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Abstract

Risk premia between spot and forward prices play a key role in energy markets. This
paper derives analytic expressions for such risk premia when spot prices are modelled by Lévy
semistationary processes. While the relation between spot and forward prices can be derived
using classical no-arbitrage arguments as long as the underlying commodities are storable, the
situation changes in the case of electricity. Hence, in an empirical study based on electricity spot
prices and futures from the European Energy Exchange market, we investigate the empirical
behaviour of electricity risk premia from a statistical perspective. We find that a model-based
prediction of the spot price has some explanatory power for the corresponding forward price,
but there is a significant additional amount of variability, the risk premium, which needs to
be accounted for. We demonstrate how a suitable model for electricity forward prices can be
formulated and we obtain promising empirical results.

Keywords: Lévy semistationary process, energy market, spot price, forward price, futures, risk
premia, stochastic volatility, European Energy Exchange market.

JEL classification codes: C10, C51, G00, G130.

1 Introduction

Energy forward and future contracts are one of the most important derivatives traded on modern
energy markets. Several models have been proposed to describe forward price dynamics directly.
The relationship between spot and forward prices, however, is still not well understood in energy
markets.

In contrast to classical financial markets, such as the stock markets, classical arguments from
the no-arbitrage pricing theory cannot directly be applied to all assets traded on energy markets.
The classical example is (physical) spot electricity. Since electricity is not storable one cannot
construct replicating portfolios and hence the forward price of electricity will not just be a suitably
discounted version of the current spot price. Other assets traded on energy markets, such as gas,
are storable and hence some classical arguments can be applied to these types of assets.

∗A. E. D. Veraart acknowledges financial support by CREATES (DNRF78), funded by the Danish National
Research Foundation, and by a Marie Curie FP7 Integration Grant within the 7th European Union Framework
Programme.
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Recently, several authors advocated the use of Lévy-semistationary (LSS) processes to model
spot prices in energy markets, see e.g. Barndorff-Nielsen et al. (2013+). Veraart & Veraart (2013+)
extended the univariate model by Barndorff-Nielsen et al. (2013+) to a multivariate framework and
showed that this multivariate version can be successfully fitted to hourly electricity spot prices data
from the EEX. The model proposed by Benth (2011) also falls within this model class, and was
shown to provide a good empirical fit to data from the UK gas spot market.

The purpose of this paper is to draw conclusions about forward prices and corresponding risk
premia resulting from the class of Lévy-semistationary (LSS) spot price models. For this we study
both theoretical risk premia which result from an appropriate change of measure and empirical risk
premia observed on the European Energy Exchange (EEX).

In general, one distinguishes between ex-ante and ex-post risk premia. Let S(t) be the spot price
of an asset at time t and let F (t, T ) denote the forward price observed at time t for delivery at time
T ≥ t. Then the ex-ante risk premium at time t is F (t, T ) − EPt (S(T )), where EPt (·) denotes the
expectation under the physical probability measure P conditional on the σ-algebra containing the
information available at time t. The ex-post risk premium at time t is then given by F (t, T )−S(T ).
The main difference between these two risk premia is that the ex-ante risk premium is not directly
observable from market data, but is always dependent on the spot price model chosen, whereas the
ex-post risk premium is completely observable from market data.

In general, one can observe changes in the sign of the risk premium in energy market. On the
one hand, risk premia tend to be positive at the short-end of the forward curve, i.e. close to the
start of the delivery period. It is usually argued that this is due to consumers trying to hedge risk
that is due to possible price spikes, i.e. they are prepared to pay a premium for fixing prices in
advance, because they do not want to accept the risk that prices might jump up considerably by
the time they need to buy the energy on the spot market.

On the other hand, risk premia tend to be negative at the long-end, i.e. far from the begin of
the delivery period. This is usually explained by producers wishing to hedge their revenues risk
by selling forward contracts. Since having this hedge is considered to be an advantage, they are
prepared to accept prices below the expected spot price.

Several approaches have been proposed to explain the behaviour, sign and magnitude of ex-
ante and ex-post risk premia. An interesting approach considering the ex-ante risk premium can be
found in Bessembinder & Lemmon (2002), where an equilibrium model is suggested that provides
a link between spot and forward prices.

Furthermore, as soon as the forward price is computed as an expectation of the future spot
price under a suitable pricing measure Q, i.e. F (t, T ) = EQt (S(T )), the ex-ante risk premium is
just given by EQt (S(T )) − EPt (S(T )) and can be studied analytically. E.g. Benth & Sgarra (2012)
provide a theoretical justification via a change of measure argument for the sign change observed
in empirical data on risk premia. Our new theoretical results are in the spirit of the work by Benth
& Sgarra (2012), which we extend to allow for a stochastic volatility component. We show that the
stochastic volatility has an important impact on the (stochastic) dynamics of the risk premium.
The empirical literature has mainly focused on the ex-post risk premia, see e.g. Lucia & Torró
(2011) and the references therein.

Benth, Cartea & Kiesel (2008) provide an explanation for the sign and the magnitude of the
market risk premium by modelling market players and their risk preferences directly by applying the
certainty equivalence principle. Benth & Meyer-Brandis (2009) model forward prices as conditional
expectations where forward-looking information are incorporated into the conditional expectation.
This leads to an information based approach to explaining the risk-premium.

This paper is organized as follows. In Section 2 we briefly recall the class of Lévy-semistationary
(LSS) spot price models. Section 3 contains all definitions for different types of risk premia that are
considered in energy markets. In particular, we briefly recall the risk premium approach to pricing
forward and future contracts. We then derive analytic expressions for the conditional expectation
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of future spot prices for LSS models under the physical probability measure. In Section 5 these
expressions will be used to investigate the explanatory power of this expectation for the forward
price. Section 4 contains analytic expressions for theoretical risk premia which are obtained by
considering forward prices as expectations of the future spot price under a probability measure
which is equivalent to the physical probability measure. In particular, we discuss the influence
of stochastic volatility in the spot model on the risk premium. Section 5 contains an empirical
analysis of risk premia observed on the European Energy Exchange (EEX). For this we study
empirical data of electricity spot prices and futures contracts which have delivery period over one
month. We only consider the corresponding futures prices during the months prior to the begin
of the delivery period. Hence, our empirical study focus on the short-end of the forward curve.
Finally, Section 6 concludes.

2 Modelling spot prices by Lévy semistationary processes

In this section we will briefly recall the central properties of the class of Lévy-semistationary (LSS)
processes.

Throughout the paper, we denote by (Ω,F , P ) a probability space with a filtration F = {Ft}t∈R
satisfying the ‘usual conditions’, see (Karatzas & Shreve 2005, p. 10).

2.1 The driving two-sided Lévy process

Let L = (L(t))t≥0 denote a càdlàg modification of a Lévy process with characteristic triplet given
by (γ, c, ν), where γ ∈ R, c ≥ 0 and ν denotes the Lévy measure on R satisfying ν({0}) = 0, and∫

R(|x|2 ∧ 1)ν(dx) <∞. The corresponding Lévy–Khintchine representation of L is hence given by

EP (exp(iθL(t))) = exp(tΨP
L (θ)), for θ ∈ R,

where

ΨP
L (θ) = iγθ − 1

2
cθ2 +

∫
R

(
eiθx − 1− iθxI{|x|≤1}

)
ν(dx)

denotes the characteristic exponent of L under P . Also, let ψPL (θ) := ΨP
L (−iθ) for θ ∈ R be the

logarithm of the moment generating function of L, provided it exists.
In addition, we have the following Lévy–Itô representation

L(t) = γt+
√
cB(t) +

∫ t

0

∫
{|x|≤1}

x(N(dx, ds)− ν(dx)ds) +
∫ t

0

∫
|x|≥1}

xN(dx, ds),

where B is a standard Brownian motion and N denotes the Poisson random measure associated
with L.

In a next step, we extend the definition of a Lévy process defined on R+ to a two-sided Lévy
process defined on R. In order to do that, let L′ denote another Lévy process (and as before we
consider its càdlàg modification) that is independent of L and has the same characteristic triplet
as L. We define a new process L∗ by setting

L∗(t) :=
{
L(t), for t ≥ 0,
−L′(−(t−)), for t < 0.

