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Abstract

We introduce the notion of relative volatility/intermittency and demonstrate how
relative volatility statistics can be used to estimate consistently the temporal vari-
ation of volatility/intermittency even when the data of interest are generated by a
non-semimartingale, or a Brownian semistationary process in particular. While this
estimation method is motivated by the assessment of relative energy dissipation in
empirical data of turbulence, we apply it also to energy price data. Moreover, we
develop a probabilistic asymptotic theory for relative power variations of Brownian
semistationary processes and Itô semimartingales and discuss how it can be used for
inference on relative volatility/intermittency.

Keywords: Brownian semistationary process, energy dissipation, intermittency, power
variation, turbulence, volatility.
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1 Introduction

The concept of (stochastic) Volatility is of central importance in many fields of science.
In some of these the term Intermittency is used instead of volatility. Thus volatil-
ity/intermittency has a central role in mathematical finance and financial econometrics
[BNS10], in turbulence, rain and cloud studies [LS06, Way06] and other aspects of environ-
mental science [PA12], in relation to nanoscale emitters [FVKJ13], magnetohydrodynamics
[MP09], and to liquid mixtures of chemicals [Sre04], and last but not least in the physics
of fusion plasmas [CSVMAV00]. In turbulence the key concept of Energy Dissipation is
subsumed under that of intermittency1.

Speaking generally, volatility/intermittency is taken to mean that the phenomenon
under study exhibits more variation than expected; that is, more than the most basic type
of random influence2 envisaged.

Hence volatility/intermittency is a relative concept, and its meaning depends on the
particular setting under investigation. Once that meaning is clarified the question is how
to assess the volatility/intermittency empirically and then to describe it in stochastic terms
and incorporate it in a suitable probabilistic model.

Such ‘additional’ random fluctuations generally vary, in time and/or in space, in re-
gard to Intensity (activity rate and duration) and Amplitude. Typically the volatil-
ity/intermittency may be further classified into continuous and discrete (i.e. jumps) ele-
ments, and long and short term effects.

In finance the investigation of volatility is well developed and many of the procedures
of probabilistic and statistical analysis applied are similar to those of relevance in turbu-
lence, for instance in regard to multipower variations, particularly quadratic and bipower
variations and variation ratios.

Other important issues concern the modelling of propagating stochastic volatility/inter-
mittency fields and the question of predictability of volatility/intermittency.

This paper introduces a concept of realised relative volatility/intermittency and hence
of realised relative energy dissipation, the ultimate purpose of which is to assess the relative
volatility/intermittency or energy dissipation in arbitrary subregions of a region C of
space-time relative to the total volatility/intermittency/energy in C.

We start the further discussion by describing, in Section 2, how energy dissipation
in turbulence is defined and traditionally assessed. This is followed by a brief outline
of some results from the theory of Brownian semistationary (BSS) processes that are
pertinent for the main topic of the present paper. The definition of realised relative
volatility/intermittency/energy is given in Section 3. For concreteness and because of
its particular importance we focus on realised relative energy dissipation. Asymptotic
probabilistic properties — consistency and a functional central limit theorem — for realised

1For discussions of intermittency and energy dissipation in in turbulence see [Fri95], Chapter 6 and
[Tsi09], Chapter 7, cf. also the illustration on p. 20 of the latter reference.

2Often thought of as Gaussian.
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relative power variations are derived in Section 4. Applications to data on turbulence and
energy prices are presented in Section 5. Section 6 concludes.

2 Energy dissipation in turbulence

In a purely spatial setting the energy dissipation of a homogenous and isotropic turbulent
field is (up to an ignorable constant involving viscosity)

ε(x) =
3∑

i,j=1

(
∂yi
∂xj

+
∂yj
∂xi

)2

, (1)

where yi denotes the velocity at the spatial position x ∈ R3. The coarse grained energy
dissipation over a region C in R3 is then given by

ε(C) =
1

µ(C)

∫
C
ε(x)dx.

Furthermore, if only measurements of the velocity component in the main direction x1 of
the flow are considered one defines the surrogate energy dissipation as

ε(x) =

(
∂y1
∂x1

)2

.

By Taylor’s frozen field hypothesis [Tay38], this may then be reinterpreted as the
timewise surrogate energy dissipation

ε(t) =

(
∂yt
∂t

)2

,

which would be the relevant quantity in case the measurements were of the same, main,
component of the velocity but now as a function of time rather than of position.

Associated to this is the coarse grained energy dissipation corresponding to the interval
[t, t+ u] and given by

ε(u) =
ε+(t+ u)− ε+(t)

u
,

where

ε+(t) =

∫ t

0

(
dys
dt

)2

ds. (2)

Supposing that the velocity yt has been observed over the interval [0, T ] at times
0, δ, . . . , bT/δcδ, when it comes to estimating ε+(t), as given by (2), this is traditionally
done by taking the normalised realised quadratic variation [yδ]t/δ, where

[yδ]t =

bt/δc∑
j=1

(yjδ − y(j−1)δ)2.

Correspondingly, the coarse grained energy dissipation over [0, T ] is estimated by

ε̂(T ) =
[yδ]T
T

.

