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Abstract

Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series

requires specifying a fixed block length as a tuning parameter for setting confidence regions.

This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper

proposes a new version of BEL based on a simple, though non-standard, data-blocking rule

which uses a data block of every possible length. Consequently, the method involves no block

selection and is also anticipated to exhibit better coverage performance. Its non-standard

blocking scheme, however, induces non-standard asymptotics and requires a significantly dif-

ferent development compared to standard BEL. We establish the large-sample distribution

of log-ratio statistics from the new BEL method for calibrating confidence regions for mean

or smooth function parameters of time series. This limit law is not the usual chi-square one,

but is distribution-free and can be reproduced through straightforward simulations. Numer-

ical studies indicate that the proposed method generally exhibits better coverage accuracy

than standard BEL.
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1 Introduction

For independent, identically distributed data (iid), Owen (1988, 1990) introduced empirical

likelihood (EL) as a general methodology for re-creating likelihood-type inference without a

joint distribution for the data, as typically specified in parametric likelihood. However, the iid

formulation of EL fails for dependent data by ignoring the underlying dependence structure. As
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a remedy, Kitamura (1997) proposed so-called blockwise empirical likelihood (BEL) methodol-

ogy for stationary, weakly dependent processes, which has been shown to provide valid inference

in various scenarios with time series (cf. Lin and Zhang, 2001; Bravo, 2005, 2009; Zhang, 2006;

Nordman, Sibbertsen and Lahiri, 2007; Chen and Wong, 2009; Nordman, 2009; Wu and Cao,

2011; Lei and Qin, 2011). Similarly to the iid EL version, BEL creates an EL log-ratio statistic

having a chi-square limit for inference, but the BEL construction crucially involves blocks of

consecutive observations in time, rather than individual observations. This data-blocking serves

to capture the underlying time dependence and related concepts have also proven important

in defining resampling methodologies for dependent data, such as the moving block bootstrap

of Hall (1985), Künsch (1989) and Liu and Singh (1992), and time subsampling methods of

Carlstein (1986), Politis and Romano (1993), and Politis, Romano and Wolf (1999). However,

the coverage accuracy of BEL can depend crucially on the block length selection, which is a

fixed value 1 ≤ b ≤ n for a given sample size n, and appropriate choices can vary with the

underlying process (a point briefly illustrated at the end of this section).

To advance the BEL methodology in a direction away from block selection with a goal of

improved coverage accuracy, we propose an alternative version of BEL for stationary, weakly de-

pendent time series, called an expansive block empirical likelihood (EBEL). The EBEL method

involves a non-standard, but simple, data-blocking rule where a data block of every possible

length is used. Consequently, the method does not require a block length choice. We investigate

EBEL in the prototypical problem of inference about the process mean or a smooth function of

means. For setting confidence regions for such parameters, we establish the limiting distribution

of log-likelihood ratio statistics from the EBEL method. Because of the non-standard blocking

scheme, the justification of this limit distribution requires a new and substantially different

treatment compared to that of standard BEL (which closely resembles that of EL for iid data

in its large-sample development, cf. Owen, 1990; Qin and Lawless, 1994). In fact, unlike with

standard BEL or EL for iid data, the limiting distribution involved is non-standard and not

chi-square. However, the EBEL limit law is distribution-free, corresponding to a special integral

of standard Brownian motion on [0, 1], and so can be easily approximated through simulation

to obtain appropriate quantiles for calibrating confidence regions. In addition to avoiding block

selection, we anticipate that the EBEL method may have generally better coverage accuracy

than standard BEL methods, though formally establishing and comparing convergence rates

is beyond the scope of this manuscript (and, in fact, optimal rates and block sizes for even

standard BEL remain to be determined). Simulation studies, though, suggest that interval

estimates from the EBEL method can perform much better than the standard BEL approach,

especially when the later employs a poor block choice, and be less sensitive to the dependence

2



strength of the underlying process.

The rest of manuscript is organized as follows. We end this section by briefly recalling the

standard BEL construction with overlapping blocks and its distributional features. In Section

2, we separately describe the EBEL method for inference on process means and smooth function

model parameters, and establish the main distributional results in both cases. These results

require introducing a new type of limit law based on Brownian motion, which is also given

in Section 2. As an additional feature with the approach, we also consider the possibility of

“weighting” the data blocks in the EBEL construction, which influences the distributional limit.

The idea of using weights with data blocks has parallels with other resampling methods for time

series, such as the tapered block bootstrap (Paparoditis and Politis, 2001) and tapered BEL

(Nordman, 2009). Section 3 provides a numerical study of the coverage accuracy of the EBEL

method and comparisons to several existing versions of BEL. Section 4 offers some concluding

remarks and heuristic arguments on the expected performance of EBEL. Proofs of the main

results are deferred to Section 5.

To motivate what follows, we briefly recall the BEL construction, considering, for concrete-

ness, inference about the mean EXt = µ ∈ Rd of a vector-valued stationary stretch X1, . . . , Xn.

Upon choosing an integer block length 1 ≤ b ≤ n, a collection of maximally overlapping (OL)

blocks of length b is given by {(Xi, . . . , Xi+b−1) : i = 1, . . . , Nb ≡ n− b+ 1}. For a given µ ∈ Rd

value, each block in the collection provides a centered block sum Bi,µ ≡
∑i+b−1

j=i (Xj − µ) for

defining a BEL function

LBEL,n(µ) = sup

{
Nb∏
i=1

pi : pi ≥ 0,
Nb∑
i=1

pi = 1,
Nb∑
i=1

piBi,µ = 0d

}
(1)

and corresponding BEL ratio RBEL,n(µ) = Ln(µ)/N−Nb
b , where 0d = (0, . . . , 0)′ ∈ Rd. The

function LBEL,n(µ) assesses the plausibility of a value µ by maximizing a multinomial likelihood

from probabilities {pi}Nb
i=1 assigned to the centered block sums Bi,µ under a zero-expectation

constraint. Without the linear mean constraint in (1), the multinomial product is maximized

when each pi = 1/Nb (i.e., the empirical distribution on blocks), defining the ratio RBEL,n(µ).

Under certain mixing and moment conditions entailing weak dependence, and if the block b

grows with the sample size n but at a smaller rate (i.e., b−1 + b2/n→ 0 as n→∞), the log-EL

ratio of the standard BEL has chi-square limit

−2
b

logRBEL,n(µ0) d→ χ2
d, (2)

at the true mean parameter µ0 ∈ Rd (cf. Kitamura, 1997). Here b−1 represents an adjustment

in (2) to account for OL blocks and, for iid data, a block length b = 1 above produces the EL

distributional result of Owen (1988, 1990). To illustrate the connection between block selection
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and performance, Figure 1 shows the coverage rate of nominal 90% BEL confidence intervals

{µ ∈ R : −2/b logRBEL,n(µ0) ≤ χ2
1,0.9}, as a function of the block size b, for estimating the mean

of three different MA(2) processes based on samples of size n = 100. One observes that the

coverage accuracy of BEL varies with the block length and and that the best block size can

depend on the underlying process. The EBEL method described next is a type of generalization

of the OL BEL version, without a particular block selection.