(1)

The process L∗ = (L∗(t))t∈R is called a two-sided Lévy process, see e.g. Brockwell (2009), which
is càdlàg. Note, however, that in the following, we will always write L rather than L∗ to simplify
notation.
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2.2 Definition of LSS processes

An LSS process on R is defined as

Y (t) :=
∫ t

−∞
g(t− s)σ(s−)dL(s), (2)

where L denotes the two–sided Lévy process defined in (1). Further, g : R → R denotes a deter-
ministic, measurable function satisfying g(t− s) = 0 whenever t < s, and σ = (σ(t))t∈R denotes a
càdlàg, adapted and positive stochastic process, which we typically refer to as stochastic volatility.
Throughout the paper we will assume that the stochastic processes L and σ are independent.

We define the stochastic process (φ(t)(s))s∈R with φ(t)(s) := g(t− s)σ(s−), which is predictable
and φ(t)(s) = 0 for s > t. According to (Basse-O’Connor et al. 2013+, Corollary 4.1), the stochastic
integral in (2) is well–defined if and only if the following three conditions hold almost surely:∫ t

−∞
c
(
φ

(t)
i (s)

)2
ds <∞,

∫ t

−∞

∫
R

(
1 ∧

∣∣∣φ(t)
i (s)z

∣∣∣2) ν(dz)ds <∞,∫ t

−∞

∣∣∣∣γφ(t)
i (s) +

∫
R

(
h
(
zφ

(t)
i (s)

)
− φ(t)

i (s)h(z)
)
ν(dz)

∣∣∣∣ ds <∞, (3)

where h(x) = I{x∈R:|x|≤1}.

Remark 1. It should be noted that the integrability conditions above do not ensure the square-
integrability of the LSS process. This can only be achieved under slightly stronger conditions, see
Barndorff-Nielsen et al. (2013+, Section 2.3.1) for the details.

Remark 2. LSS processes are in general not semimartingales. If however this is a concern, then
one can impose an additional smoothness condition on the kernel function g, which will lead to a
subclass of LSS processes which are indeed semimartingales, see Barndorff-Nielsen et al. (2013+)
and Barndorff-Nielsen et al. (2012, Proposition 5).

In order to simplify the exposition, we will sometimes work with a different representation of
an LSS process, which is obtained by splitting the stochastic integral from −∞ to t as follows

Y (t) = X0(t) +X(t), for t ≥ 0,

where X0(t) =
∫ 0
−∞ g(t − s)σ(s−)dL(s) is F0-measurable for all t ≥ 0, and X(t) =

∫ t
0 g(t −

s)σ(s−)dL(s). Two choices for X0 are of particular interest to us: Either, we have the trivial
choice that X0(t) = x0, for a constant x0 ∈ R and for all t ≥ 0, or X0(t) =

∫ 0
−∞ g(t−s)σ(s−)dL(s).

To shorten the notation, we often write dM(s) = σ(s−)dL(s).

Example 1. Consider the Ornstein-Uhlenbeck process with parameter λ > 0: Y (t) =
∫ t
−∞ e

−λ(t−s)dM(s).
Clearly, this process can be decomposed as above, where X0(t) = e−λtY (0) and X(t) =

∫ t
0 e
−λ(t−s)dM(s).

In the following, we will always present the theoretical results for general LSS processes. In
addition, we will show how the results simplify for two particularly relevant sub-classes of LSS
processes: Let i ∈ {1, 2}. Then

Y (i)(t) = X
(i)
0 (t) +X(i)(t), t ≥ 0, where X(i)(t) =

∫ t

0
g(t− s)dM (i)(s),

with

dM (1)(s) = σ(s−) (dB(s) + γds) ,

dM (2)(s) = dL(s).
(4)

The first case, where it is implicitly assumed that c = 1, focuses on the case of a Brownian motion
with drift modulated by a stochastic volatility process. The second case focuses on a Lévy process
without stochastic volatility.
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2.3 Geometric and arithmetic model

Energy spot prices typically exhibit seasonalities. We therefore incorporate seasonal behaviour and
possibly a trend in our model in terms of a deterministic function Λ : R+ 7→ R. Throughout the
paper, we denote by S = (S(t))t≥0 the energy spot/day-ahead price. In the literature, we find both
geometric and arithmetic models and hence we will study both cases in the following. We define
the geometric spot price model by

S(t) = Λ(t) exp(Y (t)), t ≥ 0, (5)

and the arithmetic spot price model by

S(t) = Λ(t) + Y (t), t ≥ 0. (6)

It should be noted that in a concrete application the seasonality and trend function Λ is typically
not the same. However, we do not distinguish this in our notation to keep the exposition as simple
as possible.

Also, if we work with the special cases of M (1) and M (2) as defined in (4) above, we denote the
corresponding (geometric/ arithmetic) spot price by S(1) and S(2), respectively.

3 The risk premium and forward prices

3.1 Definition and basic properties of the risk premium

In the following we always consider a market with finite time horizon denoted by T ∗, where 0 <
T ∗ < ∞. There are two types of (forward) risk premia that are usually considered: the ex-ante
and the ex-post (or realised) risk premium. They are defined as follows.

Definition 1. Let S = (S(t))t≥0 denote the spot price and let (F (t, T ))0≤t≤T denote the forward
price with time of delivery 0 < T < T ∗. In the following, let 0 ≤ t ≤ T .

1. The ex-ante risk premium at time t is defined as

R(t, T ) = F (t, T )− EP (S(T )|Ft).

2. The ex-post risk premium at time t is defined as

r(t, T ) = F (t, T )− S(T ). (7)

3. The basis at time t is defined as

B(t, T ) = F (t, T )− S(t).

Note, that the ex-ante risk premium is the difference between the forward price and the (con-
ditional) expected spot price. Since the latter is not observable, the ex-ante risk premium itself is
not directly observable. In order to compute it, one needs to propose a model for the spot price
and compute the corresponding conditional expectation. Therefore, the ex-ante risk premium will
always be model-dependent.

The ex-post risk premium, is the difference between the forward price and the spot price at
expiry of the forward contract. In contrast to the ex-ante risk premium it is directly observable
from market data but only after the expiry of the forward contract.

The basis is the difference between the forward price and the current spot price and is therefore
directly observable already prior to expiry of the forward contract.

These three quantities are related. The ex-post risk premium is equal to the ex-ante risk
premium plus a prediction error of the spot as the following Lemma shows:
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Lemma 1. The ex-ante, ex-post risk premia and the basis are related as follows:

r(t, T ) = R(t, T ) +
(
EP (S(T )|Ft)− S(T )

)
.

Also,

B(t, T ) = R(t, T ) + EP [(S(T )− S(t)) |Ft] .

The proof is straightforward and hence omitted.
In the context of energy markets, we usually do not have delivery at a point in time T , but rather

over a delivery period [T1, T2], say, for 0 ≤ T1 ≤ T2 < T ∗. We call such contracts swap contracts
and denote them by F (t, T1, T2). Then we get the following expressions for the corresponding risk
premia.

Definition 2. In the following, let 0 ≤ t ≤ T1.

1. The ex-ante swap risk premium at time t is defined as

R(t, T1, T2) = F (t, T1, T2)− EP
(

1
T2 − T1

∫ T2

T1

S(T )dT
∣∣∣∣Ft) .

2. The ex-post swap risk premium at time t is defined as

r(t, T1, T2) = F (t, T1, T2)− 1
T2 − T1

∫ T2

T1

S(T )dT. (8)

3. The swap basis at time t is defined as

B(t, T1, T2) = F (t, T1, T2)− S(t).

Remark 3. Note that from a stochastic Fubini theorem, we obtain

EP
(

1
T2 − T1

∫ T2

T1

S(T )dT
∣∣∣∣Ft) =

1
T2 − T1

∫ T2

T1

EP (S(T )| Ft) dT.

3.2 Pricing with a risk premium

When deriving forward or future prices in classical financial markets, such as the stock market,
arguments from classical no-arbitrage theory and hedging arguments lead to forward prices. In
particular, forward prices are directly linked to underlying spot prices since they are (conditional)
expectations of the spot price under a risk-neutral pricing measure, i.e.

