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Abstract

We consider cointegration rank estimation for a p-dimensional Fractional Vector Er-

ror Correction Model. We propose a new two-step procedure which allows testing for

further long-run equilibrium relations with possibly different persistence levels. The first

step consists in estimating the parameters of the model under the null hypothesis of the

cointegration rank r = 1, 2, . . . , p−1. This step provides consistent estimates of the coin-

tegration degree, the cointegration vectors, the speed of adjustment to the equilibrium

parameters and the common trends. In the second step we carry out a sup-likelihood

ratio test of no-cointegration on the estimated p − r common trends that are not coin-
tegrated under the null. The cointegration degree is re-estimated in the second step to

allow for new cointegration relationships with different memory. We augment the error

correction model in the second step to control for stochastic trend estimation effects from

the first step. The critical values of the tests proposed depend only on the number of

common trends under the null, p − r, and on the interval of the cointegration degrees b
allowed, but not on the true cointegration degree b0. Hence, no additional simulations

are required to approximate the critical values and this procedure can be convenient for

practical purposes. In a Monte Carlo study we analyze the finite sample properties of dif-

ferent specifications of the correction terms and compare our procedure with alternative

methods.

Keywords: Error correction model, Gaussian VAR model, Likelihood ratio tests,

Maximum likelihood estimation. JEL: C12, C15, C32.
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1 Introduction

Fractional cointegration is a generalization of standard models with I(1) integrated time

series and I(0) cointegration relationships. In general, observed time series can display

different degrees of integration, while equilibrium relationships can be just characterized by

a lower persistence or integration degree than the levels, perhaps allowing different values if

there is more than one equilibrium. Much focus of the literature has been placed on parameter

estimation, using both semiparametric (e.g. Marinucci and Robinson (2001)) or parametric

methods, which specify also short run dynamics (e.g. Robinson and Hualde (2003); Johansen

and Nielsen (2012)). However, the estimation of the parameters of the cointegrated model

assumes the knowledge of a positive number of cointegration relationships (and regression

based methods also take the dependent variables as given), so the related testing problems

on the existence of cointegration and the cointegration rank have been also investigated in

the literature.

Fractional cointegration testing has been analyzed from different perspectives. One ap-

proach focuses on the estimation of the memory parameters, see e.g. Marinucci and Robinson

(2001), Nielsen (2004), Gil-Alaña (2003), Robinson (2008). Marmol and Velasco (2004) and

Hualde and Velasco (2008) compare OLS and different GLS-type estimates of the cointegrat-

ing vector to construct a test statistic. Łasak (2010) directly exploits a Fractional Vector

Error Correction Model (FVECM) to propose Likelihood Ratio (LR) tests.

Recent work has proposed fractional cointegration tests inspired by multivariate methods.

Breitung and Hassler (2002) solve a generalized eigenvalue problem of the type considered

in the Johansen’s procedure for developing multivariate score tests of fractional integration,

see Johansen (1988, 1991, 1995) and Nielsen (2005). Avarucci and Velasco (2009) propose to

exploit a parametric FVECM for the development of Wald tests of the cointegration rank.

There have been several semi-parametric proposals that focus on spectral matrix estimates,

see Robinson and Yajima (2002), Chen and Hurvich (2003, 2006) and Nielsen and Shimotsu

(2007).

We estimate the cointegration rank from a parametric perspective and base it on the

specification of a FVECM. We rely on pseudo-LR tests based on restricted maximum like-

lihood (ML) estimates of the system. It is in contrast to Avarucci and Velasco (2009), who

investigate the rank of unrestricted OLS estimates. We propose to perform a sequence of

hypothesis tests based on a new two-stage procedure. It extends the results of testing the hy-

pothesis of no-cointegration in Łasak (2010) and of estimating the fractionally cointegration

systems in Łasak (2008) and Johansen and Nielsen (2012). The first step of the proposed

procedure consists in estimating the parameters of the FVECM under the null hypothesis

of the cointegration rank r = 1, 2, . . . , p− 1. Under the null of the cointegration rank r, this
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estimation step provides consistent estimates of the cointegration degree, the cointegration

vectors and the speed of the adjustment to the equilibrium parameters, together with an ap-

proximation to the common trends. In the second step, we implement the no-cointegration

sup LR tests considered in Łasak (2010) to the estimated common trends. We neglect the

order of cointegration estimated in the first step, to allow for different persistences in the

cointegration relationships and to permit the use of known asymptotic distribution. The

critical values depend on the number of common trends under the null hypothesis of rank r,

and the interval of possible cointegration degrees, but not on the true cointegration degree.

However, to obtain the same asymptotic distribution as for the no-cointegration tests in

Łasak (2010), we need to augment the error correction model in the second step to account

for terms spanned by the cointegrating residuals from the first step. For this purpose, we

include additional regressors and show that, when they are included, parameter estimation

from the first step is asymptotically negligible. We consider different feasible specifications of

the correction terms depending on the first step estimation and analyze the performance of

the proposed new procedures in finite samples. We compare our approach with the LR rank

test of Johansen and Nielsen (2012). The asymptotic distribution of their LR test depends

on the true degree of cointegration and it is imposed that all cointegration relationships share

the same memory. We also compare our tests with the benchmark LR tests based on the

standard VECM that assumes that the degree of cointegration is known and equal to one,

see Johansen (1988, 1991, 1995).

The reminder of the paper is organized as follows. Section 2 describes ML estimation

of the basic FVECM and testing the null of no cointegration. Section 3 presents our new

two-step procedure for testing the higher ranks with possibly different memory. In Sec-

tion 4 we present the rank testing methods for the model with short run dynamics. Sec-

tion 5 presents results of the Monte Carlo analysis. Section 6 contains the empirical analy-

sis of the term structure of the interest rates. Section 7 concludes. Appendix contains

the proofs of Theorems 1, 3 and Corollary 2. Separate Technical Appendix available at

http://creates.au.dk/research/research-papers/supplementary-downloads/rp-2013-08/

contains Tables 7-14 with Monte Carlo results discussed in Section 5.

2 Analysis of fractional systems

We first discuss the inference of the basic Fractional Vector Error Correction Model (FVECM).

It includes the fractional representations proposed in Granger (1986), Johansen (2008, 2009)

and Avarucci and Velasco (2009). For a p×1 vector time series Xt, we consider the following

representation

∆dXt = ∆d−bLbαβ
′Xt + εt, (1)

3



where ∆ = 1 − L, L being the lag operator, d and b are respectively orders of integration
and cointegration satisfying 0 < b ≤ d, Lb = 1 −∆b, α and β are p × r full rank matrices,
0 ≤ r ≤ p, εt is a p × 1 vector of independent and identically distributed errors with zero

mean and positive definite variance-covariance matrix Ω. Note that Lb filters the series Xt in

such a way, that the filtered series depends on all lagged values of Xt and does not depend on

the current value in period t. We assume that all initial values are set to zero, Xt = εt = 0,

t ≤ 0, so ∆d could be replaced by ∆d
+, denoting the truncated version of the fractional filter

to positive values, ∆d
+Xt = ∆dXt1 {t > 0} , which is necessary when d ≥ 0.5 to accommodate

non square summable filters.

Equation (1) corresponds to a (zero mean) fractional vector autoregressive VARd,b (0)

model in Johansen and Nielsen (2012) and implies under some further conditions that there

exists r, 0 < r < p, different linear combinations β of time series Xt, that are integrated

of order d − b, I (d− b) , while Xt is integrated of order d, I (d) . In Johansen and Nielsen

(2012) the time series Xt is said to be a cofractional process of order d− b with r > 0 being

the cofractional or cointegration rank. The matrix α contains the speed of adjustment to

the equilibrium coeffi cients and β the cointegrating relationships. If r = 0 this implies that

Π = αβ′ = 0 or b = 0, so that Xt is integrated of order d and no trivial linear combination

of Xt has smaller order of integration. In the special case r = p, the matrix Π = αβ′ is

unrestricted.