The definitions (1) and (2) of course assume that the sample path y is differentiable.
On the other hand, going back to Kolmogorov, it is broadly recognised that turbulence can
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only be comprehensibly understood by viewing it as a random phenomenon.3 Accordingly,
y should be viewed as a stochastic process, henceforth denoted Y , and it is not realistic
to assume that its sample paths are differentiable. Thus a broader setting for the analysis
of the energy dissipation in Y is called for, and in the following we propose and discuss
such a setting.

A Brownian semistationary (BSS) process, as introduced in [BNSch09], may be used
as a model for the timewise development of the velocity at a fixed point in space and in
the main direction of the flow in a homogeneous and isotropic turbulent field. For focus
and illustation we shall consider cases where Y is a stationary BSS process,

Yt = µ+

∫ t

−∞
g(t− s)σsdBs +

∫ t

−∞
q(t− s)σ2sds, (3)

where g and q are deterministic kernel functions, B is Brownian motion and σ is a sta-
tionary process expressing the volatility/intermittency of the process. In that context the
gamma form

g(t) = ctν−1e−λt (4)

of the kernel g has a special role. In particular, if ν = 5
6 and σ is square integrable, then

the autocorrelation function of Y is identical to von Kármán’s autocorrelation function
[vKar48] for ideal turbulence.

In relation to the BSS process (3) with gamma kernel (4) a central question is that
of determining σ2 from Y . In case the process is a semimartingale the answer is given by
the quadratic variation of Y ; in fact, then [Y ]t = σ2+t , where

σ2+t =

∫ t

0
σ2sds (5)

is the accumulated quadratic volatility over the interval [0, t]. However, in the cases of most
interest for turbulence, that is ν ∈ (12 , 1)∪(1, 32) the process Y is not a semimartingale and
in order to determine σ2+ by a limiting procedure from the realised quadratic variation

[Yδ]t =

bt/δc∑
j=1

(Yjδ − Y(j−1)δ)2, t ≥ 0,

the latter has to be normalised by a factor depending on δ and ν. Specifically, as shown
in [BNSch09], this factor is δc (δ)−2 where

c (δ) = E{(Gδ −G0)
2}1/2 (6)

is defined using the Gaussian core

Gt =

∫ t

−∞
g(t− s)dBs

of the process Y . Then have that, as δ → 0,

δ

c(δ)2
[Yδ]t

p→ σ2+t . (7)

Using this result for estimation of σ2+t requires either that ν is known or that a sufficiently
accurate estimate of ν can be found, The latter question has led to detailed studies of the
application of power and multipower variations to estimation of ν, see [BNCP12, BNCP13,
CHPP13].

3See [Kol41a, Kol41b, Kol41c, Kol62] and, for a recent overview, [Tsi09].
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3 Realised relative V/I/E

Supposing again that the velocity Yt has been observed at times 0, δ, . . . , bT/δcδ, we are
interested in the relative energy dissipation of Y over any subinterval [t, t+ u] of [0, T ],
i.e.,

ε+(t+ u)− ε+(t)

ε+(T )
, (8)

where ε+(T ) is the energy dissipation in [0, T ]. Within the turbulence literature, this defi-
nition of the relative energy dissipation is strongly related to the definition of a multiplier
in the cascade picture of the transport of energy from large to small scales (see [CSG08]
and references therein).

We now introduce the concept of realised relative energy dissipation. Specifically,
whether Yt is deterministic and differentiable or an arbitrary stochastic process we define
the realised relative energy dissipation over the subinterval [t, t+ u] as

R+
δ (t, t+ u) = [̃Yδ]t+u,T − [̃Yδ]t,T ,

where

[̃Yδ]t,T =
[Yδ]t
[Yδ]T

is the realised relative quadratic variation of Y . We note that the quantity R+
δ (t, t+ u) is

entirely empirically based.
In the “classical” case of turbulence, where Yt is differentiable, as δ → 0 we have

[Yδ]t+u − [Yδ]t ∼ δ(ε
+(t+ u)− ε+(t))

and hence, as δ → 0,

R+
δ (t, t+ u)→ ε+(t+ u)− ε+(t)

ε+(T )
,

i.e., the limit equals the relative energy dissipation (8).
Now suppose that Y is a stationary BSS process (3) with gamma kernel (4) and

ν > 1
2 , as it needed for the stochastic integral to exist. Then, if ν > 3

2 , Y has continuous
differentiable sample paths, i.e. we are essentially in the “classical” situation. If ν = 1 the
process Y is a semimartingale and the realised quadratic variation [Yδ] converges to the
quadratic variation [Y ], that is

[Yδ]t
p→ [Y ]t = σ2+t ,

where σ2+t is the accumulated quadratic volatility/intermittency (5). Consequently, for
the realised relative energy dissipation we have

R+
δ (t, t+ u)

p→
[Y ]t+u − [Y ]t

[Y ]T
=
σ2+t+u − σ

2+
t

σ2+T
,

i.e., the limit is the relative accumulated squared volatility/intermittency.
Finally, suppose that ν ∈ (12 , 1) ∪ (1, 32), i.e., we are in the non-semimartingale case

and the sample paths are Hölder continuous of order ν − 1/2. Then, subject to a mild
condition on q (see Appendix C for a result covering the case where q is of the gamma
form), we have again, as δ → 0, that

R+
δ (t, t+ u)

p→
σ2+t+u − σ

2+
t

σ2+T
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although

[Yδ]t ∝


δ−2(1−ν) →∞ if ν ∈ (12 , 1)

δ2(ν−1) → 0 if ν ∈ (1, 32)

.