Figure 1: Plot of coverage rates for 90% BEL intervals for the process mean EXt = µ over

various blocks b = 2, . . . , 30, based on samples of size n = 100 from three MA(2) processes

Xt = Zt + ϑ1Zt−2 + ϑ2 with iid standard normal innovations {Zt} (from 4, 000 simulations).

ϑ1 = −0.6, ϑ2 = 0.4 ϑ1 = −0.6, ϑ2 = 0.7 ϑ1 = 0.4, ϑ2 = −0.6
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2 Expansive block empirical likelihood

2.1 Mean inference

Suppose X1, . . . , Xn represents a sample from a strictly stationary process {Xt : t ∈ Z} taking

values in Rd and consider problem about inference on the process mean EXt = µ ∈ Rd.

While the BEL uses data blocks of a fixed length b for a given sample size n, the EBEL

uses overlapping data blocks {(X1), (X1, X2), . . . , (X1, . . . , Xn)} that vary in length up to the

longest block consisting of the entire time series. Hence, this block collection, which constitutes

a type of forward “scan” in the block subsampling language of McElroy and Politis (2007),

contains a data block of every possible length b for a given sample size n.

Let w : [0, 1]→ [0,∞) denote a nonnegative weighting function. To assess the likelihood of

a given value of µ, we create centered block sums Ti,µ = w(i/n)
∑i

j=1(Xj − µ), i = 1, . . . , n,
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and define a EBEL function Ln(µ) and ratio Rn(µ) as

Ln(µ) = sup

{
n∏
i=1

pi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piTi,µ = 0d

}
, Rn(µ) =

Ln(µ)
n−n

. (3)

After defining the block sums, the computation of Ln(µ) is analogous to the BEL version and

essentially the same as that described by Owen (1988, 1990) for iid data. Namely, when the

zero 0d vector lies in the interior convex hull of {Ti,µ : i = 1, . . . , n}, then Ln(µ) is the uniquely

achieved maximum at probabilities pi = 1/[n(1 +λ′n,µTi,µ)] > 0, i = 1, . . . , n, with λn,µ ∈ Rd (a

Lagrange multiplier) satisfying

n∑
i=1

Ti,µ
n(1 + λ′n,µTi,µ)

= 0d; (4)

see Owen (1990) for these and other computational details. Regarding the weight function

above in the EBEL formulation, more details are provided below and in Sections 2.2 with

several examples studied numerically in Section 3.

The next section establishes the limiting distribution of the log-EL ratio from the EBEL

method for setting confidence regions for the process mean µ parameter. However, it is helpful

to initially describe how the subsequent developments of EL differ from previous ones with iid

or weakly dependent data (cf. Kitamura, 1997). The standard arguments for developing EL

results, due to Owen (1990, p. 101), typically begin from algebraically re-writing (4) to express

the Lagrange multiplier. If we consider the real-valued case d = 1 for simplicity, this becomes

λn,µ =
∑n

i=1 Ti,µ∑n
i=1 T

2
i,µ

+
λ2
n,µ∑n

i=1 T
2
i,µ

n∑
i=1

T 3
i,µ

1 + λ′n,µTi,µ
.

In the usual independence or weak dependence cases of EL (e.g., where Bi,µ from (1) replaces

Ti,µ in the Lagrange multiplier above), the first right-side term dominates the second, which

gives a substantive form for λn,µ as a ratio of sample means and consequently drives the large

sample results (i.e., producing chi-square limits). However, in the EBEL case here, both terms

on the right side above have the same order, implying that the standard approach to developing

EL results breaks down under the EBEL blocking scheme.

The large sample results for the EBEL method require two mild assumptions stated be-

low. Let Cd[0, 1] denote the metric space of all Rd-valued continuous functions on [0, 1] with

the supremum metric ρ(g1, g2) ≡ sup0≤t≤1 ‖g1(t) − g2(t)‖, and let B(t) = (B1(t), . . . , Bd(t))′,

0 ≤ t ≤ 1, denote a Cd[0, 1]-valued random variable where B1(t), . . . , Bd(t) are iid copies of

standard Brownian motion on [0, 1].

Assumptions
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(A.1) The weight function w : [0, 1]→ [0,∞) is continuous on [0, 1] and is strictly positive on

an interval (0, c) for some c ∈ (0, 1].

(A.2) Let EXt = µ0 ∈ Rd denote the true mean of the stationary process {Xt} and suppose

d×d matrix Σ =
∑∞

j=−∞Cov(X0, Xj) is positive definite. For the empirical process Sn(t)

on t ∈ [0, 1] defined by linear interpolation of {Sn(i/n) =
∑i

j=1(Xj − µ0) : i = 0, . . . , n}
with Sn(0) = 0, it holds that Sn(·)/n1/2 d→ Σ1/2B(·) in Cd[0, 1].

Assumption (A.1) is used to guarantee that, in probability, the EBEL ratio Rn(µ0) positively

exists at the true mean, which holds for uniformly weighted blocks w(t) = 1, t ∈ [0, 1], for

example. Assumption (A.2) is a functional central limit theorem for weakly dependent data,

which holds, for example, under appropriate mixing and moment conditions on the process

{Xt} (cf. Herrndorf, 1984).

2.2 Main distributional results

To state the limit law for the log-EBEL ratio (3), we first require a result regarding a vector

B(t) = (B1(t), . . . , Bd(t))′, 0 ≤ t ≤ 1, of iid copies B1(t), . . . , Bd(t) of standard Brownian

motion on [0, 1]. Indeed, the limit distribution of −2 logRn(µ0) is a non-standard functional of

the vector of Brownian motion B(·). Theorem 1 below identifies the key elements of the limit

law and describes some of its basic structural properties.

Theorem 1 Suppose that B(t) = (B1(t), . . . , Bd(t))′, 0 ≤ t ≤ 1, is defined on a probability

space and let f(t) = w(t)B(t), 0 ≤ t ≤ 1, where w(·) satisfies Assumption (A.1). Then, with

probability 1 (w.p.1), there exists an Rd-valued random vector Yd satisfying the following:

(i) Yd is the unique minimizer of

gd(a) ≡ −
∫ 1

0
log(1 + a′f(t))dt for a ∈ Kd ≡ {y ∈ Rd : min0≤t≤1(1 + y′f(t)) ≥ 0};

the latter set is the closure of Kd ≡ {y ∈ Rd : min0≤t≤1(1 + a′f(t)) > 0}, which is open,

bounded and convex in Rd (w.p.1). On Kd, gd is also real-valued, strictly convex, and

infinitely differentiable (w.p.1).