We denote the true values of the parameters with a 0 subscript and consider for presen-

tation the case d0 = 1, which is the most relevant in applications. It does not affect the

generality, since all arguments would apply directly to ∆d̂Xt instead of ∆Xt. However the

parameter d could be estimated jointly with the other model parameters if d0 6= 1 and it is

unknown. We restrict the true value of b to b0 ∈ (0.5, 1] when r > 0, as in Łasak (2010),

so all potential cointegrating relationships are (asymptotically) stationary. Note that when

r > 1 all cointegrating relationships implied by the VAR1,b (0) model of Johansen and Nielsen

(2012) have the same order of integration 1 − b. We do not maintain this restriction in the
second step of our testing procedure.

Łasak (2010) has solved the problem of testing whether the system (1) is cointegrated.

The estimation under the assumption that the cointegration rank r, r > 0, is known is consid-

ered in Łasak (2008) and Johansen and Nielsen (2012) adapting Johansen’s (1995) procedure

to the fractional VECM. For that, let’s define Z0t = ∆Xt and Z1t−1(b) =
(

∆−b+ − 1
)

∆Xt =

∆1−b
+ LbXt. Note that Z1t−1(b) does not depend on data at time t. The model (1) expressed

in these variables becomes

Z0t = αβ′Z1t−1(b) + εt, t = 1, . . . , T.
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Then, the log-likelihood function Lr for the model (1), under the hypothesis of r cointegrating
relationships and the gaussianity of εt, is given, apart from a constant, by

Lr (α, β,Ω, b) = −T
2

log |Ω| − 1

2

T∑
t=1

[Z0t − αβ′Z1t−1(b)]′Ω−1[Z0t − αβ′Z1t−1(b)].

We define the sample cross moments by

Sij(b) = T−1
T∑
t=1

Zit(b)Zjt(b)
′ i, j = 0, 1,

where Sij is a function of b except when i = j = 0. For given values of r > 0, b and

β, parameters α and Ω are estimated by regressing Z0t on β′Z1t−1(b) and

α̂(β(b)) = S01(b)β(β′S11(b)β)−1, (2)

while

Ω̂(β(b)) = S00 − S01(b)β(β′S11(b)β)−1β′S10(b) = S00 − α̂(β)(β′S11(b)β)α̂(β)′.

Plugging these estimates into Lr we get

L−2/Tr (β, b) = L−2/Tr (α̂(β(b)), β, Ω̂(β(b)), b) = |S00 − S01(b)β(β′S11(b)β)−1β′S10(b)|,

where Lr = exp (Lr) is the likelihood up to a multiplicative constant. For fixed b the

maximum of the likelihood is obtained by solving the eigenvalue problem

∣∣λ(b)S11(b)− S10(b)S−100 S01(b)
∣∣ = 0 (3)

for eigenvalues λi(b) (ordered by decreasing magnitude for i = 1, . . . , p) and eigenvectors

υi(b), such that

λi(b)S11(b)υi(b) = S10(b)S
−1
00 S01(b)υi(b),

and υ′j(b)S11(b)υi(b) = 1 if i = j and 0 otherwise. The eigenvectors diagonalize the matrix

S10(b)S
−1
00 S01(b), i.e.,

υ′j(b)S10(b)S
−1
00 S01(b)υi(b) = λi(b)

for i = j and they are equal to 0 otherwise. Thus by simultaneously diagonalizing the

matrices S11(b) and S10(b)S−100 S01(b) we can estimate the r-dimensional cointegrating space

as the space spanned by the eigenvectors corresponding to the r largest eigenvalues. With
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this choice of β we estimate b by maximizing the likelihood in a compact set B ⊂ (0.5, 1], i.e.

b̂r = arg max
b∈B

Lr (b) ,

where

Lr(b) =

[
|S00|

r∏
i=1

(1− λi(b))
]−T/2

. (4)

Expression (4) can be used to construct the sequence of LR tests for testing the fractional

cointegration rank in the model (1). The first step is to test the null of no cointegration,

H0 : rank (Π) = 0.

We can test it against two different alternatives, full cointegration rank of the impact matrix

Π = αβ′,

Hp : rank (Π) = p,

or one extra cointegrating relationship,

H1 : rank (Π) = 1.

Łasak (2010) has described how to test H0 against Hp and H1. The LR statistic for testing

H0 against Hp (sup trace test) is defined by

LRpT (0|p) = −2 log
[
L0/Lp

(
b̂p

)]
= −T

p∑
i=1

log[1− λi(b̂p)], (5)

where

b̂p = arg max
b∈B

Lp(b),

with Lp being defined as the likelihood under the hypothesis of rank p and L0 = |S00|−T/2 is
the likelihood when r = 0.

Alternatively, the LR statistic for testing H0 against H1 (sup maximum eigenvalue test)

is defined by

LRpT (0|1) = −2 log
[
L0/L1

(
b̂1

)]
= −T log[1− λ1(b̂1)], (6)

where

b̂1 = arg max
b∈B

L1(b)

and L1 denotes the likelihood under the hypothesis of rank 1. Recall that under the null of

no cointegration (r = 0) we cannot hope that b̂1 or b̂p estimate consistently a nonexisting
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true value of b, and because of that the LR tests (5) and (6) could be interpreted as sup LR

tests, in the spirit of Davies (1977) and Hansen (1996).

We state Assumption 1 as in Łasak (2010).

Assumption 1 εt are independent and identically distributed vectors with mean zero, posi-

tive definite covariance matrix Ω, and E||εt||q <∞, q ≥ 4, q > 2/ (2b
¯
− 1) , b

¯
= minB >0.5,

where B ⊂ (0.5, 1] is a compact set.

Under Assumption 1, Łasak (2010) has proved that tests (5) and (6) have the following

asymptotic distributions

LRpT (0|p) d→ sup
b∈B

trace [£(b)]
def
= Jp (7)

and

LRpT (0|1)
d→ sup

b∈B
λmax [£(b)]

def
= Ep, (8)

where

£(b) =

∫ 1

0
(dB)B′b

[∫ 1

0
BbB

′
bdu

]−1 ∫ 1

0
Bb (dB)′ , (9)

Bb is a p-dimensional standard fractional Brownian motion with parameter b ∈ B,

Bb (x) = Γ−1 (b)

∫ x

0
(x− z)b−1 dB (z) ,

B = B1 is a standard Brownian motion on the unit interval. Note the difference in notation,

Bb corresponds to Bb−1 in Johansen and Nielsen (2012).

Łasak (2010) has simulated quantiles of the asymptotic distributions in (7) and (8), which

we reproduce in Tables 1 and 2 for the convenience of the reader. Note that the asymptotic

distributions in (7) and (8) and thus critical values of the tests (5) and (6) depend on the

interval B = [0.5 + ε; 1] , with ε > 0 and small, of possible values of b, on which we maximize

the likelihood. The bounds of interval B are determined in order to allow deviations from
equilibrium (cointegrating residuals) to be of all possible orders of integration that would

be asymptotically stationary. For practical purposes we can simulate the tables of critical

values for each d with B = [d− 0.5 + ε; d] .

