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Abstract

This paper puts forward kernel ridge regression as an approach for forecasting with many predictors

that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor

variables are mapped nonlinearly into a high-dimensional space, where estimation of the predictive

regression model is based on a shrinkage estimator to avoid overfitting. We extend the kernel ridge

regression methodology to enable its use for economic time-series forecasting, by including lags of

the dependent variable or other individual variables as predictors, as typically desired in macroe-

conomic and financial applications. Monte Carlo simulations as well as an empirical application

to various key measures of real economic activity confirm that kernel ridge regression can produce

more accurate forecasts than traditional linear and nonlinear methods for dealing with many predic-

tors based on principal component regression.
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1 Introduction

In current practice, forecasters in macroeconomics and finance face a trade-off between model complex-

ity and forecast accuracy. Due to the uncertainty associated with model choice and parameter estimation,

a highly complex predictive regression model based on many variables or intricate nonlinear structures

is often found to produce less accurate forecasts than a simpler model that ignores major parts of the

information that is at the researcher’s disposal.

Various methods for working with many predictors while circumventing this curse of dimensional-

ity in a linear framework have been applied in the recent forecasting literature, as surveyed by Stock

and Watson (2006). Most prominently, Stock and Watson (2002) advocate summarizing large panels of

predictor variables into a small number of principal components, which are then used for forecasting pur-

poses in a dynamic factor model. Alternative approaches include combining forecasts based on multiple

models, each including only a relatively small number of variables (Faust and Wright, 2009; Wright,

2009; Aiolfi and Favero, 2005; Huang and Lee, 2010; Rapach et al., 2010), partial least squares (Groen

and Kapetanios, 2008), and Bayesian regression (De Mol et al., 2008; Bańbura et al., 2010; Carriero

et al., 2011). Stock and Watson (2009) find that for forecasting macroeconomic time series, the dynamic

factor model approach is preferable to these alternatives; see also Ludvigson and Ng (2007, 2009) and

Çakmaklı and van Dijk (2010) for successful applications in finance.

The possibility of nonlinear relations among macroeconomic and financial time series has also re-

ceived ample attention during the last two decades. Among the most popular nonlinear forecast meth-

ods are regime-switching models and neural networks, see the surveys by Teräsvirta (2006) and White

(2006), respectively, and the comprehensive overview by Kock and Teräsvirta (2011). Typically, these

approaches are only suitable for a small number of predictors, and their ability to improve upon the pre-

dictive accuracy of linear forecasting techniques seems limited, see Stock and Watson (1999), Medeiros

et al. (2006), and Teräsvirta et al. (2005), among others. Giovannetti (2013) proposes a hybrid approach,

estimating a nonlinear model using principal components extracted from a large set of predictors.

In this paper, we introduce a forecasting technique that can deal with high-dimensionality and nonlin-

earity simultaneously. The central ideas are to employ a flexible set of nonlinear prediction functions and

to prevent overfitting by penalization, in a way that limits the computational complexity. In this approach,

which is known as kernel ridge regression, the set of predictors is mapped into a high-dimensional (or
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even infinite-dimensional) space of nonlinear functions of the predictors. A forecast equation is esti-

mated in this high-dimensional space, using a penalty (or shrinkage, or ridge) term to avoid overfitting.

In this manner, kernel ridge regression does not suffer from the curse of dimensionality, which plagues

alternative nonparametric approaches to allow for flexible types of nonlinearity (Pagan and Ullah, 1999).

Computational tractability is achieved by choosing the kernel in a convenient way, so that calculations

in the high-dimensional space are actually prevented. This approach avoids computational difficulties

also encountered in standard linear ridge regression when the number of predictor variables is large rela-

tive to the number of time series observations. Taking all these elements together, kernel ridge regression

provides an attractive framework for estimating nonlinear predictive relations in a data-rich environment.

The kernel methodology has been developed in the machine learning community, an area which often

involves large data sets. The terminology originates from operator theory, as computations are performed

in terms of the kernel of a positive integral operator, see Vapnik (1995). We use the term kernel in this

sense, as it is the established term for this method in machine learning. This meaning should not be

confused with other uses of the word, such as in kernel smoothing methods for local regression.

A typical application of kernel methods is classification, for example, in optical recognition of pixel-

by-pixel scans of handwritten characters. Schölkopf et al. (1998) document outstanding performance of

kernel methods for this classification task. Kernel ridge regression has been found to work well also in

many other applications. Time-series applications are scarce and seem to be limited to deterministic (that

is, non-stochastic) time series (Müller et al., 1997). On the other hand, linear penalized regression meth-

ods, including linear ridge regression, are widely used in economic forecasting; see the recent overview

by Kim and Swanson (2013). Kernel ridge regression has, to our knowledge, not yet been applied in the

context of macroeconomic or financial time-series forecasting.

This paper makes two methodological contributions to kernel ridge regression. First, we extend the

approach to enable the use of models that include lags of the dependent variable or other individual vari-

ables as predictors, as is typically desired in economic and financial applications. Second, we derive a

computationally efficient cross-validation procedure for selecting the tuning parameters involved in ker-

nel ridge regression, including the shrinkage parameter that determines the strength of the penalization.

We provide simulation evidence demonstrating that kernel ridge regression delivers more accurate

forecasts than conventional methods based on principal components in the presence of many predictors

that are related nonlinearly with the target variable. These conventional methods include extensions of

2



principal component regression to accommodate nonlinearity as put forward by Bai and Ng (2008). The

practical usefulness of kernel methods is confirmed in an empirical application to forecasting four key

measures of U.S. macroeconomic activity over the period 1970-2009: Industrial Production, Personal

Income, Manufacturing & Trade Sales, and Employment. In this application, factor-augmented smooth-

transition autoregressions are used as an additional benchmark. We find that, when traditional methods

perform poorly, kernel ridge regression yields substantial improvements. This result holds for the Pro-

duction and Income series. When traditional forecasts are of good quality, as is the case for the Sales and

Employment series, kernel-based forecasts remain competitive. We also find that kernel ridge regression

is much less affected by the 2008-9 financial and economic crisis than traditional methods.

The remainder of this paper is organized as follows. Section 2 describes the kernel methodology.

The Monte Carlo simulation is presented in Section 3, and Section 4 discusses the empirical application.

Conclusions are provided in Section 5. Details of the technical results are collected in an Appendix.

2 Methodology

The technique of kernel ridge regression (KRR) is based on ordinary least squares (OLS) regression and

ridge regression. Therefore, we begin this section with a brief review of these methods, highlighting

their limitations in dealing with nonlinearity and high-dimensionality. Next, we show how kernel ridge

regression overcomes these drawbacks by means of the so-called kernel trick. We extend the KRR

methodology to allow for “preferred” predictors, to enable its use in time-series contexts. We also present

the properties of some kernel functions that are popular because of their computational efficiency. As

will become clear below, kernel ridge regression involves tuning parameters. In Section 2.4 we propose

an efficient cross-validation procedure for selecting values for these parameters.

2.1 Preliminaries

We consider the following general setup for forecasting. At the end of period T , we wish to forecast

the value of a target variable y at a specific future date, denoted y∗, given an N × 1 vector of predictors

x∗. Historical observations for t = 1, . . . , T are available for all variables, collected in the T × 1 vector

y and the T × N matrix X . If we assume a linear prediction function ŷ∗ = x′∗β̂, we may obtain β̂ by

minimizing the OLS criterion ||y −Xβ||2, where ||e|| =
√
e′e denotes the L2 norm. Provided that X

has rank N , the solution is β̂ = (X ′X)−1X ′y, which leads to the forecast ŷ∗ = x′∗ (X
′X)−1X ′y.
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The OLS procedure presupposes that N ≤ T , and in practice, N � T is required to prevent over-

fitting problems. That is, if N is not small compared to T , we may obtain a good in-sample fit (indeed,

if N = T , the in-sample fit will be perfect), but the out-of-sample prediction ŷ∗ is generally found to be

of poor quality. A possible solution to this problem is shrinkage estimation or ridge regression, which

aims to balance the goodness-of-fit and the magnitude of the coefficient vector β. The ridge criterion

is given by ||y −Xβ||2 + λ ||β||2, where the penalty parameter λ > 0 is to be specified by the user.

