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Abstract

This paper provides a comprehensive Monte Carlo comparison of different finite-sample

bias-correction methods for autoregressive processes. We consider classic situations

where the process is either stationary or exhibits a unit root. Importantly, the case

of mildly explosive behaviour is studied as well. We compare the empirical performance

of an indirect inference estimator (Phillips, Wu, and Yu, 2011), a jackknife approach

(Chambers, 2013), the approximately median-unbiased estimator by Roy and Fuller

(2001) and the bootstrap-aided estimator by Kim (2003). Our findings suggest that the

indirect inference approach offers a valuable alternative to other existing techniques. Its

performance (measured by its bias and root mean squared error) is balanced and highly

competitive across many different settings. A clear advantage is its applicability for

mildly explosive processes. In an empirical application to a long annual US Debt/GDP

series we consider rolling window estimation of autoregressive models. We find substan-

tial evidence for time-varying persistence and periods of explosiveness during the Civil

War and World War II. During the recent years, the series is nearly explosive again.

Further applications to commodity and interest rate series are considered as well.
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1 Introduction

Measuring and estimating the persistence of time series is a long standing issue in econo-

metrics. The most common framework for assessing the persistence is the autoregressive

model. But, a major practical problem is the inherent bias of the conventional OLS

estimator. Its bias increases amongst two dimensions: a small sample size and a true

autoregressive parameter in the vicinity of unity are disadvantageous. Given a relatively

small sample size, it is a complicated task to estimate the persistence if the process is

(i) either stationary, but highly persistent, (ii) exhibits a unit root or (iii) is mildly ex-

plosive. As we argue, these situations are likely to occur in practice.

In economics, it is a well established fact that most time series are characterized by high

persistence or even stochastic trends, see e.g. Nelson and Plosser (1982) and Schotman

and Van Dijk (1991). Another important empirical issue is the instability of parameters,

which is often observed and documented (see e.g. Stock and Watson, 1994). During the

past decade, a literature on structural changes in persistence emerged, see e.g. Chong

(2001), Kim (2000), Leybourne, Taylor, and Kim (2007) and Harvey, Leybourne, and

Taylor (2006) amongst many others. In order to cope with potential time-variation in

the parameters, users often apply the popular rolling window technique. Under these

empirically relevant circumstances, the issue of unbiased and efficient estimation of per-

sistence becomes particularly important: Typically, a relatively small window size is

chosen. If a bubble or a crisis occurs in this particular window, some economic time

series are likely to exhibit explosive behaviour. Leading examples for time series with at

least local explosive roots are stock prices (as caused by bubbles, see Diba and Gross-

man, 1988), price-dividend and price-earnings ratios (as caused by a dominant regime

of chartist traders, see Lof, 2012), house and oil prices (due to speculation, see Homm

and Breitung, 2012, Clark and Coggin, 2011 and Shi and Arora, 2012), hyperinflation

(due to a collapse of a country’s monetary system, see Casella, 1989), exchange rates

(due to speculation van Norden, 1996 and Pavlidis, Paya, and Peel, 2012) and the US

Debt/GDP ratio (due to unsustainable fiscal policies, see Yoon, 2011) amongst others.

The complicated estimation of autoregressive processes in finite-samples sparked a fruit-

ful area of research. Kendall (1954), Shaman and Stine (1988), Tjøstheim and Paulsen

(1983), Tanaka (1984) and Abadir (1993) provide analytic derivations of asymptotic

expansions which can be used for bias-correction. Approximately median-unbiased es-

timation is proposed in e.g. Andrews (1993), Andrews and Chen (1994) and Roy and

Fuller (2001). Restricted maximum likelihood estimation is considered in Cheang and

Reinsel (2000). Bootstrap-based bias-correction procedures have been suggested by e.g.
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Hansen (1999) and Kim (2003). Recently, Engsted and Pedersen (2011) compare ana-

lytical bias formulas and bootstrapping for stationary VAR models. Indirect inference

has been put forward in MacKinnon and Smith (1998) and Gouriéroux, Renault, and

Touzi (2000). Jackknifing based on Efron (1979) is recently studied in Chambers (2013).

Importantly, we note that the main body of the literature focusses on stationary autore-

gressive models and on the unit root case while the case of (mildly) explosive behaviour

has received less attention.

This work compares the analytic median-bias-correction by Roy and Fuller (2001), the

bootstrap technique by Kim (2003) and the Jacknife approach by Chambers (2013) to the

indirect inference approach by Phillips et al. (2011), who propose a technique for autore-

gressive processes, based on the work of MacKinnon and Smith (1998) and Gouriéroux

et al. (2000). Indirect inference estimators to correct the small sample bias have a long

tradition, e.g. see Gouriéroux, Monfort, and Renault (1993) and Smith (1993). In a

recent contribution, Gouriéroux, Phillips, and Yu (2010) extend this principle to dy-

namic panel data models. The indirect inference estimator allows for explosiveness in

addition to highly persistent and unit root behavior, see also Phillips (2012) for a recent

contribution on its limit theory. Most competing methods rule out explosive behaviour

by construction (i.e. Roy and Fuller (2001) and Kim (2003)). This feature renders the

indirect inference estimation approach to autoregressive models particularly attractive.

However, the finite-sample properties of the indirect inference estimator are not fully ex-

plored and a comprehensive comparison to other popular and successful bias-correction

techniques has not been conducted yet.

In our Monte Carlo study, we consider various sample sizes, normal and fat-tailed in-

novations, ARCH disturbances and misspecification of the autoregressive lag structure.

Furthermore, we also study the case where a linear deterministic trend is included in the

autoregressive model. We evaluate the performance of the estimators by means of bias

and root mean squared errors (RMSE). Our results suggest that all procedures lead to a

substantial bias-reduction in most non-explosive cases. The best procedure in terms of

bias-reduction is the jackknife, but comes with the costs of an increase in the variance.

The indirect inference estimator provides almost the same level of bias-reduction with

a remarkably low variance.

We provide a detailed empirical application to a long annual US Debt/GDP ratio from

1791-2011, where we use rolling window estimation to investigate potential instabilities.

Our results suggest that persistence is characterized by strong time-variation. Episodes

of stationarity, unit root and explosive behaviour are observed. These episodes are
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related to major wars, peace movements during the Sixties and Seventies, and recent

activities in the aftermath of 9/11. Moreover, we consider three further applications to

Oil prices, Gold prices and the spread between long-term interest rates in Germany and

Greece. All applications stress the importance of bias-correction. In addition, account-

ing for locally explosive behaviour is relevant in all cases, too.

The paper is organized as follows. Section 2 briefly describes the different estimation

techniques. Our simulation results are presented in Section 3. The empirical applications

are located in Section 4 while conclusions are drawn in Section 5. The Appendix contains

further simulation results.

2 Bias-correction procedures

Point of departure is the inherent bias of the OLS estimator. In order to illustrate the

problem, we simulate the empirical performance of the OLS estimator. Therefore, we

focus on finite samples and the possibility of mild explosiveness in a simple autoregressive

framework:

yt = µ+ρyt−1 + εt . (1)

We consider the cases of stationarity and unit roots, i.e. |ρ| < 1 and ρ = 1, and the case

where ρ satisfies ρ = 1 + c/kT , with c > 0 and kT being a sequence tending to infinity

such that kT = o(T ) as T →∞. In the latter case, the autoregressive parameter is local-

to-unity in the sense that ρ→ 1 as T →∞. For finite T (as considered in this work), ρ

deviates moderately from unity. Asymptotic theory for this case is developed in Phillips

and Magdalinos (2007).

The left panel of Figure 1 shows the AR(1) case as in equation (1) for four different

sample sizes, i.e. T = {30,60,120,240}. The true autoregressive parameter ρ (on the

x-axis) ranges from 0.6 to 1.2 which measures the persistence of the process. The bias is

given on the y-axis. The results confirms the theoretical finding that the bias depends

on the true value of the autoregressive parameter. The smaller the sample size, the more

severe is the bias. The vicinity of unity is the region where the bias is strongest. Further-

more, it can be seen that the bias reduces for explosive processes and approaches zero

at some point, but that the estimation of mildly explosive processes is still heavily biased.
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Figure 1: OLS Bias for different values of ρ, β and sample sizes for AR(1) and AR(2) processes
(constant included).