Tables 1-2 have been simulated with 100,000 repetitions and using the approximation of

fractional Brownian motion by fractionally integrated series based on i.i.d. Gaussian noise of

length 1000. To maximize the likelihood function, the MaxSQPF procedure has been used in

Ox, see Doornik and Ooms (2007) and Doornik (2009 a,b), and optimization has been done

on the interval B =[0.5; 1], since the critical values converge to a limit when ε→ 0 (and also

when d→∞), see Łasak (2010).
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Table 1. Quantiles of Jp for the sup trace test.

p 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

1 0.0006 0.0035 0.012 0.045 0.87 3.71 4.98 6.28 8.07

2 0.42 0.71 1.07 1.65 5.37 10.92 12.84 14.67 16.90

3 2.64 3.50 4.41 5.77 13.44 21.73 24.30 26.67 29.64

4 7.06 8.68 10.25 12.53 25.81 36.72 39.95 42.86 46.52

5 13.92 16.23 18.63 22.09 42.59 55.88 59.76 63.24 67.49

6 23.38 26.62 29.95 35.11 63.67 78.87 83.19 87.14 91.93

7 35.56 40.02 44.60 52.37 88.81 105.87 110.84 115.32 120.89

8 50.74 56.53 63.18 77.58 117.84 136.83 142.47 147.61 153.80

9 69.15 76.69 87.20 124.92 150.68 171.61 177.81 183.49 190.27

10 91.42 102.65 128.49 163.12 187.27 210.32 217.29 223.54 230.94

Table 2. Quantiles of Ep for the sup maximum eigenvalue test.

p 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

1 0.0006 0.0035 0.012 0.045 0.87 3.71 4.98 6.28 8.07

2 0.37 0.62 0.93 1.44 4.73 9.86 11.72 13.45 15.67

3 1.87 2.50 3.16 4.15 9.37 15.85 18.01 19.98 22.53

4 4.16 5.07 6.06 7.47 14.26 21.81 24.27 26.49 29.38

5 6.85 8.08 9.35 11.14 19.36 27.72 30.40 32.83 35.91

6 10.00 11.52 13.00 15.11 24.60 33.47 36.28 38.87 41.90

7 13.16 14.92 16.67 19.17 29.89 39.49 42.36 45.06 48.45

8 16.69 18.66 20.64 23.36 35.29 45.29 48.48 51.20 54.62

9 20.41 22.48 24.59 27.83 40.72 51.21 54.35 57.30 60.78

10 24.08 26.30 28.72 32.31 46.19 57.02 60.31 63.43 67.21

When we reject the null hypothesisH0 of no cointegration we only get the information that

the system (1) is cointegrated, but we do not know how many cointegration relationships has

Xt, so we need to proceed further and solve the problem of the cointegration rank estimation.

For testing the cointegration rank r against rank p, r = 1, . . . , p− 1 in model (1) we can use

the general LR tests proposed by Johansen and Nielsen (2012) based on the solutions of the
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eigenvalue problem (3) under both hypothesis, i.e.:

LRpT (r|p) = −2T log
[
Lr

(
b̂r

)
/Lp

(
b̂p

)]
= −T

{
p∑
i=1

log[1− λi(b̂p)]−
r∑
i=1

log[1− λi(b̂r)]
}
,

(10)

where estimates of the cointegration degree under the null (b̂r) and under the alternative (b̂p)

might be different in general. The asymptotic distribution of the test statistic LRT (r|p) ,

LRT (r|p) d→ trace {£(b0)} ,

depends on the true cointegration degree b0 and Johansen and Nielsen (2012) suggest using

the computer program by MacKinnon and Nielsen (2013) to obtain critical values for the

tests. Lyhagen (1998) has also tabulated the asymptotic distribution of the trace test statistic

for testingHr againstHp under the assumption that the true cointegration degree b0 is known.

In the next section we propose a new two-step procedure that leads to the tests with the

same asymptotic distributions as tests (5) and (6) in Łasak (2010) that do not depend on any

nuisance parameters other than the number of the common trends p− r and the interval B
which can be fixed in our case to be arbitrarily close to (0.5, 1]. Moreover this new procedure

does not require the assumption that all cointegrating relationships share the same memory.

3 New tests for the cointegration rank

In this section we propose a new two-step procedure to establish the cointegration rank in the

FVECM given in (1) when b0 is unknown and d0 = 1. This procedure has two main features:

(i) it leads to the known asymptotic distribution (9); and (ii) it allows the cointegrating

relationships under the alternative to have different memory compared to the null ones.

The first step of our test procedure consists in the parameter estimation for model (1)

under the null hypothesis Hr of cointegration rank r. This provides consistent estimates of b

and of the decomposition Π = αβ′, where α and β are p × r matrices, as in Theorem 10 of

Johansen and Nielsen (2012). Then we compute (super) consistent estimates of the full rank

matrix p×(p− r) β⊥ satisfying β′⊥β = 0 and exploit the fact that under the null β′⊥Xt is not

cointegrated in any direction. From Granger’s Representation Theorem for the cofractional

VAR model, see Theorem 2 in Johansen and Nielsen (2012),

Xt = C∆−d+ εt + ∆b−d
+ Y +t ,

where C = β⊥ (α′⊥β⊥)−1 α′⊥ and Y
+
t is fractional of order zero, with initial conditions set to
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zero and det (α′⊥β⊥) 6= 0. Then

β′⊥Xt = β′⊥C∆−d+ εt + ∆b−d
+ β′⊥Y

+
t , (11)

where β′⊥C is of rank p− r under the null, and β′⊥Xt is just a rotation of the p− r common
trends α′⊥∆−d+ εt plus I (d− b) components.

For given β̂⊥, we propose to implement sup tests (5) and (6) described in Section 2 based

on the p−r series β̂′⊥Xt and with critical values from the Ep−r and Jp−r distributions (see (7)

and (8)) as for no-cointegration testing in Łasak (2010). Given the superconsistency of β̂ and

therefore of β̂⊥, the estimation of β̂ in the first step does not alter the asymptotic distribution

of the test statistic in the second step. Under the alternative, β̂
′
⊥Xt contains at least one

further cointegrating relationship since β̂ only estimates an r dimensional cointegrating space,

so the sup tests should be able to detect it consistently, without imposing any a priori

cointegration order.

This approach has two particular characteristics. First, when searching for further coin-

tegration relationships among the estimated common trends, it does not use the information

provided by the estimate b̂r of the persistence of the existing cointegrating relationships un-

der the null. Second, the linear combinations β′⊥Xt are not cointegrated I (1) series under

the null, but they are also not pure I (1) processes as is implied by (1) for the original series

Xt when rank (Π) = 0. In fact, they are contaminated by I (1− b) series, as in (11). Test

procedures should take into account this new feature of the projections β′⊥Xt compared to

the data generated under (1) if the same asymptotic null distribution is to be preserved.

This correction is derived for the case of a triangular systems, which are easier to handle as

we will show next.

Consider a triangular representation of fractionally cointegrated I (1) series with rank r,

β′Xt = ∆b−1
+ u1t, (12)

γ′Xt = ∆−1+ u2t,

where β and γ are, respectively, p× r and p× (p− r) matrices, ut = (u′1t, u
′
2t)
′ is iid (0,Σ) ,

with Σ > 0, and Θ = (β
... γ) has full rank p. Then we have that

β′∆Xt =
(

∆−∆1−b
+

)
β′Xt + u1t,

γ′∆Xt = u2t,

10



so that from the identity γ⊥
(
β′γ⊥

)−1
β′ + β⊥ (γ′β⊥)−1 γ′ = Ip, we obtain that

∆Xt = αβ′
(

∆−b+ − 1
)

∆Xt + εt,

where α = −γ⊥
(
β′γ⊥

)−1 and εt = Kut, K =

(
γ⊥
(
β′γ⊥

)−1 ... β⊥ (γ′β⊥)−1
)
. Therefore

Xt = Θ−1′

(
∆b−1
+ u1t

∆−1u2t

)
,

and hence that

β′⊥Xt = M1∆
b−1
+ u1t +M2∆

−1
+ u2t, (13)

where M2 is a (p− r) × (p− r) full rank matrix and there is no β1 such that β′1
(
β′⊥Xt

)
is

an I (1− b1) process, any b1 > 0, i.e. a process less integrated than β′⊥Xt. As far as M1 6= 0,

β′⊥Xt contains some I (1− b) terms, by contrast with equation (1) when r = 0 and Π = 0.

The interesting feature of the triangular model is that these I (1− b) terms are spanned by
the cointegrating residuals β′Xt = ∆b−1

+ u1t.