(ii) −∞ < gd(Yd) < 0, Y ′d

∫ 1

0
f(t)dt > 0, 0 ≤

∫ 1

0

Y ′df(t)
1 + Y ′df(t)

dt <∞

(iii) If Yd ∈ Kd, then Yd is the unique solution to
∫ 1

0

f(t)
1 + a′f(t)

dt = 0d for a ∈ Kd; and if∫ 1

0

f(t)
1 + a′f(t)

dt = 0d has a solution a ∈ Kd, then this solution is uniquely Yd.
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To comment on Theorem 1, we use the subscript d in Theorem 1 to denote the dimension of ei-

ther the random vector Yd, the space Kd or the arguments of gd. The function gd is well-defined

and convex on Kd, though possibly gd(a) = +∞ for a ∈ ∂Kd = {y ∈ Rd : min0≤t≤1(1+y′f(t)) =

0} on the boundary of Kd. Importantly, the probability law of gd(Y1) is distribution-free and,

because standard Brownian motion is fast and straightforward to simulate, the distribution of

gd(Yd) can be approximately numerically. Parts (ii) and (iii) provide properties for character-

izing and identifying the minimizer Yd. For example, considering the real-valued case d = 1,

it holds that K1 = (m,M) where m = −[max0≤t≤1 f(t)]−1 < 0 < M = −[min0≤t≤1 f(t)]−1

and the derivative dg1(a)/da is strictly increasing on K1 by convexity. Because the derivative

of g1 at 0 is −
∫ 1
0 f(x)dx, parts (ii)-(iii) imply that if −

∫ 1
0 f(x)dx < 0 then either Y1 = m or

Y1 solves dg1(a)/da = 0 on m < a ≤ 0; alternatively, if −
∫ 1
0 f(x)dx > 0, then Y1 = M or Y1

solves dg1(a)/da = 0 on 0 ≤ a < M . Additionally, the scale of the weight function w(·) does

not influence the distribution of gd(Yd); that is, defining f with w or cw, for a non-zero c ∈ R,

produces the same minimized value gd(Yd).

We may now state the main result on the large-sample behavior of the EBEL log-ratio

evaluated at the true process mean EXt = µ0 ∈ Rd. Recall that, when Ln(µ0) > 0 in (3), the

EBEL log-ratio admits an expansion (4) at µ0 in terms of the Lagrange multiplier λn,µ0 ∈ Rd.

Theorem 2 Under Assumptions A.1-A.2, as n→∞,

(i) n1/2Σ1/2λn,µ0

d→ Yd,

(ii) − 1
n

logRn(µ0) d→ −gd(Yd),

recalling Σ =
∑∞

j=−∞Cov(X0, Xj), and that Yd and gd(Yd) are defined as in Theorem 1.

From Theorem 2(i), it is interesting to note that the Lagrange multiplier in the EBEL method

exhibits a faster order convergence Op(n−1/2) compared to that Op(bn−1/2) in the standard

BEL case, where b→∞ as n→∞, and its limiting distribution is also not the typical normal

one. This has a direct impact on the limit law of the EBEL ratio statistic. As Theorem 2(ii)

shows, the negative logarithm of the EBEL ratio statistic, scaled by the inverse of the sample

size, has a non-standard limit, given by the functional −gd(Yd) of the vector of Brownian motion

B(·) (cf. Theorem 1), that critically depends on the limit Yd of the scaled Lagrange multiplier.

Although non-standard, the distribution of−gd(Yd) is free of any population parameters. Hence,

quantiles of −gd(Yd), which are easy to compute numerically (cf. Section 3), can be used to

calibrate the EBEL confidence regions. In contrast to the standard BEL (2), EBEL confidence

regions do not require a choice of block size. As −gd(Yd) is a strictly positive random variable,

an approximate 100(1− α)% confidence region for µ0 can be computed as

{µ ∈ Rd : −n−1 logRn(µ0) ≤ ad,1−α},
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where ad,1−α is the lower (1 − α) percentile of −gd(Yd). When d = 1, the confidence region is

an interval; for d > 2, the region is guaranteed to be connected without voids in Rd.

We next provide an additional result, which shows the size of a EBEL confidence region will

be no larger than Op(n−1/2) in diameter around the true mean EXt = µ0. Let

Gn ≡ {µ ∈ Rd : Rn(µ) ≥ Rn(µ0) > 0} (5)

be the collection of mean parameter values which are at least as likely as µ0, and therefore

elements of a EBEL confidence region whenever the true mean is.

Corollary 1 Under the assumptions of Theorem 2, Zn = Op(n−1/2) holds, where Zn ≡ sup{‖µ−
µ0‖ : µ ∈ Gn} for Gn in (5).

We note that Theorem 2 remains valid for potentially negative-valued weight functions w(·)
as well (i.e., assuming w is continuous, real-valued, and that either w or −w is strictly positive

on some (0, c] ⊂ [0, 1] in place of A.1). Simulations have shown that, with weight functions

oscillating between positive and negative values on [0, 1] (e.g., w(t) = sin(2πt)), EBEL intervals

for the process mean perform consistently well in terms of coverage accuracy. However, with

weight functions w(·) that vary in sign, a result as in Corollary 1 fails to hold. For this reason,

the weight functions w(·) considered are non-negative as stated in Assumption A.1.

2.3 Smooth function model parameters

We next consider extending the EBEL method for inference on a broad class of parameters under

the so-called “smooth function model” of Bhattacharya and Ghosh (1978) and Hall (1992). For

independent and time series data, respectively, Hall and La Scala (1990) and Kitamura (1997)

have considered EL inference for similar parameters; see also Owen (1990, sec. 4).

If EXt = µ0 ∈ Rd again denotes the true mean of the process, the target parameter of

interest is given by

θ0 = H(µ0) ∈ Rp, (6)

based on a smooth function H(µ) = (H1(µ), . . . ,Hp(µ))′ of the mean parameter µ, where

Hi : Rd → R for i = 1, . . . , p and p ≤ d. This framework allows a large variety of parameters to

be considered such as sums, differences, products and ratios of means, which can be used, for

example, to formulate parameters such as covariances and autocorrelations as functions of the

m-dimensional moment structure (for a fixed m) of a time series. For a univariate stationary

series U1, . . . , Un, for instance, one can define a multivariate series Xt based on transformations

of (Ut, . . . , Ut+m−1) and estimate parameters for the process {Ut} based on appropriate functions

H of the mean of Xt. The correlations θ0 = H(µ0) of {Ut} at lags m and m1 < m, for example,
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can be formulated in (6) by H(x1, x2, x3, x4) = (x3 − x2
1, x4 − x2

1)′/[x2 − x2
1] and EXt = µ0 for

Xt = (Ut, U2
t , UtUt+m1 , UtUt+m)′ ∈ R4. Künsch (1989) and Lahiri (2003, Ch. 4) provide further

examples of smooth function parameters.

For inference on the parameter θ = H(µ), the EBEL ratio is defined as

Rn(θ) = sup

{
n∏
i=1

pi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piTi,µ = 0d, µ ∈ Rd, H(µ) = θ

}
,

and its limit distribution is provided next.

Theorem 3 In addition to the assumptions of Theorem 2, suppose H from (6) is contin-

uously differentiable in a neighborhood of µ0 and that ∇µ0 has rank p ≤ d, where ∇µ ≡
[∂Hi(µ)/∂µj ]i=1,...,p;j=1,...,d denotes the p×d matrix of first-order partial derivatives of H. Then,

at the true parameter θ0 = H(µ0), as n→∞

− 1
n

logRn(θ0) d→ −gp(Yp)

with Yp and gp(Yp) as defined in Theorem 1.