As every element of the parameter vector β is penalized equally, the predictors in X should be scaled

appropriately. In our applications, we studentize each column of X over the estimation sample, so that

each predictor has zero mean and unit variance. The solution β̂ that minimizes the ridge criterion is

most easily found by defining the (T +N) × 1 vector u =
(
y′, 0′N×1

)′ and the (T +N) × N matrix

V =
(
X ′,
√
λ IN×N

)′
, where IN×N denotes the N -dimensional identity matrix. We may then write

||y −Xβ||2 + λ ||β||2 = ||u− V β||2. Minimizing this criterion by OLS yields β̂ = (V ′V )−1 V ′u, or,

in terms of the original variables, β̂ = (X ′X + λI)−1X ′y (we omit the subscript N × N from I for

notational convenience). The resulting forecast ŷ∗ = x′∗ (X
′X + λI)−1X ′y can be computed even if the

number of predictors N is larger than the number of observations T . Nevertheless, if N becomes very

large, the calculation of the ridge forecast may present computational difficulties, as it involves inverting

the N ×N matrix X ′X + λI . In practice, this hampers the use of ridge regression when N � T .

2.2 Kernel ridge regression and the kernel trick

Kernel ridge regression extends the general setup considered above to allow for nonlinear prediction

functions ŷ∗ = f (x∗). At the same time, it provides a way to avoid the computational complications

involved in producing the ridge forecast when the number of predictors becomes very large. As will

become clear below, this is particularly relevant in the context of nonlinear forecasting. From now on,

let ϕ : RN → RM be a (possibly nonlinear) mapping of the N observed predictor variables x resulting

in M transformed predictor variables z = ϕ (x). We assume that the prediction function is linear in z,

say ŷ∗ = z′∗γ̂, where z∗ = ϕ (x∗). Collecting the transformed predictor variables in the T ×M matrix

Z with rows z′t = ϕ (xt)
′, we may apply ridge regression to obtain γ̂ = (Z ′Z + λI)−1 Z ′y, and hence,

ŷ∗ = z′∗
(
Z ′Z + λI

)−1
Z ′y. (1)
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In macroeconomic and financial applications, we often work with high-dimensional data, sometimes

with the number of observed predictors N exceeding the number of time series observations T . More-

over, to allow for flexible forms of nonlinearity in the forecast equation,M � N is needed. For example,

if one approximates the unknown forecast function f by a dth order Taylor expansion, the mapping ϕ

effectively transforms the N × 1 vector x into the M × 1 vector z containing powers and cross-products

of its elements, with M proportional to Nd. Thus, M may become very large for realistic values of N

and d. As the matrix Z ′Z has dimensions M ×M , this can cause computational difficulties.

An efficient method to solve this curse of dimensionality problem is provided by the so-called kernel

trick. This method is essentially based on the idea that if the number of regressors M is much larger

than the number of observations T , working with T -dimensional instead of M -dimensional objects can

lead to notable computational savings. To appreciate the dimension reductions involved, consider the

macroeconomic application that will be discussed in Section 4. In this application, we estimate models

with N = 132 predictors on an estimation sample containing T = 120 observations. One of the models

includes a constant, all observed predictors, their squares, and all pairwise cross-products, leading to a

total of M = (N + 1) (N + 2) /2 = 8911 transformed predictor variables. The results described in the

remainder of this section allow working with a 120×120 matrix instead of the 8911×8911 matrix Z ′Z,

a sizeable simplification. What is more, as we shall see in Section 2.3, the kernel trick can also be made

to work in cases with M →∞, where standard ridge regression cannot be applied.

This dimension reduction can be achieved by relatively straightforward algebraic manipulations of

the expression of the nonlinear ridge forecast equation ŷ∗ = z′∗γ̂. First, we rewrite the ridge regression

estimator γ̂ = (Z ′Z + λI)−1 Z ′y as Z ′Zγ̂ + λγ̂ = Z ′y, or

γ̂ =
1

λ

(
Z ′y − Z ′Zγ̂

)
=

1

λ
Z ′ (y − Zγ̂) .

Pre-multiplying Z ′Zγ̂ + λγ̂ = Z ′y by the matrix Z gives ZZ ′Zγ̂ + λZγ̂ = ZZ ′y, or

Zγ̂ =
(
ZZ ′ + λI

)−1
ZZ ′y.

Combining these two results, we find

ŷ∗ = z′∗γ̂ =
1

λ
z′∗Z

′ (y − Zγ̂) =
1

λ
z′∗Z

′
(
y −

(
ZZ ′ + λI

)−1
ZZ ′y

)
=

1

λ
z′∗Z

′ (ZZ ′ + λI
)−1 (

ZZ ′ + λI − ZZ ′
)
y = z′∗Z

′ (ZZ ′ + λI
)−1

y.
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If we define the T × T matrix K = ZZ ′ and the T × 1 vector k∗ = Zz∗, this result can be written as

ŷ∗ = k′∗ (K + λI)−1 y. (2)

The forecast ŷ∗ in (2) is identical to the one in (1). The advantage of using (2) is that the inverse matrix in

this equation has dimensions T × T , so that the M ×M -dimensional computations in (1) are prevented.

To achieve computational savings over the straightforward application of ridge regression, it is crucial

that K and k∗ can be computed in a relatively simple way. The (s, t)-th element of K = ZZ ′ equals

z′szt = ϕ (xs)
′ ϕ (xt), and similarly, the t-th element of k∗ equals ϕ (xt)

′ ϕ (x∗). This implies that

the computational efficiency increases greatly if we choose a mapping ϕ for which the inner product

κ (a, b) = ϕ (a)′ ϕ (b) can be computed quickly, that is, without computing ϕ (a) and ϕ (b) explicitly.

In this context, κ is called the kernel function and K is the kernel matrix. This procedure for implicitly

finding the optimal parameter vector γ̂ in the “high” dimension M while working exclusively in the

“low” dimension T is known as the kernel trick and is due to Boser et al. (1992).

As the above discussion shows, KRR is no different from ordinary ridge regression on transforma-

tions of the regressors, except for an algebraic trick to improve computational efficiency. The key to

a successful application of this kernel trick is choosing a mapping ϕ that leads to an easy-to-compute

kernel function κ, while, obviously, at the same time ϕ should be chosen such that the corresponding

prediction function ϕ (x∗)
′ γ provides a good approximation to the true but unknown nonlinear predic-

tion function f (x∗). Various such mappings are known, and a recent overview is given in Smola and

Schölkopf (2004). The next section presents the most commonly used instances of these mappings.

In a time series context, we often prefer to include specific predictors in the forecast equation sepa-

rately from the nonlinear mapping ϕ. In macroeconomic applications, these “preferred” predictors may

include lags of the dependent variable to account for serial correlation. In financial applications such as

predicting stock returns, these predictors may include valuation ratios such as the dividend yield or inter-

est rate related variables; see Ludvigson and Ng (2007), Çakmaklı and van Dijk (2010), for example. In

such cases, the generalized forecast equation takes the form ŷ∗ = w′∗β̂+ z
′
∗γ̂, where the P × 1 vector w∗

contains the variables to be treated linearly. As the number of these additional predictors is limited and

the effect of these predictors is of particular interest, we do not penalize the parameters β and restrict the

ridge penalization to γ. We show in Appendix A.1 that the derivations that lead to (2) can be extended

to include such linear unpenalized terms, resulting in the “extended” KRR forecast equation
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ŷ∗ =

 k∗

w∗


′ K + λI W

W ′ 0


−1 y

0

 , (3)

where the T × P matrix W contains the historical observations on the variables to be treated linearly.

This is the forecast equation that will be used in the empirical application in Section 4.

2.3 Some common kernel functions

A first and obvious example is the identity mapping ϕ (a) = a, for which κ (a, b) = a′b. With this

choice of κ, the kernel forecast ŷ∗ = k′∗ (K + λI)−1 y = x′∗X
′ (XX ′ + λI)−1 y equals the linear ridge

forecast ŷ∗ = x′∗ (X
′X + λI)−1X ′y, as can be seen by taking Z = X and z∗ = x∗ in the derivations

leading to (2).

Next we consider a mapping such that ϕ (a) contains a constant term, all variables a1, a2, . . . , aN ,

and all their squares and cross products. Some experimentation reveals that κ (a, b) takes a particularly

simple form if we multiply some elements of ϕ (a) by the constant
√
2. That is, if we choose the mapping

ϕ (a) =
(
1,
√
2a1,
√
2a2, . . . ,

√
2aN , a

2
1, a

2
2, . . . , a

2
N ,
√
2a1a2,

√
2a1a3, . . . ,

√
2aN−1aN

)′
,

the corresponding kernel function is

κ (a, b) = ϕ (a)′ ϕ (b)

= 1 + 2 (a1b1 + a2b2 + . . .+ aNbN ) + a21b
2
1 + a22b

2
2 + . . .+ a2Nb

2
N

+ 2 (a1a2b1b2 + a1a3b1b3 + . . .+ aN−1aNbN−1bN )

= 1 + 2 (a1b1 + a2b2 + . . .+ aNbN ) + (a1b1 + a2b2 + . . .+ aNbN )2

= 1 + 2 a′b+
(
a′b
)2

=
(
1 + a′b

)2
With this specification of the kernel function, the computation of each of the T (T + 1) /2 distinct

elements of the kernel matrix K requires 2 (N + 1) additions and multiplications. In the absence

of the indicated scaling, the vector of constant, first-order, and second-order terms contains M =

(N + 1) (N + 2) /2 elements. The computation of each element of the kernel matrix would then re-

quire 2M = (N + 1) (N + 2) additions and multiplications. Thus, the proposed scaling reduces the

amount of computations by a factor of (N + 2) /2.
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As noted by Poggio (1975), this result can be generalized to the kernel function

κ (a, b) =
(
1 + a′b

)d for any integer d ≥ 1, (4)

corresponding to a mapping for which ϕ (a) consists of all polynomials in the elements of a of degree

at most d. Observe that this class of so-called polynomial kernel functions encompasses not only the

quadratic mapping, for d = 2, but also the identity mapping (and hence, standard linear ridge regression),

for d = 1.