Therefore, from representation (11), the common trends β′⊥Xt do not follow exactly a

FVECM (1) under Hr, despite non being cointegrated. Then in a reduced rank regression

of V̂0t = β̂
′
⊥∆Xt on V̂1t−1 (b1) = (1−∆−b1+ )β̂

′
⊥∆Xt with true coeffi cient Π1 = 0, we need to

incorporate additional regressors to correct for terms that are at most I (0). For this purpose

we consider the following decomposition based on the triangular model in (12),

β′⊥∆Xt = M1

(
∆b
+ − 1

)
u1t +M1u1t +M2u2t,

which indicates that we have to correct for the predictable part of β′⊥∆Xt, i.e.
(
∆b
+ − 1

)
u1t.

This correction can be done using directly proxies for u1t and then transforming them ade-

quately.

A first possibility is to fit the model

V̂0t = Π1V̂1t−1 (b1) + Φ
(

1−∆−b̂+

)
β̂
′
∆Xt + errort (14)

by reduced rank regression, exploiting that underHr and (12),
(

1−∆−b+

)
β′∆Xt =

(
∆b
+ − 1

)
u1t

incorporates the predictable component of β′⊥∆Xt, see (13). Equation (14) takes into ac-

count both the directions in β̂ and β̂⊥ of the original series ∆Xt. We could use estimate of

β′∆Xt = ∆b
+u1t =

(
∆b
+ − 1

)
u1t+u1t instead of

(
1−∆−b+

)
β′∆Xt in (14), as it also incorpo-

rates the contemporaneous value of u1t, however it can be correlated with et = u2t, leading

to biased estimates of Π1.

11



A second alternative to augment the FECVM of V̂0t is to use the first step residuals

εt

(
b̂, α̂, β̂

)
under Hr,

εt (b, α, β) =
(
Ip − αβ′(∆−b+ − 1)

)
∆Xt.

Then, for identifying the components u1t out of the rotated errors εt = Kut, we could just

compute the linear projection of β̂
′
∆Xt given εt

(
b̂, α̂, β̂

)
,

ũ1t =

T∑
t=1

β̂
′
∆Xtεt

(
b̂, α̂, β̂

)′( T∑
t=1

εt

(
b̂, α̂, β̂

)
εt

(
b̂, α̂, β̂

)′)−1
εt

(
b̂, α̂, β̂

)
,

which proxies the contemporaneous contribution of u1t in β′∆Xt. Then we use the filtered

series
(

∆b̂
+ − 1

)
ũ1t, to estimate the regression

V̂0t = Π1V̂1t−1 (b1) + Φ
(

∆b̂
+ − 1

)
ũ1t + errort, (15)

without imposing b1 = b̂.

A third possibility is to use in (15) directly the whole p× 1 vector εt
(
b̂, α̂, β̂

)
instead of

the p− r linear combinations ũ1t,

V̂0t = Π1V̂1t−1 (b1) + Ψ
(

∆b̂
+ − 1

)
εt

(
b̂, α̂, β̂

)
+ errort. (16)

Then the corresponding LR test statistics on the rank of Π1 from either (14), (15) or

(16) are denoted as LRp−rT (0|1) and LRp−rT (0|p− r), where we replace Xt by the p−r series
β̂
′
⊥Xt and we first project the involved series with a regression on proxies of

(
∆b
+ − 1

)
u1t.

Theorem 1 shows that the asymptotic distributions of these test statistics are Ep−r and

Jp−r, respectively, since replacing β⊥ by β̂
′
⊥ and b0 by b̂ has no asymptotic impact on the

test statistics under the assumption

β̂⊥ − β⊥ = Op

(
T−b0

)
, b̂− b0 = Op

(
T−1/2

)
, (17)

see the proof in the Appendix. Similarly, the proxies of
(
∆b
+ − 1

)
u1t based on consistent

estimates correct for the additional term in the second step of FVECM.

Theorem 1 Under Assumption 1, model (12) and (17), the LR tests based on regressions

(14), (15) or (16) for testing rank(Π1) = 0, satisfy under Hr,

LRp−rT (0|1)
d→ Ep−r,

LRp−rT (0|p− r) d→ Jp−r.

12



The proof of Theorem 1 is given in the Appendix. The asymptotic distribution is the

same as the no-cointegration tests in Łasak (2010), only the degrees of freedom need to be

adapted for the dimension of β̂
′
⊥Xt under Hr. It does not depend on any further nuisance

parameter other than the set B. The requirement (17) on the rates of convergence is fulfilled
for parametric maximum likelihood estimates, but other estimates could also be considered,

see the discussion in Johansen and Nielsen (2012).

If the parameter d has to be estimated, then we replace V̂0t and V̂1t−1 (b1) by V̂0t
(
d̂
)

=

β̂
′
⊥∆d̂Xt on V̂1t−1

(
b1, d̂

)
= (1 − ∆−b1+ )β̂

′
⊥∆d̂Xt in the test statistics and possibly readjust

the set B. Then the following corollary applies.

Corollary 2 The conclusions of Theorem 1 remain valid if ∆d0Xt is replaced by ∆d̂Xt and

d̂− d0 = Op
(
T−1/2

)
.

The proof of Corollary 2 is given in the Appendix. Theorem 1 in Robinson and Hualde

(2003) presents a similar result for the case where memory parameters are estimated.

For the analysis of the consistency of our tests we can consider the alternative hypothesis

Hr+r1 generated by the model

∆Xt =
(
αβ′ + α1β

′
1

) (
∆−b+ − 1

)
∆Xt + εt, (18)

where the p × r matrices α and β are of rank r, while the p × r1 matrices α1 and β1 are
of rank r1, p − r ≥ r1 > 0. When parameter estimation for the model (18) is carried

out under the null hypothesis of rank r, the vector β̂ can capture at most r out of the

r + r1 existing equilibrium relationships. Hence β̂
′
⊥Xt still contains at least one further

cointegration relationship. Then, the consistency of the test would follow from the correlation

between β̂
′
⊥∆Xt and

(
∆−b1+ − 1

)
β̂
′
⊥∆Xt under Hr+r1 for a range of values of b1 and any full

rank p× (p− r) matrix β̂⊥.
Interestingly, the analysis can be extended by considering the model

∆Xt = αβ′
(

∆−b0+ − 1
)

∆Xt + α1β
′
1

(
∆−b1+ − 1

)
∆Xt + εt,

where b1 6= b0, so the new cointegrating relationships have different persistence compared

to the first r ones. This model has been first proposed in Lyhagen (1998), however the

properties of this model have yet to be established.
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4 Rank testing in ECM with short run noise

Model (1) can be enlarged to incorporate short run dynamics by introducing fractional lags

of ∆d
+Xt to produce a VARd,b (k) model,

∆d
+Xt = ∆d−b

+ Lbαβ
′Xt +

k∑
i=1

ΓiL
i
b∆

d
+Xt + εt, (19)

as in Johansen (2008). In this case ∆d
+Xt follows a VAR model in the lag operator Lb =(

1−∆b
+

)
rather than in the usual lag operator L = L1. Johansen and Nielsen (2012) show

that the existence of a Granger representation for Xt depends on det(α′⊥Γβ⊥) 6= 0 with

Γ = Ip+
∑k

i=1 Γi, Γk 6= 0, and on the properties of the matrix polynomial Ψ (y) = (1− y) Ip−
αβ′y−

∑k
i=1 Γi (1− y) yi. For this result it is assumed that det[Ψ (y)] = 0 implies either y = 1

or y ∈ Cb, where Cb is the image of the mapping y = 1− (1− z)b for z in the unit disk. Then
estimation of (19) requires initial regression of ∆d

+Xt and ∆d−b
+ LbXt on the lags Lib∆

d
+Xt,

i = 1, . . . , k and usual reduced rank regression optimizing in b (and d).

Following Avarucci and Velasco (2009), we can also allow for short run correlation in

the levels of Xt using ordinary lags, by assuming that the prewhitened series X
†
t = A (L)Xt

satisfy the model (1), but we actually observe Xt, i.e.