As expected, the bias problem persists if we consider the AR(2) process, i.e.

yt = µ+φ1yt−1 +φ2yt−2 + εt . (2)

Since our primary interest is the persistance of the time series, we work with an alter-

native representation which gathers the persistence in the parameter ρ:

yt = µ+ρyt−1 +β∆yt−1 + εt , (3)

where ρ = φ1 + φ2 and β = −φ2. The usefulness of this approach stems from the fact

that a direct relationship to the cumulative impulse response (1/(1− ρ)) exists (for

stationary autoregressive processes). Moreover, it is also directly connected to the spec-

trum at frequency zero which measures the low-frequency autocovariance. It is given by

var(εt)/(1− ρ)2.1 The right panel of Figure 1 shows the bias for ρ for three different

values of β: -0.2, 0 and 0.3. The bias depends substantially on the value of β. Positive

values decrease the bias and vice versa. A comparison between the AR(1) case for T = 60
and the AR(2) case for T = 60 and β = 0 shows that the estimation of an additional,

but unnecessary, parameter increases the bias slightly. These results motivate the de-

velopment of bias-correction techniques. Four different methods are briefly discussed in

the following.

1Alternative measures of persistence are the largest autoregressive root, see Stock (1991) for its median-
unbiased estimation, and the half life of a unit shock, see Rossi (2005).
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2.1 Roy-Fuller median-unbiased estimator

The first bias-correction method we consider is the approximately median-unbiased2

Roy-Fuller estimator which has been proven to be of empirical usefulness (see Kim,

2003). The Roy and Fuller (2001) estimator provides an analytic modification of the

OLS estimator for the persistence parameter ρ. Let ρ̂ denote the OLS estimator for

ρ in ȳt = ρȳt−1 + β∆ȳt−1 + εt, where ȳt is the previously de-meaned time series yt, i.e.,

ȳt ≡ yt−(1/T )
∑T

t=1 yt. Furthermore, σ̂ denotes the standard error of ρ̂ and λ̂= (ρ̂−1)/σ̂
is the usual Dickey and Fuller (1979) unit root test statistic. The Roy-Fuller estimator3

ρ̂RF is now given by ρ̂RF = min(ρ̃,1), where

ρ̃ = ρ̂+C(̂λ)σ̂ .

Related to the asymptotic bias of the OLS estimator, the function C(̂λ) is constructed

to make ρ̃ approximately median-unbiased at ρ = 1. The function is given by

C(̂λ) =



0, if λ̂ ≤ −
√

2T

T−1λ̂− 2̂λ−1, if −
√

2T < λ̂ ≤ −K

T−1λ̂−2
[̂
λ+ k(̂λ+ K)

]−1
, if −K < λ̂ ≤ λ0.5

−λ0.5 + dn(̂λ−λ0.5), if λ̂ > λ0.5 ,

where λ0.5 = −1.57 denotes the median of the limiting distribution of λ̂ if ρ = 1 and

data is demeaned prior to testing, K is some fixed number (set to 5), dn is a slope

parameter (set to 0.1111) and k =
(
2−T−1λ2

0.5

) [
(1 + T−1)λ0.5(λ0.5−K)

]−1
. The function

C
(̂
λ
)

accounts for different asymptotics and convergence rates for different persistence

levels of ρ. Further details can be found in Roy and Fuller (2001). After the bias-

corrected estimation of ρ the other parameters of the process, µ in the AR(1) case given

in equation (1) and µ,φ1 and φ2 in the AR(2) case given in equation (2), can be estimated

subject to the restriction ρ = ρ̂RF .

2.2 Bootstrap bias-corrected estimator

The second competitor is the bootstrap-based procedure by Kim (2003). This method

involves the generation of a large number of pseudo-data sets using the estimated co-

efficients and re-sampled residuals. Pseudo-data sets shall resemble the dependence

2An estimator ρ̃ for ρ is said to be median-unbiased if P(ρ̃ ≥ ρ) ≥ 1/2 and P(ρ̃ ≤ ρ) ≥ 1/2.
3The original Roy-Fuller estimator corrects positive and negative autocorrelation bias in AR(p) pro-
cesses. In this work only substantial positive autocorrelations of AR(1) and AR(2) processes are
considered. The given formulas are simplified for this case.
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structure that is present in the original data set. The bias of the OLS estimator can be

estimated as follows: Estimate the model via OLS and obtain the estimates θ̂=
(̂
µ, ρ̂, β̂

)′
.

Generate a pseudo-data set {yb
t }

T
t=1 based on these estimates according to

yb
t = µ̂+ ρ̂yb

t−1 + β̂∆yb
t−1 + ub

t ,

where ub
t is a random draw with replacement from the OLS residuals {̂ut}

T
t=1. B sets of

pseudo-data are generated. Each pseudo-data set gives a bootstrap parameter estimate

θ̂b = (̂µb, ρ̂b, β̂b)′ by estimating the model yb
t = µ+ ρyb

t−1 + β∆yb
t−1 + vt, b = 1, . . . , B. We

obtain the sequence {̂θb}Bb=1 and the average bias of θ̂b is estimated as θ̃− θ̂, where θ̃ is

the sample average of {̂θb}Bi=1, i.e.

θ̃ ≡
1
B

B∑
b=1

θ̂b .

Using this bootstrap-based estimator for the bias, a bias-correction for θ̂ can be directly

obtained via

θ̂KIM = θ̂−
(̃
θ− θ̂

)
= 2̂θ− θ̃ .

If θ̂KIM does not fulfill the stationarity condition ρ̂ < 1, the iterative filter

θ̂KIM
i = θ̂−

i∏
j=1

(1−0.01i)
(̃
θ− θ̂

)
, i = 1,2,3, . . . ,

is applied until ρ̂ < 1 is ensured. Denote by ī the index where the iteration stops.

Thus, θ̂KIM = θ̂KIM
ī . For further details regarding this estimator, the interested reader

is referred to Kim (2003). This estimator computes the OLS estimation bias for a

process with parameter values θ̂ and uses this bias as approximation for the true bias

of θ̂. In contrast to the former procedure all parameters of the model are estimated

simultaneously.

2.3 Indirect inference estimator

We now turn to a simulation-based estimator relying on the concept of indirect inference.

The following exposition draws heavily from Phillips et al. (2011). The basic idea of

this simulation-based estimator is to consider initially the OLS estimator labeled as ρ̂.

Consider a set of simulated series with AR(1) coefficient equal to some ρ, i.e. {yh
t (ρ)}Hh=1,

h = 1,2, . . . , H. H denotes the total number of available simulation paths.4 For each

4In order to generate {yh
t (ρ)}Hh=1, we assume normal errors in the following. The importance of this

assumption is investigated later in Section 3.2.
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single h ∈ 1,2, ..., H, we obtain an OLS estimate denoted as ρ̂h(ρ). The indirect inference

estimator (which belongs to the class of extremum estimators) is given by

ρ̂II
H = argmin

ρ∈Θ

∥∥∥∥∥∥∥ ρ̂−
1
H

H∑
h=1

ρ̂h(ρ)

∥∥∥∥∥∥∥ ,

where Θ is a compact parameter space and ‖ · ‖ is a distance metric. For H →∞ one

obtains

ρ̂II = argmin
ρ∈Θ

∥∥∥ ρ̂−q(ρ)
∥∥∥ ,

where q(ρ) = E
(̂
ρh(ρ)

)
is the so-called binding function. Given invertibility of q, the

indirect inference estimator results as

ρ̂II = q−1(ρ̂) .

So the idea of this estimator is to have a grid of possible true values for ρ and the

corresponding average OLS estimates (1/H)
∑H

h=1 ρ̂
h(ρ). The estimate ρ̂ is compared

to the average OLS estimates. ρ̂II is now the value which leads to the average OLS

estimate with the minimal distance to ρ̂. The finite-sample bias-correction stems from

the simulation of q(ρ). Precision is naturally expected to be increased with rising H,

although it can be computationally costly. Nonetheless, the binding function has to be

simulated only once and can thus be applied afterwards without any further simulation or

re-sampling. This is a fundamental difference to the bootstrap approach. Furthermore,

the indirect inference estimator is applicable even for mildly explosive processes. This

is not the case for the Roy-Fuller and the bootstrap-based estimator by Kim (2003).

Estimation of all other parameters of the process can be done analogously to the Roy-

Fuller estimator.

2.4 Jackknife estimators

In general, Bao and Ullah (2007) show that the expected value of the OLS estimator

θ̂ =
(̂
µ, ρ̂, β̂

)
has the form

E
(̂
θ
)

= θ+
a
T

+ O
(
T−2

)
.

Shaman and Stine (1988) show that the vector a = −(1+3ρ) for ρ̂ in the AR(1) process

and a = −(1 + ρ,2−4β)′ for
(̂
ρ, β̂

)′
in the AR(2) process. If the full sample y is divided

into m sub-samples Y j of same length l, j = 1, . . . ,m, and θ̂ j is the OLS estimate for θ in
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sub-sample Y j then the jackknife statistic

θ̂J =
( T
T − l

)
θ̂−

(
l

T − l

)
θ̃

with θ̃ = 1
m
∑m

j=1 θ̂
j satisfies E(̂θJ) = θ+ O(T−2) and is thus able to reduce the bias.