F (t, T ) = EQ(S(T )|Ft), (9)

where Q is a risk-neutral probability measure, see e.g. Bjork (2004). A risk-neutral probability
measure Q is a probability measure that is equivalent to the physical measure P , such that dis-
counted prices of all tradable assets are martingales with respect to this measure. In the following
we will always assume that there is a riskless asset available in the market, such that one unit (e.g. 1
Euro) invested in this riskless asset is worth ert units at time t. Here, r > 0 denotes the constant
riskless (continuously compounded) interest rate. In such a situation prices of forward and futures
coincide and hence we will not distinguish between the two.

In energy markets not all asset are directly tradable and hence the relationship between their
forward and spot prices is far less clear, see Vehviläinen (2002) and (Benth, Šaltytė Benth &
Koekebakker 2008, Chapter 4) for some further discussion. Consider the asset electricity, for
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example, we cannot hold a portfolio of electricity and hence one needs to be very cautious when
applying hedging arguments to assets such as electricity spot prices.

Hence, other approaches for deriving forward prices need to be considered. One natural ap-
proach is to assume that forward prices are partially determined by the expected value of the
underlying spot under the physical measure P and some risk premium that can be either positive
or negative. Then one can define the time-t forward price for delivery at time T by

F (t, T ) := EPt (S(T )) +R(t, T ),

for some stochastic process (R(t, T ))0≤t≤T . Since forwards are tradable assets their prices need to
be consistent with no arbitrage assumptions. We will not model the risk-premium directly, but
will later draw conclusion about its dynamics from empirical data. Note that for this approach
it is crucial that we can evaluate the expression EPt (S(T )) and we will do this in the following
for the class of models that were introduced in Section 2. In our empirical study in Section 5 we
will investigate, the explanatory power of expectations under the physical measure for the forward
price.

3.3 The conditional expectation EP
t (S(T ))

3.3.1 The geometric model

In the following, we provide analytical results for the conditional expectation of the spot price and
the integrated spot price under the physical probability measure.

Proposition 1. Let S be defined as in (5).

1. Let 0 ≤ t ≤ T , then

EP [S(T )|Ft] = Λ(T ) exp
(
X0(T ) +

∫ t

0
g(T − s)σ(s−)dL(s)

)
EPt
(

exp
(∫ T

t
ψPL (g(T − s)σ(s−))ds

))
.

2. Let 0 ≤ t ≤ T1 < T2, then

EP
(

1
T2 − T1

∫ T2

T1

S(T )dT
∣∣∣∣Ft)

=
1

T2 − T1

∫ T2

T1

Λ(T ) exp
(
X0(T ) +

∫ t

0
g(T − s)σ(s−)dL(s)

)
EPt
(

exp
(∫ T

t
ψPL (g(T − s)σ(s−))ds

))
dT.

(10)

From this, one can immediately derive the following results for two special cases:

Corollary 1. Let S be defined as in (5). For the two special cases defined in (4) it holds that for
0 ≤ t ≤ T

EP
[
S(1)(T )|Ft

]
= Λ(T ) exp

(
X0(T ) +

∫ t

0
g(T − s)σ(s−)dB(s)

)
EPt
(

exp
(∫ T

t

{
1
2
g2(T − s)σ2(s−) + γg(T − s)σ(s−)

}
ds

))
,

(11)

EP
[
S(2)(T )|Ft

]
= Λ(T ) exp

(
X0(T ) +

∫ t

0
g(T − s)dL(s)

)
exp

(∫ T

t
ψPL (g(T − s))ds

)
. (12)

7



Let us focus on the Brownian case with stochastic volatility and γ = 0. Let

σ2(t) =
∫ t

−∞
e−α(t−u)dJ(u), (13)

where α > 0 and J is a subordinator. A straightforward computation leads to

σ2(s) = e−α(s−t)σ2(t) +
∫ s

t
e−α(t−u)dJ(u), s ≥ t. (14)

With this special volatility structure, the expression in (11) can be expressed even more explicitly
based on the following result.

Proposition 2. Suppose σ2 is given by (13). Then

EPt
(

exp
(

1
2

∫ T

t
g2(T − s)σ2(s)ds

))
= exp

(
1
2
σ2(t)

∫ T

t
g2(T − s)e−α(s−t)ds

)
exp

(∫ T

t
ψPJ

(
1
2

∫ T

u
g2(T − s)e−α(t−u)ds

)
du

)
.

3.3.2 The arithmetic model

Proposition 3. Let S be defined as in (6).

1. Let 0 ≤ t ≤ T , then

EP [S(T )|Ft] = Λ(T ) +X0(T ) +
∫ t

0
g(T − s)σ(s−)dL(s)

+ EP (L(1))
∫ T

t
g(T − s)EPt (σ(s−)) ds.

(15)

2. Let 0 ≤ t ≤ T1 < T2, then

EP
(

1
T2 − T1

∫ T2

T1

S(T )dT
∣∣∣∣Ft)

=
1

T2 − T1

[(∫ T2

T1

(Λ(T ) +X0(T )) dT +
∫ t

0

(∫ T2

T1

g(T − s)dT
)
σ(s−)dL(s)

+EP (L(1))
∫ T

t

(∫ T2

T1

g(T − s)dT
)

EPt (σ(s−)) ds
)]

.

(16)

As soon as we specify a suitable model for the stochastic volatility process σ, we obtain an ex-
plicit formula for the conditional expectation of the stochastic volatility process and hence expres-
sion (15) can be simplified further. In the following we consider the two cases where the volatility
is modelled as a non-Gaussian Ornstein-Uhlenbeck process or a Cox-Ingersoll-Ross process.

Assumption 1. Under the measure P , suppose the stochastic volatility process σ satisfies either

dσ(u) = −ασ(u)du+ dJ(αu), (17)

for α > 0 and a (two-sided) Lévy subordinator J , which is independent of L, and β := E(J(1)), or

dσ(u) = −α(σ(u)− β)du+ v
√
σ(u)dW (u), (18)

for α, β, v > 0 and where W is a (two-sided) standard Brownian motion independent of L.
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Proposition 4. Let S be defined as in (6) and suppose that Assumption 1 holds. Then,

EP (L(1))
∫ T

t
g(T − s)EPt (σ(s−)) ds = σ(t)h1(t, T ) + h2(t, T ),

where h1 and h2 are deterministic functions given by

h1(t, T ) = EP (L(1))
∫ T

t
g(T − s) exp(−α(s− t))ds,

h2(t, T ) = EP (L(1))β
∫ T

t
g(T − s)(1− exp(−α(s− t)))ds.

Remark 4. Note that the stochastic volatility model given in (13) is the so-called Barndorff-
Nielsen & Shephard (BNS) model, see Barndorff-Nielsen & Shephard (2001, 2002), whereas the
model defined in (17) is a different stochastic volatility model motivated by the BNS model. The
reason for considering these two different models is analytical tractability. In the geometric model,
the squared volatility σ2(t) appears in the conditional expectation which motivates modelling this
term directly, whereas, in the arithmetic model, we get the term σ(t) in the conditional expectation
and, hence, it is natural to model this term directly. The latter variant of the BNS model has been
used in the literature before, see e.g. Veraart (2011). Moreover, Konaris (2002) has shown that
while these two models are clearly not the same, in many empirical applications, either one can
potentially provide a good fit when calibrated to financial data.

4 The risk premium based on classical no-arbitrage theory

In the following we will use the classical no-arbitrage theory to study risk premia. For this we
assume that the forward price is given by

F (t, T ) = EQ(S(T )|Ft), (19)

where Q is a risk-neutral probability measure. Then, the (ex-ante) risk premium is given by

R(t, T ) = EQt (S(T ))− EPt (S(T )).

Note that in incomplete markets, the risk-neutral probability measure Q is not unique. This
is usually the case in energy markets. Furthermore, note that if a asset is not directly tradable it
does not have to be a martingale (after discounting) under the risk-neutral probability measure,
see (Benth, Šaltytė Benth & Koekebakker 2008, Chapter 4) for further details.