Because smart choices of ϕ enable us to avoidM -dimensional computations, the kernel methodology

even allows letting M →∞. A common way to do this, dating back to Broomhead and Lowe (1988), is

by using the Gaussian kernel function

κ (a, b) = exp

(
−1

2
||a− b||2

)
. (5)

We show in Appendix A.2 that the corresponding mapping ϕ (a) contains as elements, for all degrees

d1, d2, . . . , dN ≥ 0, the “dampened” polynomials

e−a
′a/2

N∏
n=1

a dn
n√
dn!

.

In this paper, we consider the polynomial kernels (4) of degrees d = 1 and 2, as well as the Gaussian

kernel (5). To control for the relative importance of the terms in ϕ (x), we replace each observation x by

(1/σ)x before computing κ, for some positive scaling factor σ. Such scaling affects the weight placed

on different polynomial degrees, as it amounts to dividing linear terms in ϕ (x) by σ, second-order terms

by σ2, and so forth. Although we are performing linear regression on ϕ (x), such scaling is not without

effect, as its regression coefficients in the forecast equation ŷ∗ = w′∗β̂ + ϕ (x∗)
′ γ̂ are all penalized

equally by the ridge term in the criterion function ||y −Wβ − Zγ||2 + λ ||γ||2.

2.4 Selection of tuning parameters

The implementation of kernel ridge regression involves two tuning parameters, namely, the shrinkage

parameter λ and the scaling parameter σ. Additionally, our empirical application in Section 4 involves the

selection of lag lengths, which can also be seen as tuning parameters from a model selection perspective.

This section addresses the question of how to select the values for these tuning parameters.
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We determine the values of the tuning parameters by means of leave-one-out cross-validation, as

this is a natural criterion for the purpose of out-of-sample forecasting. For given values of the tuning

parameters, we estimate the model on the sample of size T − 1 that remains when the observation for

period t is removed. We then use this model to “forecast” the value of yt that was left out. This is repeated

T times, leaving out each observation for t = 1, 2, . . . , T once. Performing this cross-validation exercise

for each of the candidate values of the tuning parameters, we select those values that lead to the smallest

mean squared prediction error (MSPE) over these T forecasts. These values are then used to estimate

the model on the full sample t = 1, 2, . . . , T , from which we produce out-of-sample forecasts.

In the form stated above, this cross-validation procedure is computationally very expensive, as it

requires estimating the model on T different samples for each possible setting of the tuning parameters.

Cawley and Talbot (2008) propose a method that yields all leave-one-out prediction errors as a by-product

of estimating (2) only once, that is, on the full sample. We derive a similar result, extended to allow for

the additional linear terms in (3), in Appendix A.3.

In the simulation study and in the empirical application below, we use this method to select both

lag lengths, the ridge parameter λ, and the scaling parameter σ from a grid. For the lag lengths, we

employ the grids specified by Stock and Watson (2002). For the KRR parameters, we construct five-

point grids based on an estimate of the signal-to-noise ratio (for λ) and a smoothness assumption (for σ).

Specifically, we select σ ∈
{
1
2σ0, σ0, 2σ0, 4σ0, 8σ0

}
and λ ∈

{
1
8λ0,

1
4λ0,

1
2λ0, λ0, 2λ0

}
, where

σ0 =
√
N/2 and λ0 =

(
1 +Nσ−2

) (
1− R̂2

)/
R̂2 for the Poly(1) kernel,

σ0 =
√
(N + 2) /2 and λ0 =

(
1 + 2Nσ−2 +N (N + 2)σ−4

) (
1− R̂2

)/
R̂2 for the Poly(2) kernel,

σ0 =
√
cN /π and λ0 =

(
1− R̂2

)/
R̂2 for the Gaussian kernel,

where cN is the 95th percentile of the χ2 distribution with N degrees of freedom, and R̂2 denotes the

R-squared from OLS regression of y on the first four principal components of X . A detailed motivation

for using these grids is given by Exterkate (2013). We will use a rolling window of fixed length for

estimation, and we reselect the values of the tuning parameters for each window.

As a technical note on cross-validation, serial correlation in time-series data leads to dependence

between the observations in the estimation sample and the observation that was left out. This dependence

implies that the standard leave-one-out cross-validation procedure may not be fully adequate; see Racine
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(2000) for an extensive discussion and a modification to overcome these problems. Although the method

outlined in Appendix A.3 can easily be adapted to this modified form of cross-validation, the resulting

implementation is computationally quite intensive. In our applications, we find that the results from

using this modified procedure are not appreciably different from those obtained with simple leave-one-

out cross-validation (details of these results are available upon request). Therefore, we will only report

the results that are obtained using the latter method.

3 Monte Carlo simulation

To evaluate the potential of kernel ridge regression in a data-rich environment (that is, when many predic-

tor variables are present), we assess its forecasting performance for a set of static factor models through a

Monte Carlo study. We consider a setting with two latent factors f1t and f2t, which are taken to be uncor-

related standard normal variables. As predictor variables, N = 100 noisy linear combinations of these

factors are generated by xit = θi1f1t + θi2f2t + ηit, where the factor loadings θij , j = 1, 2, are drawn

from the standard normal distribution. The noise ηit is also normal with mean zero, while its variance is

selected to control the fraction of the variance of each xi variable explained by the factors, denoted by

R2
x. We consider two cases with R2

x equal to 0.4 or 0.8, which we label as “weak” and “strong” factor

structure, respectively. The target variable y is constructed according to four different DGPs:

Linear: yt = f1t + f2t + εt (6)

Squared: yt = f1t + f2t + 2
(
f21t + f22t

)
+ εt (7)

Cross-product: yt = f1t + f2t + 4f1tf2t + εt (8)

Smooth transition: yt = (1 + exp (−10f1t))−1 (2 + f2t) + εt (9)

Here εt is normally distributed, independent of the latent factors, with mean zero and a variance selected

to control R2
y, the fraction of the variance of yt that is explained by the factors. For R2

y we also consider

the values 0.4 and 0.8, which we refer to as “weak” and “strong” predictive structure, respectively.1

1We have also experimented with Student’s t distributions for εt and ηt. As these changes did not lead to appreciable
differences in (relative) forecasting performance, the results are not reported here but are available upon request.
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In each Monte Carlo replication, we generate time series of xi, i = 1, . . . , N , and y, each consisting

of T + 1 observations. The first T observations are used for estimation, and a forecast for yT+1 is made

based on xT+1. All variables are studentized to have mean zero and variance one in the estimation sam-

ple. We set T = 120, which corresponds to the length of each estimation window (ten years of monthly

observations) in the empirical application in Section 4. We present results based on 5000 replications.