This follows directly from limiting results in [BNSch09] and [BNCP12]. In view of these
results, in the turbulence context we view the limit of R+

δ as the relative energy dissipation.

Remark 1. As mentioned in Section 2, use of the original assessment procedure (7) requires
determination of the degree of freedom/smoothness parameter ν. The realised relative

quadratic variation [̃Yδ]t,T is entirely empirically determined and its consistency does not
rely on inference on ν.

4 Probabilistic asymptotic theory of realised relative power
variations

We develop now a probabilistic asymptotic theory for realised relative power variations,
going slightly beyond the earlier discussion of quadratic variations and energy dissipation.
To highlight the robustness of realised relative power variations to model misspecification,
we consider both a BSS process and an Itô semimartingale as the underlying process.
While we limit the discussion to power variations for the sake of simpler exposition, our
results can be easily extended to multipower variations.

4.1 Probabilistic setup and consistency

Let us consider a stochastic process Y = {Yt}t≥0, defined on a complete filtered probability
space (Ω,F , (Ft)t∈R, P ) via the decomposition

Yt = At +Xt,

where A = {At}t≥0 is a process that allows for skewness in the distribution of Yt. The
process A is assumed to fulfill one of two negligibility conditions, viz. (10) and (13) given
below (Appendix C presents more concrete criteria that can be used to check these condi-
tions). Given a standard Brownian motion B = {Bt}t∈R and a càglàd process σ = {σt}t∈R,
adapted to the natural filtration of B, we allow for the following two specifications of the
process X = {Xt}t≥0.

(I) X is a local Brownian martingale given by

Xt =

∫ t

0
σsdBs.

(II) X is a BSS process given by

Xt =

∫ t

−∞
g(t− s)σsdBs,

where g : (0,∞)→ R is a square integrable weight function such that∫ t

−∞
g(t− s)2σ2sds <∞ a.s.

for all t ≥ 0.
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On the one hand, by choosing A to be absolutely continuous in the case (I), we see that
this framework includes rather general Brownian semimartingales. On the other hand, in
the case (II) the process Y is typically a non-semimartingale, as discussed above.

Recall that for any p > 0, the p-th order realised power variation of the process Y with
lag δ > 0 is given by

[Yδ]
(p)
t =

bt/δc∑
j=1

|Yjδ − Y(j−1)δ|p, t ≥ 0.

The power variations [Aδ]
(p) and [Xδ]

(p) are, of course, defined analogously. Similarly
to earlier literature on power and multipower variations of BSS processes, [BNCP12,
BNCP13, CHPP13], we assume that the kernel function g behaves like tν−1 near zero for
some ν ∈ (12 , 1) ∪ (1, 32), or more precisely that

g(t) = tν−1Lg(t),

where Lg is slowly varying at zero, which implies that X is not a semimartingale in the
case (II). Then, under some further regularity conditions4 on g, which are satisfied when
g is the gamma kernel (4), and defining the normalisation factor c(δ) by (6), we have

δ

c(δ)p
[Xδ]

(p)
t

p−−−→
δ→0

mpσ
p+
t , (9)

where σp+t =
∫ t
0 |σs|

pds and mp = E{|ξ|p} for ξ ∼ N(0, 1), by Theorem 3.1 of [CHPP13].

In the case (I), setting c(δ) =
√
δ, the convergence (9) holds without any additional

assumptions, e.g., by Theorem 2.2 of [BGJPS06]. Additionally, note that the convergence
(9) holds also when X is replaced with Y , provided that

δ

c(δ)p
[Aδ]

(p)
t

p−−−→
δ→0

0. (10)

For fixed time horizon T > 0, we introduce the p-th order realised relative power
variation process over [0, T ] by

[̃Yδ]
(p)

t,T =
[Yδ]

(p)
t

[Yδ]
(p)
T

, 0 ≤ t ≤ T.

The relative power variation has the following evident consistency property.

Theorem 2. If (9) and (10) hold, then

[̃Yδ]
(p)

t,T

p−−−→
δ→0

σ̃p+t,T =
σp+t
σp+T

uniformly in t ∈ [0, T ].

Remark 3. The relative integrated volatility/intermittency σ̃p+·,T can be seen as a “cumula-

tive distribution function” of volatility/intermittency on [0, T ]; we have σ̃p+0,T = 0, σ̃p+T,T = 1,

and t 7→ σ̃p+t,T is non-decreasing.

Remark 4. Theorem 2 can be generalized to a spatial setting, applying specifically to
ambit fields driven by white noise, using the asymptotic results in [Pak13].