∆d
+Xt = ∆d−b

+ Lbαβ
′A (L)Xt + (I −A (L)) ∆d

+Xt + εt, (20)

where A (L) = I−A1L−· · ·−AkLk. This model can be shown to encompass triangular models
used in the literature (cf. Robinson and Hualde (2003)) and has also nice representations if

the roots of the equation det[A (z)] = 0 are out of the unit circle, d > b. In fact, if X†t is

cointegrated with cointegrating vector β, Xt is also cointegrated with cointegrating vector in

the same space spanned by β given that A (1) is full rank.

Even under the assumption of known d,model (20) is nonlinear inΠ = αβ′ andA1, . . . , Ak,

so ML estimation can not be performed using the usual two step procedure of Johansen to

prewhiten first the differenced levels Z0t = ∆Xt and the fractional regressor Z1t−1 (b) =

∆1−b
+ LbXt given a particular value of b. However, it is easier to estimate the unrestricted

linear model (in Aj and A∗j )

Z0t = αβ∗′Z1t−1 (b) +

k∑
j=1

A∗j∆Z1t−j (b) +

k∑
j=1

AjZ0t−j + εt, (21)

under the assumption of α and β∗ being p× r, without imposing A∗j = −ΠÃj . We have used

the decomposition A (L) = A (1) − ∆Ã (L) so that the coeffi cients of Ã (L) =
∑p−1

j=0 ÃjL
j

14



satisfy Ãj =
∑p

i=1+j Ai, j = 0, . . . , p − 1. Here β∗ = A (1)′ β spans the same cointegration

space as β. The estimation procedure follows as in usual reduced rank regression but with

an initial step to prewhiten the series Z0t and Z1t−1 (b) on lags of Z0t and ∆Z1t−1 (b), which

are at most I (0) . This estimate could be ineffi cient compared with the actual ML estimate,

but is much simpler to compute and analyze.

Once we have estimated the model under the null Hr, r > 0, we need to build up a valid

second step regression on β′⊥Xt to identify further cointegrating relationships. In a triangular

model set up with the VAR modelization A (L)Xt = X†t in levels and X
† generated by (12)

we have that

Xt = (I −A (L))Xt +Θ−1

(
∆b−1
+ u1t

∆−1+ u2t

)
, (22)

and therefore

β′⊥Xt =
k∑
j=1

β′⊥AjXt−j +M1∆
b−1
+ u1t +M2∆

−1
+ u2t, (23)

where M2 is full rank under Hr, so that β′⊥Xt contains some I (1− b) terms if M1 6= 0.

Given the pseudo ML estimate of β, we can construct the linear combinations V̂0t =

β̂
′
⊥∆Xt and V̂1t−1 (b1) = (1−∆−b1+ )β̂

′
⊥∆Xt and propose a similar regression equation as for

k = 0, but in this case with the FVECM has to be enlarged by lags of ∆Xt and proxies of

the I (1− b) terms from (23) ,

V̂0t = Π1V̂1t−1 (b1) +
k∑
j=1

Cj∆Xt−j + Φ
(

∆b̂
+ − 1

)
ũ1t + et, (24)

where ũ1t is obtained from a projection of β̂
′
∆Xt on FVECM residuals εt

(
b̂, α̂, β̂, Â∗, Â

)
from (21) to isolate the u1t contribution in β′∆Xt, which might contain other predictable

contributions at time t due to the autoregressive structure. As when k = 0, we could replace

ũ1t by εt

(
b̂, α̂, β̂, Â∗, Â

)
, but, for instance, using

(
1−∆−b̂+

)
β̂
′
∆Xt might not lead to a

correctly specified model due to the presence of lags of ∆−b+ ∆Xt in β′∆Xt.

Then, the asymptotic distributions of the maximum eigenvalue and trace test statis-

tics, LRp−rT (0|1) and LRp−rT (0|p− r), remain Ep−r and Jp−r, respectively, if the first step
estimates are consistent, as stated in Theorem 3.

Theorem 3 Under Assumptions 1, (22), (17) and

Â∗i −A∗i = Op

(
T−1/2

)
, Âi −Ai = Op

(
T−1/2

)
, i = 1, . . . , p,

the LR tests for testing Π1 = 0 based on regression (24) with ũ1t possibly replaced by
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εt

(
b̂, α̂, β̂, Â∗, Â

)
, have the same asymptotic distribution as in Theorem 1 under Hr.

The proof of Theorem 3 is given in the Appendix.

5 Finite sample properties of cointegration rank tests

In this section we analyze the performance of the proposed new procedure in finite sam-

ples. We simulate a cointegrated trivariate system (p = 3), with d = 1, using the following

triangular representation

Xt =

(
Ir δ

0 Ip−r

)
∆b0−1
+ u0t

∆b1−1
+ u1t

∆−1+ u2t

 , t = 1, . . . , T, (25)

for model (1). The innovations ut = (u′0t, u
′
1t, u

′
2t)
′ are standard Gaussian iid. Note that the

triangular representation (25) implies FVECM (1) with

α =

(
−Ir

0

)
and β′ = (Ir − δ) .

To investigate the empirical size of the tests we simulate (25) with cointegration rank

r = 1 and cointegrating vector β = [1 0 −1]′ and for the power study we add an extra

cointegrating relationship β1 = [0 1 −0.5]′. Further we also consider the model with short

run dynamics (20) and with k = 1. For this model we add to (25) the autoregression

Zt = A1Zt−1 +Xt,

with Z0 = 0 and A1 = a Ip, where a = 0.5 or a = 0.8.

We simulate the systems with the memory of the first cointegrating relationship deter-

mined by b0 = 0.51, 0.6, 0.7, 0.8, 0.9, 0.99 and for power analysis we set the memory of

the second cointegrating relationship with b1 = 0.51, b1 = 0.9 or b1 = b0. This way we can

illustrate the power of the procedure when the memory of the second cointegrating relation-

ship is relatively small, big and when it is the same as the memory of the first cointegrating

relationship. We consider the cointegrated systems with the sample sizes of T = 100, 200,

400 and when needed 1000 observations. For all simulations we use Ox Metrics 6.3, see

Doornik and Ooms (2007) and Doornik (2009 a,b) and we make 10, 000 repetitions of each

experiment.

We compare the performance of the tests discussed in this paper, i.e.:
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1. New two step procedures that use either trace test LRp−rT (0|p− r) or maximum eigen-
value test LRp−rT (0|1) based on the FVECM for β̂

′
⊥Xt, with the following corrections:

(a) ∆β̂
′
Xt as in (14).

(b)
(

∆b̂0 − 1
)
ũ1t as in (15).

(c)
(

∆b̂0 − 1
)
εt

(
b̂0, α̂0, β̂0

)
as in (16).

2. Trace and maximum eigenvalue LR tests based on the standard VECM with d = b = 1

like in Johansen (1988, 1991, 1995), called Johansen’s trace and Johansen’s maximum

eigenvalue tests.

3. Trace LR test LRpT (r|p) in (10) proposed by Johansen and Nielsen (2012), where
estimation is restricted to d = 1 and critical values are obtained from the computer

program of MacKinnon and Nielsen (2013) with ML estimate of b0 rounded to a decimal

point.

The tests in 1.(a) are not justified when k = 1, since ∆β̂
′
Xt is affected by the autoregres-

sive structure. Johansen’s tests in 2. are not justified for the data generating process (25), as

they are based on the misspecified model. However we check their performance, since they

are included in most of econometric packages and they are routinely used by practitioners.

Johansen and Nielsen (2012) test in 3. is correctly specified when k = 0, and it is a natural

benchmark for comparison.

The results of our Monte Carlo simulations when k = 0 are presented in Tables 3-4 in this

section and when k = 1 in Tables 7-14 in the Technical Appendix. Tables 3 and Tables 7-8

provide the percentage of rejections under the null hypothesis of cointegration rank r = 1.

The percentage of rejections under the alternative hypothesis of cointegration rank r = 2 is

presented in Table 4 and Tables 9-14.

