of-Sample Forecast MSE - The figure plots MSEs from yield curve fore-
casts for maturities n ∈ [1, 26]. The red line corresponds to yield forecasts from the DL
model, where factors bt follow a VAR(1). The other lines result from yield forecasts from
the term-structure model in Section 2. xt is estimated by a CFVARd(1), indicated by a
blue line; a VAR(2), represented by a black line; and a VAR(1) in first differences, indicated
by a green line. The x-axis represents the forecast horizon k in months. The y-axis has log
scale.
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Figure 10: Out-of-Sample Forecast MSE (cont’d) - The figure plots MSEs from yield
curve forecasts for maturities n ∈ [27, 120]. The red line corresponds to yield forecasts from
the DL model, where factors bt follow a VAR(1). The other lines result from yield forecasts
from the term-structure model in Section 2. xt is estimated by a CFVARd(1), indicated
by a blue line; a VAR(2), represented by a black line; and a VAR(1) in first differences,
indicated by a green line. The x-axis represents the forecast horizon k in months. The
y-axis has log scale.
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