In principle, OLS regression using the individual predictors can be applied in this setting, as the

number of regressors is smaller than the number of observations in the estimation sample. It should not

come as a surprise, though, that this procedure leads to a very poor forecasting performance, given the

large amount of parameter estimation uncertainty when N = 100 and T = 120. We therefore do not

report OLS results. Instead, we consider five alternative prediction methods for comparison with KRR:

(i) the “mean” forecast, with ŷ121 = (1/120)
∑120

t=1 yt;

(ii) the “combination” forecast (Comb), with ŷ121 = (1/100)
∑100

i=1 ŷi,121, where ŷi,121 is the forecast

of y121 based on OLS regression of y on regressor xi only;

(iii) principal component regression (PC), which amounts to OLS but with regressors f̂t being the first

k principal components of the predictor variables x;

(iv) “PC-squared” (PC2), as suggested by Bai and Ng (2008), which corresponds to principal compo-

nent regression with the squares of f̂t as additional regressors; and

(v) “Squared PC” (SPC), also proposed by Bai and Ng (2008), which is principal component regres-

sion but using the principal components of the original predictor variables x and their squares.2

For KRR, the tuning parameters λ and σ are selected from the grids defined in Section 2.4 using

leave-one-out cross-validation. For each of the principal-components-based methods, we select the num-

ber of components k by minimizing the Bayesian Information Criterion (BIC), where 1 ≤ k ≤ 10. Our

reason for minimizing BIC instead of performing cross-validation for these methods is twofold. First, us-

ing BIC in principal components forecasting settings is common in the literature; see, for example, Stock

and Watson (2002) and Bai and Ng (2008). Second, preliminary simulation evidence shows that using

BIC leads to superior results for principal-component methods, as compared to using cross-validation.
2Bai and Ng (2008) also propose a quadratic principal component (QPC) regression variant, in which principal components

are taken not only of the xit and their squares (as in SPC), but also including their cross-products. They report high compu-
tational costs and poor forecasting performance for QPC, and our preliminary analysis confirms these results. For this reason,
QPC is not considered in our study.
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Table 1: Relative mean squared prediction errors for the factor models (6)-(9).
DGP Linear Squared Cross-product Smooth transition

R2
y = 0.4 R2

y = 0.8 R2
y = 0.4 R2

y = 0.8 R2
y = 0.4 R2

y = 0.8 R2
y = 0.4 R2

y = 0.8
R2

x = 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8
Benchmark methods
Mean 1.02 1.02 1.02 1.02 1.00 1.00 1.03 1.03 1.02 1.02 1.04 1.04 1.02 1.02 1.02 1.02
Comb 0.88 0.77 0.73 0.50 0.98 0.97 0.99 0.97 1.00 0.99 1.01 0.99 0.92 0.85 0.83 0.68

Principal-components-based methods
PC 0.64 0.63 0.23 0.21 0.98 0.99 0.97 0.98 1.00 1.00 0.98 0.98 0.77 0.76 0.50 0.49
PC2 0.65 0.64 0.23 0.22 0.66 0.65 0.31 0.27 0.85 0.85 0.67 0.65 0.77 0.76 0.48 0.46
SPC 0.65 0.65 0.24 0.22 0.70 0.65 0.35 0.26 0.77 0.66 0.47 0.26 0.77 0.76 0.46 0.42

Kernel ridge regression
Poly(1) 0.66 0.64 0.25 0.21 0.98 0.98 0.97 0.97 0.99 0.99 0.99 0.98 0.78 0.77 0.52 0.49
Poly(2) 0.66 0.64 0.25 0.22 0.70 0.65 0.34 0.26 0.71 0.66 0.33 0.25 0.76 0.75 0.45 0.42
Gauss 0.66 0.65 0.25 0.22 0.78 0.70 0.49 0.32 0.85 0.77 0.62 0.42 0.75 0.71 0.41 0.32

Forecast combinations
Linear 0.77 0.74 0.52 0.44 0.98 0.98 0.98 0.97 0.99 0.99 0.99 0.98 0.85 0.83 0.69 0.64
No KRR 0.69 0.67 0.34 0.30 0.79 0.75 0.57 0.51 0.87 0.82 0.73 0.62 0.79 0.77 0.54 0.49
All 0.67 0.65 0.29 0.25 0.78 0.74 0.55 0.46 0.85 0.79 0.66 0.54 0.77 0.74 0.48 0.43

Diebold-Mariano tests
Nonlin. 22.43 19.29 38.46 36.96 21.52 21.93 28.01 28.54 18.78 21.00 23.26 25.94 17.95 15.97 31.79 30.18
Kernel 11.90 12.58 29.24 28.77 1.58 12.82 12.20 20.40 13.31 17.18 22.07 23.18 12.79 15.67 29.53 33.79

Notes: This table reports mean squared prediction errors (MSPEs) for models (6)-(9), averaged over 5000 forecasts, and relative
to the variance of the series being predicted. The combination forecasts are averages of the Mean, Comb, and PC forecasts
(“Linear”), the Mean, Comb, PC, PC2, and SPC forecasts (“No KRR”), and all forecasts (“All”), respectively. The smallest
relative MSPE for each DGP (column) within each group of methods (benchmarks, PC-based, KRR, or combinations) is
printed in italics, with the overall smallest in boldface italics. The last two rows report the t statistics of Diebold-Mariano tests
for equal predictive ability. “Nonlin.” compares “Linear” to “No KRR”; a positive statistic indicates better performance of the
latter. Similarly, “Kernel” compares “No KRR” to “All”. The statistic is printed in boldface if it is significant at the 5% level.

Table 1 shows mean squared prediction errors (MSPEs) relative to the variance of the series being

predicted. Note that if the factor values f1,T+1 and f2,T+1 were known, these relative MSPEs would

be close to 1 − R2
y, or 0.6 and 0.2 in the two scenarios of “weak” (R2

y = 0.4) and “strong” (R2
y = 0.8)

predictive structure considered here. Standard PC shows good performance for the linear DGP, while PC2

performs well for the squared DGP. Such results were to be expected, because the forecast equation in

these methods corresponds exactly with these DGPs. Interestingly, the kernel methods are only slightly

less accurate than these “optimal” methods, with the obvious exception of the Poly(1) (that is, linear)

kernel in the squared DGP (for which standard PC also fares badly). This finding holds regardless of

whether R2
x and R2

y are high or low, although the difference between PC or PC2 and the best performing

kernel method is smaller when the factor structure in the predictor variables is stronger (compare R2
x =

0.4 with R2
x = 0.8). Thus, we find that kernel methods can work well in standard factor model settings,

even though these methods are not based on any factor model assumptions.
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For the cross-product DGP, the SPC method from Bai and Ng (2008) and the Poly(2) kernel can

both be expected to perform well. We observe that KRR provides the most accurate forecasts here,

and that the gains are larger for lower R2
x. Thus KRR performs well in this case, especially when the

factor structure of the predictors is not very strong, as is often the case for empirical macroeconomic and

financial data. The Gaussian kernel also performs reasonably well. Finally, Gaussian KRR outperforms

all other (polynomial) methods in the smooth-transition DGP, with the Poly(2) kernel ranking second.

The Comb forecasts, which are based on combining many univariate linear forecasts, perform better

than the Mean benchmark in all DGPs. As expected, this is particularly evident in the linear model,

whereas the gains are marginal in the squared and cross-product DGPs. However, these forecasts are

clearly outperformed by all KRR-based and most PC-based forecasts in all cases considered.

We also explore the potential for combining kernel-based forecasts with more traditional forecasts.

Three types of combination forecasts are considered:

(i) “Linear”, combining all forecasts from traditional linear methods;

(ii) “No KRR”, combining all forecasts from non-kernel methods; and

(iii) “All”, combining all forecasts.

These combination forecasts are defined by taking a simple arithmetic average of the individual forecasts;

preliminary experimentation with taking the median or a weighted average based on inverse in-sample

root mean squared errors did not alter the results substantially.

In the group of rows labeled “Forecast combinations” in Table 1, it can be seen that the linear combi-

nation forecast always performs worse than the combination of all forecasts excluding KRR, and that both

of these are dominated by the combination forecast that does include kernel methods. Thus, including

traditional nonlinear methods enhances the forecast performance, and additionally including KRR-based

forecasts improves it even further. To quantify these gains, we report t statistics of the Diebold and Mar-

iano (1995) tests comparing these forecasts in the final two rows of Table 1. We observe that in all but

one out of 32 cases, the gains are strongly significant.

We conclude that kernel methods work quite well in a factor context, especially for nonlinear rela-

tions and in situations where the observed predictors give relatively little information on the factors.
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4 Macroeconomic forecasting

4.1 Data and forecast models

We evaluate the forecast performance of kernel ridge regression in an empirical application involving a

large panel of U.S. macroeconomic and financial variables. The data set consists of monthly observations

on 132 variables, including various measures of production, consumption, income, sales, employment,

monetary aggregates, prices, interest rates, and exchange rates. All series are transformed to stationarity

by taking logarithms and/or differences, as described in Stock and Watson (2005). We have updated their

data set, which starts in January 1959 and ends in December 2003, to cover the period up to and including

January 2010. The cross-sectional dimension varies somewhat over time because of data availability:

some time series start later than January 1959, while a few other variables have been discontinued before

the end of our sample period. For each month under consideration, observations on at most five variables

are missing.

We focus on forecasting four key measures of real economic activity: Industrial Production, Personal

Income less Transfer Payments (referred to as Personal Income in the following), Manufacturing & Trade

Sales, and Employment on Non-Agricultural Payrolls (referred to as Employment in the remainder of

this section), as in Stock and Watson (2002), among others. For each of these variables, we produce

out-of-sample forecasts for the annualized h-month percentage growth rate, computed as

yht+h =
1200

h
ln

(
vt+h

vt

)
,

where vt is the untransformed observation on the level of each variable in month t. We will denote y1t+1

as yt+1 to simplify the notation. We consider growth rate forecasts for h = 1, 3, 6, and 12 months, and

we follow Stock and Watson (2002) in modelling the h-month growth rate directly, rather than making

iterated one-month-ahead forecasts.