When k = 0 the new two step procedures are undersized (empirical size around 3%) for all

sample sizes considered. Trace LR test by Johansen and Nielsen (2012) is usually oversized,

but size distortions are decreasing with sample size T and true value b0. Johansen’s LR tests

have size close to the nominal 5% in all considered cases, see Table 3.

When k = 0 all the procedures except for 1.(c) have very good power for all sample sizes

T and all true values of b0, b1. The power of 1.(c), like the power of all other procedures, is

increasing with sample size T, true value b0 and true value b1, see Table 4.

When k = 1 Johansen’s tests are undersized for small values of b0 in smaller samples

and size distortions in these cases increase with correlation a. The LR test of Johansen and

Nielsen (2012) heavily overrejects in most cases considered and size distortions increase with

sample size T and correlation a, but decrease with true value b0. When k = 1 the two step
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procedures have higher empirical size than when k = 0, they are even slightly oversized in

smaller samples, but their size tends to decrease with T, see Tables 7-8 in the Technical

Appendix.

When k = 1 all procedures are less powerful than for k = 0, especially when the correlation

a increases, see Tables 9-14 in the Technical Appendix. However the power increases with

sample size T and true value of b0 and b1 in all cases. The LR test of Johansen and Nielsen

has largest power among all in many cases, but it is not relevant as this test does not keep

the size in this experiment. We find that the procedure 1.(c) has poorest power among all

two-step tests, possibly because it uses a too large correction term that is highly correlated

with the fractional correction term. Procedures 1.(a) and 1.(b) have a similar behavior to

the one-step LR test with d = b = 1, however they seem to be more powerful when b0 or

b1 is small. Therefore, our tests 1.(a)-1.(b) seem to behave very well in relative terms being

able to exploit the difference between b0 and b1.

Table 3. Percentage of rejections by trace test LRp−rT (r|p− r) and maximum eigenvalue
test LRp−rT (r|r + 1) in the two step procedure with corrections (a), (b) and (c), Johansen’s

trace and Johansen’s maximum eigenvalue tests with d = b = 1 and trace test LRpT (r|p) of
Johansen and Nielsen (2012) under the null hypothesis of cointegration rank r = 1 in p = 3

dimensional system with true d0 = 1 and no lagged differences, i.e. k = 0. Nominal size 5%.

T Test b0

0.51 0.60 0.70 0.80 0.90 0.99

100 LRp−rT (r|r + 1) , d = 1 (a) 2.9 3.2 3.2 3.0 3.0 3.2

LRp−rT (r|p− r) , d = 1 (a) 2.7 2.9 3.2 2.8 3.0 3.1

LRp−rT (r|r + 1) , d = 1 (b) 3.1 3.4 3.3 3.0 3.1 3.2

LRp−rT (r|p− r) , d = 1 (b) 2.8 3.0 3.2 3.0 3.1 3.2

LRp−rT (r|r + 1) , d = 1 (c) 3.9 4.5 4.2 3.7 3.7 3.7

LRp−rT (r|p− r) , d = 1 (c) 3.6 4.3 4.1 3.6 3.6 3.6

LRpT (r|r + 1) , d = b = 1 4.6 4.9 5.1 4.9 4.9 5.4

LRpT (r|p) , d = b = 1 4.5 4.8 5.1 5.1 5.0 5.4

LRpT (r|p) 10.6 11.3 9.5 7.7 6.2 5.4

18



Table 3 continued.

T Test b0

0.51 0.60 0.70 0.80 0.90 0.99

200 LRp−rT (r|r + 1) , d = 1 (a) 3.0 3.1 2.9 3.0 3.0 2.8

LRp−rT (r|p− r) , d = 1 (a) 2.9 3.0 2.7 3.0 3.1 2.7

LRp−rT (r|r + 1) , d = 1 (b) 3.1 3.2 2.9 3.0 3.1 2.8

LRp−rT (r|p− r) , d = 1 (b) 3.0 3.2 2.8 3.0 3.1 2.7

LRp−rT (r|r + 1) , d = 1 (c) 3.6 3.9 3.6 3.3 3.4 3.1

LRp−rT (r|p− r) , d = 1 (c) 3.6 3.8 3.6 3.2 3.2 3.0

LRpT (r|r + 1) , d = b = 1 4.5 4.8 4.8 5.2 5.2 4.6

LRpT (r|p) , d = b = 1 4.5 4.9 4.8 5.2 5.3 4.8

LRpT (r|p) 8.9 8.3 8.2 7.1 6.3 4.8

400 LRp−rT (r|r + 1) , d = 1 (a) 3.1 3.2 3.5 3.4 3.3 3.1

LRp−rT (r|p− r) , d = 1 (a) 3.2 3.3 3.3 3.1 3.3 2.8

LRp−rT (r|r + 1) , d = 1 (b) 3.1 3.3 3.5 3.4 3.2 3.2

LRp−rT (r|p− r) , d = 1 (b) 3.2 3.2 3.3 3.1 3.2 2.9

LRp−rT (r|r + 1) , d = 1 (c) 3.5 3.8 3.8 3.5 3.1 3.3

LRp−rT (r|p− r) , d = 1 (c) 3.5 3.9 3.6 3.2 2.9 3.2

LRpT (r|r + 1) , d = b = 1 4.5 4.8 5.2 5.2 5.0 5.0

LRpT (r|p) , d = b = 1 4.6 4.9 5.1 5.0 5.1 5.1

LRpT (r|p) 7.6 7.6 7.0 6.3 5.8 5.1

1000 LRp−rT (r|r + 1) , d = 1 (a) 3.4 3.5 3.6 3.4 3.3 3.5

LRp−rT (r|p− r) , d = 1 (a) 3.4 3.3 3.4 3.4 3.1 3.2

LRp−rT (r|r + 1) , d = 1 (b) 3.4 3.5 3.6 3.4 3.3 3.5

LRp−rT (r|p− r) , d = 1 (b) 3.4 3.3 3.5 3.3 3.2 3.3

LRp−rT (r|r + 1) , d = 1 (c) 3.7 3.4 3.5 3.5 3.1 3.4

LRp−rT (r|p− r) , d = 1 (c) 3.7 3.4 3.3 3.4 3.1 3.3

LRpT (r|r + 1) , d = b = 1 4.8 4.9 5.1 5.1 5.1 4.9

LRpT (r|p) , d = b = 1 4.9 5.0 5.0 5.3 4.9 5.0

LRpT (r|p) 6.1 6.5 6.0 6.0 5.4 5.1
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Table 4. Percentage of rejections by trace test LRp−rT (r|p− r) and maximum eigenvalue
test LRp−rT (r|r + 1) in the two step procedure with corrections (a), (b) and (c), Johansen’s

trace and Johansen’s maximum eigenvalue tests with d = b = 1 and trace test LRpT (r|p)
of Johansen and Nielsen (2012) under the hypothesis of cointegration rank r = 2 in p = 3

dimensional system with T = 100 observations, true d0 = 1, no lagged differences, i.e. k = 0

and 2nd cointegrating relationship with the memory b1 = b0, 0.51 or 0.9. Nominal size 5%.