Chambers (2013) proposes and compares various jackknife techniques to reduce the

small sample bias. In this work we focus on one of the methods in the comparison of

Chambers (2013): the non-overlapping sub-samples jackknife. This estimator has good

bias-correction properties without the considerable increase of the RMSE of higher order

jackknife estimators. Here the time series is splitted in m non-overlapping sub-samples,

Y j = (y[( j−1)T /m+1], . . . ,y[ jT /m])
′, j = 1, . . . ,m.

In the following we work with m = 2 sub-samples, because the procedure with this

particular choice of m has the best bias-correction properties according to Chambers

(2013) (Table 1). This simplifies the jackknife statistic to

θ̂J = 2̂θ− θ̃ .

The intuition behind this approach is almost the same as in the bootstrap approach

of Kim (2003). The average bias in the sub-samples is higher because of the smaller

sample size and therefore a bias-reduction is induced. The difference to the bootstrap

procedure is that the average bias is calculated on sub-samples of the true process and

not on pseudo-data. In the following we abbreviate this procedure as J(2). It should

be noted that the introduced jackknife procedure is only valid as long as the process

is stationary, see Chambers (2013). The unit root case is tackled in Chambers and

Kyriacou (2012). To our best knowledge, the (mildly) explosive case has not been under

consideration so far.

3 Finite-sample properties

In this section we investigate the properties of various bias-correction methods via Monte

Carlo simulation. The foci of this analysis are the bias-reduction and the RMSE of these

estimators for AR(1) and AR(2) models in various settings. The simulation setup is as

follows: We consider autoregressive models of the structure

yt = µ+ρyt−1 +β∆yt−1 + εt
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with εt ∼ N(0,1). Non-normal and heteroscedastic errors are studied in Section 3.2. The

case of a linear deterministic trend in addition to the intercept µ is located in Section

3.3. The autoregressive parameter ρ measures the persistence of yt and takes values ρ=

{0.85,0.9,0.95,0.99,1,1.01,1.02}. The considered samples sizes are T = {30,60,120,240}.
The mildly autoregressive process is characterized by ρ= 1+ c

Tγ with 0< γ < 1 and c> 0.

Following Breitung and Kruse (2013) 5, γ= 0.75 corresponds to c = {0.13,0.22,0.36,0.61}
and c = {0.26,0.43,0.73,1.22} for ρ = 1.01 and for ρ = 1.02, respectively. Thus, the de-

gree of explosiveness is in fact very mild in our setup. The intercept µ is set equal to

zero without loss of generality. If the data is generated by an AR(2) process, β is set to

β = {−0.2,0.3}. The number of Monte Carlo repetitions is set to 10,000 for each single

experiment. The number of bootstrap repetitions for the procedure of Kim (2003) is set

to 499. The binding function for the indirect inference estimator was simulated with

ρ= {0.60,0.61, . . . ,1.20} and β= {−0.90,−0.89, . . . ,0.90}. The number of simulation paths

H equals 10,000 in the AR(1) case and H = 100 for AR(2) models. In an unreported

comparison between different values for H, we find that there are only marginal changes

in the results as long as H ≥ 100. That means that the indirect inference procedure can

be applied at low computational costs with negligible loss of precision.

Summary results are reported in Section 3.5. Detailed results are reported in Tables

1-7. Table 1 shows the results for the case where the estimated model coincides with

the true DGP which is an AR(1). The next subsection discusses the performance for

GARCH and heavy-tailed innovations (see Tables 2 and 6). Results for processes with

deterministic trends are given in Table 3. Finally Tables 4, 5 and 7 contain results

for correctly specified AR(2) models, under-fitted AR(2) models and over-fitted AR(1)

models.

3.1 First-order autoregressive model with i.i.d. Normal innovations

Our benchmark case is the AR(1) process with constant as in equation (1). The left-

hand side of Table 1 provides the average bias of the OLS estimator and all discussed

bias-correction procedures. Every procedure leads to a substantial bias-reduction com-

pared to the OLS estimator. For T = 60, the jackknife estimator J(2) has the best bias-

correction capabilities in nearly all cases. The indirect inference estimator is second-best

followed by the approximately median-unbiased Roy-Fuller estimator and the bootstrap-

based approach (Kim). In smaller samples (T = 30), the jackknife is still the best pro-

cedure for unit root and explosive cases, but the results for stationary autoregressive

5Breitung and Kruse (2013) consider values for c in the range of one half to five when simulating the
empirical performance of Chow-type tests for bursting bubbles.
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Bias RMSE

T ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.85 -0.135 0.012 0.000 -0.028 -0.002 0.201 0.145 0.165 0.162 0.218

0.90 -0.148 -0.002 -0.018 -0.044 -0.010 0.206 0.141 0.153 0.155 0.217

0.95 -0.162 -0.019 -0.043 -0.067 -0.020 0.213 0.135 0.143 0.153 0.217

0.99 -0.168 -0.029 -0.065 -0.089 -0.021 0.214 0.128 0.138 0.155 0.214

1.00 -0.166 -0.030 -0.069 -0.094 -0.018 0.212 0.125 0.136 0.156 0.211

1.01 -0.163 -0.030 - - -0.014 0.209 0.122 - - 0.207

1.02 -0.157 -0.028 - - -0.009 0.204 0.117 - - 0.203

60 0.85 -0.066 0.004 0.007 -0.006 0.003 0.113 0.097 0.104 0.098 0.123

0.90 -0.072 0.001 0.004 -0.011 0.002 0.113 0.093 0.095 0.091 0.121

0.95 -0.081 -0.006 -0.010 -0.023 -0.003 0.114 0.084 0.081 0.083 0.119

0.99 -0.088 -0.016 -0.029 -0.041 -0.007 0.114 0.072 0.070 0.078 0.113

1.00 -0.086 -0.016 -0.033 -0.046 -0.005 0.111 0.068 0.068 0.078 0.111

1.01 -0.081 -0.015 - - 0.000 0.106 0.063 - - 0.107

1.02 -0.071 -0.012 - - 0.004 0.099 0.058 - - 0.101

120 0.85 -0.032 0.000 0.001 -0.002 0.002 0.065 0.059 0.061 0.059 0.069

0.90 -0.034 0.001 0.003 -0.002 0.002 0.062 0.055 0.057 0.054 0.066

0.95 -0.038 0.000 0.003 -0.005 0.002 0.059 0.048 0.048 0.046 0.063

0.99 -0.045 -0.007 -0.012 -0.018 -0.003 0.059 0.038 0.037 0.040 0.059

1.00 -0.044 -0.009 -0.017 -0.023 -0.002 0.058 0.036 0.036 0.040 0.057

1.01 -0.036 -0.006 - - 0.003 0.051 0.031 - - 0.052

1.02 -0.021 -0.002 - - 0.009 0.037 0.023 - - 0.043

240 0.85 -0.015 0.000 0.000 0.000 0.001 0.040 0.038 0.038 0.038 0.042

0.90 -0.016 0.000 0.001 0.000 0.001 0.036 0.033 0.034 0.033 0.038

0.95 -0.018 0.001 0.002 0.000 0.001 0.032 0.028 0.029 0.027 0.034

0.99 -0.022 -0.002 -0.003 -0.006 -0.001 0.030 0.020 0.019 0.020 0.030

1.00 -0.022 -0.004 -0.008 -0.011 -0.001 0.029 0.018 0.017 0.020 0.029

1.01 -0.011 -0.001 - - 0.005 0.019 0.011 - - 0.022

1.02 -0.002 0.000 - - 0.008 0.009 0.006 - - 0.017

Table 1: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife
(J(2)) estimation procedures for different AR(1) processes and sample sizes (constant included).

models are mixed. In larger samples (T = 120), the indirect inference estimator is the

best method for stationary processes whereas the jackknife wins for ρ= 1 and ρ= 1.01.

Interestingly, for ρ = 1.02 the bias of the J(2) approach changes its sign and yields a

very small, but positive bias. While this behavior may not seem striking at first sight, it

becomes more important when ρ > 1.02 (not reported). The higher ρ, the more obvious

is the overcorrection even in small samples. For T = 240, the OLS bias is quite small

and the need for bias-correction procedures becomes less important. Nevertheless, a

reduction of the bias to levels very close to zero is possible with any method.