Theorem 3 shows that the log-EBEL ratio statistic for the parameter θ0 = H(µ0) ∈ Rp under

the smooth function model continues to have a limit of the same form as that in the case of the

EBEL for the mean parameter µ0 ∈ Rd itself. The main difference is that the functional gp(Yp)

is now defined in terms of a p-dimensional Brownian motion as in Theorem 1, but with p ≤ d,

where p denotes the dimension of the parameter θ0. It is interesting to note that, similarly to

the traditional profile likelihood theory in a parametric set-up with iid observations, the limit

law here does not depend on the function H as long as the matrix ∇µ0 of the first order partial

derivatives of H at µ = µ0 has full rank p. Due to the non-standard blocking, the proof of this

EBEL result again requires a different development compared to standard BEL (cf. Kitamura,

1997), which follows similarly to the iid EL case (cf. Owen, 1990, sec. 4; Hall & La Scala, 1990).

3 Numerical studies

Here we summarize the results of a simulation study to investigate the performance of the EBEL

method, considering the coverage accuracy of confidence intervals (CIs) for the process mean.

We considered several real-valued ARMA(1,2) processes Xt = φXt+εt+θ1εt−1 +θ2εt−2 defined

with respect to an underlying iid innovation series {εt}; Table 1 lists the parameter combinations

considered, denoted as Models 1, . . . , 9, 0, which allow a variety of dependence structures with

ranges of weak and strong dependence. We also considered several AR(1) processes Xt =

φXt + Yt defined by a (stationary) first-order threshold moving average innovations Yt = εt +
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Table 1: Parameters for ARMA(1,2) processes are denoted as Models 1, . . . , 9, 0. Parameters

in AR(1) processes ,defined by threshold moving average innovations, are denoted as Models

a, . . . , h.

Parameters Process Models

1 & a 2 & b 3 & c 4 & d 5 & e 6 & f 7 & g 8 & h 9 0

φ -0.3 -0.3 0.0 0.0 0.0 0.6 0.9 0.6 0.9 0.6

θ1 0.1 0.7 -0.6 0.4 0.7 0.7 -0.6 -0.3 0.0 0.0

θ2 0.7 1.0 0.4 -0.6 1.0 0.4 -0.3 0.7 0.0 0.0

[θ1 + θ2I(Yt−1 ≤ 4)]εt−1 with respect to an iid innovation series {εt} (cf. Tong, 1978); Table 1

again lists parameters for defining these processes, denoted as Models a, . . . , h.

For each process (and depending on an innovation {εt} type), we generated 2000 samples

of size n = 250, 500, 1000 for comparing the coverage accuracy of 90% CIs from various EL

procedures. For the EBEL method, we present results for 11 different weighting functions w(·)
listed in Table 2, some of which are based on the following forms, for c ∈ (0, 1],

wlinear.to.flat,c = (t/c)I(t ≤ c) + I(t > c)

wtrap,c(t) = t/cI(t ≤ c) + I(c ≤ t ≤ 1− c) + (1− t)/cI(1− c ≤ t ≤ 1)

wquad.to.flat,c = (t/c)2I(t ≤ c) + I(t > c)

wstep,c = 0.01t/cI(t ≤ c) + [99(t− c) + 0.01]I(c < t ≤ c+ 0.01) + I(t > c+ 0.01).

The weighting functions in Table 2 differ in their initial curvature on [0, 1] and at the point which

these potentially “top off” at value of 1. The “step function” wstep,c is continuous, but essentially

equals zero initially with a large jump to 1 near c. Functions 5 and 6 in Table 2 down-weight

at both ends of the interval [0, 1] in a symmetrical fashion. We had also tried wlinear.to.flat,c

for c = 0.5, 0.75, 1, wquad.to.flat,c for c = 0.25, 0.5, wstep,c(t) for c = 0.3, 0.5, 0.7, and wtrap,.4(t),

but, within each group, the results were quantitatively similar to weight functions in Table 2.

Additionally, for each weight function w, the limiting distribution of the EBEL ratio −g1(Y1)

under Theorem 2 was approximated by 50000 simulations in order to determine the 90th (or

95th) percentile for calibrating intervals. Table 2 lists these approximated percentiles along

with Monte Carlo error bounds.

For comparison, we also include coverage results for the standard BEL method, with OL

blocks (BEL) or non-overlapping blocks (NBEL), as well as a tapered BEL (TBEL) method.

The NBEL uses a subset of the data blocks from the BEL method (cf. Kitamura, 1997), and the

TBEL resembles BEL but uses a trapezoidal taper wtrap,0.43 to down-weight observations at the

10



Table 2: Weight functions used the simulation study for the EBEL method along with ap-

proximated 90th and 95th lower percentiles of the limit law −g1(Y1) of the log-EBEL ratio

(Theorem 2), based on 50000 simulations. To indicate Monte Carlo error, the approximated

percentile ± the parenthetical quantity gives a 95% CI for the true percentile of −g1(Y1).

Weight function w(t), t ∈ [0, 1] 90th percentile 95th percentile

1 w(t) = 1 2.51 (0.03) 3.28 (0.04)

2 wlinear.to.flat,0.9(t) 5.64 (0.09) 7.77 (0.14)

3 wlinear.to.flat,0.25(t) 5.04 (0.08) 7.17 (0.13)

4 w(t) = (1− cos(2πt))/2I(t ≤ 0.5) + I(t > 0.5) 7.59 (0.13) 11.06 (0.19)

5 w(t) = (1− cos(2πt))/2 7.00 (0.15) 10.47 (0.19)

6 wtrap,0.5(t) 5.06 (0.09) 7.19 (0.11)

7 w(t) = t2 8.56 (0.15) 12.20 (0.20)

8 wquad.to.flat,0.75(t) 8.47 (0.15) 12.05 (0.22)

9 wquad.to.flat,0.9(t) 8.75 (0.15) 12.38 (0.19)

10 wstep,0.1(t) 8.32 (0.09) 10.51 (0.14)

11 wstep,0.9 6.24 (0.09) 8.44 (0.14)

ends of each block (Xi·wtrap,0.43[(1−0.5)/b], . . . , Xi+b−1·wtrap,0.43[(b−0.5)/b]), i = 1, . . . , n−b+1,

of length b; see Nordman (2009) for details. (Note that EBEL weights data blocks of varying

length, not observations within each data block as in the TBEL method.) For each of these

BEL methods, we considered block choices b = Cn1/3, C = 0.5, 1, 2, with a block order n1/3

based on its consideration by Kitamura (1997, p. 2093) and scaling C around 1 borrowed from

implementations in the block bootstrap literature (cf. Lahiri, 2003, ch. 5).

Figure 2 shows the coverage accuracy of 90% EL CIs for the mean of the threshold-based

Models a-h, with either standard normal N(0, 1) or centered χ2
1 innovations {εt}. Figure 3

shows the same for Models 0-9 with centered Bernoulli (Ber(0.5)) or Pareto innovations {εt},
the latter having probability density function 2.1x−3.1, x > 1. These figures suggest that the

EBEL method generally performs as well as a BEL procedure using a good block choice, and

much better when the latter employ a bad block choice. Additionally, the EBEL method tends

to be less sensitive to the underlying dependence in its performance (e.g., the strong positive

dependence Model 9 in Figure 3 where standard BEL methods can exhibit extreme under-

coverage, or the negative dependence Model 4 where over-coverage occurs). Also, the coverage

results in the EBEL method are fairly similar across quite different weighting functions w(·);
that is, the method is largely insensitive to the weight function, with the one exception being

11



that constant weighting w(t) = 1 tended to perform generally worse. To give an idea of the

coverage rates of 95% intervals for the process mean, Figure 4 contrasts coverages of 90% and

95% CIs for Models 1, . . . , 9, 0 with χ2
1 innovations. The pattern of coverages is qualitatively

similar for both nominal coverage levels.