4See [CHPP13]. Most importantly, they include the assumption that c(δ) = δν−1/2Lc(δ), where Lc is
slowly varying at zero.
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4.2 Central limit theorem

Recall first that random elements U1, U2, . . . in some metric space U converge stably (in
law) to a random element U in U, defined on an extension (Ω′,F ′, P ′) of the underlying
probability space (Ω,F , P ), if

E{f(Un)V } −−−→
n→∞

E′{f(U)V }

for any bounded, continuous function f : U → R and bounded random variable V on

(Ω,F , P ). We denote stable convergence by
st−→. Clearly, stable convergence implies or-

dinary convergence in law, while the converse is not true. This mode of convergence was
introduced by Rényi [Ren63].

Remark 5. The usefulness of stable convergence can be illustrated by the following example

that is pertinent to the asymptotic results below. Suppose that Un
st−→ θξ in R as n→∞,

where ξ ∼ N(0, 1) and θ is a positive random variable independent of ξ. In other words,
Un follows asymptotically a mixed Gaussian law with mean zero and conditional variance
θ2. If θ̂n is a positive, consistent estimator of θ, i.e., θ̂n

p→ θ as n → ∞, then the stable

convergence of Un allows us to deduce that Un/θ̂n
d−→ N(0, 1). We refer to [Ren63, AE78]

and [JS03, pp. 512–518] for more information on stable convergence.

Let us write D([0, T ]) for the space of càdlàg functions from [0, T ] to R, endowed with
the usual Skorohod metric [JS03, Chapter V]. (Recall, however, that convergence to a
continuous function in this metric is equivalent to uniform convergence.) Under slightly
strengthened assumptions, the realised power variation of X satisfies a stable central limit
theorem of the form

δ−1/2
(

δ

c(δ)p
[Xδ]

(p)
t −mpσ

p+
t

)
st−−−→
δ→0

√
λX,p

∫ t

0
|σs|pdWs in D([0, T ]), (11)

where λX,p > 0 is a deterministic constant and {Wt}t∈[0,T ] a standard Brownian motion,
independent of F , defined on an extension of (Ω,F , P ). Indeed, in the case (I) the con-
vergence (11) holds with λX,p = m2p −m2

p, provided that σ is an Itô semimartingale (see
Theorem 2.4 of [BGJPS06]). Moreover, we have (11) also in the case (II) if we make
the restriction ν ∈ (12 , 1) — the situation of most interest concerning turbulence — and
assume that σ satisfies a Hölder condition in expectation (see Theorem 3.2 of [CHPP13]).
Then, in contrast to the semimartingale case,

λX,p = λp(ν) > m2p −m2
p, (12)

where λp : (12 , 1)→ (0,∞) is a continuous function defined using the correlation structure
of fractional Brownian noise (see Appendix B for the definition and proof of continuity).
Analogously to (10), the convergence (11) extends to the power variation of Y if

√
δ

c(δ)p
[Aδ]

(p)
t

p−−−→
δ→0

0. (13)

The realised relative power variation of Y satisfies the following central limit theorem,
which is an immediate consequence of Lemma 10 in Appendix A.

Theorem 6. If (11) and (13) hold, then

δ−1/2
(

[̃Yδ]
(p)

t,T − σ̃
p+
t,T

)
st−−−→
δ→0

√
λX,p

mp

∫ T
0 |σs|pds

(∫ t

0
|σs|pdWs − σ̃p+t,T

∫ T

0
|σs|pdWs

)
(14)

in D([0, T ]), where λX,p and W are as in (11).
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Remark 7. In the case (II) the restriction ν ∈ (12 , 1) can be relaxed when one considers
power variations defined using second or higher order differences of Y (cf. [BNCP13,
CHPP13]). Then, (11) holds for all ν ∈ (12 , 1) ∪ (1, 32). As Theorems 2 and 6 do not
depend on the type of differences used in the power variation, they obviously apply also
in this case.

Conditional on F , the limiting process on the right-hand side of (14) is a Gaussian
bridge. In particular, its (unconditional) marginal law at time t ∈ [0, T ] is mixed Gaussian
with mean zero and conditional variance

λX,p

(mpσ
p+
T )2

((
1− σ̃p+t,T

)2
σ2p+t +

(
σ̃p+t,T

)2
(σ2p+T − σ2p+t )

)
. (15)

Note also that when σ is constant, the limiting process reduces to a Brownian bridge. In
effect, the result is analogous to Donsker’s theorem for empirical cumulative distribution
functions (see, e.g., [Kos08] for an overview of such results).

Clearly, we may estimate the asymptotic variance (15) consistently using

Vt(δ) =
λX,p

δ ·m2p ·
(
[Yδ]

(p)
T

)2((1− [̃Yδ]
(p)

t,T

)2
[Yδ]

(2p)
t +

(
[̃Yδ]

(p)

t,T

)2(
[Yδ]

(2p)
T − [Yδ]

(2p)
t

))
.

In the case (II) the estimator Vt(δ) is not feasible as such since ν appears as a nuisance
parameter in λX,p = λp(ν). However, we may replace λX,p with λp(ν̂δ), where ν̂δ is any
consistent estimator of ν based on the observations Y0, Yδ, . . . , YbT/δcδ (they have been
developed in [BNCP12, BNCP13, CHPP13]). Using the properties of stable convergence,
we obtain the following feasible central limit theorem.