The second important statistic we investigate is the RMSE. It is reported at the right-

hand side of Table 1. For T = 60, the bootstrap procedure has the highest RMSE

reduction for stationary cases, the Roy-Fuller method for processes close to and at the

unit root and the indirect inference estimator for explosive cases. All three techniques
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are highly competitive in terms of variance reduction whereas the J(2) causes an increase

in the variance compared to the OLS estimator. This pattern remains the same for larger

samples. For T = 30, the indirect inference estimator is always the best procedure in

terms of the RMSE. This shows that the jackknife estimator provides the best bias-

correction on average, but comes along with a fairly large variance. This result is in

line with Chambers (2013) where only stationary autoregressive models are considered.

Our results indicate that the general conclusion remain to hold for unit root and mildly

explosive autoregressive models as well. On the contrary, the indirect inference estimator

offers a similar performance in terms of bias-reduction (even though somewhat less

effective) and does not suffer from an increased variance.

3.2 Heteroscedastic and heavy-tailed innovations

So far all results are based on εt ∼ N(0,1) innovations. As a robustness check on the

normality assumption we also investigate the performance of the bias-reduction methods

under heteroscedasticity and heavy-tailed error distributions. In order to investigate the

influence of heteroscedasticity we generate highly persistent GARCH disturbances as

follows:

εt = σtzt

σt = a0 + a1ε
2
t−1 + b1σ

2
t−1,

where zt ∼ N(0,1) and the parameters are set equal to a0 = 0.05, a1 = 0.1 and b1 = 0.85.

The simulation results for those DGPs are given in Table 2. For T = 60, the OLS bias

is slightly higher (in absolute value) than in the standard iid case. All procedures still

offer a substantial bias-reduction, and the remaining bias is usually smaller than in the

benchmark case. This means that the GARCH disturbances affect all estimators in a

similar way. The general ranking of the bias-correction methods stays the same as in

the benchmark case. For all other sample sizes in this setup, the jackknife estimator has

the best bias-correction abilities. The RMSE is on average slightly higher than in the

benchmark case, but the pattern remains exactly the same.

In order to investigate whether heavy-tailed innovations may lead to problems, we use

stable distributed errors which are generated as εt ∼ S (α= 1.85,β= 0,γ= 1,δ= 0). This

distribution exhibits much fatter tails than the standard Normal distribution: P(|εt| >

2.5758) = 8.6% instead of 1% as for the N(0,1) distribution. Remarkably, the change in

the error distribution has hardly any impact on the bias and RMSE results compared to

the benchmark case. Therefore, the corresponding Table 6 is located in the Appendix.
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Bias RMSE

T ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.85 -0.141 0.007 -0.007 -0.035 -0.007 0.208 0.147 0.170 0.168 0.227

0.90 -0.153 -0.007 -0.024 -0.051 -0.014 0.213 0.144 0.158 0.162 0.226

0.95 -0.167 -0.024 -0.049 -0.074 -0.024 0.220 0.139 0.149 0.160 0.225

0.99 -0.173 -0.034 -0.070 -0.095 -0.026 0.221 0.133 0.144 0.163 0.220

1.00 -0.171 -0.035 -0.074 -0.100 -0.023 0.220 0.130 0.143 0.165 0.218

1.01 -0.168 -0.034 - - -0.019 0.216 0.127 - - 0.215

1.02 -0.162 -0.032 - - -0.015 0.212 0.123 - - 0.210

60 0.85 -0.068 0.002 0.005 -0.008 -0.001 0.116 0.099 0.107 0.101 0.126

0.90 -0.074 -0.001 0.002 -0.013 -0.002 0.115 0.095 0.097 0.094 0.123

0.95 -0.083 -0.008 -0.012 -0.025 -0.007 0.117 0.086 0.084 0.086 0.121

0.99 -0.091 -0.018 -0.032 -0.044 -0.011 0.117 0.076 0.075 0.083 0.117

1.00 -0.089 -0.019 -0.036 -0.049 -0.007 0.115 0.072 0.072 0.082 0.116

1.01 -0.083 -0.017 - - -0.003 0.110 0.068 - - 0.111

1.02 -0.073 -0.013 - - 0.002 0.101 0.061 - - 0.103

120 0.85 -0.033 -0.001 0.000 -0.003 0.000 0.069 0.063 0.064 0.062 0.074

0.90 -0.036 -0.001 0.002 -0.004 0.000 0.064 0.057 0.059 0.056 0.069

0.95 -0.040 -0.001 0.001 -0.006 0.000 0.061 0.050 0.050 0.048 0.065

0.99 -0.046 -0.008 -0.013 -0.019 -0.004 0.061 0.040 0.039 0.042 0.062

1.00 -0.045 -0.009 -0.018 -0.024 -0.001 0.059 0.037 0.036 0.042 0.060

1.01 -0.037 -0.007 - - 0.003 0.051 0.031 - - 0.053

1.02 -0.022 -0.002 - - 0.009 0.038 0.023 - - 0.045

240 0.85 -0.017 -0.001 -0.002 -0.002 -0.001 0.044 0.042 0.042 0.042 0.047

0.90 -0.018 -0.001 -0.001 -0.002 0.000 0.040 0.036 0.037 0.036 0.042

0.95 -0.019 -0.001 0.001 -0.002 0.000 0.034 0.030 0.031 0.029 0.036

0.99 -0.022 -0.003 -0.004 -0.007 -0.001 0.031 0.022 0.021 0.022 0.032

1.00 -0.023 -0.005 -0.009 -0.012 0.000 0.030 0.019 0.018 0.021 0.031

1.01 -0.011 -0.001 - - 0.005 0.019 0.012 - - 0.023

1.02 -0.002 0.000 - - 0.008 0.009 0.006 - - 0.018

Table 2: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife
(J(2)) estimation procedures for different AR(1) processes and sample sizes (constant included)
with GARCH(1,1) errors.

3.3 Inclusion of a linear deterministic trend and misspecified AR(1)

In this subsection we study autoregressive models with an additional linear trend term

of the form

yt = µ+ δt +ρyt−1 + εt .

In all simulations we set δ = 0 (in addition to µ = 0) without loss of generality. Table 3

shows that the additional uncertainty about the trend parameter causes a rise of the OLS

bias. As expected, all procedures perform worse than in the benchmark case (see Table

1). Further deviations from the benchmark case are the better overall performance of

the Roy-Fuller estimator in stationary setups and the superior performance of the J(2)

procedure in small samples (T = 30). An interesting development is the reduction of
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Bias RMSE

T ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.85 -0.227 0.027 -0.033 -0.074 0.002 0.282 0.183 0.200 0.200 0.278

0.90 -0.247 0.008 -0.056 -0.096 -0.005 0.297 0.178 0.195 0.203 0.283

0.95 -0.271 -0.018 -0.086 -0.124 -0.018 0.317 0.175 0.197 0.212 0.291

0.99 -0.300 -0.048 -0.117 -0.156 -0.040 0.342 0.178 0.208 0.229 0.297

1.00 -0.309 -0.057 -0.127 -0.165 -0.049 0.350 0.180 0.214 0.236 0.299

1.01 -0.320 -0.068 - - -0.059 0.359 0.184 - - 0.302

1.02 -0.331 -0.079 - - -0.072 0.369 0.188 - - 0.305

60 0.85 -0.109 0.010 0.001 -0.018 0.009 0.148 0.119 0.119 0.111 0.150

0.90 -0.119 0.007 -0.008 -0.028 0.008 0.153 0.116 0.109 0.107 0.152

0.95 -0.134 -0.005 -0.027 -0.046 0.004 0.163 0.107 0.101 0.105 0.155

0.99 -0.155 -0.026 -0.053 -0.072 -0.008 0.179 0.104 0.104 0.114 0.160

1.00 -0.163 -0.034 -0.062 -0.081 -0.016 0.187 0.106 0.108 0.119 0.161

1.01 -0.174 -0.045 - - -0.027 0.196 0.109 - - 0.162

1.02 -0.183 -0.053 - - -0.034 0.204 0.113 - - 0.164

120 0.85 -0.049 0.002 0.002 -0.002 0.007 0.078 0.066 0.067 0.064 0.080

0.90 -0.054 0.004 0.004 -0.005 0.008 0.078 0.065 0.064 0.060 0.080

0.95 -0.062 0.004 -0.002 -0.012 0.008 0.080 0.060 0.056 0.054 0.081

0.99 -0.075 -0.009 -0.021 -0.030 0.002 0.089 0.053 0.050 0.055 0.083

1.00 -0.083 -0.017 -0.030 -0.039 -0.005 0.096 0.054 0.054 0.059 0.084

1.01 -0.093 -0.027 - - -0.014 0.105 0.057 - - 0.085

1.02 -0.063 -0.013 - - 0.037 0.081 0.043 - - 0.099

240 0.85 -0.025 0.000 -0.002 -0.001 0.002 0.046 0.040 0.040 0.040 0.046

0.90 -0.026 0.000 -0.001 -0.001 0.003 0.043 0.036 0.037 0.036 0.044

0.95 -0.029 0.001 0.001 -0.003 0.005 0.041 0.033 0.033 0.031 0.042

0.99 -0.036 -0.002 -0.008 -0.012 0.004 0.044 0.027 0.026 0.027 0.043

1.00 -0.042 -0.009 -0.015 -0.020 -0.001 0.049 0.027 0.028 0.030 0.044

1.01 -0.032 -0.007 - - 0.020 0.041 0.022 - - 0.052

1.02 -0.004 0.001 - - 0.028 0.014 0.008 - - 0.040

Table 3: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife
(J(2)) estimation procedures for different AR(1) processes and sample sizes (constant and
trend included).

the variance of the indirect inference, Roy-Fuller and Kim’s bootstrap estimator. The

performance in terms of RMSE is not as convincingly good as in the benchmark case,

but the average raise of the RMSE for the OLS estimator is higher than for the bias-

correction procedures. Even the J(2) estimator is now able to a lower RMSE than the

OLS estimator in most cases, although not in a competitive way.