Kernel ridge regression is compared against several alternative forecasting approaches that are pop-

ular in current macroeconomic practice. As benchmarks we include the “mean” forecast (that is, the

average growth over the estimation window), the “no-change” or random-walk (RW) forecast, an autore-

gressive (AR) forecast (using lagged values of the one-month growth rates as predictors), a combination

(Comb) forecast (the average of 132 individual forecasts, each obtained by augmenting an AR(2) model
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with one additional explanatory variable), and a smooth-transition autoregressive (STAR) forecast

ŷht+h|t = Ĝtw
′
tβ̂0 +

(
1− Ĝt

)
w′tβ̂1 with Ĝt =

(
1 + exp

(
−δ̂
(
y12t − τ̂

)))−1
, (10)

where wt =
(
1, yt, yt−1 . . . , yt−(p−1)

)′, and the transition variable is y12t , the growth rate over the last

year, as in Teräsvirta et al. (2005).

In addition, as the primary competitor for kernel methods we consider the diffusion index (DI) ap-

proach of Stock and Watson (2002), who document its good performance for forecasting the same four

macroeconomic variables as considered here. The DI methodology extends the standard principal com-

ponent regression to a dynamic setting by including autoregressive lags as well as lags of the principal

components in the forecast equation. Specifically, using p autoregressive lags and q lags of k factors, at

time t, this “extended” principal-components method produces the forecast

ŷht+h|t = w′tβ̂ + f̂ ′t γ̂,

where wt is as before and f̂t =
(
f̂1,t, f̂2,t, . . . , f̂k,t, f̂1,t−1, . . . , f̂k,t−(q−1)

)′
. The lags of the dependent

variable in wt are one-month growth rates, irrespective of the forecast horizon h, because using h-month

growth rates for h > 1 would lead to highly correlated regressors. The factors f̂ are principal components

extracted from all 132 predictor variables, and β̂ and γ̂ are OLS estimates. Aside from standard principal

components (PC), we also consider its extensions PC2 and SPC, discussed in Section 3. In each case,

the lag lengths p and q and the number of factors k are selected by minimizing the Bayesian Information

Criterion (BIC). This criterion is used instead of cross-validation for two reasons. We want our results to

be comparable to those in Stock and Watson (2002) and Bai and Ng (2008), and preliminary experimen-

tation with the PC methods has revealed that using the BIC leads to superior results. Following Stock and

Watson (2002), we allow 0 ≤ p ≤ 6 (where p = 0 means that wt = 1), 1 ≤ q ≤ 3, and 1 ≤ k ≤ 4. Thus,

the simplest model that can be selected uses no information on current or lagged values of the dependent

variable, and information from the other predictors in the current month only, summarized by a single

factor. Also in line with Stock and Watson (2002), we do not perform an exhaustive search across all

possible combinations of the first four principal components and lag structures. Instead, we assume that

factors are included sequentially in order of importance, while the number of lags is assumed to be the

same for all included factors.

15



As a final set of competing nonlinear data-rich models, we augment the STAR forecast equation (10)

with factors in two different ways,

STAR-PC: ŷht+h|t = Ĝtw
′
tβ̂0 +

(
1− Ĝt

)
w′tβ̂1 + f̂ ′t γ̂ and

ST-ARPC: ŷht+h|t = Ĝt

(
w′tβ̂0 + f̂ ′t γ̂0

)
+
(
1− Ĝt

)(
w′tβ̂1 + f̂ ′t γ̂1

)
,

where Ĝt is as in (10), and f̂t are standard principal components.

For KRR, the corresponding forecast equation is

ŷht+h|t = w′tβ̂ + ϕ

((
x′t, x

′
t−1, . . . , x

′
t−(q−1)

)′)′
γ̂,

in the notation of Section 2.2, where wt is as defined above and xt contains all 132 predictors at time t.

The parameter vectors β̂ and γ̂ are estimated by KRR, resulting in the forecast equation (3). In particular,

note that β (which contains the constant term and the autoregressive coefficients) is not subject to a ridge

penalty, in order to avoid biased estimation of this short vector of relatively important parameters. The lag

lengths p and q, as well as the KRR parameters λ and σ, are selected by leave-one-out cross-validation.

All models are estimated on rolling windows with a fixed length of 120 months, such that the first

forecast is produced for the growth rate during the first h months of 1970. For each window, the tuning

parameter values are re-selected and the regression coefficients are re-estimated. That is, all of the tuning

parameters (p, q, k, λ, σ) may vary over time and across target variables, horizons, and methods.

The nonlinear principal-component-based models produce erratic forecasts on some occasions, which

have an undue impact on the mean squared prediction errors that we report. To mitigate the impact of

such forecasts, we follow Swanson and White (1995) in “substituting ignorance for craziness”. We cal-

culate the mean and standard deviation of the target variable over the 120-month estimation window. If

a forecast is more than five standard deviations away from the mean, it is replaced by the mean.

4.2 Results

We first assess the stability of the various forecast methods. In Table 2, we record how often the “insanity

filter” was invoked to replace an unreasonably extreme forecast by the sample mean. We note that this

filter was needed relatively frequently for traditional nonlinear models, especially SPC, whereas it was

hardly ever applied to kernel-based forecasts. It appears that the ridge term is a sufficient safeguard

against such extreme forecasts. In what follows, we report only the filtered results.
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Table 2: Application frequency of the insanity filter for the macroeconomic series.

Forecast Industrial Production Personal Income Manuf. & Trade Sales Employment
method h = 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12
Benchmark methods
Mean − − − − − − − − − − − − − − − −
RW 0.2 0.2 − − 0.4 − − − − − − − 0.2 − − −
AR − − − − 0.2 − − − − − − − − − − −
STAR 0.2 1.3 0.2 − − − − − 0.6 − − − 0.2 − − −
Comb − − − − 0.2 − − − − − − − − − − −

Principal-components-based methods
PC − − 0.4 − 0.2 − − − − − 0.6 − − − − −
PC2 0.4 1.1 1.5 0.4 0.2 − 0.9 1.3 − 0.6 1.3 1.1 − 0.6 1.7 1.1
SPC 0.4 1.3 2.1 2.8 0.2 0.4 1.1 2.8 − 1.1 1.5 2.0 − 1.5 1.9 1.3
STAR-PC 0.2 0.6 − − − − 0.2 0.2 0.6 0.2 0.4 − 0.2 − − 0.4
ST-ARPC 0.8 1.3 1.3 − − 0.2 0.9 0.2 1.3 0.2 1.1 0.2 0.4 0.2 1.1 −

Kernel ridge regression
Poly(1) − − − − − − − 0.2 − − − − − − − −
Poly(2) − − − − − − − 0.9 − − − − − − − −
Gauss − − − − − − − 0.9 − − − − − − − −

Notes: This table lists the percentage of forecasts to which an insanity filter was applied, for each forecast method and for each
target series. If the filter was never applied, this is indicated by a dash (−).

Table 3 shows the MSPEs for the period 1970-2010 for the five benchmark methods, five PC-based

methods, three kernel methods, and the three forecast combination methods that were introduced in

Section 3. Several conclusions can be drawn from these results. First, we observe that KRR provides

more accurate forecasts than any of the five benchmarks (mean, random walk, autoregression, STAR, and

the combination forecast) for all target variables and all forecast horizons, with larger gains for longer

horizons. This holds for the Gaussian kernel in all 16 cases, and for both polynomial kernels in 14 out of

16 cases. In many cases the improvements in predictive accuracy are substantial, even compared to the

combination forecast, which seems the best of the five benchmarks. For example, for 12-month growth

rate forecasts, kernel ridge regression based on the Gaussian kernel achieves reductions in MSPE of

15-35% for all four variables (relative to Comb).

Second, if we compare the forecasts based on KRR and the linear PC-based approach, we find some-

what mixed results, but generally the kernel methods perform competitively or better. Kernel ridge

forecasts are superior for Industrial Production and Personal Income for three and two horizons, respec-

tively, of the four horizons considered. The improvements in relative MSPE range from 1% for Industrial

Production at the one-month horizon to 8% for Personal Income at the longest horizon of one year. For
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Table 3: Relative mean squared prediction errors for the macroeconomic series.