4 Conclusions

The proposed expansive block empirical likelihood (EBEL) is a type of variation on standard

blockwise empirical likelihood (BEL) for time series which, instead of using a fixed block length

b for a given sample size n, involves a non-standard blocking scheme to capture the dependence

structure. As the coverage accuracy of standard BEL methods depends intricately on the block

choice b (where the best b can vary with the underlying process), the EBEL has an advantage in

eliminating block selection. As mentioned in the Introduction, we also anticipate that the EBEL

method will generally have better rates of coverage accuracy compared to other existing versions

of BEL, such as the overlapping tapered and non-tapered versions of BEL. The simulations of

Section 3 lend support to this notion, along with suggesting that the EBEL can be less sensitive

to the strength of the underlying time dependence. While asymptotic coverage rates for BEL

methods remain to be determined, we may offer the following heuristic based on analogs drawn

to so-called “fixed-b asymptotic” (cf. Keifer, Vogelsang and Bunzel, 2000; Bunzel, Kiefer and

Vogelsang, 2001; Kiefer and Vogelsang, 2002), or related “self-normalization” (cf. Lobato, 2001;

Shao, 2011) schemes.

In asymptotic expansions of log-likelihood statistics from standard BEL formulations, the

data blocks serve to provide a type of subsampling variance estimator (cf. Carlstein, 1986;

Politis and Romano, 1993) for purposes of normalizing scale and obtaining chi-square limits for

log-BEL ratio statistics. Such variance estimators are consistent, requiring block sizes b which

grow at a smaller rate than the sample size n (i.e., b−1 + b/n→∞ as n→∞), and are known

to have equivalences to variance estimators formulated as lag window estimates involving kernel

functions and bandwidths b with similar behavior to block lengths b−1 + b/n→∞ (cf. Künsch,

1989; Politis, 2003). That is, standard BEL intervals have parallels with normal theory intervals

based on normalization with consistent lag window estimates. However, considering interval

inference with sample means for example, there is some numerical and theoretical evidence

(cf. Bunzel et al 2001; Sun, Philips and Jin, 2008) that normalizing scale with inconsistent lag

window estimates having fixed bandwidth ratios (e.g., b/n = C for some C ∈ (0, 1]) results in

better coverage accuracy compared to normalization with consistent ones, though the former

case requires calibrating intervals with non-normal limit laws. Shao (2011, sec 2.1) provides

a nice summary of these points as well as the form of some of these distribution-free limit
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laws, which typically involve ratios of random variables defined by Brownian motion (cf. Kiefer

and Vogelsang, 2002). While the EBEL method is not immediately analogous to normalizing

with inconsistent variance estimators (as mentioned in Section 2.1, the usual EL expansions do

not hold for EBEL), there are parallels in that the EBEL method does not use block lengths

satisfying standard bandwidth conditions and confidence region calibration involves non-normal

limits based on Brownian motion. This heuristic in the mean case suggests that better coverage

rates associated with fixed-b asymptotics over standard normal theory asymptotics may be

anticipated to carry over to comparisons of EBEL to standard BEL formulations.

5 Proofs of main results

To establish Theorem 1, we first require a lemma regarding a standard Brownian motion. For

concreteness, suppose B(t) ≡ B(ω, t) = (B1(ω, t), . . . , Bd(ω, t))′, ω ∈ Ω, t ∈ [0, 1] is a random

Cd[0, 1]-valued element defined on some probability space (Ω,F , P ), where B1, . . . , Bd are again

distributed as iid copies of standard Brownian motion on [0, 1]. In the following, we use the

basic fact that each Bi(·) is continuous on [0, 1] with probability 1 (w.p.1) along with the fact

that increments of standard Brownian motion are independent (cf. Freedman, 1983).

Lemma 1 With probability 1, it holds that

(i) min
0≤t<ε

a′B(t) < 0 < max
0≤t<ε

a′B(t) for all ε > 0 and a ∈ Rd, ‖a‖ = 1.

(ii) 0d is in the interior of the convex hull of B(t), 0 ≤ t ≤ 1.

(iii) There exists a positive random variable M such that, for all a ∈ Rd, it holds that

min
0≤t≤1

a′B(t) ≤ −M‖a‖ and M‖a‖ ≤ max
0≤t≤1

a′B(t).

(iv) If Assumption A.1 holds in addition, (i), (ii), (iii) above hold upon replacing B(t) with

f(t) = w(t)B(t), t ∈ [0, 1].

Proof of Lemma 1. For real-valued Brownian motion, it is known that min
0≤t<ε

Bi(t) < 0 < max
0≤t<ε

Bi(t)

holds for all ε > 0 w.p.1. (cf. Freedman, 1983, Lemma 55); we modify the proof of this. Let

{tn} ⊂ (0, 1) be a decreasing sequence where tn ↓ 0 as n→∞. Pick and fix c1, . . . , cd ∈ {−1, 1}
and define the event An ≡ An,c1,...,cd = {ω ∈ Ω : ciBi(ω, tn) > 0, i = 1, . . . , d}. Then,

P (An) = 2−d for all n ≥ 1 by normality and independence. As the events Bn =
⋃∞
k=nAk,

n ≥ 1, are decreasing, it holds that

P

( ∞⋂
n=1

Bn

)
= lim

n→∞
P (Bn) ≥ lim

n→∞
P (An) = 2−d.
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Since
⋂∞
n=1Bn is a tail event generated by the independent random variablesBi(t1)−Bi(t2), Bi(t2)−

Bi(t3), . . . for i = 1, . . . , d, (i.e., increments of Brownian motion are independent and Bi(0) = 0),

it follows from Kolmogorov’s 0-1 law that 1 = P (
⋂∞
n=1Bn) = P (An infinitely often (i.o.)).

Hence, P (An,c1,...,cd i.o. for any ci ∈ {1,−1}, i = 1, . . . , d) = 1 must hold, which implies part (i).

For part (ii), if 0d is not in the interior convex hull of B(t), t ∈ [0, 1], then the support-

ing/separating hyperplane theorem would imply that, for some a ∈ Rd, ‖a‖ = 1, it holds that

a′B(t) ≥ 0 for all t ∈ [0, 1], which contradicts part (i).

To show part (iii), we use the events developed in part (i) and define nc1,...,cd = min{n :

An,c1,...,cd holds}. Define M = min{|Bi(tnc1,...,cd
)| : c1, . . . , cd ∈ {−1, 1}, i = 1, . . . , d} > 0.

For a = (a1, . . . , ad)′ ∈ Rd, let cai = max{−sign(ai), 1}, i = 1, . . . , d. Then, a′B(tnca
1 ,...,ca

d
) =

−
∑d

i=1 |aiBi(tnca
1 ,...,ca

d
)| ≤ −M‖a‖, and likewise a′B(tn−ca

1 ,...,−ca
d
) =

∑d
i=1 |aiBi(tn−ca

1 ,...,−ca
d
)| ≥

M‖a‖. This establishes (iii).