Almost the same pattern is visible if the AR(1) process is misspecified as an AR(2)

process. This means that the data is generated as in the benchmark case, but an AR(2)

model with the additional parameter β is estimated. Instead of the trend parameter δ an

additional autoregressive parameter adds uncertainty to the estimation. All the effects

caused by the inclusion of a linear trend are also visible in the misspecified case, but in

a much milder form. The detailed results are gathered in Table 7 in the Appendix.
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Bias RMSE

T β ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

60 0.2 0.85 -0.059 0.001 0.004 -0.004 0.010 0.102 0.089 0.095 0.089 0.117

0.90 -0.063 -0.001 0.002 -0.008 0.009 0.099 0.083 0.086 0.081 0.112

0.95 -0.069 -0.006 -0.008 -0.017 0.005 0.099 0.074 0.073 0.072 0.109

0.99 -0.075 -0.014 -0.025 -0.035 -0.001 0.098 0.063 0.062 0.068 0.104

1.00 -0.073 -0.014 -0.029 -0.039 0.004 0.095 0.059 0.059 0.067 0.102

1.01 -0.067 -0.012 - - 0.006 0.090 0.055 - - 0.097

1.02 -0.054 -0.007 - - 0.010 0.079 0.047 - - 0.089

-0.3 0.85 -0.099 0.002 0.005 -0.012 0.010 0.155 0.119 0.133 0.126 0.172

0.90 -0.106 -0.006 -0.005 -0.022 0.007 0.154 0.115 0.119 0.116 0.168

0.95 -0.113 -0.015 -0.021 -0.037 0.002 0.153 0.105 0.103 0.106 0.163

0.99 -0.117 -0.024 -0.041 -0.057 -0.002 0.152 0.095 0.095 0.104 0.158

1.00 -0.114 -0.023 -0.044 -0.060 0.002 0.147 0.090 0.091 0.103 0.154

1.01 -0.111 -0.024 - - 0.004 0.146 0.089 - - 0.151

1.02 -0.102 -0.020 - - 0.009 0.139 0.083 - - 0.144

Table 4: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife
(J(2)) estimation procedures for different AR(2) processes (constant included).

3.4 Higher-order and misspecified autoregressive models

Finally, we extend our analysis to the AR(2) model as in equation (3). As visible in

Figure 1, the OLS bias depends on the value of β. We work with β= {0.2,−0.3}, typical

values in macroeconomic time series. In order to save space only results for T = 60
are reported in Table 4, results for all other sample sizes can be found in Table 8 in

the Appendix. All procedures are able to reduce the OLS bias for higher order models

and the order in terms of bias-correction does not deviate from the AR(1) case. The

jackknife is the best method, in particular for the unit root and stationary near unit

root setups. The procedure is also the only one which does not depend on β. All other

methods gain strictly better results for β= 0.2. The same pattern appears if T = 30. For

larger sample sizes the results are more mixed in favor of the indirect inference estimator.

The RMSE results show that the indirect inference estimator has the highest RMSE

reduction for most cases. In comparison to the benchmark case, the typical pattern

appears only for samples sizes of T = 120 or larger, in smaller samples the indirect in-

ference estimator is the best procedure in terms of RMSE reduction. It is also notable

that the J(2) estimator leads to a significant raise in the variance compared to the OLS

estimator in all setups.

This result changes if the order of the model is underestimated. The results for a

simulated AR(2) process but an estimated AR(1) model are given in Table 5 and for

other sample sizes in Table 9 in the Appendix. For T = 60, the jackknife is the best
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Bias RMSE

T β ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

60 0.2 0.85 -0.023 0.051 0.056 0.040 0.030 0.073 0.093 0.097 0.085 0.097

0.90 -0.034 0.043 0.044 0.029 0.023 0.073 0.082 0.081 0.073 0.095

0.95 -0.048 0.027 0.019 0.007 0.013 0.078 0.066 0.058 0.057 0.095

0.99 -0.062 0.008 -0.013 -0.024 -0.002 0.084 0.051 0.047 0.056 0.094

1.00 -0.062 0.005 -0.020 -0.033 -0.002 0.084 0.047 0.046 0.061 0.092

1.01 -0.058 0.004 - - 0.002 0.079 0.043 - - 0.087

1.02 -0.047 0.005 - - 0.006 0.071 0.039 - - 0.082

-0.3 0.85 -0.189 -0.108 -0.129 -0.137 -0.086 0.236 0.156 0.202 0.203 0.206

0.90 -0.179 -0.105 -0.113 -0.124 -0.069 0.224 0.161 0.188 0.189 0.197

0.95 -0.172 -0.099 -0.103 -0.115 -0.055 0.212 0.157 0.171 0.175 0.186

0.99 -0.161 -0.087 -0.095 -0.108 -0.036 0.197 0.144 0.153 0.158 0.174

1.00 -0.154 -0.081 -0.091 -0.104 -0.027 0.191 0.139 0.147 0.153 0.169

1.01 -0.145 -0.073 - - -0.016 0.182 0.131 - - 0.163

1.02 -0.132 -0.064 - - -0.007 0.171 0.122 - - 0.155

Table 5: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife
(J(2)) estimation procedures for different AR(2) processes when the model is misspecified as
AR(1).

bias-correction method. In particular, if β = −0.3 it is significantly better than its com-

petitors. Although the ranking of the other bias-correction procedures remains the same,

it is not as obvious as before. All methods perform worse than in the correctly specified

model. In one setup, β = 0.2 and ρ = 0.85, all bias-corrected estimators have a higher

bias than the OLS estimator. For larger samples the results depend on the value of β. If

β= 0.2, no best procedure can be identified but in more and more setups bias-correction

is not successful at all. If β = −0.3, the J(2) estimator offers the highest bias-reduction.

In terms of RMSE the standard pattern from the AR(1) case is visible for β = 0.2,

whereas for β = −0.3 the indirect inference estimator is the best procedure. But, no

procedure is able to offer a constant reduction of the RMSE and if this reduction is much

less than in the correctly specified model. These results lead to the recommendation

to choose the model order with a parameter friendly information criterion like the AIC

when bias-correction should be applied.

3.5 Summary of simulation results

Our main results are as follows: (i) bias-correction plays an important role for all con-

sidered levels of persistence (i.e. stationarity, unit roots and explosive behaviour), in

particular for samples sizes up to T = 120, (ii) the most effective bias-correction is ob-

tained when applying the jackknife estimator for small and moderate sample sizes; in

terms of RMSE, the indirect inference approach is generally recommendable. It per-

forms particulary well for small sample sizes and explosive processes. (iii) Under the
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presence of a unit root, the Roy-Fuller and the indirect inference estimator perform best

in terms of RMSE, while the bootstrap-based estimator by Kim (2003) performs well

for stationary models. (iv) Heteroscedastic and heavy-tailed errors hardly affect the

former conclusions. (v) In case of correct specification, the exact order of the autore-

gressive model does alter our main findings. Overfitting of the autoregressive model is

not harmful, while underfitting turns out to be an important issue. Therefore, the lag

length shall be carried out on the basis of liberal selection procedures like the AIC. (vi)

The performance of all estimators weakens when a deterministic trend in addition to an

intercept is included. But, the ranking of estimators remains unaffected.

4 Empirical applications

We apply the different bias-correction methods to four economic time series using the

popular rolling window technique. In Section 4.1 we analyze a long annual ratio of the

US Debt/GDP series in detail. Recently, there has been an extensive discussion on

lifting the US government debt ceiling. The sustainability of US fiscal policy hinges on

the persistence properties of the US Debt/GDP series: only when the series exhibits

stationarity, fiscal policies are sustainable.