Forecast Industrial Production Personal Income Manuf. & Trade Sales Employment
method h = 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12
Benchmark methods
Mean 1.01 1.04 1.05 1.07 1.02 1.05 1.09 1.16 1.01 1.02 1.04 1.08 0.98 0.96 0.96 0.97
RW 1.18 1.09 1.36 1.61 1.20 1.36 1.14 1.34 2.18 1.49 1.45 1.50 1.58 0.95 0.99 1.19
AR 0.92 0.87 1.01 1.02 1.04 1.04 1.09 1.14 1.01 1.01 1.09 1.08 0.96 0.85 0.89 0.95
STAR 1.04 0.97 1.10 1.08 0.94 0.99 1.26 1.15 1.03 1.11 1.06 1.07 0.95 0.84 0.84 0.99
Comb 0.85 0.81 0.90 0.91 0.97 0.94 0.93 0.98 0.98 0.96 0.98 0.98 0.89 0.75 0.76 0.81

Principal-components-based methods
PC 0.80 0.72 0.78 0.63 0.90 0.78 0.89 0.90 0.88 0.80 0.74 0.64 0.76 0.55 0.47 0.48
PC2 0.76 0.84 0.93 0.87 0.94 0.91 1.05 1.00 0.93 0.89 0.80 0.76 0.76 0.62 0.59 0.58
SPC 0.84 0.86 0.90 0.79 0.93 0.93 0.98 1.14 0.97 0.97 0.99 0.80 0.81 0.69 0.64 0.66
STAR-PC 0.93 0.88 0.86 0.61 0.91 0.94 1.14 1.12 0.91 0.87 0.79 0.69 0.81 0.65 0.66 0.61
ST-ARPC 0.94 1.40 0.91 0.69 0.93 0.98 1.14 1.29 0.99 0.90 0.90 0.75 0.82 0.64 0.65 0.63

Kernel ridge regression
Poly(1) 0.78 0.71 0.75 0.68 0.97 0.88 0.89 0.89 0.95 0.90 0.77 0.64 0.90 0.69 0.64 0.55
Poly(2) 0.79 0.72 0.81 0.67 0.96 0.85 0.93 0.95 0.95 0.89 0.81 0.68 0.95 0.69 0.68 0.64
Gauss 0.75 0.66 0.73 0.65 0.92 0.82 0.87 0.83 0.92 0.88 0.81 0.65 0.88 0.67 0.63 0.58

Forecast combinations
Linear 0.81 0.75 0.81 0.82 0.90 0.87 0.83 0.89 0.99 0.88 0.87 0.85 0.88 0.66 0.64 0.72
No KRR 0.77 0.71 0.72 0.66 0.87 0.80 0.82 0.86 0.90 0.84 0.76 0.70 0.81 0.59 0.55 0.60
All 0.73 0.66 0.68 0.60 0.86 0.78 0.79 0.79 0.87 0.80 0.71 0.63 0.79 0.58 0.54 0.55

Diebold-Mariano tests
Nonlin. 2.27 1.19 1.65 2.12 2.11 2.01 0.28 0.54 4.00 1.74 2.79 1.86 5.58 2.88 2.72 2.98
Kernel 3.60 2.78 1.83 1.60 0.98 1.96 1.40 1.97 3.38 2.65 2.27 2.13 1.97 1.44 1.15 1.46

Notes: This table reports mean squared prediction errors (MSPEs) for four macroeconomic series, over the period 1970-2010,
relative to the variance of the series being predicted. The combination forecasts are averages of the Mean, RW, AR, Comb,
and PC forecasts (“Linear”), all benchmark and principal-components-based forecasts (“No KRR”), and all forecasts (“All”),
respectively. The smallest relative MSPE for each series (column) within each group of methods (benchmarks, PC-based, KRR,
or combinations) is printed in italics, with the overall smallest in boldface italics. The last two rows report the t statistics of
Diebold-Mariano tests for equal predictive ability. “Nonlin.” compares “Linear” to “No KRR”; a positive statistic indicates
better performance of the latter. Similarly, “Kernel” compares “No KRR” to “All”. The statistic is printed in boldface if it is
significant at the 5% level.

Manufacturing & Trade Sales, kernels perform slightly worse than linear principal components, but the

difference is small especially at the longer horizons. Finally, for Employment, the PC-based forecasts

are more accurate than kernel-based forecasts by about 20%. The KRR-based Employment forecasts

are just as accurate as those for the other series; the difference is driven by the very good performance

of principal component regression in this case. Recall that in the Monte Carlo experiment in Section 3,

we find the analogous result that kernel-based methods yield better relative performance, compared to

PC-based methods, if the factor structure is relatively weak. That is, our results suggest that kernel ridge

regression performs better than principal component regression unless the latter performs very well.
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Third, the KRR approach convincingly outperforms the PC2 and SPC variants of the principal com-

ponent regression framework, as well as the factor-augmented STAR models. In fact, also the linear PC

specification renders substantially more accurate forecasts than these four extensions in almost all cases.

Apparently, the PC2, SPC, STAR-PC, and ST-ARPC methods cannot successfully cope with the possibly

nonlinear relations between the target variables and the predictors in this application. 3

Fourth, the forecast combinations exhibit the same pattern as in the simulation study. Adding tra-

ditional nonlinear methods always helps in forecasting (compare “No KRR” to ”Linear”), and adding

kernel methods helps even more (compare “All” to “No KRR”), for every series, at every horizon. In

fact, the all-inclusive combination forecast performs better than any individual forecast for ten out of

sixteen target series. The Diebold-Mariano t statistics in the last two rows of Table 3 indicate that these

improvements are statistically significant in the majority of cases.

Fifth, among the kernel-based methods, the Gaussian kernel generally performs best, achieving lower

MSPEs than either polynomial kernel in all but three cases. Although Poly(1) (that is, linear ridge

regression) performs better in a few cases, Gaussian KRR shows satisfactory results in all situations.

Furthermore, all MSPE / variance ratios in Table 3 are below one for all kernels.

It appears that linear principal component regression is by far the strongest competitor to kernel

ridge regression. Following Stock and Watson (2002), we provide a further evaluation of our results by

estimating the forecast combining regression

yht+h = α ŷht+h|t + (1− α) ŷh, PC
t+h|t + uht+h, (11)

where yht+h is the realized growth rate over the h-month period ending in month t+h, ŷht+h|t is a candidate

forecast made at time t, and ŷh, PC
t+h|t is the corresponding linear PC-based forecast.

Estimates of α are shown in Table 4, with heteroscedasticity and autocorrelation consistent (HAC)

standard errors in parentheses. The null hypothesis that the PC forecast receives zero weight (α = 1) is

rejected in almost all cases, which means that none of the alternative methods encompass linear principal

component regression. The other null hypothesis of interest is α = 0, which would imply that PC

encompasses the alternative method in question. This hypothesis is almost always rejected for KRR

forecasts (except when forecasting Employment), and almost never for the other methods. Thus, we

conclude that KRR and PC forecasts are complementary, whereas the other nonlinear forecast methods
3Bai and Ng (2008) report somewhat better forecast performance if SPC is applied to a selected subset of the predictors,

rather than to the full predictor set. Also with this modification, SPC has difficulties outperforming simpler linear methods in
their application.
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Table 4: Estimated coefficients α̂ from the forecast combining regression (11).

Forecast Industrial Production Personal Income
method h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

Principal-components-based methods
PC2 0.75∗ (0.18) 0.02† (0.12) 0.11† (0.17) -0.07† (0.15) 0.15† (0.21) 0.06† (0.19) 0.25† (0.14) 0.38∗† (0.11)
SPC 0.35∗† (0.13) 0.28∗† (0.09) 0.33∗† (0.13) 0.28∗† (0.13) 0.18† (0.16) 0.21† (0.12) 0.38† (0.20) 0.27∗† (0.12)
STAR-PC 0.25† (0.16) 0.21† (0.17) 0.31† (0.20) 0.58∗† (0.19) 0.44∗† (0.18) -0.02† (0.20) 0.04† (0.17) 0.00† (0.28)
ST-ARPC 0.27∗† (0.08) 0.01† (0.12) 0.20† (0.16) 0.38∗† (0.15) 0.38∗† (0.11) 0.11† (0.10) 0.18† (0.11) 0.07† (0.12)

Kernel ridge regression
Poly(1) 0.56∗† (0.09) 0.52∗† (0.12) 0.55∗† (0.11) 0.41∗† (0.15) 0.25∗† (0.12) 0.24† (0.17) 0.51∗† (0.19) 0.51∗† (0.12)
Poly(2) 0.53∗† (0.08) 0.51∗† (0.11) 0.45∗† (0.10) 0.43∗† (0.12) 0.30∗† (0.10) 0.33∗† (0.12) 0.43∗† (0.17) 0.45∗† (0.10)
Gauss 0.62∗† (0.08) 0.62∗† (0.11) 0.60∗† (0.11) 0.45∗† (0.11) 0.40∗† (0.11) 0.38∗† (0.15) 0.55∗† (0.18) 0.59∗† (0.12)