Proposition 8. If (11) and (13) hold, then for any t ∈ (0, T ),

δ−1/2
(

[̃Yδ]
(p)

t,T − σ̃
p+
t,T

)
√
Vt(δ)

d−−−→
δ→0

N(0, 1).

4.3 Inference on realised relative V/I/E

Proposition 8 can be used to construct approximative, pointwise confidence intervals for
the relative volatility/intermittency σ̃p+t,T . Since, by construction, σ̃p+t,T assumes values in
[0, 1], it is reasonable to constrain the confidence interval to be a subset of [0, 1]. Thus,
we define for any a ∈ (0, 1) the corresponding (1− a) · 100% confidence interval as[

max
{

[̃Yδ]
(p)

t,T − z1−a/2 ·
√
δVt(δ), 0

}
, min

{
[̃Yδ]

(p)

t,T + z1−a/2 ·
√
δVt(δ), 1

}]
,

where z1−a/2 > 0 is the 1− a
2 -quantile of the standard Gaussian distribution.

Another application of the central limit theory is a non-parametric homoskedasticity
test that is similar in nature to Kolmogorov–Smirnov and Cramér–von Mises goodness-
of-fit tests for empirical distribution functions. This extends the homoskedasticity tests
proposed by Dette, Podolskij and Vetter [DPV06] and Dette and Podolskij [DP08] to a
non-semimartingale setting. To formulate our test, we introduce the hypotheses{

H0 : σt = σ0 for all t ∈ [0, T ],

H1 : σt 6= σ0 for some t ∈ [0, T ].

9



Theorem 6 implies that under H0,

δ−1/2
(

[̃Yδ]
(p)

t,T −
t

T

)
st−−−→
δ→0

√
λX,p

mp · T

(
Wt −

t

T
WT

)
. (16)

It is intuitively appealing to use the L1-norm to assess the distance of realised relative
power variations — although other metrics or norms could also be used. Thus, we define
the test statistic as

Sδ =
mp√

δ · T · λX,p

∫ T

0

∣∣∣∣[̃Yδ](p)t,T − t

T

∣∣∣∣dt. (17)

Also in (17), we may use λp(ν̂δ) instead of λX,p in the case (II). By (16) and the scaling
properties of Brownian motion, we have under H0,

Sδ
st−−−→
δ→0

∫ 1

0
|W ∗s |ds, (18)

where {W ∗t }t∈[0,1] is a standard Brownian bridge independent of F , while under H1 the
statistic Sδ diverges to infinity. The cumulative distribution function of the functional on
the right-hand side of (18) has been derived by Johnson and Killeen [JK83] and it can be
stated using the Airy function, which allows for a straightforward numerical implementa-
tion.

5 Applications to empirical data

5.1 Brookhaven turbulence data

We apply the methodology developed above first to data of turbulence. The data consist
of a time series of the main component of a turbulent velocity vector, measured at a
fixed position in the atmospheric boundary layer using a hotwire anemometer, during an
approximately 66 minutes long observation period at sampling frequency of 5 kHz (i.e.
5000 observations per second). The measurements were made at Brookhaven National
Laboratory (Long Island, NY), and a comprehensive account of the data can be found in
[Drh00].

As a first illustration, we study the observations up to time horizon T = 800 millisec-
onds. Using the smallest possible lag, δ = 0.2 ms, this amounts to 4000 observations.
Figure 1(a) displays the squared increments corresponding to these observations. As
a comparison, the same time horizon is captured in Figure 1(b) but with lag δ = 0.8
ms. Figure 1(c) compares the associated accumulated realised relative energy dissipa-
tions/quadratic variations. The graphs for these two lags show very similar behaviour,
exhibiting how the total time interval is divided into a sequence of intervals over which
the slope of the energy dissipation is roughly constant. On the other hand, the amplitudes
of the volatility/intermittency are of the same order in the whole observation interval.

To be able to draw inference on relative volatility/intermittency using the data, we
need to address two issues. Firstly, for this time series, the lags δ = 0.2 ms and δ = 0.8 ms
are below the so-called inertial range of turbulence, where a BSS process with a gamma
kernel — a model of ideal turbulence — provides an accurate description of the data
(see [CHPP13], where the same data are analysed). Secondly, the data were digitised
using a 12-bit analog-to-digital converter. Thus, the measurements can assume at most
212 = 4096 different values, and due to the resulting discretisation error, a non-negligible
amount of the increments are in fact equal to zero (roughly 20 % of all increments). These

10



0 1000 2000 3000 4000

0.
00

0.
02

0.
04

0.
06

0.
08

rep
lacem

en

(Y
j
δ
−

Y
(j
−
1
)δ
)2

j

(a) δ = 0.2 ms

0 500 1000 1500

0
2

4
6

8
10

12

rep
lacem

en

(Y
j
δ
−

Y
(j
−
1
)δ
)2

j

(d) δ = 1 day
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(b) δ = 0.8 ms
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(e) δ = 4 days
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δ = 1 day