Further empirical applications are considered in Section 4.2 where the following three

series are studied: (1) log Oil price, (2) log Gold price and (3) spread between long-

term interest rates in Germany and Greece. Figure 2 contains time series plots of

all four variables. All series are strongly autocorrelated. The first three series are

even likely to exhibit locally explosive behaviour due to expansions during war times

(US Debt) and speculation (Oil and Gold). The situation is different for the interest

rate series whose persistence properties have not been studied extensively yet. Data

for the debt series is available at http://www.econ.ucsb.edu/∼bohn/data.html while

the remaining data has been obtained from the FRED and the ECB database. Bias-

corrected rolling window estimation (with 60 observations per window) is compared to

classic OLS estimation. The lag length is chosen via the Akaike information criterion

as underfitting is a problematic issue. For each series, an intercept is included in the

autoregressive model due to a non-zero mean.

4.1 US Debt/GDP ratio

The US Debt/GDP ratio series is measured in percent. The sample ranges from 1791-

2011, yielding 221 annual observations. Given a window size of 60, we obtain the first
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Figure 2: Time series under consideration.

estimates for the period from 1791 to 1850.6 The second estimates are based on the

sample ranging from 1792-1851 and so on. The last estimates use the sample from 1952

to 2011. According to the AIC, an AR(2) model is fitted to the data.

The estimated values of ρ for the different bias-correction techniques are given in Figure

3, each in comparison to the OLS estimator. First, bias-correction obviously plays an im-

portant role in this application as differences between OLS and bias-corrected estimates

are clearly visible. Second, the Roy-Fuller, bootstrap and indirect inference estima-

tor agree on the general evolution of the persistence over time, whereas the jackknife

estimator shows a more volatile behavior. An obvious shortcoming of the Roy-Fuller

bias-correction and the bootstrap technique by Kim (2003) is their limitation to the pa-

rameter space ρ̂ ≤ 1. The results for the OLS, indirect inference and jackknife estimator

clearly suggest the need of relaxing this restriction for obtaining meaningful estimates of

the persistence. Therefore, we focus on the indirect inference estimator in comparison

6The choice of 60 observations has been made in accordance to the simulations in the previous section.
However, our calculations for 50 observations (half a century of data per window) lead to very similar
conclusions.
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Figure 3: Rolling window AR(2) estimation for the US Debt/GDP series with different bias-
correction methods.

to the jackknife estimator.

The indirect inference estimator displays explosiveness during major wars (Civil War

and World War II), where the autoregressive parameter estimates reach a maximum of

ρ̂II = 1.036. After 1950, persistence dropped remarkably, recovering during the recent

years since 2001 possibly in response to the patriot act and related policies after 9/11.

The very last point estimates indicate a high persistence and a possible unit root. Pa-

rameter estimates for the J(2) bias-correction method show explosive behavior during

the Civil War, in the late 18th century and both World Wars. Estimated persistence is

relatively close around the unit root with an interval from ρ̂J,2 = [0.818,1.483].7 These

results support the Monte Carlo analysis, where the jackknife estimators show a very

good bias-reduction but at the costs of high standard errors. The OLS estimation results

only indicate only a single period of explosive behaviour, i.e. the second World War.

Moreover, the OLS results for the Civil War period are in clear discrepancy to the ones

7The higher-order J(2,3) bias-correction (not reported to conserve some space) yields very volatile
results with many highly explosive phases but also some major drops down to ρ̂J(2,3) = 0.558.
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obtained by bias-corrected estimators.

Our results suggest that a lifting of the US government debt ceiling may easily end up in

unsustainable fiscal policies as the persistence of the series is non-stationary and nearly

explosive during the most recent years. In general, our findings are in line with Yoon

(2011) who applies the recursive right-tailed unit root test of Phillips et al. (2011) to

test the hypothesis of a unit root against explosive behavior. His main result is that the

US Debt/GDP ratio is explosive and that the explosiveness is linked to the high increase

in the ratio during and after the World War II. Our study complements Yoon (2011) as

the author did not consider bias-corrected estimation for the series.

4.2 Further applications: Oil, Gold and European interest rates

In this subsection we analyze some further time series which potentially exhibit phases

of explosiveness due to pronounced growth rates. We start with the spot oil price se-

ries (West Texas Intermediate), which is measured in US Dollars per barrel. Episodes

of explosive behaviour hint at strong speculation activities in the market. The sample

ranges from 1983:01 to 2013:01 (T = 361). An AR(2) model is fitted to the data. The

window size equals 60 months (5 years).

The estimated values of ρ for the different bias-correction techniques are given in Figure

4, each in comparison to the OLS estimator. The general evolution of all estimators

suggests that persistence has undergone remarkable changes. Bias-correction is of im-

portance in this application, too. The OLS estimates do not indicate explosive behaviour

(and thus phases of pronounced speculation) at all. When looking at the results for the

indirect inference estimator, one observes that oil prices have been much less persis-

tent (and presumably stationary) during the Nineties. Persistence increased towards

the year 2000 and stayed above, but close to, unity. Around 2004, persistence dropped

again whilst recovering quickly to high levels indicating mild explosiveness. Interestingly,

there has been another drop to values around 0.9 in the recent years. The rolling window

estimation results reflect the movements in the series, see Figure 2 (upper right panel).

The Roy-Fuller and the bootstrap bias-correction techniques suggest similar findings

expect of the important periods of explosiveness. The jackknife estimator provides re-

sults which are in general accordance to the ones for the indirect inference estimator.

However, estimated persistence is much higher in explosive phases and the persistence

path is more volatile. This behaviour is confirmed by our simulation results which show

that the jackknife estimator has a fairly large variance.
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Figure 4: Rolling window AR(2) estimation for the log Oil price series with different bias-
correction methods.

Next, we study another important commodity series. The presence of bubbles (charac-

terized by explosive price paths) in gold prices (measured in US Dollars per ounce) has

implications with respect to its safe haven property, see Baur, Dimpfl, and Jung (2012)

and Baur and McDermott (2010). During periods of explosive behaviour, the stabilizing

effect of Gold vanishes which may endanger the financial system to a certain extent.

Monthly data is sampled from 1968:04 to 2013:01, yielding 539 observations. An AR(1)

model is fitted to the data.

The results are reported in Figure 5. As a first clear result, the series is strongly

persistent and exhibits many and long phases of mild explosiveness. Even the rolling

window OLS estimates clearly indicate two such phases in the beginning of the Seventies

and the Eighties, respectively. When comparing different bias-correction techniques, we

find a similar picture as for the previous applications. The importance of bias-correction

and the simultaneous allowance for explosive behaviour is further underlined.

Finally, we consider the spread between long-term interest rates in Germany and Greece.
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Figure 5: Rolling window AR(1) estimation for the log Gold price series with different bias-
correction methods.

The series spans 1993:01–2013:02, thereby giving a total number of 242 observations.

The selected lag length equals one. The spread has remarkably declined during the

European economic integration and reached levels near zero after the Euro introduction.

During the following years (up to 2007), long-term interest rates remained nearly the

same in Germany and Greece and only a minor risk premium for investing in Greece

has been paid. After the beginning of the financial crisis, however, the spread reached

historic values above 25% reflecting the increased default risk. Results for bias-corrected

estimation of persistence in this series are reported in Figure 6. In the beginning of the

sample, estimated persistence indicate a unit root followed by lower persistence caused

by European monetary integration efforts. But, the results also show a dramatic increase

in persistence at the beginning of the global financial crisis and even the OLS estimates

take values above 1.3 which is remarkably high. Obviously, it is of major importance to

allow for explosiveness in this application. Towards the end of the sample, persistence

lowered considerably to values near unity indicating one of the outcomes of the European

Stability Mechanism. The indirect inference estimator and the jackknife estimator yield

similar results as they agree on the general evolution of persistence.
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Figure 6: Rolling window AR(1) estimation for the interest rate spread series with different
bias-correction methods.

5 Conclusions

This paper compares four different bias-correction techniques for autoregressive pro-

cesses. Among these are the approximately median-unbiased estimator by Roy and

Fuller (2001), a bootstrap-based estimator by Kim (2003), an indirect inference estima-

tor by Phillips et al. (2011) and a jackknife estimator suggested in Chambers (2013).

We thus compare established techniques to newly proposed procedures in a comprehen-

sive way. In particular, we focus on situations where the sample size is relatively small

and data is highly persistent, exhibits a unit root or is even mildly explosive. When

the popular rolling window framework is applied for assessing the possibly time-varying

persistence of a time series, sample sizes are typically small. Moreover, it is reasonable

to expect that time series undergo changes in persistence during different regimes and

episodes. These changes can be either driven by episodes of speculation (leading to

temporary bubbles) or policy induced (typically leading to a reduction in persistence).