Recall that we denote by P the physical probability measure. We will now introduce a new
equivalent probability measure. For this, let Z denote a positive martingale with mean 1. Then
we define for 0 ≤ t ≤ T ∗: Qt(A) := E(IAZt) =

∫
A ZtdP, for all A ∈ Ft. Then Qt is a probability

measure on Ft with dQt

dP = Zt. In addition, we have QT ∗(A) = Qt(A) for all A ∈ Ft, since Z is a
martingale.

To simplify the notation, we often drop the subscript and only write Q for an equivalent measure.
We briefly review the Bayes rule, which will be central in deriving our first results on the risk

premium.

Proposition 5. [Bayes rule (Karatzas & Shreve (1991, p.193))] Suppose 0 ≤ T ∗ < ∞ is
fixed and let Z denote a martingale. For any Ft measurable random variable ξ with EQT∗ |ξ| < ∞
and for 0 ≤ s ≤ t ≤ T ∗, we have EQT∗

s (ξ) = 1
Z(s)Es(ξZ(t)), and, hence Es(ξ) − EQT∗

s (ξ) =

Es
(
ξ
(

1− Z(t)
Z(s)

))
.
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4.1 Risk premium in the geometric model

4.1.1 The general result

The spot price in the geometric model is given by

S(t) = Λ(t) exp(Y (t)).

Proposition 6. Assume that P and Q are equivalent probability measures. Let Z denote the
Radon-Nikoým derivative of Q relative to P . Then the risk premium is given by

R(t, T ) = EQt (S(T ))− EPt (S(T )) = Λ(T ) exp
(∫ t

−∞
g(T − s)σ(s−)dL(s)

)
ξ(t;T ), (20)

where

ξ(t;T ) = EPt
[
exp

(∫ T

t
g(T − s)σ(s−)dL(s)

)(
Z(T )
Z(t)

− 1
)]

. (21)

We find that the risk premium in the geometric model always has at least one stochastic com-
ponent, no matter what kind of equivalent probability measure one uses for the change of measure,
namely the factor exp

(∫ t
−∞ g(T − s)σ(s−)dL(s)

)
. This result is in line with the results reported

by Benth & Sgarra (2012). Note also that the term consisting of the conditional expectation,
i.e. ξ(t;T ), can also be stochastic. We will study such cases in the next Subsection.

Corollary 2. Assume that P and Q are equivalent probability measures. Let Z denote the Radon-
Nikoým derivative of Q relative to P . Assume that the kernel function is given by g(T − s) =
exp(−λ(T − s)), for λ > 0, corresponding to an Ornstein-Uhlenbeck process. Clearly, we can write
g(T − s) = g1(T )g2(s) for g1(T ) = exp(−λT ) and g2(s) = exp(λs). Then the risk premium is given
by

R(t, T ) = Λ(T ) exp
(
g1(T )
g1(t)

Y (t)
)
ξ(t;T ) = Λ(T ) exp

(
e−λ(T−t)Y (t)

)
ξ(t;T ),

where ξ(t;T ) is defined as in (21).

4.1.2 Structure preserving change of measure

Proposition 7. Assume that P and Q are related through a structure preserving change of measure.
Then the risk premium is given by

R(t, T ) = Λ(T ) exp
(∫ t

−∞
g(T − s)σ(s−)dL(s)

)
ξ(t;T ), (22)

where

ξ(t;T ) =
[
EQt
(

exp
(∫ T

t
ψQL (g(T − s)σ(s−)) ds

))
− EPt

(
exp

(∫ T

t
ψPL (g(T − s)σ(s−)) ds

))]
, (23)

where ψPL and ψQL denote the logarithm of the moment generating function of L, provided it exists,
under P and Q, respectively.
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4.1.3 The Gaussian case

The result given in Proposition 7 is already quite specific. Next we will show that when we work with
a concrete model specification for the stochastic volatility process σ as well as with a distributional
assumption for the driving Lévy process, we get even more explicit results.

Let us impose an additional assumption.

Assumption 2. Suppose that σ2 is given by

σ2(s) =
∫ s

−∞
i(s, u)dJ(u), for s ∈ R,

where J is a (two-sided) Lévy subordinator, which is independent of L, and i is a positive, mea-
surable deterministic function which satisfies the integrability conditions for Volterra processes, see
Barndorff-Nielsen et al. (2013+). Also, let ψPJ and ψQJ denote the logarithm of the moment gener-
ating function (provided it exists) of J under P and Q, respectively.

Proposition 8. Assume that P and Q are related through a structure preserving change of measure.
Also, suppose that Assumption 2 holds and that L = B is a two-sided standard Brownian motion.
Then the risk premium is given by

R(t, T ) = Λ(T ) exp
(∫ t

−∞
g(T − s)σ(s−)dL(s)

)
ξ(t;T ), (24)

where

ξ(t;T ) = exp
(

1
2

∫ t

−∞

∫ T

t
g2(T − s)i(s, u)dsdJ(u)

)
[
exp

(∫ T

t
ψQJ

(
1
2

∫ T

u
g2(T − s)i(s, u)ds

)
du

)
− exp

(∫ T

t
ψPJ

(
1
2

∫ T

u
g2(T − s)i(s, u)ds

)
du

)]
.

(25)

Interestingly, we find that although the price process is driven by a Brownian motion, which in
the case of a sufficiently smooth kernel function g, results in a continuous process, the risk premium
could potentially exhibit jumps which are due to the driving subordinator of the stochastic volatility
component.

4.2 Risk premium in the arithmetic model

4.2.1 The general result

The spot price in the arithmetic model is given by

S(t) = Λ(t) + Y (t).

Proposition 9. Assume that P and Q are equivalent probability measures. Let Z denote the
Radon-Nikoým derivative of Q relative to P . Then the risk premium is given by

R(t, T ) = EPt
[∫ T

t
g(T − s)σ(s−)dL(s)

(
Z(T )
Z(t)

− 1
)]

. (26)

The result differs significantly from the result we obtained in the case of a geometric model.
While the risk premium always has a stochastic component in the geometric model, this is not
necessarily the case in the arithmetic case. However, we will show in the following that the risk
premium in the arithmetic model is for instance stochastic in the presence of a stochastic volatility
process and if the change of measure is structure preserving.
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4.2.2 Structure preserving change of measure

We obtain a more explicit result for the risk premium if we assume a certain structure of the change
of measure. As in the geometric case, we assume in the following that the risk neutral probability
measure Q and the physical measure P are linked by a structure preserving change of measure
(preserving independence of σ and L and Lévy properties under Q).

Proposition 10. Assume that P and Q are related through a structure preserving change of mea-
sure. Then the risk premium is given by

R(t, T ) = EQt (S(T ))− EPt (S(T )) =
∫ T

t
g(T − s)

(
EQ(L1)EQt (σ(s−))− EP (L1)EPt (σ(s−))

)
ds.

4.2.3 Volatility modelled as a non-Gaussian OU process or CIR process

As soon as we specify a suitable model for the stochastic volatility process, we obtain an explicit
formula for the risk premium.

Remark 5. Note that under a structure preserving change of measure the two stochastic differential
equations in Assumption 1 change to

dσ(u) = −ασ(u)du+ dJQ(αu),

where JQ a (two-sided) Lévy subordinator under Q, see Nicolato & Venardos (2003, Theorem 3.2);
also

dσ(u) = −αQ(σ(u)− βQ)du+ v
√
σ(u)dWQ(u),

where WQ is a (two-sided) standard Brownian motion under Q, and aQ, βQ > 0 denote parameters
under Q, see Wong & Heyde (2006) for details.