T = 100 Test b0

0.51 0.60 0.70 0.80 0.90 0.99

b1 = b0 LRp−rT (r|r + 1) , d = 1 (a) 97.6 99.8 100 100 100 100

LRp−rT (r|p− r) , d = 1 (a) 96.8 99.8 100 100 100 100

LRp−rT (r|r + 1) , d = 1 (b) 97.7 99.9 100 100 100 100

LRp−rT (r|p− r) , d = 1 (b) 97.0 99.8 100 100 100 100

LRp−rT (r|r + 1) , d = 1 (c) 51.2 77.6 94.8 99.5 100 100

LRp−rT (r|p− r) , d = 1 (c) 49.5 76.4 94.0 99.3 100 100

LRpT (r|r + 1) , d = b = 1 88.1 98.8 100 100 100 100

LRpT (r|p) , d = b = 1 88.3 98.9 100 100 100 100

LRpT (r|p) 99.7 100 100 100 100 100

b1 = 0.51 LRp−rT (r|r + 1) , d = 1 (a) 97.6 99.1 99.5 99.6 99.5 99.5

LRp−rT (r|p− r) , d = 1 (a) 96.8 98.7 99.2 99.4 99.3 99.2

LRp−rT (r|r + 1) , d = 1 (b) 97.7 99.0 99.5 99.6 99.5 99.5

LRp−rT (r|p− r) , d = 1 (b) 97.0 98.8 99.2 99.4 99.4 99.3

LRp−rT (r|r + 1) , d = 1 (c) 51.2 61.8 67.3 71.9 75.1 76.2

LRp−rT (r|p− r) , d = 1 (c) 49.5 59.9 65.1 69.4 72.7 73.8

LRpT (r|r + 1) , d = b = 1 88.1 94.1 95.4 95.6 95.7 95.8

LRpT (r|p) , d = b = 1 88.3 94.3 95.4 95.9 95.8 96.0

LRpT (r|p) 99.7 99.9 99.8 99.5 99.0 98.1

b1 = 0.9 LRp−rT (r|r + 1) , d = 1 (a) 99.0 100 100 100 100 100

LRp−rT (r|p− r) , d = 1 (a) 98.7 100 100 100 100 100

LRp−rT (r|r + 1) , d = 1 (b) 99.0 100 100 100 100 100

LRp−rT (r|p− r) , d = 1 (b) 98.7 100 100 100 100 100

LRp−rT (r|r + 1) , d = 1 (c) 70.5 89.8 98.1 99.8 100 100

LRp−rT (r|p− r) , d = 1 (c) 68.8 88.3 97.7 99.7 100 100

LRpT (r|r + 1) , d = b = 1 95.8 99.6 100 100 100 100

LRpT (r|p) , d = b = 1 95.9 99.8 100 100 100 100

LRpT (r|p) 99.7 100 100 100 100 100
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6 Analysis of the term structure of the interest rates

To illustrate the empirical relevance of the described methodology we reconsider the analysis

of the term structure of the interest rates by Iacone (2009). There has been a lot of interest

in this issue in the current literature, see for example Chen and Hurvich (2003) and Nielsen

(2010).

A good model of the term structure of the interest rates is needed to measure the effects of

the monetary policy and to price financial assets. It is an important tool for policy evaluation

since the Federal Reserve operates in just one market, the one with contracts with very short

maturity. Therefore, it is necessary to model the conduction of the monetary policy impulses

to the rates of contracts with longer maturities. Modelling the interactions across rates is also

important for the economic agents to forecast the effects of future monetary policy decisions

on the price of financial assets. Soderlind and Svensson (1997) have discussed a practical

example of how to extract the market’s expectations on future policy rates from a given term

structure, and how to use them to price financial instruments.

Cointegration has the appealing feature in the analysis of the term structure, because

it makes possible to distinguish the high persistence of shocks to interest rates from the

much lower persistence of shocks to the spreads. Standard cointegration in the context of

modelling a vector of US dollar interest rates has been considered by Hall, Anderson and

Granger (1992), Engsted and Tangaard (1994), Dominguez and Novales (2000).

However it has been argued that unit root model for the interest rates is often incom-

patible with monetary and finance theories, because it may imply a unit root model for the

expected inflation rate as well. This is the case, for example, if the real interest rate is

constant in the long run, or if the central bank sets the interest rate using a linear reaction

function like the ones described by Taylor (1993) or by Svensson (1997). Such a strong

persistence is hardly acceptable, because it implies that the central bank does not stabilize

inflation.

We can allow for fractional integration instead. It permits to combine high persistence

with mean reversion in the long run, and it maintains the possibility of the presence of a com-

mon stochastic term in multivariate processes. Fractional integration may also be motivated

as the result of occasional breaks in an otherwise weakly autocorrelated process. This in-

terpretation seems particularly appealing when modelling the interest rates because changes

to the discount rate are infrequent. Granger and Hyoung (2004) have shown that fractional

integration and occasional breaks may in practice be indistinguishable and, following also a

comment by Diebold and Inoue (2001), adopting fractional integration in a model may result

in good forecasts.

We analyze the behavior of the US dollar interest rates with maturities of 1, 3 and
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6 months (the London InterBank Offered Rate LIBOR) over the period 01/1963-04/2006.

The data come from DataStream with identification codes being respectively USI60LDC,

USI60LDD, USI60LDE. LIBOR is not affected by any regulation imposed by the central

bank, and thus it is a typical measure of the cost of funds in US dollars. For this data

set Iacone (2009) has found evidence that the three considered series share the same order

of integration with estimated d̂ = 0.88. The test of Robinson and Yajima (2002) and local

Whittle procedure of Robinson (1995) have been used to obtain this result. Iacone (2009) has

also concluded the fractional cointegration with rank r = 2 in this system using procedures

in Phillips and Ouliaris (1988) and Robinson and Yajima (2002).

However the integration order of the cointegrating residuals of two relations found by Ia-

cone (2009) differ significantly, and the transmission of impulses is slower the longer distance

(in maturity) from the market where the Federal Reserve is directly present, so a model that

allows different b’s would be appropriate for this example. Łasak (2008) has analyzed three

bivariate systems and has not imposed the assumption that both cointegration relationships

share the same memory. The methodology developed in this paper enables us to test the rank

directly in the 3-variate system (1) without imposing such assumption, as we now pursue.

We consider the basic version of the model presented in Section 3, as it seems to be a

right choice looking at PACF of the processes. We have tested the existence of the breaks in

levels of considered series using the test of Sibbertsen and Kruse (2009) and it has indicated

no breaks in the series. All the tests considered in Section 5 have been computed and all

confirm that this system is cointegrated with rank 2. The values of the test statistics when

testing rank r = 1 are presented in Table 5.

Table 5. Values of the tests under the null of cointegration rank r = 1.

LR test (a) (b) (c) Johansen’s J-N

lambda 18.64 19.04 26.79 53.8 -

trace 18.64 19.04 27.28 54.5 30.7

We do not have the critical values for tests (a)-(c) when d̂ = 0.88, but instead we make use of

Tables 1 and 2 that have been simulated for d = 1. Thus, the 5% critical values, that we use

for the tests, are given in Table 6. Note the difference in the number of degrees of freedom,

the two step procedures have just one degree of freedom and the other two tests have two

degrees of freedom, in this particular example.
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Table 6. Critical values of the tests under the null of cointegration rank r = 1.

(a), (b), (c) Johansen’s J-N

lambda 11.72 11.23 -

trace 12.84 12.32 10.95

.

The critical values for tests (a)-(c) when d̂ = 0.88 would be smaller than the ones we use, so

we would reject the null hypothesis anyway. To obtain approximate critical values for tests

(a)-(c), the asymptotic distributions (7) and (8) should be simulated with B = [d̂− 0.5 + ε;

d̂], with ε > 0 and small.

We also estimate the cointegration vectors on the basis of all considered models, including

the VECM with d = b = 1 and the FVECM ∆dXt = αβ′
(
∆−b − 1

)
∆dXt + εt, with d =

d̂ = 0.88 imposed, which is justified by Corollary 2. The first cointegration relationship is

common to all procedures, but the second one can be different. When we focus on the two-

step procedure proposed in Section 3, the estimate of the second cointegrating relationship

β1 is found according to the formula β̂1 = β′⊥β
∗
1, where β

∗
1 comes directly from solving the

eigenvalue problem (3) constructed on the basis of the transformed models (14), (15) and

(16), denoted respectively as (a), (b) and (c). It turns out that all outcomes of the procedures

imply the same cointegrating space spanned by

β̂
norm

=


1 1

−0.98 0

0 −0.96

 .
We can see that cointegrating parameters are very close to −1, so the spreads can be

computed as s(j)t = i
(j)
t − i

(1)
t , j = 3, 6. Iacone (2009) has estimated the orders of integration

of these spreads using Local Whittle estimator of Robinson (1995) to be s(3)t = 0.34 and

s
(6)
t = 0.47 and rejected the hypothesis that these orders are the same. Therefore the rank

estimation methodology developed in this paper is suitable for this example, as it takes into

account the possibility that the memories of the cointegration relations differ. The evidence

of cointegration found is an important result because it means that the transmission of

impulses along the term structure is fast enough to let the central bank to conduct an active

monetary policy.