Therefore, we study an empirically relevant situation and provide practical recommen-

dations for further applications.
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A large-scale simulation study of bias and root mean squared errors of estimators reveals

the following results: The substantial bias of the OLS estimator can be remarkably re-

duced across the whole range of considered autoregressive parameter values. The most

promising approaches are the indirect inference estimator and the jackknife estimator.

The indirect inference estimator provides excellent bias-correction in various settings

(i.e. heavy-tailed errors, GARCH errors, linear trend and misspecified autoregression)

together with a reasonably low variance, while the jackknife estimator performs often

best in terms of bias-correction, but has a clearly larger variance rendering this estima-

tor less recommendable in terms of RMSE.

As the main empirical application, we consider a long annual US Debt/GDP series in a

rolling window estimation framework. Remarkable evidence for time-varying persistence

and periods of explosiveness during the Civil War and World War II are documented.

The results clearly suggest substantial differences for various estimation techniques and

thus, different policy implications. Further empirical applications are made to Oil prices,

Gold prices and the spread between long-term interest rates in Germany and Greece. In

all cases, the importance of bias-correction and the simultaneous allowance for locally

explosive behaviour is further stressed.
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A Appendix

A.1 Stable errors

Bias RMSE

T ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.85 -0.135 0.012 0.000 -0.030 -0.008 0.199 0.144 0.163 0.160 0.220

0.90 -0.148 -0.002 -0.017 -0.046 -0.014 0.205 0.140 0.150 0.155 0.221

0.95 -0.162 -0.018 -0.042 -0.069 -0.023 0.213 0.134 0.142 0.154 0.222

0.99 -0.167 -0.028 -0.064 -0.090 -0.022 0.215 0.127 0.139 0.160 0.221

1.00 -0.166 -0.029 -0.068 -0.095 -0.019 0.213 0.125 0.137 0.160 0.219

1.01 -0.162 -0.029 - - -0.015 0.210 0.123 - - 0.215

1.02 -0.157 -0.028 - - -0.012 0.206 0.120 - - 0.210

60 0.85 -0.064 0.006 0.010 -0.005 0.002 0.108 0.094 0.100 0.093 0.119

0.90 -0.070 0.004 0.007 -0.009 0.001 0.108 0.089 0.091 0.087 0.118

0.95 -0.078 -0.003 -0.006 -0.021 -0.003 0.109 0.080 0.077 0.079 0.116

0.99 -0.086 -0.014 -0.028 -0.041 -0.008 0.112 0.071 0.071 0.079 0.116

1.00 -0.085 -0.015 -0.033 -0.046 -0.006 0.111 0.068 0.070 0.081 0.115

1.01 -0.079 -0.013 - - -0.001 0.104 0.062 - - 0.107

1.02 -0.069 -0.010 - - 0.003 0.095 0.056 - - 0.099

120 0.85 -0.030 0.002 0.003 0.000 0.002 0.062 0.057 0.059 0.057 0.068

0.90 -0.033 0.002 0.005 -0.001 0.002 0.059 0.053 0.055 0.052 0.065

0.95 -0.037 0.002 0.004 -0.004 0.002 0.057 0.047 0.047 0.045 0.062

0.99 -0.044 -0.006 -0.011 -0.018 -0.003 0.059 0.038 0.037 0.040 0.061

1.00 -0.044 -0.008 -0.016 -0.022 -0.002 0.057 0.035 0.035 0.040 0.059

1.01 -0.035 -0.005 - - 0.003 0.049 0.028 - - 0.051

1.02 -0.021 -0.002 - - 0.009 0.037 0.022 - - 0.044

240 0.85 -0.015 0.000 0.000 0.000 0.001 0.039 0.036 0.037 0.036 0.041

0.90 -0.016 0.001 0.001 0.000 0.001 0.035 0.032 0.032 0.032 0.038

0.95 -0.017 0.001 0.003 0.000 0.002 0.031 0.027 0.028 0.026 0.034

0.99 -0.021 -0.001 -0.002 -0.006 0.000 0.029 0.020 0.019 0.020 0.031

1.00 -0.022 -0.004 -0.008 -0.011 0.000 0.030 0.019 0.019 0.022 0.032

1.01 -0.010 -0.001 - - 0.005 0.018 0.011 - - 0.022

1.02 -0.002 0.000 - - 0.008 0.009 0.006 - - 0.017

Table 6: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife
(J(2)) estimation procedures for different AR(1) processes and sample sizes (constant included)
with stable error distribution.
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A.2 Misspecified AR(1) process

Bias RMSE

T ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.85 -0.162 0.003 -0.021 -0.044 0.024 0.237 0.151 0.190 0.186 0.280

0.90 -0.173 -0.014 -0.038 -0.061 0.013 0.240 0.149 0.178 0.180 0.273

0.95 -0.183 -0.030 -0.060 -0.083 0.003 0.242 0.145 0.167 0.176 0.269

0.99 -0.186 -0.039 -0.078 -0.105 0.002 0.241 0.140 0.160 0.179 0.262

1.00 -0.182 -0.037 -0.079 -0.106 0.009 0.236 0.136 0.155 0.177 0.259

1.01 -0.178 -0.036 - - 0.009 0.232 0.134 - - 0.255

1.02 -0.170 -0.033 - - 0.016 0.226 0.130 - - 0.254

60 0.85 -0.075 0.002 0.004 -0.007 0.008 0.125 0.104 0.113 0.106 0.141

0.90 -0.080 -0.003 -0.001 -0.013 0.007 0.123 0.099 0.102 0.098 0.137

0.95 -0.086 -0.010 -0.013 -0.025 0.004 0.121 0.087 0.085 0.086 0.130

0.99 -0.094 -0.020 -0.034 -0.045 -0.003 0.122 0.079 0.078 0.085 0.127

1.00 -0.090 -0.018 -0.036 -0.048 0.003 0.116 0.072 0.073 0.083 0.123

1.01 -0.086 -0.018 - - 0.004 0.114 0.070 - - 0.118

1.02 -0.074 -0.013 - - 0.009 0.103 0.062 - - 0.112

120 0.85 -0.035 -0.001 0.001 -0.002 0.003 0.069 0.063 0.064 0.062 0.075

0.90 -0.037 0.000 0.002 -0.003 0.003 0.065 0.057 0.059 0.056 0.071

0.95 -0.041 -0.001 0.001 -0.006 0.003 0.062 0.050 0.050 0.048 0.066

0.99 -0.046 -0.008 -0.013 -0.019 -0.001 0.061 0.040 0.038 0.041 0.063

1.00 -0.045 -0.009 -0.017 -0.023 0.000 0.059 0.036 0.036 0.040 0.060

1.01 -0.037 -0.006 - - 0.005 0.051 0.031 - - 0.055

1.02 -0.022 -0.002 - - 0.010 0.039 0.024 - - 0.046

240 0.85 -0.017 0.000 0.000 0.000 0.001 0.043 0.040 0.040 0.040 0.044

0.90 -0.018 0.000 0.000 -0.001 0.001 0.038 0.034 0.035 0.034 0.040

0.95 -0.019 0.000 0.002 -0.001 0.002 0.033 0.029 0.030 0.028 0.035

0.99 -0.022 -0.003 -0.003 -0.007 0.000 0.031 0.021 0.020 0.021 0.031

1.00 -0.022 -0.004 -0.008 -0.011 0.000 0.029 0.017 0.017 0.020 0.030

1.01 -0.011 -0.001 - - 0.005 0.019 0.012 - - 0.023

1.02 -0.002 0.000 - - 0.008 0.009 0.006 - - 0.018

Table 7: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife
(J(2)) estimation procedures for different AR(1) processes when the model is misspecified as
AR(2) (constant included).
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A.3 AR(2) process

Bias RMSE

T β ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.2 0.85 -0.134 -0.001 -0.015 -0.032 0.023 0.199 0.138 0.165 0.160 0.239