Part (iv) follows from the fact that w(t) > 0 for t ∈ (0, c) and we may make take the positive

sequence {tn} ⊂ (0, c) in the proof of part (i). Then, the results for B(t) imply the same hold

upon substituting f(t) = w(t)B(t), t ∈ [0, 1]. �

Proof of Theorem 1. The set Kd = {a ∈ Rd : min0≤t≤1(1 + a′f(t)) > 0} is open, bounded

and convex (w.p.1), where boundedness follows from Lemma 1(iii,iv). Likewise, the closure

Kd = {a ∈ Rd : min0≤t≤1(1+a′f(t)) ≥ 0} is convex and bounded. Since min0≤t≤1(1+a′f(t)) is

a continuous function in a ∈ Rd, one may apply the Dominated Convergence Theorem (DCT)

(with the fact that min0≤t≤1(1 + a′f(t)) is bounded away from 0 on closed balls inside Kd

around a) to show that partial derivatives of gd(·) at a ∈ Kd (of all orders) exist, with first and

second partial derivatives given by

∂gd(a)
∂a

= −
∫ 1

0

f(t)
1 + a′f(t)

dt,
∂2gd(a)
∂a∂a′

=
∫ 1

0

f(t)f(t)′

[1 + a′f(t)]2
dt.

Because
∫ 1
0 f(t)f(t)′dt is positive definite by Lemma 1(i,iv) and the continuity of f , the matrix

∂2gd(a)/∂a∂a′ is also positive definitive for all a ∈ Kd, implying gd is strictly convex on Kd.

By Jensen’s inequality, it also holds that gd is convex on Kd.

Note for a ∈ Kd, gd(a) ≥ −
∫ 1
0 log(1 + supa∈Kd

‖a‖ · sup0≤t≤1 ‖f(t)‖) > −∞ holds, so that

I ≡ infa∈Kd
gd(a) exists. Additionally, 0d ∈ Kd with gd(0d) = 0 and ∂gd(0d)/∂a = −

∫ 1
0 f(t)dt,

where the components of
∫ 1
0 f(t)dt are all non-zero (w.p.1) by normality and independence; by

the continuity of partial derivatives on the open set Kd, there then exists ā ∈ Kd such that

ā′
∫ t
0 f(t)dt > 0 holds with the components of −

∫ 1
0 f(t) and ∂gd(ā)/∂a having the same sign.

By strict convexity, gd(0d) − gd(ā) > [∂gd(ā)/∂a]′(0d − ā) > 0 follows, implying I < 0 and

I = infa∈K̃d
gd(a) for the level set K̃d ≡ {a ∈ Kd : gd(a) ≤ 0}.
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Then, there exists a sequence an ∈ K̃d such that gd(an) < I + n−1 for n ≥ 1. Since {an}
is bounded, we may extract a subsequence such that ank

→ Yd ∈ K̃d, for some Yd ∈ K̃d. Pick

δ ∈ (0, 1). Then, by the DCT,

limgd(ank
) ≥ lim

∫
{t:a′nk

f(t)>−1+δ}
− log(1 + a′nk

f(t))dt

=
∫
{t:Y ′df(t)>−1+δ}

− log(1 + Y ′df(t))dt

= gd(Yd) +
∫
{t:Y ′df(t)≤−1+δ}

log(1 + Y ′df(t))dt.

Note that because gd(Yd) ∈ (−∞, 0], it follows that −
∫
{t:Y ′df(t)<0} log(1 + Y ′df(t))dt < ∞ and

{t ∈ [0, 1] : Y ′df(t) = −1} has Lebesgue measure zero. Hence, the DCT yields

lim
δ→0
−
∫
{t:Y ′df(t)≤−1+δ}

log(1 + Y ′df(t))dt = 0.

Consequently,

I ≥ lim gd(ank
) ≥ limgd(ank

) ≥ gd(Yd) ≥ I,

establishing the existence of a minimizer Yd of gd on Kd such that −∞ < I = gd(Yd) < 0.

For part (ii) of Theorem 1, note yn = (1−n−1)Yd+n−10d ∈ Kd, n ≥ 1, by convex geometry,

as Kd is the convex interior of Kd. Then, gd(yn) ≤ (1 − n−1)gd(Yd) holds by convexity of gd
and gd(0d) = 0, implying 0 ≤ n[gd(yn) − gd(Yd)] ≤ −gd(Yd) < ∞, from which it follows that

gd(yn)→ gd(Yd) and, by the mean value theorem,

0 ≤ n[gd(yn)− gd(Yd)] =
∫ 1

0

Y ′df(t)
1 + cnY ′df(t)

dt ≤ −gd(Yd)

holds for some (1 − n−1) < cn < 1 (note cnYd ∈ Kd so min0≤t≤1(1 + cnY
′
df(t)) > 0 for all n);

the latter implies 0 ≤
∫
{t:Y ′df(t)<0}−Y

′
df(t)/[1 + cnY

′
df(t)]dt ≤

∫
{t:Y ′df(t)>0} Y

′
df(t) < ∞ so that

Fatou’s lemma yields

0 ≤
∫
{t:Y ′df(t)<0}

−
Y ′df(t)

1 + Y ′df(t)
dt <∞

as n→∞, and consequently
∫ 1
0 1/[1 + Y ′df(t)]dt <∞. We may then apply the DCT to find

lim
n→∞

∫ 1

0

Y ′df(t)
1 + cnY ′df(t)

dt =
∫ 1

0

Y ′df(t)
1 + Y ′df(t)

dt ∈ [0,∞).

Also by convexity and 0d ∈ Kd, 0 > gd(Yd)− gd(0d) > [∂gd(0d)/∂a]′(Yd− 0d) holds (w.p.1), im-

plying Y ′d
∫ 1
0 f(t)dt > 0 from ∂gd(0d)/∂a = −

∫ 1
0 f(t)dt. This establishes part (ii) of Theorem 1.

To show uniqueness of the minimizer, we shall construct sequences with the same properties

in the proof of part (ii) above. Suppose x ∈ K̃d such that gd(x) = I = gd(Yd). Defining
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xn = (1 − n−1)x + n−10d ∈ Kd and yn = (1 − n−1)Yd + n−10d ∈ Kd for n ≥ 1, by convexity

we have 0 ≥ gd(x)− gd(yn) > [∂gd(yn)/∂a]′(x− yn), so that taking limits yields 0 ≥ −
∫ 1
0 (x−

Yd)′f(t)/[1 +Y ′df(t)]dt, and, by symmetry, 0 ≥ −
∫ 1
0 (Yd−x)′f(t)/[1 +x′f(t)]dt as well. Adding

these terms gives

0 ≥
∫ 1

0

[(x− Yd)′f(t)]2

(1 + x′f(t))(1 + Y ′df(t))
dt,

implying that x = Yd by Lemma 1(iv) and the continuity of f .