δ = 4 days

Figure 1: Left panel, Brookhaven turbulence data: (a) The squared increment process
with lag δ = 0.2 ms over the time horizon T = 800 ms. (b) The squared increment process
with lag δ = 0.8 ms over the same time horizon T = 800 ms. (c) The realised relative
energy dissipation/quadratic variations corresponding to δ = 0.2 ms and δ = 0.8 ms, and
the same time horizon, T = 800 ms, as in plots (a) and (b). Right panel, logarithmic
EEX electricity spot prices: (d) The squared increment process with lag δ = 1 day over
the time horizon T = 1775 days. (e) The squared increment process with lag δ = 4 days
over the same time horizon T = 1775 days. (f) The realised relative quadratic variation
corresponding to δ = 1 day and δ = 4 days and the same time horizon, T = 1775 days, as
in plots (d) and (e).
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Figure 2: Brookhaven turbulence data: (a) Estimates of ν, using the change-of-frequency
method and lag δ = 80 ms, for each one-minute subperiod and the value predicted by
Kolmogorov’s (K41) scaling law. (b) Test statistics and critical values for the constancy
of σ for each subperiod. The red bars indicate the 40th and 44th subperiods, which are
analysed in more detail in Figure 3.

discretisation errors are bound to bias the estimation of the parameter ν, which is needed
for the inference methods. We mitigate these issues by subsampling, namely, we apply
the inference methods using a considerably longer lag, δ = 80 ms, which is near the lower
bound of the inertial range for this time series [CHPP13, Figure 1].

We divide the time series into 66 non-overlapping one-minute-long subperiods, testing
the constancy of σ, i.e., the null hypothesis H0, within each subperiod. Figure 2(a) displays
the estimates of ν for each subperiod using the change-of-frequency method [BNCP13,
CHPP13]. All of the estimates belong to the interval (12 , 1) and they are scattered around
the value ν = 5

6 predicted by Kolmogorov’s (K41) scaling law of turbulence [Kol41a,
Kol41c]. The homoskedasticity test statistics and critical values, derived using (18), in
Figure 2(b) indicate that the null hypothesis of constancy of σ is typically rejected. To
understand what kind of intermittency the test is detecting, we look into the extremal
cases, the 40th and 44th subperiods (red bars). To this end, we plot the realised relative
energy dissipations, with δ = 80 ms, during the 40th and 44th subperiods in Figure 3(a)
and (b), respectively. We also include the pointwise confidence intervals, the p-values
of the homoskedasticity test, and as a reference, the realised relative energy dissipations
using the smallest possible lag δ = 0.2 ms. While the realised relative energy dissipations
exhibit a slight discrepancy between the lags δ = 80 ms and δ = 0.2 ms, it is clear that
40th subperiod contains significant intermittency, whereas the during the 44th subperiod,
the (accumulated) realised relative energy dissipation grows nearly linearly, apart from
the final 10 seconds.
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Figure 3: Brookhaven turbulence data: Realised relative energy dissipation during the
40th (a) and 44th (b) subperiods with δ = 80 ms and δ = 0.2 ms. Additionally, p-values
for the hypothesis H0, estimates of ν using the change-of-frequency method, and 95%
pointwise confidence intervals, all using the lag δ = 80 ms.

5.2 EEX electricity spot prices

We also briefly exemplify the concept of relative volatility using electricity spot price data
from the European Energy Exchange (EEX). Specifically, we consider deseasonalised daily
Phelix peak load data (that is, the daily averages of the hourly spot prices of electricity
delivered between 8 am and 8 pm) with delivery days ranging from January 1, 2002 to
October 21, 2008. Weekends are not included in the peak load data, and in total we have
1775 observations. This time series was studied in [BNBV12] and the deseasonalisation
method is explained therein. As usual, we consider here logarithmic prices.

Figure 1(d) shows the squared increments up to the total time horizon T = 1775 days
with lag δ = 1 day. The same time horizon is captured in Figure 1(e) but with a reso-
lution δ = 4 days. Figure 1(f) compares the corresponding accumulated realised relative
quadratic variations. The results for these two lags do not show the same similarity as
with the turbulence data (Figure 1(a–b)). Judging by eye, we observe that the intensity
of the volatility is changing with lag δ. This lag dependence is also observed in the ampli-
tudes, again in contrast to the figures on the left hand side. (However, more quantitative
investigation of such amplitude/density arguments is outside the scope of the present pa-
per.) The dependence of the estimation results on the lag δ is, at least partly, explained
by the relatively low sampling frequency of the data. With δ = 1 day, the increments are
dominated by a few exceptional observations (which may correspond to jumps or intraday
volatility bursts). Choosing δ = 4 days reduces the contribution of these observations
since the time series exhibits significant first-order autocorrelation [BNBV12, Figure 1].

Remark 9. It was shown in [BNBV12] that by suitably choosing both g and q to be of
gamma type it is possible to construct a BSS process with normal inverse Gaussian one-
dimensional marginal law, which corresponds closely to the empirics for the time series of
log spot prices considered. Moreover, the estimated value of the smoothness parameter ν
for this time series falls in the interval (12 , 1).
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6 Conclusion

The definition of realised relative energy dissipation introduced in this paper applies to
any continuous time, real valued process Y . An extension to vector valued processes is an
issue of interest, in particular in relation to the definition (1) of the energy dissipation in
three-dimensional turbulent fields.