0.90 -0.142 -0.012 -0.028 -0.045 0.017 0.201 0.136 0.153 0.152 0.235

0.95 -0.151 -0.025 -0.047 -0.065 0.012 0.201 0.128 0.140 0.146 0.232

0.99 -0.153 -0.030 -0.063 -0.084 0.008 0.200 0.120 0.132 0.147 0.224

1.00 -0.150 -0.030 -0.066 -0.089 0.011 0.196 0.118 0.129 0.150 0.222

1.01 -0.144 -0.027 - - 0.018 0.191 0.113 - - 0.219

1.02 -0.139 -0.026 - - 0.018 0.188 0.111 - - 0.214

-0.3 0.85 -0.217 -0.001 -0.040 -0.072 0.008 0.304 0.167 0.232 0.232 0.335

0.90 -0.229 -0.022 -0.063 -0.093 -0.007 0.309 0.167 0.222 0.229 0.329

0.95 -0.240 -0.043 -0.087 -0.119 -0.016 0.311 0.168 0.213 0.228 0.328

0.99 -0.237 -0.048 -0.101 -0.135 -0.007 0.303 0.163 0.202 0.226 0.320

1.00 -0.231 -0.045 -0.101 -0.137 0.003 0.297 0.158 0.196 0.227 0.317

1.01 -0.228 -0.046 - - 0.005 0.295 0.157 - - 0.313

1.02 -0.224 -0.046 - - 0.007 0.293 0.157 - - 0.309

120 0.2 0.85 -0.029 -0.001 -0.001 -0.002 0.001 0.060 0.055 0.057 0.055 0.064

0.90 -0.029 0.000 0.001 -0.002 0.002 0.055 0.049 0.051 0.048 0.059

0.95 -0.032 0.000 0.002 -0.003 0.003 0.050 0.042 0.043 0.041 0.055

0.99 -0.037 -0.006 -0.009 -0.014 -0.001 0.050 0.033 0.032 0.034 0.051

1.00 -0.036 -0.007 -0.014 -0.019 0.002 0.047 0.029 0.029 0.033 0.050

1.01 -0.027 -0.004 - - 0.004 0.040 0.024 - - 0.042

1.02 -0.012 0.000 - - 0.011 0.027 0.017 - - 0.036

-0.3 0.85 -0.048 -0.001 0.002 -0.004 0.003 0.087 0.076 0.080 0.076 0.092

0.90 -0.050 -0.001 0.004 -0.005 0.004 0.082 0.070 0.073 0.069 0.088

0.95 -0.054 -0.004 -0.002 -0.011 0.002 0.080 0.061 0.060 0.059 0.084

0.99 -0.059 -0.011 -0.017 -0.025 0.000 0.078 0.051 0.048 0.053 0.081

1.00 -0.059 -0.012 -0.022 -0.030 -0.001 0.076 0.047 0.047 0.053 0.078

1.01 -0.050 -0.009 - - 0.005 0.069 0.042 - - 0.072

1.02 -0.037 -0.005 - - 0.009 0.058 0.035 - - 0.064

240 0.2 0.85 -0.013 0.000 0.000 0.000 0.001 0.037 0.035 0.035 0.035 0.038

0.90 -0.013 0.000 0.000 0.000 0.001 0.032 0.030 0.030 0.030 0.034

0.95 -0.015 0.000 0.001 0.000 0.002 0.028 0.025 0.025 0.024 0.029

0.99 -0.017 -0.001 -0.002 -0.004 0.000 0.024 0.017 0.016 0.017 0.025

1.00 -0.018 -0.003 -0.007 -0.009 0.000 0.023 0.014 0.014 0.016 0.024

1.01 -0.006 0.000 - - 0.006 0.013 0.008 - - 0.017

1.02 0.000 0.000 - - 0.006 0.005 0.004 - - 0.013

-0.3 0.85 -0.023 -0.001 -0.001 -0.002 0.000 0.051 0.047 0.047 0.047 0.053

0.90 -0.024 -0.001 0.000 -0.001 0.000 0.046 0.041 0.042 0.041 0.048

0.95 -0.024 0.001 0.003 -0.001 0.002 0.041 0.034 0.036 0.033 0.043

0.99 -0.029 -0.004 -0.006 -0.010 -0.001 0.040 0.027 0.025 0.027 0.041

1.00 -0.029 -0.005 -0.011 -0.015 0.000 0.037 0.023 0.022 0.025 0.038

1.01 -0.019 -0.003 - - 0.004 0.029 0.017 - - 0.031

1.02 -0.006 0.000 - - 0.011 0.016 0.010 - - 0.026

Table 8: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife
(J(2)) estimation procedures for different AR(2) processes (constant included).
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A.4 Misspecified AR(2) process

Bias RMSE

T β ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.2 0.85 -0.081 0.066 0.054 0.027 0.028 0.147 0.142 0.140 0.131 0.184

0.90 -0.097 0.047 0.027 0.002 0.015 0.154 0.127 0.119 0.119 0.185

0.95 -0.116 0.024 -0.009 -0.032 -0.002 0.164 0.112 0.105 0.116 0.187

0.99 -0.126 0.007 -0.040 -0.065 -0.009 0.169 0.100 0.101 0.128 0.186

1.00 -0.126 0.005 -0.046 -0.075 -0.008 0.168 0.097 0.101 0.136 0.185

1.01 -0.123 0.003 - - -0.005 0.166 0.094 - - 0.182

1.02 -0.118 0.003 - - -0.001 0.162 0.091 - - 0.177

-0.3 0.85 -0.314 -0.122 -0.202 -0.223 -0.145 0.382 0.187 0.325 0.329 0.340

0.90 -0.313 -0.136 -0.197 -0.219 -0.134 0.378 0.205 0.315 0.320 0.334

0.95 -0.309 -0.143 -0.193 -0.215 -0.120 0.372 0.217 0.301 0.309 0.327

0.99 -0.298 -0.141 -0.186 -0.209 -0.098 0.360 0.218 0.286 0.296 0.316

1.00 -0.292 -0.137 -0.182 -0.205 -0.090 0.354 0.216 0.280 0.291 0.311

1.01 -0.285 -0.133 - - -0.080 0.348 0.213 - - 0.306

1.02 -0.277 -0.128 - - -0.070 0.340 0.209 - - 0.300

120 0.2 0.85 0.002 0.036 0.038 0.034 0.026 0.043 0.058 0.061 0.056 0.058

0.90 -0.007 0.030 0.034 0.027 0.018 0.039 0.052 0.055 0.049 0.052

0.95 -0.017 0.023 0.024 0.016 0.011 0.038 0.042 0.041 0.037 0.048

0.99 -0.029 0.008 -0.001 -0.006 0.001 0.041 0.026 0.022 0.026 0.046

1.00 -0.031 0.003 -0.009 -0.015 0.000 0.041 0.022 0.021 0.030 0.045

1.01 -0.023 0.003 - - 0.003 0.035 0.019 - - 0.041

1.02 -0.008 0.006 - - 0.014 0.023 0.015 - - 0.035

-0.3 0.85 -0.124 -0.092 -0.095 -0.097 -0.069 0.153 0.125 0.134 0.134 0.130

0.90 -0.108 -0.076 -0.076 -0.079 -0.047 0.136 0.113 0.116 0.116 0.116

0.95 -0.095 -0.060 -0.058 -0.063 -0.029 0.120 0.098 0.099 0.099 0.105

0.99 -0.086 -0.049 -0.049 -0.056 -0.016 0.107 0.083 0.083 0.085 0.096

1.00 -0.080 -0.043 -0.046 -0.052 -0.007 0.100 0.075 0.076 0.079 0.091

1.01 -0.068 -0.033 - - 0.002 0.089 0.066 - - 0.084

1.02 -0.051 -0.024 - - 0.007 0.075 0.055 - - 0.072

240 0.2 0.85 0.014 0.030 0.030 0.030 0.025 0.031 0.041 0.042 0.041 0.040

0.90 0.006 0.023 0.023 0.022 0.018 0.025 0.033 0.034 0.033 0.033

0.95 -0.003 0.016 0.018 0.014 0.010 0.020 0.026 0.028 0.025 0.026

0.99 -0.012 0.007 0.004 0.001 0.003 0.020 0.015 0.013 0.013 0.023

1.00 -0.015 0.002 -0.004 -0.007 0.000 0.020 0.011 0.010 0.015 0.022

1.01 -0.004 0.003 - - 0.007 0.012 0.007 - - 0.018

1.02 0.004 0.005 - - 0.010 0.006 0.006 - - 0.015

-0.3 0.85 -0.093 -0.079 -0.079 -0.079 -0.066 0.110 0.099 0.100 0.100 0.094

0.90 -0.074 -0.059 -0.059 -0.059 -0.044 0.091 0.080 0.080 0.080 0.076

0.95 -0.056 -0.039 -0.039 -0.040 -0.022 0.071 0.060 0.060 0.060 0.061

0.99 -0.046 -0.026 -0.026 -0.029 -0.008 0.057 0.045 0.045 0.046 0.051

1.00 -0.041 -0.022 -0.023 -0.026 -0.002 0.052 0.039 0.039 0.040 0.048

1.01 -0.026 -0.012 - - 0.004 0.038 0.028 - - 0.038

1.02 -0.012 -0.007 - - 0.008 0.022 0.016 - - 0.028

Table 9: Bias and RMSE for OLS. indirect inference (II), Roy-Fuller (RF), Kim and jackknife
(J(2)) estimation procedures for different AR(2) processes when the model is misspecified as
AR(1) (constant included).
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