Forecast Manufacturing & Trade Sales Employment
method h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

Principal-components-based methods
PC2 0.01† (0.13) 0.16† (0.18) 0.37∗† (0.14) 0.10† (0.20) 0.50∗† (0.17) 0.16† (0.13) 0.23∗† (0.08) 0.18† (0.11)
SPC 0.09† (0.13) 0.09† (0.19) 0.20† (0.15) 0.26∗† (0.13) 0.12† (0.13) 0.14† (0.08) 0.20∗† (0.08) 0.18† (0.12)
STAR-PC 0.41∗† (0.13) 0.07† (0.15) 0.40∗† (0.09) 0.31† (0.16) 0.02† (0.14) 0.11† (0.12) -0.02† (0.10) -0.01† (0.15)
ST-ARPC 0.12† (0.12) 0.15† (0.14) 0.27† (0.16) 0.25∗† (0.11) 0.06† (0.13) 0.17† (0.11) 0.02† (0.13) -0.07† (0.16)

Kernel ridge regression
Poly(1) 0.31∗† (0.11) 0.28∗† (0.09) 0.43∗† (0.10) 0.50∗† (0.19) 0.16† (0.09) 0.11† (0.09) 0.01† (0.13) 0.31† (0.17)
Poly(2) 0.36∗† (0.09) 0.27∗† (0.11) 0.36∗† (0.11) 0.43∗† (0.19) 0.13† (0.08) 0.07† (0.09) -0.06† (0.13) 0.20† (0.15)
Gauss 0.40∗† (0.10) 0.32∗† (0.11) 0.36∗† (0.10) 0.47∗† (0.17) 0.19∗† (0.09) 0.10† (0.10) 0.05† (0.12) 0.25† (0.17)

Notes: This table reports α̂, the weight placed on the candidate forecast in the forecast combining regression (11). HAC
standard errors follow in parentheses. An asterisk (∗) indicates rejection of the hypothesis α = 0 and a dagger (†) indicates
rejection of α = 1, at 5% significance.

generally fail to improve on linear principal component regression. Thus, the favorable results we found

for the “No KRR” combination forecast hinge on the fact that we aggregated all these nonlinear methods;

none of them reliably outperform linear PC individually, while the KRR variants do.

Finally, we examine the stability of the performance of KRR and PC-based methods over time. For

this purpose, Figure 1 shows time-series plots of rolling MSPEs for the best-performing benchmark,

PC-based, kernel, and forecast combination methods, where the value plotted for date t is the MSPE

computed over the ten-year subsample ending with the forecast for date t, that is, ŷht|t−h. We show

only the series for h = 12, as the results for the other horizons are qualitatively similar. This figure

confirms that, when KRR forecasts are less accurate than PC-based forecasts, this is because PC-based

forecasts are very accurate, and not because KRR forecasts would be inaccurate. Another interesting

feature evidenced by Figure 1 is that, although the recent crisis reduces the accuracy of all forecasts from

2008 onward, it affects the kernel-based forecasts least. The combination forecast always performs very

well, despite the fact that our combination scheme is a simple unweighted average.
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Figure 1: Ten-year rolling-window mean squared prediction errors for four macroeconomic series, for a forecast
horizon of h = 12 months, for the best-performing benchmark, PC-based, kernel, and combination methods.
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Figure 2 shows the corresponding time series of relative MSPEs for ten-year rolling windows, to-

gether with the rolling variance of the series being predicted. Together with Figure 1, these graphs lead

to the following two conclusions. First, predictability improves in an absolute sense during less volatile

times, in the sense that the MSPEs in Figure 1 typically decline when the rolling variance of the series

being predicted in Figure 2 goes down. Second, forecasting becomes more difficult in a relative sense

during less volatile periods, in the sense that the relative MSPEs seem to be inversely related to the

rolling variance of the series being predicted; see Figure 2. These results corroborate the findings of

Stock and Watson (2007) for U.S. inflation. Concerning the second point, it is interesting to note that the

fluctuations in relative MSPE generally are more pronounced for KRR than for PC-based methods. This

suggests that kernel-based forecasts are most valuable during turmoil periods.
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Figure 2: Ten-year rolling-window MSPEs for four macroeconomic series, for the best-performing benchmark,
PC-based, kernel, and combination methods, relative to the variance of the series being predicted.
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5 Conclusion

We have introduced kernel ridge regression as a framework for accommodating nonlinear predictive

relations in a data-rich environment. We have extended the existing kernel methodology to enable its use

in time-series contexts typical for macroeconomic and financial applications. These extensions involve

the incorporation of unpenalized linear terms in the forecast equation and an efficient leave-one-out

cross-validation procedure for model selection. Our simulation study suggests that this method can deal

with the type of data that comes up frequently in economic analysis, namely, data with a factor structure.

The empirical application to forecasting four key U.S. macroeconomic variables — production,

income, sales, and employment — shows that kernel-based methods can provide more accurate fore-

casts than well-established linear and nonlinear, autoregressive and principal-components-based meth-

22



ods. Kernel ridge regression exhibits a relatively consistent good predictive performance, also during the

crisis period in 2008-9. Among the kernel methods, the Gaussian kernel is found to produce the most

reliable forecasts. This finding implies that it is not just the ridge term that contributes to the predictive

accuracy, but accounting for nonlinearity leads to additional improvements in many cases. As using

the Gaussian kernel does not require the forecaster to specify the form of nonlinearity in advance, this

method is a powerful tool. Another advantage, compared to other nonlinear techniques, is that kernel

ridge regression is much less prone to producing occasional “insane” forecasts.

Finally, we have provided statistical evidence that kernel-based forecasts consistently contain infor-

mation that is missed by principal-components-based forecasts, and vice versa. Previously proposed

nonlinear forecast methods, including STAR models, factor-augmented STAR models, and nonlinear

variants on principal component regression, do not have this property. This suggests a potential for fore-

cast combinations, and we do indeed find that combination forecasts including kernel methods signifi-

cantly outperform those excluding KRR. We conclude that the kernel methodology is a valuable addition

to the macroeconomic forecaster’s toolkit.

Appendix: Technical results

This appendix contains derivations of three results stated in Section 2. In Appendix A.1 we derive

the expression for the forecast equation (3) for kernel ridge regression with additional unpenalized linear

terms. In Appendix A.2 we obtain the mapping that corresponds to the Gaussian kernel function. Finally,

in Appendix A.3 we describe an efficient leave-one-out cross-validation method for selecting tuning

parameters in KRR.

A.1 Kernel ridge regression with unpenalized linear terms

We have shown in Section 2.2 that minimizing the penalized least-squares criterion ||y − Zγ||2+λ ||γ||2

leads to the forecast ŷ∗ = k′∗ (K + λI)−1 y as given in (2). In this appendix, we modify this forecast

equation to allow for unpenalized linear terms as in the generalized forecast equation ŷ∗ = w′∗β̂ + z′∗γ̂,

where the P × 1 vector w∗ contains the variables to be treated linearly. In this case, we seek to minimize

||y −Wβ − Zγ||2 + λ ||γ||2 (A.1)

over the P × 1 vector β and the M × 1 vector γ. For given β̂, we can proceed as in Section 2.2 to find
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γ̂ = Z ′ (K + λI)−1
(
y −Wβ̂

)
. (A.2)

On the other hand, for given γ̂, minimizing criterion (A.1) is equivalent to ordinary least squares regres-

sion, which gives
β̂ =

(
W ′W

)−1
W ′ (y − Zγ̂) . (A.3)

If we pre-multiply both sides of (A.3) by W ′W , substitute the expression for γ̂ from (A.2) into (A.3),

and recall that K = ZZ ′, we get

W ′Wβ̂ = W ′
(
y −K (K + λI)−1

(
y −Wβ̂

))
= W ′y −W ′K (K + λI)−1 y +W ′K (K + λI)−1Wβ̂.

Collecting the terms involving β̂ on the left-hand side of this equation, and rearranging, we obtain

W ′
(
I −K (K + λI)−1

)
Wβ̂ = W ′

(
I −K (K + λI)−1

)
y.

Using the fact that I −K (K + λI)−1 = (K + λI −K) (K + λI)−1 = λ (K + λI)−1 then leads to

β̂ =
(
W ′ (K + λI)−1W

)−1
W ′ (K + λI)−1 y.

If we then substitute this result and (A.2) into the forecast equation ŷ∗ = z′∗γ̂ + w′∗β̂, and recall that

k∗ = Zz∗, we find

ŷ∗ = k′∗ (K + λI)−1
(
I −W

(
W ′ (K + λI)−1W

)−1
W ′ (K + λI)−1

)
y

+ w′∗

(
W ′ (K + λI)−1W

)−1
W ′ (K + λI)−1 y.