The extent to which the realised volatility/intermittency/energy is an empirical coun-
terpart of what can be conceived theoretically as relative volatility/intermittency/energy
depends on the model under consideration. As discussed above this is the case, in particu-
lar, both under Brownian semimartingales, as these occur widely in mathematical finance
and financial econometrics, and under stationary BSS processes.

In the timewise stationary setting, the realised relative energy dissipation is a param-
eter free statistic which provides estimates of the relative energy in subintervals of the
full observation range, by relating the quadratic variation over each subinterval to the
total realised energy for the entire range. It provides robust estimates of the relative ac-
cumulated energy as this develops over time and is intimately connected to the concepts
of volatility/intermittency and energy dissipation as these occur in statistical turbulence
and in finance. This was illustrated in connection to the class of BSS processes with g of
the gamma form.
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A Stable convergence of normalised processes

Theorem 6 is a corollary of the following simple result concerning the stable convergence
of a process that has been normalised by its terminal value.

Lemma 10. Let X,X1, X2, . . . be random elements in D([0, T ]), with non-decreasing
sample paths, defined on (Ω,F , P ) and let ξ be a random element in D([0, T ]) defined on
an extension (Ω′,F ′, P ′) of (Ω,F , P ). Suppose, moreover, that almost surely ξ ∈ C([0, T ]),
X ∈ C([0, T ]), Xn

T 6= 0 for any n ∈ N, and XT 6= 0. If

√
n(Xn

t −Xt)
st−−−→

n→∞
ξt in D([0, T ]), (19)

then
√
n

(
Xn
t

Xn
T

− Xt

XT

)
st−−−→

n→∞

1

XT

(
ξt −

Xt

XT
ξT

)
in D([0, T ]).

Proof. Since Xn and X have non-decreasing paths and X ∈ C([0, T ]), we have

sup
0≤t≤T

∣∣∣∣Xn
t

Xn
T

− Xt

XT

∣∣∣∣ ≤ 2

|XT |
sup

0≤t≤T
|Xn

t −Xt|
p−−−→

n→∞
0

by (19). Due to the properties of stable convergence, we obtain(√
n(Xn

t −Xt),
Xn
t

Xn
T

)
st−−−→

n→∞

(
ξt,

Xt

XT

)
in D([0, T ])2. (20)
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Let us now consider the decomposition

√
n

(
Xn
t

Xn
T

− Xt

XT

)
=

1

XT

(√
n(Xn

t −Xt)−
√
n(Xn

T −XT )
Xn
t

Xn
T

)
.

Using again the fact that convergence to a continuous function in D([0, T ]) is equivalent
to uniform convergence, it follows that the map (x, y) 7→ x − x(T )y from D([0, T ])2 to
D([0, T ]) is continuous on C([0, T ])2. Since ξ ∈ C([0, T ]) and X ∈ C([0, T ]) a.s., the
assertion follows from (20) and the properties of stable convergence.

B Continuity of the correlation structure of fractional Brow-
nian noise

The function λp : (12 , 1)→ (0,∞) that appears in (12) is defined by

λp(ν) =

∞∑
l=2

l!a2l

(
1 + 2

∞∑
j=1

ρν(j)l
)
,

where a2, a3, . . . are the coefficients in the expansion of the function up(x) = |x|p −mp,
x ∈ R, in second and higher-order Hermite polynomials x2 − 1, x3 − 3x, . . . , satisfying∑∞

l=2 l!a
2
l < ∞. In the most important case p = 2 we have, clearly, a2 = 1 and al = 0

for all l > 2. The sequence (ρν(j))∞j=1 coincides with the correlation function of fractional
Brownian noise with Hurst parameter ν − 1/2, namely

ρν(j) =
1

2

(
(j + 1)2ν−1 − 2j2ν−1 + (j − 1)2ν−1

)
, j ≥ 1.

The following lemma justifies the use of λp(ν̂δ) as a consistent estimator of λX,p in the
case (II).

Lemma 11. The function λp is continuous.

Proof. Let us first show that for any l ≥ 2, the map

ν 7→
∞∑
j=1

ρν(j)l (21)

is continuous on (12 , 1). Note that ν 7→ ρν(j) is clearly continuous for any j ≥ 1 and,
moreover, that |ρν(j)|l ≤ ρν(j)2 since |ρν(j)| 6 1. Following [DM03, p. 419], write

ρν(j) =
1

2
j2ν−1gν(1/j), (22)

where gν(x) = (1 +x)2ν−1− 2 + (1−x)2ν−1, x ∈ R. A straightforward computation shows
that gν(0) = 0, g′ν(0) = 0, and

g′′ν (x) = (2ν − 2)(2ν − 1)
(
(1 + x)2ν−3 + (1− x)2ν−3

)
.