Proposition 11. Assume that P and Q are related through a structure preserving change of mea-
sure. In addition, suppose that Assumption 1 holds. Then the risk premium is given by

R(t, T ) = σ(t)h1(t, T ) + h2(t, T ),

where h1 and h2 are deterministic functions, which in the case of model (17) are given by

h1(t, T ) =
(
EQ(L(1))− EP (L(1))

) ∫ T

t
g(T − s) exp(−α(s− t))ds,

h2(t, T ) =
[
EQ(L(1))EQ(J(1))− EP (L(1))EP (J(1))

] ∫ T

t
g(T − s)(1− exp(−α(s− t)))ds,

and in the case of model (18) are given by

h1(t, T ) =
∫ T

t
g(T − s)

{
EQ(L(1)) exp(−αQ(s− t))− EP (L(1)) exp(−αP (s− t))

}
ds,

h2(t, T ) =
∫ T

t
g(T − s)

{
EQ(L(1))βQ(1− exp(−αQ(s− t)))

−EP (L(1))βP (1− exp(−αP (s− t)))
}
ds.

Note that the mean of L changes under P and Q. Hence, the difference of the two means, which
enters as a multiplicative factor in h1, will not be zero.
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5 Empirical study

In general, forward prices and the corresponding risk premia are well understood if the underlying
asset is storable. For electricity, the relationship between spot and forward contracts is far less clear.
The purpose of the empirical study is to shed some light on this issue. For this, we fit a spot price
model from the class of LSS processes to electricity spot price data and compute the corresponding
conditional expectation of the future electricity price (under the physical measure) from this model.
We investigate whether this expectation has any explanatory power for the forward price.

5.1 The data

In the following we consider data from the European Energy Exchange (EEX). For the electricity
spot prices we consider the Phelix Day Peakload. Phelix stands for ”Physical Electricity Index” and
is a reference price for the European power wholesale market. The Phelix Day Peakload consists of
the arithmetic mean of the 12 hourly prices between 08:00 am (CET) to 08:00 pm (CET) derived
on the weekdays of the daily auction on the spot market of EPEX Spot for the German/Austrian
market area, see European Energy Exchange AG (2012). All prices are specified in Euro per MWh.

In addition to the spot data we also consider Phelix Peakload Futures, i.e. these are future
contracts for which the Phelix Day Peakload is the underlying. The delivery rate of these future
contracts is 1MW electricity per hour. Usually, these future contracts are settled financially and
not physically. There are several delivery periods available for Phelix Peakload Futures. We will
concentrate on the Month Futures Peakload contracts. In general these are traded until the last
day of the delivery period, but we will only look at the front-months data, i.e. we consider the prices
of the future contracts during the months before the start of the delivery period. That means the
prices for a futures contract observed in January correspond to a future contract with delivery in
February etc..

The data were obtained from Datastream, code T43117 (Phelix Spot Peakload) and code
EPMCS00 (Phelix Month Futures Peakload) and comprise the days 01/10/2009 until 28/9/2012
excluding weekends. Overall, we have 782 observations over three years which corresponds to
approximately 261 observations per year.
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Figure 1: Daily prices of Phelix Day Peakload and Phelix Peakload Month Futures (front-month
data) from 01/10/2010-30/09/2012 (excluding weekends).

Figure 1(a) shows the observed daily prices of the Phelix Day Peakload and Phelix Peakload
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Month Futures from 01/10/2010-30/09/2012 (excluding weekends). We only consider the so-called
front-month data for the prices of the month futures. Hence, even though we have plotted the future
prices as one time series over 36 months, we are effectively observing the prices of 36 different futures
contracts always during the last month before the beginning of their delivery period. To illustrate
this in more detail we included Figure 1(b) which contains these front month future data with
additional vertical line indicating the start and end date of a new futures contract. Hence we see
that the majority of jumps observed in the data of the futures are due to different contracts that
are considered and not due to real price jumps.

The spot data show several well-known stylized effects. We observe some mean-reversion in the
data and occasional price spikes. Compared to earlier data from the EEX, however, the magnitude
of the spikes is far less sever. We also see that in this data set there were not any negative prices in
the peakload spot price. Hence, we can fit either a geometric or an arithmetic model to this data
set.

5.2 The ex-post risk premium

Before we start with the model dependent analysis we look at the model independent risk premium
- the ex-post risk premium. In (8) the ex-post risk premium for contracts with delivery period
[T1, T2] was defined. The corresponding empirical risk-premium for delivery during one month M
for the peakload futures contract is then

rempirical(t;M) = F (t;M)− 1
#{weekdays in month M}

∑
T∈{weekday in month M}

S(T ).

2010 2011 2012

−10
0

10
20

30

ex−
pos

t ris
k p

rem
ium

Figure 2: Empirical ex-post risk premium corresponding to the Phelix Peakload Month Futures.

Figure 2 shows this empirical ex-post risk premium for our data set. It seems to be stochastic
in nature and no clear pattern seems to occur. Even the sign of the risk premium seems to vary.
We will look at a particular month in more detail.

We consider data from March 2011 since we can observe some interesting effects here. In March
2011 the German government announced major changes to their energy policy due to the nuclear
catastrophe that occurred in Japan as a consequence of a devastating earthquake on 11th March
2011 and a tsunami that hit the Fukushima Daiichi Nuclear Power Plant. On 14th March the
German government announced a (temporary) moratorium on the lifespan extension of nuclear
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power plants. On 15th March, it was announced that several nuclear power plants in Germany
would be temporarily shut, see Market Surveillance of European Energy Exchange AG (2011) for
further discussion. These developments clearly affected the evolution of the future prices during
this time. We observe a large upward jump of the future prices on 14th and 15th March. Not
surprisingly, however, the spot price was unaffected by this, see Figure 3(b). This then lead to a
large ex-post risk premium, see Figure 3(a). Since the shut-down of several power plants, decreased
future supply of electricity for the German market, market participants were trying to hedge their
risk by buying future contracts and they were prepared to pay high prices for this hedge. The
futures prices increased significantly over this short period. This price jump can be observed in all
futures traded on the Phelix on that day. In addition to this upward price jump, also the trading
volume increased significantly, see Market Surveillance of European Energy Exchange AG (2011).
This example clearly shows that it will always be difficult to link futures prices on electricity to
current spot prices. Including an information premium in the modelling of forward prices along the
lines of Benth & Meyer-Brandis (2009) could be promising in such a situation.
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Figure 3: Fukushima effect in March 2011. Here shifted average spot in Figure 3(b) refers to the
average spot price observed in April 2011.

5.3 Fitting the spot model

Next, we draw our attention to the ex-ante risk premium. In the following, we estimate a specific
spot price model, which we will later use to derive the ex-ante risk premium for our data set. Here
we will work with an arithmethic model based on an LSS process.

In a first step, we need to deseasonalise the data. Since, we want to make predictions from our
model later on, we choose a parametric model for the seasonal function. We found that a linear
combination of two sinusoidal functions, which take weekly and yearly seasonalities into account, as
well as a polynomial of second order capture the overall trend and seasonality well. More precisely,
we estimated the function

Λ(t) = c0 + c1t+ c2t
2 + c3 cos((τ1 + 2πt)/5) + c4 cos((τ2 + 2πt)/261),

using a robust estimation method, where the coefficients were estimated to be c0 = 45.45, c1 =
0.07, c2 = −8.57e−5, c3 = 1.08, c4 = 3.02, τ1 = 35.45, τ2 = −5103.71. We subtracted the estimated
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seasonal function from the data, and, in addition, de-meaned the resulting time series to obtain a
times series which has zero mean.

The spot prices with the fitted seasonality function as well as the deseasonalised prices and
price increments are depicted in Figure 4.
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Figure 4: (a) Fitted parametric trend, (b) Detrended and deseasonalised spot prices, (c) Detrended
and deseasonalised spot increments.

After having deseasonalised and detrended the data we run the augmented Dickey-Fuller Test
and the Phillips-Perron Unit Root Test. Both tests rejected the null-hypothesis of a unit root
against the alternative of stationarity at a significance level below 1%.

While the class of LSS processes is very general, in our empirical work, we are particularly
interested in rather simple models which can be easily estimated. The exponential decay of the
autocorrelation function (ACF) together with the clear cut-off of the partial autocorrelation function
(PACF) of the prices after lag three, see Figure 5, suggests that we can work with linear models.
In our case, an autoregressive process of order three seems to be a good starting point.
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Figure 5: (a) ACF and (b) PACF of detrended and deseasonalised spot prices.