Finally, to establish part (iii), if Yd ∈ Kd, then 0d = ∂gd(Yd)/∂a = −
∫ 1
0 f(t)/[1 + Y ′df(t)]dt

must hold. If there exists another b ∈ Kd satisfying
∫ 1
0 f(t)/[1 + b′f(t)]dt = 0d, then adding

∂gd(Yd)/∂a to this integral and multiplying by (Yd − b)′ yields 0 =
∫ 1
0 [(b − Yd)′f(t)]2/[(1 +

b′f(t))(1 + Y ′df(t))]dt, implying that b = Yd. Also, if 0d =
∫ 1
0 f(t)/[1 + b′f(t)]dt = −∂gd(b)/∂a

holds for some b ∈ Kd, then strict convexity implies gd(a)− gd(b) > [∂gd(b)/∂a]′(a− b) = 0 for

all a ∈ Kd, implying b = Yd is the unique minimizer of gd. �

Proof of Theorem 2. Under Assumption A.2, we use Skorohod’s embedding theorem (cf. The-

orem 1.1.04, van der Vaart and Wellner, 1996) to embed {Sn(·)} and {B(·)} in a larger prob-

ability space (Ω,F , P ) such that sup0≤t≤1 ‖Σ−1/2Sn(t)/n1/2 − B(t)‖ → 0 w.p.1(P ). Defining

Tn(t) = w(t)Sn(t) and f(t) = w(t)B(t), t ∈ [0, 1], the continuity of w under Assumption A.1

then implies

sup
0≤t≤1

∥∥∥∥∥Σ−1/2Tn(t)
n1/2

− f(t)

∥∥∥∥∥→ 0 w.p.1. (7)

Note that Ti,µ0 = w(i/n)
∑i

j=1(Xj − µ0) = Tn(i/n), i = 1, . . . , n. By (7) and Lemma 1, 0d is

in the interior convex hull of {Ti,µ0 : i = 1, . . . , n} eventually (w.p.1) so that Ln(µ0) > 0 even-

tually (w.p.1.). (That is, by Lemma 1(iv), there exists A ∈ F with P (A) = 1 and, for ω ∈ A,

min0≤t≤ a
′f(ω, t) ≤ −M(ω) and max0≤t≤ a

′f(ω, t) ≥M(ω) hold for some M(ω) > 0 and all a ∈
Rd, ‖a‖ = 1. Then, (7) implies min1≤i≤n a

′Σ−1/2Tn(ω, i/n) < 0 < a′max1≤i≤n Σ−1/2Tn(ω, i/n)

holds for all a ∈ Rd, ‖a‖ = 1 eventually, implying 0d is in the interior convex hull of {Σ−1/2Tn(i/n) :

i = 1, . . . , n}.) Hence, eventually (w.p.1), as in (4), we can write

1
n
Rn(µ0) = − 1

n

n∑
i=1

log(1 + λ′n,µ0
Ti,µ0) =

1
n

n∑
i=1

log(1 + `′nTi,n)

where Ti,n ≡ Σ−1/2Tn(i/n)/n1/2, i = 1, . . . , n and `n = n1/2Σ1/2λn,µ0 and

min
i=1,...,n

(1 + `′nTi,n) > 0,
n∑
i=1

1
n(1 + `′nTi,n)

= 1,
n∑
i=1

Ti,n
n(1 + `′nTi,n)

= 0d. (8)

From here, all considered convergence will be pointwise along some fixed ω ∈ A where

P (A) = 1, and we suppress the dependence of terms f , Tn, etc. on ω. Then, (8) [i.e.,
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mini=0,ldots,n `
′
n(Σ−1/2Tn(i/n)/n1/2) > −1] with (7) and Lemma 1(iv) implies that ‖`n‖ is

bounded eventually. For any subsequence {nj} of {n}, we may extract a further subsequence

{nk} ⊂ {nj} such that `nk
→ b for some b ∈ Kd. For simplicity, write nk ≡ k in the following.

We will show below that k−1 logRk(µ0)→ gd(Yd) and that `k → Yd, where Yd ∈ Kd denotes the

minimizer of gd(a) = −
∫ 1
0 log(1 + a′f(t))dt, a ∈ Kd under Theorem 1. Since the subsequence

{nj} is arbitrary, we then have n−1 logRn(µ0) → gd(Yd) and `n → Yd w.p.1, implying the

distributional convergence in Theorem 2.

Define Yε = (1 − ε)Yd + ε0d ∈ Kd (since 0d ∈ Kd, the interior of Kd) for ε ∈ (0, 1).

From Yε ∈ Kd, min0≤t≤1(1 + Y ′ε f(t)) > δ holds for some δ > 0 (dependent on ε) so that

min1≤i≤k(1 + Y ′εTi,k) > δ holds eventually by (7). Then, because

gd,k(a) ≡ −1
k

k∑
i=1

log(1 + a′Ti,k)

is strictly convex on a ∈ {y ∈ Rd : min1≤i≤k(1 + y′Ti,n) > 0} with a unique minimizer at `k by

(8) (i.e., ∂gd,k(`k)/∂a = 0d holds and strict convexity follows when k−1
∑k

i=1 Ti,kT
′
i,k is positive

definite, which holds eventually from k−1
∑k

i=1 Ti,kT
′
i,k →

∫ 1
0 f(t)f(t)′dt by (7) and the DCT,

with the latter matrix being positive definite w.p.1 by Lemma 1(iv) and continuity of f), we

have that

gd,k(Yε) ≥ gd,k(`k) =
1
k

logRk(µ0).

Define ḡd,k(a) ≡ −k−1
∑k

i=1 log(1 + a′f(i/k)), a ∈ Kd. Then, by Taylor expansion (recalling

min0≤t≤1(1 + Y ′ε f(t)) > δ, min1≤i≤k(1 + Y ′εTi,k) > δ),

|gd,k(Yε)− ḡd,k(Yε)| ≤
1
k

k∑
i=1

|Y ′ε (Ti,k − f(i/k))|
(

1
1 + Y ′εTi,k

+
1

1 + Y ′ε f(i/k)

)
≤ ‖Yd‖2δ−1 max

1≤i≤k
‖Ti,k − f(i/k)‖ → 0

from (7) and Theorem 1. Also, by the DCT, ḡd,k(Yε) → gd(Yε) as k → ∞. Hence, gd(Yε) ≥
lim gd,k(`k) holds and, since gd(Yε) ≤ (1−ε)gd(Yd) by convexity and gd(0d) = 0, we have, letting

ε→ 0, that

gd(Yd) ≥ lim gd,k(`k). (9)

Recalling `k → b ∈ Kd, define bε = (1 − ε)b + ε0d ∈ Kd, so that min0≤t≤1(1 + b′εf(t)) > 0.