In particular, we may define C = supν∈(1/2,1) supx∈[0,1/2] |g′′ν (x)| < ∞, whence |gν(x)| ≤
Cx2 for all ν ∈ (12 , 1) and x ∈ [0, 12 ]. Applying this bound to (22) implies that

|ρν(j)| ≤ Cj2ν−3 ≤ C

j
, j ≥ 2,
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for any ν ∈ (12 , 1). The continuity of the function in (21) follows now from Lebesgue’s
dominated convergence theorem. Finally, the actual assertion follows by invoking the
bounds ∣∣∣∣∣

∞∑
j=1

ρν(j)l

∣∣∣∣∣ ≤
∞∑
j=1

|ρν(j)|2 ≤ C
(

1 +
∞∑
j=2

1

j2

)
<∞,

which hold for all l ≥ 2, and Lebesgue’s dominated convergence theorem again.

C Sufficient conditions for the negligibility of the skewness
term

Suppose first that the process A = {At}t≥0 is given by

At = µ+

∫ t

0
asds,

where µ ∈ R is a constant and the process {at}t≥0 is measurable and locally bounded.
Then we can establish rather simple conditions for its negligibility in the asymptotic results
for power variations. By Jensen’s inequality, we have for any p ≥ 1, s ≥ 0, and t ≥ 0,

|As −At|p ≤ Ca · |s− t|p,

where Ca > 0 is a random variable that depends locally on the path of a. Thus, the
condition (10) holds whenever

δ

c(δ)
→ 0, (23)

and (13) holds if

δp−1/2

c(δ)p
→ 0. (24)

Notably, in the semimartingale case (I), i.e. c(δ) =
√
δ, (23) is always true and (24) holds

if p > 1.
Suppose now, instead, that A follows

At = µ+

∫ t

−∞
q(t− s)asds, (25)

where q is the gamma kernel
q(t) = c′tη−1e−ρt

for some c′ > 0, η > 0, and ρ > 0. We assume that the process {at}t∈R is measurable,
locally bounded, and satisfies

A∗t = sup
0≤u≤t

∫ u

−∞
q(u− s)|as|ds <∞ a.s. (26)

for any t ≥ 0, which is true, e.g., when the auxiliary process
∫ u
−∞ q(u − s)|as|ds, u ≥ 0,

has a càdlàg or continuous modification.

Lemma 12. Suppose that A is given by (25) and that (26) holds. Then in the case (II)
the condition (10) holds if min{η, 1} > ν − 1

2 and (13) holds if min{η, 1} > ν − p−1
2p . The

corresponding restrictions in the case (I) can be obtained by setting ν = 1 above.
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Proof. Let us first look into the properties of q. For the sake of simpler notation, we make
the innocuous assumption that c′ = 1. Since

q′(t) =

(
η − 1

t
− ρ
)
q(t), (27)

we find that q is decreasing when η ≤ 1. When η > 1, q is increasing on
(
0, η−1ρ

)
and

decreasing on
(η−1

ρ ,∞
)
.

Let t ≥ 0 be fixed, δ ∈ (0, 1), and let j ≥ 1 be such that jδ ≤ t. Below, all big O
estimates hold uniformly in such j. We consider the decomposition

Ajδ −A(j−1)δ =

∫ jδ

(j−1)δ
q(jδ − s)asds+

∫ (j−1)δ

(j−2)δ

(
q(jδ − s)− q((j − 1)δ − s)

)
asds

+

∫ (j−2)δ

s∗

(
q(jδ − s)− q((j − 1)δ − s)

)
asds

+

∫ s∗

−∞

(
q(jδ − s)− q((j − 1)δ − s)

)
asds

= I1δ + I2δ + I3δ + I4δ ,

where

s∗ = −max

{
η − 1

ρ
, 1

}
.

When η ≥ 1, q is bounded and we have |I1δ + I2δ | = a∗tO(δ), where

a∗t = sup
s∗≤s≤t

|as| <∞ a.s.,

and when η < 1, we find that

|I1δ + I2δ | ≤ 2a∗t

∫ δ

0
q(s)ds = a∗tO(δη).

Next, we want to show that

|I3δ | = a∗tO(δmin{η,1}). (28)

In the case η ≥ 2 the derivative q′ is bounded and (28) is immediate. Suppose that η < 2.
Then, |q′(t)| ≤ Ctη−2 on any finite interval, where C > 0 depends on the interval. Using
the mean value theorem, we obtain

|I3δ | ≤ Ca∗t δ
∫ (j−2)δ

s∗

(
(j − 1)δ − s

)η−2
ds,

which implies (28). To bound |I4δ |, note that, by (27), |q′(t)| ≤ C ′q(t) for all t ≥ −s∗,
where C ′ > 0 is a constant. For any s < s∗, we have (j − 1)δ − s > η−1

ρ . Thus, by the
mean value theorem,∣∣(q(jδ − s)− q((j − 1)δ − s)

)∣∣ ≤ C ′q((j − 1)δ − s
)
δ

and, consequently,

|I4δ | ≤ C ′δ
∫ (j−1)δ

−∞
q
(
(j − 1)δ − s

)
|as|ds = A∗tO(δ).
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Collecting the estimates, we have

|Ajδ −A(j−1)δ| = max{a∗t , A∗t }O(δmin{η,1})

uniformly in j, whence

[Aδ]
(p)
t = Oa.s.(δ

pmin{η,1}−1).

Checking the sufficiency of the asserted conditions is now a straightforward task.
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