The class of AR processes has a continuous-time analogue, called the continuous-time autore-
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gressive processes of order p ∈ N (CAR(p)), see e.g. Benth, Šaltytė Benth & Koekebakker (2008,
p. 281-285) for details. Such processes have also been studied in the context of electricity markets
by e.g. Benth et al. (2012) and Garcia et al. (2011).

Such a model corresponds to choosing

g(t− s) = b′1 exp(A(t− s))bp,

where b1 and bp denote the first and pth unit vector in Rp, respectively, and A is a p × p matrix
given by

A =
[

0 Ip−1

−αp −αp−1 · · · − α1

]
,

where Ip−1 denotes the (p− 1)× (p− 1)-identity matrix, 0 is a p− 1-dimensional vector consisting
of zeros, and α1, . . . , αp are constants which are typically assumed to be positive.

The Euler-discretisation of a CAR(3) process leads to an AR(3) process (Ξn)n∈N of the form

Ξ(n) = b1Ξ(n− 1) + b2Ξ(n− 2) + b3Ξ(n− 3) + ε(n),

where ε(n) corresponds to the Euler-discretisation of the process M , i.e. for a step size of one we
have ε(n) = σn−1(L(n)−L(n− 1)). Note that in the case when L = B is a Brownian motion, then
the ε are mixed-normal random variables.

Also, the parameters (b1, b2, b3) are linked to the parameters of the continuous-time model by
the relation b1 = 3 − α1, b2 = 2α1 − α2 − 3, b3 = α2 + 1 − α1 − α3, see Benth, Šaltytė Benth
& Koekebakker (2008, p. 285). In our empirical example, we get the following estimates α1 =
2.50, α2 = 1.84, α3 = 0.25. The diagnostic plots provided in Figure 6 show, that the autocorrelation
structure of the AR(3) model is suitable for describing the empirical ACF and lead to uncorrelated
residuals. Interestingly, we find signficant short-term autocorrelation in the squared residuals,
indicating that we are not dealing with i.i.d. residuals. Fortunately, our general model structure
allows for stochastic volatility, and hence we suggest to work with a modelling framework which
accounts for clusters in the volatility.
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Figure 6: (a) Empirical and fitted ACF of the prices, (b) ACF of the AR(3) residuals, (c) ACF
of the squared AR(3) residuals, (d) Quantile-Quantile plot comparing the empirical distribution of
the AR(3) residuals with the symmetric Student-t distribution.

Motivated by previous related work by Barndorff-Nielsen et al. (2013+) and Veraart & Veraart
(2013+), we fitted the class of generalised hyperbolic (GH) distributions to the residuals. Using
the Akaike Information Criterion to select the model amongst eleven different cases of the GH
distribution, including the symmetric and asymmetric versions of the general GH, the normal
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inverse Gaussian, variance gamma, generalised hyperbolic, Student-t and Gaussian distribution,
we find that the symmetric Student-t distribution with parameters ν = 3.35, µ = −0.02, σ = 7.17
(see Breymann & Lüthi (2010) for details regarding the parametrisation) is the preferred choice.
The symmetric Student-t distribution can be obtained as a mean-variance mixture of the Gaussian
distribution with the inverse Gamma (IG) distribution. As such, we could think of the driving
process dM(t) = σ(t)dB(t) as a volatility modulation of a Brownian motion B, where σ2 is an
Ornstein-Uhlenbeck process with IG stationary distribution.

5.4 The ex-ante risk premium

Based on the CAR(3) model where we have a Brownian motion as the driving process, which is
modulated by a stationary stochastic volatility process σ such that σ2 has inverse Gamma stationary
distribution, we compute the conditional expectation of the future averaged spot price over each
month and compare it to the corresponding forward price, which gives us the ex-ante swap premium,
see Definition 2.

Remark 6. It should be noted here that we carry out the empirical study of the ex-ante risk
premium as an in-sample study, meaning that we have used the entire data set to estimate the
model parameters of the CAR(3) process as well as the seasonality and trend function and use this
information to forecast the spot price (in-sample) using the conditional expectation operator as the
optimal predictor in the mean-square sense.

In our idealised situation of an in-sample study of the ex-ante risk premium, we try to answer
the question whether the predicted spot price under the measure P , i.e. the market expectation,
has any predictive power for the corresponding forward prices. Figure 7 depicts the predicted
average spot prices (solid line) for each of the 36 months in the sample and the corresponding
futures (dashed line). While in some months there seems to be a good overlap between the market
expectation based on the spot model and the futures, there are quite a few months, where the
two prices seem to behave almost independently from each other. In particular, when looking at
Figure 7(d), we note that our predicted average spot prices mainly follow the seasonality and trend
function and the additional information coming from our stochastic model when doing long-term
forecasting is almost negligible.

This finding becomes also very apparent, when we look at the time series plot of ex-ante risk
premium, see Figure 8. On most of the days, the ex-ante risk premium is positive, meaning that the
futures prices were higher than our predicted average spot price. As already discussed before, there
are events which impact only the futures prices, such as the temporary moratorium announced in
March 2011, or only the spot prices, which result in significant ex-ante and ex-post risk premia.
Note here that we observe the Fukushima-effect also in the ex-ante premium, since the spot price
did not rise following the press conference and hence did not anticipate the sudden rise in the
forward prices.

Let us briefly mention that a linear regression analysis where one analyses the relation of the
futures to the (shifted) average spot prices leads to an R2 of 32%, which increases to an R2 of 47%
when regressing the futures on our predicted average spot prices. So, we find that the predicted
average spot prices do have some explanatory power for the futures, but clearly, there are other
factors which need to be accounted for. It should be noted here, that if the ex-ante premium at
time t was computed based on parameter estimates from the data up to time t only, rather than
using the estimates from the full data set, we expect to obtain an even worse explanatory power of
the expected average spot prices.
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Figure 7: Predicted average spot prices (solid line) for each of the 36 months in the sample and
corresponding futures (dashed line). (a) October 2009 - September 2010, (b) October 2010 -
September 2011, (c) October 2011 - September 2012, (d) Entire sample from October 2009 -
September 2012.
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Figure 8: Ex-ante risk premium.

5.5 Fitting the forward model

Motivated by the findings in the previous Subsection, we follow a different strategy next to find a
good model for the futures. Rather than calibrating the model parameters to the spot price data,
one could attempt to model the forward price directly either by the geometric model, given by the
right hand side (RHS) in formula (10), or by the arithmetic model, given on the RHS of equation
(16).

We demonstrate this method using the arithmetic model. As a starting point, we focus on the
special case when X0(T ) ≡ 0, EP (L(1)) = 0 and there is no stochastic volatility. Then formula (16)
simplifies significantly, and it suggests that we can model a futures price at time t with delivery
period [T1, T2] directly by

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

Λ(T )dT +
∫ t

0
h(T1, T2, s)dL(s), (27)

for h(T1, T2, s) = 1
T2−T1

∫ T2

T1
g(T − s)dT . Figure 9 depicts the corresponding empirical findings. For

the seasonality and trend function, we chose a step function mimicking the mean level of the futures
each month. After we de-meaned the data, we did not find additional seasonal effects in our time
series of the front-month futures. An Euler-discretisation of the stochastic integral in (27) leads to
h(T1, T2, n − 1)(L(n − 1) − L(n)) (for a stepsize of one). Figure 9(d) shows that there is almost
no significant autocorrelation in the increments, and no significant autocorrelation in the squared
increments, see Figure 9(e). This finding together with the fact that the increments look quite
stationary supports a model based on Lévy processes (or additive processes, if one does not impose
the stationarity assumption on the increments) and g(T − s) ≡ 1. In that case, we have

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

Λ(T )dT + L(t).

Finally, we looked at the distribution of the increments and we found that the asymmetric
generalised hyperbolic distribution seems to fit the increments of the futures rather well, see Figure
9(f).

Our empirical findings suggests that the formulae for conditional expectations of the average
spot price, see (10) in the geometric case and (16) in the arithmetic case, can indeed describe the
empirical behaviour of futures rather well when we calibrate them directly to the futures prices.