7 Conclusions

In this paper we have proposed a new procedure, based on sequential two-step LR tests, to

establish the cointegration rank in a fractional system. The main novelty is that it allows
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the cointegrating relationships under the alternative to have different memory compared to

the null ones. It only needs a small modification of the cointegration testing routines after

ML fitting of the model under the null of a certain cointegration rank. The asymptotic

distributions of the test statistics in use are the same as for the no-cointegration testing, so

there is no need for additional simulations to obtain the critical values, which can be seen as

an advantage for empirical work.

We have investigated the performance of our procedure in finite samples for a simple

fractionally cointegrated model and have compared it with the LR trace test of Johansen

and Nielsen (2012) and with Johansen’s LR trace and maximum eigenvalue tests. We have

found that our tests control size and have an advantage in terms of power to detect extra

cointegrating relationships in situations when the memories of the cointegration relations

differ. Our new methodology can be adapted and further developed to include deterministic

terms and to allow for the joint estimation of the unknown memory of the original series.
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Appendix

Proof of Theorem 1. We demonstrate first that replacing β⊥ by β̂⊥ makes no difference

asymptotically in the two step LR test statistics. LR tests statistics depend on properly

normalized sample moments of dependent and independent variables in the regression mod-

els (14), (15) and (16), cf. (3) . The result follows from Theorem 1 in Łasak (2010), after

controlling for the projection on
(
∆b
+ − 1

)
u1t as in Lemma 10.3 in Johansen (1995), using

the representation (13) for the dependent variable V0t = β′⊥∆Xt.

Set V1t−1 (b1) =
(

1−∆−b1+

)
V0t, recalling the definition of V̂1t−1 (b1) and using the true
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β⊥. First, we want to show that

T−b1
T∑
t=1

V̂1t−1 (b1) V̂
′
0t − T−b1

T∑
t=1

V1t−1 (b1)V
′
0t →p 0

uniformly for b1 ∈ B if β̂⊥ − β⊥ = Op
(
T−b0

)
. The difference on the left hand side is

T−b1
T∑
t=1

{
V̂1t−1 (b1)− V1t−1 (b1)

}
V ′0t + T−b1

T∑
t=1

V̂1t−1 (b1)
(
V̂0t − V0t

)′
. (26)

The first term in (26) is equal to

(
β̂
′
⊥ − β′⊥

)
T−b1

T∑
t=1

(
1−∆−b1+

)
∆XtV

′
0t = op (1) ,

uniformly in b1 ∈ B because β̂⊥−β⊥ = Op
(
T−b

)
, b > 0.5, and T−b1

∑T
t=1

(
1−∆−b1+

)
∆XtV

′
0t =

Op
(
T 1/2−ε

)
uniformly in b1, b1 > 0.5, for some ε > 0 from (104) in Lemma A.9 in Johansen

and Nielsen (2012).

The second term on the right hand side of (26) is

T−b1
T∑
t=1

V̂1t−1 (b1) ∆X ′t

(
β̂⊥ − β⊥

)
= Op

(
T−b

)
T−b1

T∑
t=1

V̂1t−1 (b1) ∆Xt,

and this is Op
(
T−b

)
Op
(
T 1/2−ε

)
= op (1) , uniformly in b1 with b > 0.5, ε > 0, using again

Lemma A.9 in Johansen and Nielsen (2012).

Using the same ideas it can be shown that

T−2b1
T∑
t=1

V̂1t−1 (b1) V̂
′
1t−1 (b1)− T−2b1

T∑
t=1

V1t−1 (b1)V
′
1t−1 (b1)→p 0

uniformly for b1 ∈ B and

T−1
T∑
t=1

V̂0tV̂
′
0t − T−1

T∑
t=1

V0tV
′
0t →p 0,

exploiting (103) and (102), respectively, in Lemma A.9 in Johansen and Nielsen (2012), so

that the estimation of β⊥ in the first step has no impact on the asymptotic distribution of

the test statistics.

We next show that replacing
(
∆b
+ − 1

)
u1t by

(
∆b̂
+ − 1

)
û1t =

(
1−∆−b̂+

)
β̂
′
∆Xt in (14)
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is also negligible asymptotically under (12). For that, it is enough to consider the differences

T−b1
T∑
t=1

V1t−1 (b1)
(

∆b
+ − 1

)
u′1t − T−b1

T∑
t=1

V1t−1 (b1)
(

∆b̂
+ − 1

)
û′1t (27)

T−b1
T∑
t=1

ut

(
∆b
+ − 1

)
u′1t − T−b1

T∑
t=1

ut

(
∆b̂
+ − 1

)
û′1t, (28)

since other terms appearing in the projections of V1t−1 (b1) and V0t on
(

∆b̂
+ − 1

)
û1t could

be dealt with in the same way. Now we can decompose (27) in

T−b1
T∑
t=1

V1t−1 (b1)
(

∆b
+ −∆b̂

+

)
û′1t + T−b1

T∑
t=1

V1t−1 (b1)
(

∆b̂
+ − 1

)
∆X ′t

{
β − β̂

}
. (29)

The first term in (29) can be shown to be op (1) uniformly in b1 as in Robinson and Hualde

(2003, Proposition 9), expanding
(

∆b
+ −∆b̂

+

)
u1t =

(
1−∆b̂−b

+

)
∆b
+u1t around b − b̂ = 0,

with b− b̂ = Op
(
T−1/2

)
and noting that the terms in the expansion behave as the derivatives

of ∆b
+u1t with respect to b, cf. (104) in Lemma A.9 in Johansen and Nielsen (2012), whose

sample moments are Op
(
T 1/2−ε

)
uniformly in b1, ε > 0. The second term in (29) is op (1)

using a similar argument for
(

∆b̂
+ − 1

)
∆Xt, being approximately an I (−b) asymptotically

stationary process, and the superconsistency of β̂. Finally, the analysis of (28) being op (1)

is simpler because it does not depend on b1 and ut is i.i.d.

To show the validity of the other correction alternatives in (15) and (16), it is only

necessary to observe that the vector ut is just a rotation of the vector εt, so all previous

approximations and bounds can be used similarly. �

Proof of Corollary 2. We have to additionally show that terms like

T−b1
T∑
t=1

V1t−1
(
b1, d̂

)
V ′0t

(
d̂
)
− T−b1

T∑
t=1

V1t−1 (b1, d0)V
′
0t (d0)

are op (1) uniformly for b1 ∈ B if d̂ − d0 = Op
(
T−1/2

)
. This follows now from a similar

analysis as that of the first term in (29), writing this difference as

T−b1
T∑
t=1

V1t−1
(
b1, d̂

){
V ′0t

(
d̂
)
− V ′0t (d0)

}
+T−b1

T∑
t=1

{
V1t−1

(
b1, d̂

)
− V1t−1 (b1, d0)

}
V ′0t (d0)

and using a Taylor expansion of 1 − ∆d̂−d0
+ around d̂ − d0 = 0 in V ′0t

(
d̂
)
− V ′0t (d0) =(

1−∆d̂−d0
+

)
∆d0β′⊥Xt and V1t−1

(
b1, d̂

)
−V1t−1 (b1, d0) = (1−∆−b1+ )

(
1−∆d̂−d0

+

)
∆d0β′⊥Xt,
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and then using uniform bounds for the corresponding sample moments on (derivatives of)

fractionally integrated processes. �

Proof of Theorem 3. The proof follows the lines of the proof of Theorem 1, since the

additional lags ∆Xt−j , j = 1, . . . , k in regression (24) pose no additional problem compared

to the projection of V̂0t and V̂1t−1 (b1) on
(

∆b̂
+ − 1

)
û1t, because the former are observed and

I (0) . �
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