(A.4)

To obtain a more manageable equation, note that by the partitioned matrix inversion formula, K + λI W

W ′ 0


−1

=

 (K + λI)−1
(
I −WSW ′ (K + λI)−1

)
(K + λI)−1WS

SW ′ (K + λI)−1 −S

 , (A.5)

where S =
(
W ′ (K + λI)−1W

)−1
. It follows from this result that (A.4) is equivalent to the forecast

equation (3) in Section 2.2:

ŷ∗ =

 k∗

w∗


′ K + λI W

W ′ 0


−1 y

0

 .

A.2 Expansion of the Gaussian kernel

In this appendix, we derive the mapping ϕ that corresponds to the Gaussian kernel function. As stated

in (5) in Section 2.3, this kernel function is defined as κ (a, b) = exp
(
||a− b||2 /2

)
. If we write

−(1/2) ||a− b||2 = −a′a/2− b′b/2 + a′b and expand the Taylor series for exp (a′b), we obtain
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κ (a, b) = e−a
′a/2 e−b

′b/2
∞∑
r=0

1

r!

(
a′b
)r
. (A.6)

We proceed by expanding (a′b)r as a multinomial series:

(
a′b
)r

=

(
N∑

n=1

anbn

)r

=
∑∑

· · ·
∑

{∑N
n=1 dn=r, all dn≥0}

(
r!∏N

n=1 dn!

N∏
n=1

(anbn)
dn

)
.

Substituting this result into (A.6), we find

κ (a, b) = e−a
′a/2 e−b

′b/2
∞∑
r=0

 1

r!

∑∑
· · ·
∑

{∑N
n=1 dn=r, all dn≥0}

(
r!∏N

n=1 dn!

N∏
n=1

(anbn)
dn

)
= e−a

′a/2 e−b
′b/2

∞∑
d1=0

∞∑
d2=0

· · ·
∞∑

dN=0

(
N∏

n=1

(anbn)
dn

dn!

)
.

Finally, we split the product into two factors that depend only on a and only on b, respectively:

κ (a, b) =

∞∑
d1=0

∞∑
d2=0

· · ·
∞∑

dN=0

(
e−a

′a/2
N∏

n=1

a dn
n√
dn!

)(
e−b

′b/2
N∏

n=1

b dnn√
dn!

)
. (A.7)

As this expression shows, κ (a, b) = ϕ (a)′ ϕ (b), where, as claimed in Section 2.3, ϕ (a) contains as

elements, for each combination of degrees d1, d2, . . . , dN ≥ 0,

e−a
′a/2

N∏
n=1

a dn
n√
dn!

.

A.3 Computationally efficient leave-one-out cross-validation

In this appendix, we describe an efficient method for leave-one-out cross-validation, which we employ

to select the tuning parameters in KRR. Our derivation extends the results in Cawley and Talbot (2008)

to allow for the unpenalized linear terms in the forecast equation (3). The result of Appendix A.1 can be

summarized as follows: kernel ridge regression leads to the forecast

ŷ∗ =

 k∗

w∗


′ α̂

β̂

 with

 K + λI W

W ′ 0


 α̂

β̂

 =

 y

0

 . (A.8)

The first step in leave-one-out cross-validation is to estimate the model on all observations except the

first. As K = ZZ ′, and each row of Z depends only on the corresponding row of X , the only elements

in K that depend on the first observation are those in the first row and those in the first column. We

therefore separate the first row and column from the other elements of K, and likewise, we split off the

first row of W , and the first elements of α̂ and y. We denote these partitioned matrices and vectors by
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K =

 k1,1 k′−1,1

k−1,1 K−1,−1

 , W =

 w′1

W−1

 , α̂ =

 α̂1

α̂−1

 and y =

 y1

y−1

 .

We then have from (A.8)
k1,1 + λ k′−1,1 w′1

k−1,1 K−1,−1 + λI W−1

w1 W ′−1 0




α̂1

α̂−1

β̂

 =


y1

y−1

0

 ,

or equivalently, separating the first equation from the others,

α̂1 (k1,1 + λ) +

 k−1,1

w1


′ α̂−1

β̂

 = y1, (A.9)

α̂1

 k−1,1

w1

+

 K−1,−1 + λI W−1

W ′−1 0


 α̂−1

β̂

 =

 y−1

0

 . (A.10)

The forecast of y1 based on a model estimated on observations 2, 3, . . . , T clearly equals

ỹ1 =

 k−1,1

w1


′ K−1,−1 + λI W−1

W ′−1 0


−1 y−1

0


and using (A.9) and (A.10) we may write

ỹ1 = α̂1

 k−1,1

w1


′ K−1,−1 + λI W−1

W ′−1 0


−1 k−1,1

w1

+

 k−1,1

w1


′ α̂−1

β̂


= α̂1

 k−1,1

w1


′ K−1,−1 + λI W−1

W ′−1 0


−1 k−1,1

w1

+ y1 − α̂1 (k1,1 + λ)

= y1 − α̂1

k1,1 + λ−

 k−1,1

w1


′ K−1,−1 + λI W−1

W ′−1 0


−1 k−1,1

w1


 .

The expression k1,1 + λ−

 k−1,1

w1


′ K−1,−1 + λI W−1

W ′−1 0


−1 k−1,1

w1

 is equal to the recip-
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rocal of element (1, 1) of


k1,1 + λ k′−1,1 w′1

k−1,1 K−1,−1 + λI W−1

w1 W ′−1 0


−1

=

 K + λI W

W ′ 0


−1

, as can be

seen by using the partitioned matrix inversion formula. Therefore, the first leave-one-out error equals

y1 − ỹ1 = α̂1

/
element (1, 1) of

 K + λI W

W ′ 0


−1

.

In general, an analogous derivation shows that the t-th leave-one-out prediction error equals

yt − ỹt = α̂t

/
element (t, t) of

 K + λI W

W ′ 0


−1

. (A.11)

That is, we obtain all leave-one-out errors by dividing each element of the vector α̂ by the corresponding

diagonal element of the matrix

 K + λI W

W ′ 0


−1

. Observe that both α̂ and this inverse are needed in

computing the forecast ŷ∗. Thus, in the process of making the out-of-sample prediction, we can find all

leave-one-out errors without performing any additional computations, aside from the division in (A.11).

As a final note, we mention that the matrix inverse in (A.11) can also be computed efficiently. As

K+λI is symmetric and positive definite, its inverse can be computed from its Cholesky decomposition.

The inverse of the full matrix can then be calculated using (A.5) in Appendix A.1.
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K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik. Predicting time series

with support vector machines. In W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, editors,

Artificial Neural Networks ICANN’97, pages 999–1004. Springer, Berlin, 1997.

A.R. Pagan and A. Ullah. Nonparametric Econometrics. Cambridge University Press, 1999.

T. Poggio. On optimal nonlinear associative recall. Biological Cybernetics, 19:201–209, 1975.

J. Racine. Consistent cross-validatory model-selection for dependent data: hv-block cross-validation.

Journal of Econometrics, 99:39–61, 2000.

D.E. Rapach, J.K. Strauss, and G. Zhou. Out-of-sample equity premium prediction: Combination fore-

casts and links to the real economy. Review of Financial Studies, 23:821–862, 2010.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue prob-

lem. Neural Computation, 10:1299–1319, 1998.

A.J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Computing, 14:

199–222, 2004.

J.H. Stock and M.W. Watson. A comparison of linear and nonlinear univariate models for forecasting

macroeconomic time series. In R.F. Engle and H. White, editors, Cointegration, Causality and Fore-

casting. A Festschrift in Honour of Clive W.J. Granger, pages 1–44. Oxford University Press, 1999.

29



J.H. Stock and M.W. Watson. Macroeconomic forecasting using diffusion indexes. Journal of Business

and Economic Statistics, 20:147–162, 2002.

J.H. Stock and M.W. Watson. Implications of dynamic factor models for VAR analysis. NBER Working

Paper No. 11467, 2005.

J.H. Stock and M.W. Watson. Forecasting with many predictors. In G. Elliot, C.W.J. Granger, and

A. Timmermann, editors, Handbook of Economic Forecasting, pages 515–554. Elsevier, Amsterdam,

2006.

J.H. Stock and M.W. Watson. Why has U.S. inflation become harder to forecast? Journal of Money,

Credit and Banking, 39:3–33, 2007.

J.H. Stock and M.W. Watson. Generalized shrinkage methods for forecasting using many predictors.

Manuscript, Harvard University, 2009.

N.R. Swanson and H. White. A model-selection approach to assessing the information in the term struc-

ture using linear models and artificial neural networks. Journal of Business and Economic Statistics,

13:265–275, 1995.
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