In future research one can explore how our models for the spot and future prices, which provide
a good empirical fit, could be linked together through a suitable change of measure, which could
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Figure 9: (a) Futures (solid) and a step function (dotted) indicating the mean level each month,
(b) de-meaned futures, (c) increments of the de-meaned futures, (d) ACF of the increments, (e)
ACF of the squared increments, (f) quantile-quantile plot comparing the empirical distribution of
the increments with the asymmetric generalised hyperbolic distribution.

then be estimated from empirical data to provide some information on the so-called market price
of risk.

6 Conclusion

This paper has investigated the role of risk premia in energy markets when energy spot prices are
modelled by Lévy semistationary (LSS) processes. For storable energy commodities, we have de-
rived explicit theoretical results for the corresponding risk premia based on no-arbitrage arguments.
We find that there is a structural difference between geometric and arithmetic models based on
LSS processes. While there is always a stochastic component in the risk premium in a geometric
model, see Proposition 6, this is not necessarily true in an arithmetic model, see Proposition 9.
Moreover, we have shown that when working with a structure-preserving change of measure between
the physical and the risk-neutral probability measure, the stochastic volatility is a key component,
in particular in the arithmetic model, where it can solely introduce stochastic behaviour in the risk
premium. For particular choices of the stochastic volatility process, e.g. for a square-root diffusion
or a non-Gaussian Ornstein-Uhlenbeck process, we showed how the dynamics of the stochastic
volatility process lead to stochastic dynamics of the risk premium.

Electricity is a particular case within the class of energy commodities since it is essentially
non-storable. Hence it is not clear whether the theoretical results derived in this paper should also
hold in the case of electricity. Therefore we have focused on this rather difficult special case in our
empirical work and have investigated to what extent the conditional expectation of the average
spot price under the physical probability measure has any explanatory power for the corresponding
electricity futures. In our empirical study, we focused on the short-end of the forward curve only and
used a daily time series of the front months of Phelix Peakload Month Futures from the EEX market
from Oct 2009 - Sep 2012. Despite the fact that our LSS-based model fits the spot prices very
well, we find that the corresponding conditional expectation has only some explanatory power for
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the futures. There is still a significant amount of variability (> 50%) in the futures which cannot
be explained by our predicted average spot prices. Hence, either one models the risk premium
directly to find a suitable model for electricity futures or one could model the futures directly. Here
we followed the latter approach, where we postulated a model for electricity futures based on the
theoretical results obtained for the conditional expectation of the average spot (based on an LSS
process), see (10) and (16). We calibrated such a model directly to the futures rather than using
parameter estimates based on the spot prices, which resulted in a good model fit.

While we have studied risk premia from a purely probabilistic and statistical perspective in this
paper, future research could try to identify the key economic factors which drive the risk premia in
energy markets.

A Proofs

Proof of Proposition 1. 1. For 0 ≤ t ≤ T , we have

S(T ) = Λ(T ) exp
(
X0(T ) +

∫ t

0
g(T − s)dM(s)

)
exp

(∫ T

t
g(T − s)dM(s)

)
.

Hence

EPt (S(T )) = Λ(T ) exp
(
X0(T ) +

∫ t

0
g(T − s)dM(s)

)
EPt
(

exp
(∫ T

t
g(T − s)dM(s)

))
.

Then

EP [S(T )|Ft]

= Λ(T ) exp
(
X0(T ) +

∫ t

0
g(T − s)σ(s−)dL(s)

)
EPt
(

exp
(∫ T

t
g(T − s)σ(s−)dL(s)

))
= Λ(T ) exp

(
X0(T ) +

∫ t

0
g(T − s)σ(s−)dL(s)

)
EPt
(

exp
(∫ T

t
ψPL (g(T − s)σ(s−))ds

))
,

where we used the well-known result on the moment generating function of an integral of a
deterministic function (after conditioning on the stochastic volatility) with respect to a Lévy
process, see e.g. Cont & Tankov (2004, Lemma 15.1).

2. This follows directly from the stochastic Fubini Theorem.

Proof of Proposition 2. Using the identity (14), we obtain

EPt
(

exp
(

1
2

∫ T

t
g2(T − s)σ2(s)ds

))
= EPt

(
exp

(
1
2

∫ T

t
g2(T − s)

{
e−α(s−t)σ2(t) +

∫ s

t
e−α(t−u)dJ(u)

}
ds

))
= exp

(
1
2
σ2(t)

∫ T

t
g2(T − s)e−α(s−t)ds

)
EPt
(

exp
(

1
2

∫ T

t
g2(T − s)

∫ s

t
e−α(t−u)dJ(u)ds

))
.

From the stochastic Fubini theorem, we get

EPt
(

exp
(

1
2

∫ T

t
g2(T − s)

∫ s

t
e−α(t−u)dJ(u)ds

))
= EPt

(
exp

(
1
2

∫ T

t

∫ T

u
g2(T − s)e−α(t−u)dsdJ(u)

))
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= exp
(∫ T

t
ψPJ

(
1
2

∫ T

u
g2(T − s)e−α(t−u)ds

)
du

)
,

where ψPJ denotes the logarithm of the moment generating function of J .

Proof of Proposition 3. 1. For 0 ≤ t ≤ T , we have

S(T ) = Λ(T ) +X0(T ) +
∫ t

0
g(T − s)dM(s) +

∫ T

t
g(T − s)dM(s).

Hence

EPt (S(T )) = Λ(T ) +X0(T ) +
∫ t

0
g(T − s)dM(s) + EPt

(∫ T

t
g(T − s)dM(s)

)
= Λ(T ) +X0(T ) +

∫ t

0
g(T − s)dM(s) + EP (L1)

∫ T

t
g(T − s)EPt (σ(s−)) ds.

2. Using the Fubini Theorem, we get

EP
(

1
T2 − T1

∫ T2

T1

S(T )dT
∣∣∣∣Ft)

=
1

T2 − T1

[(∫ T2

T1

(Λ(T ) +X0(T )) dT +
∫ T2

T1

∫ t

0
g(T − s)σ(s−)dL(s)dT

+EP (L(1))
∫ T2

T1

∫ T

t
g(T − s)EPt (σ(s−)) ds

)
dT

]
=

1
T2 − T1

[(∫ T2

T1

(Λ(T ) +X0(T )) dT +
∫ t

0

(∫ T2

T1

g(T − s)dT
)
σ(s−)dL(s)

+EP (L(1))
∫ T

t

(∫ T2

T1

g(T − s)dT
)

EPt (σ(s−)) ds
)]

.

Proof of Proposition 4. For s ≥ t, EPt (σ(s)) = EPt (σ(s) − σ(t)) + σ(t). Then EPt (σ(s) − σ(t)) =
EPt
(∫ s
t dσ(u)

)
. If σ is given as in (17), then

EPt (σ(s)− σ(t)) = EPt
(∫ s

t
dσ(u)

)
= −α

∫ s

t
EPt (σ(u)) du+ αEP (J(1))(s− t).

Hence for s ≥ t and Z(s) = EPt (σ(s)) we obtain the SDE

dZ(s) = −αZ(s)ds+ αEP (J(1))ds = α(EP (J(1))− Z(s))ds = α(β − Z(s))ds,

with Z(t) = σ(t). We obtain the same SDE also for model (18). Solving this SDE gives

Z(s) = Z(t) exp(−α(s− t)) + β(1− exp(−α(s− t)))
= σ(t) exp(−α(s− t)) + β(1− exp(−α(s− t))).

Hence, for s ≥ t,

EPt (σ(s)) = σ(t) exp(−α(s− t)) + β(1− exp(−α(s− t))).

Altogether we have

EP (L(1))
∫ T

t
g(T − s)EPt (σ(s−)) ds = σ(t)h1(t, T ) + h2(t, T ),
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where h1 and h2 are deterministic functions given by

h1(t, T ) = EP (L(1))
∫ T

t
g(T − s) exp(−α(s− t))ds,

h2(t, T ) = EP (L(1))β
∫ T

t
g(T − s)(1− exp(−α(s− t)))ds.

Proof of Proposition 6. For T ≥ t, we have

S(T ) = Λ(T ) exp
(∫ t

−∞
g(T − s)σ(s−)dL(s)

)
exp

(∫ T

t
g(T − s)σ(s−)dL(s)

)
.

Hence

EPt (S(T )) = Λ(T ) exp
(∫ t

−∞
g(T − s)σ(s−)dL(s)

)
EPt
(

exp
(∫ T

t
g(T − s)σ(s−)dL(s)

))
,

EQt (S(T )) = Λ(T ) exp
(∫ t

−∞
g(T − s)σ(s−)dL(s)

)
EQt
(

exp
(∫ T

t
g(T − s)σ(s−)dL(s)

))
.

Then

ξ(t;T ) = EQt
(

exp
(∫ T

t
g(T − s)σ(s−)dL(s)

))
− EPt

(
exp

(∫ T

t
g(T − s)σ(s−)dL(s)

))
= EPt

(
exp

(∫ T

t
g(T − s)σ(s−)dL(s)

)(
Z(T )
Z(t)

− 1
))

,

where we applied the Bayes Rule, see Proposition 5.

Proof of Corollary 2. From Theorem 6, we have

R(t, T ) = Λ(T ) exp
(∫ t

−∞
g1(T )g2(s)σ(s−)dL(s)

)
ξ(t;T )

= Λ(T ) exp
(
g1(T )
g1(t)

∫ t

−∞
g1(t)g2(s)σ(s−)dL(s)

)
ξ(t;T )

= Λ(T ) exp
(
g1(T )
g1(t)

Y (t)
)
ξ(t;T ).

Proof of Proposition 7. For T ≥ t, we have

EPt
(

exp
(∫ T

t
g(T − s)σ(s−)dL(s)

))
= EPt

(
exp

(∫ T

t
ψPL (g(T − s)σ(s−)) ds

))
.

Similarly, under a structure preserving change of measure, we get

EQt
(

exp
(∫ T

t
g(T − s)σ(s−)dL(s)

))
= EQt

(
exp

(∫ T

t
ψPL (g(T − s)σ(s−)) ds

))
.

Then the result follows.

24



Proof of Proposition 8. In the Gaussian case, when L = W is a standard Brownian motion, we
obtain

EPt
(

exp
(∫ T

t
ψPL (g(T − s)σ(s−)) ds

))
= EPt

(
exp

(
1
2

∫ T

t
g2(T − s)σ2(s−)ds

))
.

Now note that, for s ≥ t,

σ2(s) =
∫ t

−∞
i(s, u)dJ(u) +

∫ s

t
i(s, u)dJ(u).

An application of the stochastic Fubini Theorem leads to∫ T

t
g2(T − s)σ2(s)ds =

∫ T

t
g2(T − s)

∫ t

−∞
i(s, u)dJ(u)ds+

∫ T

t
g2(T − s)

∫ s

t
i(s, u)dJ(u)ds

=
∫ t

−∞

∫ T

t
g2(T − s)i(s, u)dsdJ(u) +

∫ T

t

∫ T

u
g2(T − s)i(s, u)dsdJ(u).

Hence

EPt
(

exp
(

1
2

∫ T

t
g2(T − s)σ2(s−)ds

))
= exp

(
1
2

∫ t

−∞

∫ T

t
g2(T − s)i(s, u)dsdJ(u)

)
EPt
(

exp
(

1
2

∫ T

t

∫ T

u
g2(T − s)i(s, u)dsdJ(u)

))
= exp

(
1
2

∫ t

−∞

∫ T

t
g2(T − s)i(s, u)dsdJ(u)

)
exp

(∫ T

t
ψPJ

(
1
2

∫ T

u
g2(T − s)i(s, u)ds

)
du

)
.

Similarly,

EQt
(

exp
(

1
2

∫ T

t
g2(T − s)σ2(s−)ds

))
= exp

(
1
2

∫ t

−∞

∫ T

t
g2(T − s)i(s, u)dsdJ(u)

)
exp

(∫ T

t
ψQJ

(
1
2

∫ T

u
g2(T − s)i(s, u)ds

)
du

)
.

Hence

ξ(t;T ) = EQt
(

exp
(

1
2

∫ T

t
g2(T − s)σ2(s−)ds

))
− EPt

(
exp

(
1
2

∫ T

t
g2(T − s)σ2(s−)ds

))
= exp

(
1
2

∫ t

−∞

∫ T

t
g2(T − s)i(s, u)dsdJ(u)

)
[
exp

(∫ T

t
ψQJ

(
1
2

∫ T

u
g2(T − s)i(s, u)ds

)
du

)
− exp

(∫ T

t
ψPJ

(
1
2

∫ T

u
g2(T − s)i(s, u)ds

)
du

)]
.

Proof of Proposition 9. A straightforward computation leads to

EPt (S(T )) = Λ(T ) +
∫ t

−∞
g(T − s)σ(s−)dL(s) + EPt

[∫ T

t
g(T − s)σ(s−)dL(s)

]
,
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and, likewise,

EQt (S(T )) = Λ(T ) +
∫ t

−∞
g(T − s)σ(s−)dL(s) + EQt

[∫ T

t
g(T − s)σ(s−)dL(s)

]
.

Hence,

R(t;T ) = EQt (S(T ))− EPt (S(T ))

= EQt
[∫ T

t
g(T − s)σ(s−)dL(s)

]
− EPt

[∫ T

t
g(T − s)σ(s−)dL(s)

]
= EPt

[∫ T

t
g(T − s)σ(s−)dL(s)

(
Z(T )
Z(t)

− 1
)]

.

Proof of Proposition 10. The result is an immediate consequence from Theorem 9.

Proof of Proposition 11. For s ≥ t, EQt (σ(s)) = EQt (σ(s) − σ(t)) + σ(t). Then EQt (σ(s) − σ(t)) =
EQt
(∫ s
t dσ(u)

)
. If σ is given as in (17), then

EQt (σ(s)− σ(t)) = EQt
(∫ s

t
dσ(u)

)
= −α

∫ s

t
EQt (σ(u)) du+ αEQ(J(1))(s− t).

Hence for s ≥ t and Z(s) = EQt (σ(s)) we obtain the SDE

dZ(s) = −αZ(s)ds+ αEQ(J(1))ds = α(EQ(J(1))− Z(s))ds,

with Z(t) = σ(t). Solving this SDE gives

Z(s) = Z(t) exp(−α(s− t)) + EQ(J(1))(1− exp(−α(s− t)))
= σ(t) exp(−α(s− t)) + EQ(J(1))(1− exp(−α(s− t))).

Therefore we obtain

R(t, T ) = EQt (S(T ))− EPt (S(T ))

=
∫ T

t
g(T − s)

(
EQ(L(1))EQt (σ(s−))− EP (L(1))EPt (σ(s−))

)
ds

= σ(t)h1(t, T ) + h2(t, T ),

where h1 and h2 are deterministic functions given by

h1(t, T ) =
(
EQ(L(1))− EP (L(1))

) ∫ T

t
g(T − s) exp(−α(s− t))ds,

h2(t, T ) =
[
EQ(L(1))EQ(J(1))− EP (L(1))EP (J(1))

] ∫ T

t
g(T − s)(1− exp(−α(s− t)))ds.

Similarly, if σ is given as in (18), then

EPt (σ(s)− σ(t)) = EPt
(∫ s

t
dσ(u)

)
= −α

∫ s

t
EPt (σ(u)) du+ αβ(s− t).

Hence, for s ≥ t, we obtain as before

EPt (σ(s) = σ(t) exp(−α(s− t)) + β(1− exp(−α(s− t))).
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Also,

EQt (σ(s)) = σ(t) exp(−αQ(s− t)) + βQ(1− exp(−αQ(s− t))).

Altogether we have

R(t, T ) = σ(t)h1(t, T ) + h2(t, T ),

where h1 and h2 are deterministic functions given by

h1(t, T ) =
∫ T

t
g(T − s)

{
EQ(L(1)) exp(−αQ(s− t))− EP (L(1)) exp(−αP (s− t))

}
ds,

h2(t, T ) =
∫ T

t
g(T − s)

{
EQ(L(1))βQ(1− exp(−αQ(s− t)))

−EP (L(1))βP (1− exp(−αP (s− t)))
}
ds.
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