Then, ḡd,k(bε)→ gd(bε) by (7) and the DCT. And, by Taylor expansion and using (8),

lim |gd,k(`k)− ḡd,k(bε)| ≤ lim max
1≤i≤k

|`′kTi,k − b′εf(i/k)|

(
1 +

1
k

k∑
i=1

1
1 + b′εf(i/k)

)

≤ ε sup
0≤t≤1

|b′f(t)|
(

1 +
∫ 1

0

1
1 + b′εf(t)

dt

)
≡ C(ε),
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following from (7) and the DCT. Hence, we have

limgd,k(`k) ≥ gd(bε)− C(ε). (10)

We will show below that ∫ 1

0

1
1 + b′f(t)

dt <∞ (11)

holds. In which case, limε→0

∫ 1
0 [1 + b′εf(t)]−1dt =

∫ 1
0 [1 + b′f(t)]−1dt < ∞ by the DCT and so

that C(ε)→ 0 as ε→ 0 (noting sup0≤t≤1 |b′f(t)| <∞ since f is continuous and Kd is bounded

by Theorem 1). By Fatou’s lemma and the DCT, limε→0gd(bε) ≥ gd(b) holds also. Hence, by

(9)-(10), we then have

gd(Yd) ≥ lim gd,k(`k) ≥ limgd,k(`k) ≥ gd(b) ≥ gd(Yd),

implying b = Yd by the uniqueness of the minimizer and limk→∞ k
−1 logRk(µ0) = gd(Yd).

To finally show (11), let A = {t ∈ [0, 1] : 1 + b′f(t) ≤ d} for some 0 < d ≤ 1/2 chosen

so that {t ∈ [0, 1] : 1 + b′f(t) = d} has Lebesgue measure zero (since f is continuous). Let

Ac = [0, 1] \A. Using the indicator function I(·), define a simple function

hk(t) ≡
k∑
i=1

`′kTi,k
1 + `′kTi,k

I
(
t ∈

(
i− 1
k

,
i

k

])
, t ∈ [0, 1].

From (8), note that ∫
A
hk(t)dt+

∫
Ac

hk(t)dt =
1
k

k∑
i=1

`′kTi,k
1 + `′kTi,k

= 0d.

From (7), I(t ∈ Ac)hk(t) → I(t ∈ Ac)b′f(t)/(1 + b′f(t)) (almost everywhere (a.e.) Lebesgue

measure) and for large k, I(t ∈ Ac)|hk(t)| ≤ 2C/d holds for t ∈ [0, 1], since eventually

max1≤i≤k |`′kTi,k| is bounded by a constant C > 0 and also 1 + b′f(t) + (`′kTi,k − b′f(t)) > d/2

for t ∈ Ac, (i−1)/k < t ≤ i/k. Then, by the DCT,
∫
Ac hk(t)dt→

∫
Ac b

′f(t)/(1+ b′f(t))dt. And

for δ ∈ (0, 1), note

−I(t ∈ A)hk(t) ≥ h1,k(t) ≡
k∑
i=1

−`′kTi,k
1 + `′kTi,k + δI(sign(`′kTi,k) < 0)

I
(
t ∈

(
i− 1
k

,
i

k

]
∩A

)
Since |h1,k(t)| ≤ C/δ and h1,k(t) → −I(t ∈ A)b′f(t)/(1 + b′f(t) + δ) (a.e. Lebesgue measure),

by the DCT

0 ≤
∫
A

−b′f(t)
1 + b′f(t) + δ

dt = lim
k→∞

∫
A
h1,k(t)dt ≤ lim

k→∞

∫
A
−hk(t)dt =

∫
Ac

b′f(t)
1 + b′f(t)

dt

using
∫
A−hk(t)dt =

∫
Ac hk(t)dt. Letting δ → 0, Fatou’s lemma gives

0 ≤
∫
A

−b′f(t)
1 + b′f(t)

dt ≤
∫
Ac

b′f(t)
1 + b′f(t)

dt <∞.
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Because −b′f(t) ≥ 1/2 on A,
∫
A[1 + b′f(t)]−1dt <∞ holds, implying (11). �

Proof of Corollary 1. As in the proof of Theorem 2, we embed {Sn(·)} and {B(·)} in a

larger probability space (Ω,F , P ) such that (7) holds, recalling f(t) = w(t)B(t), t ∈ [0, 1]. For

simplicity and without loss of generality, we suppose that Σ = Id×d (the identity matrix) and

that w(t) ∈ [0, 1] in the following. For δ > 0, there exists L ≡ L(δ) > 1 and ε ≡ ε(δ) ∈ (0, 1)

such that

P

(
max
0≤t≤1

‖B(t)‖ > L

)
< δ, P (‖Yd‖ > L) < δ, P

(
max
0≤t≤ε

‖B(t)‖ > 1
2 max0≤t≤1w(t)

)
< δ,

with tightness following from Theorem 1 and the probability properties of the maximum of stan-

dard Brownian motion (cf. Athreya and Lahiri, 2006, ch. 15.2). Let A ∈ F be the event that (7)

holds along with max0≤t≤1 ‖B(t)‖ ≤ L, ‖Yd‖ ≤ L, and max0≤t≤ε ‖B(t)‖ ≤ 1/[2 max0≤t≤1w(t)].

We will show that there exists a fixed M > 0 (to be specified later but depending on δ) such

that limZn(ω)n1/2 ≤M holds for any ω ∈ A. In which case,

lim
n→∞

sup
m≥n

P (Zmm1/2 > M) ≤ P (Ac) + lim
n→∞

P

(
A ∩

∞⋃
m=n

{ω : Zm(ω)m1/2 > M}

)

= P (Ac) + P

(
A ∩

∞⋂
n=1

∞⋃
m=n

{ω : Zm(ω)m1/2 > M}

)
≤ 3δ + P (A, limZnn

1/2 > M) = 3δ.

Since δ can be made arbitrarily small and M can be chosen depending on δ, Znn1/2 is tight,

establishing Corollary 1.

Fix ω ∈ A and we will suppress the dependence of random variables on ω. Suppose

limZnn
1/2 > M . Then, there exists a subsequence {nj} and µnj ∈ Gnj such that ‖µnj −

µ0‖ > n
−1/2
j M . Since Gnj is connected without voids and µ0 ∈ Gnj (note Ln(µ0) > 0

eventually as in the proof of Theorem 2 by (7)), there exists bnj ∈ Rd, ‖bnj‖ = 1 such

that vnj = n
−1/2
j Mbnj + µ0 ∈ Gnj . We may exact a further subsequence {nk} such that

bnk
→ b ∈ Rd, ‖b‖ = 1. In the following, denote nk ≡ k for simplicity. For µ ∈ Rd, let

Tk,µ(0) = 0 and Tk,µ(i/k) ≡ Ti,µ = w(i/k)
∑i

j=1(Xj − µ), i = 1, . . . , k, and define the pro-

cess Tk,µ(t), t ∈ [0, 1] by linear interpolation of {Tk,µ(i/k) : i = 0, . . . , k}. Note, in (7), that

Tk(i/k) = Ti,µ0 = Ti,µ + iw(i/k)(µ − µ0). Hence, by (7), sup0≤t≤1 ‖Tk,vk
/k1/2 − fb(t)‖ → 0

w.p.1(P ), where fb(t) = w(t)[B(t) + Mtb]. One can then show, as in the proof of Theorem 2,

that k−1Rk(µ0)→ gd(Yd) and k−1Rk(vk)→ C(M) for

C(M) ≡ min
{
−
∫ 1

0
log(1 + a′fb(t))dt : a ∈ Rd, min

0≤t≤1
(1 + a′fb(t)) ≥ 0

}
.
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On A, gd(Yd) ≥ − log(1 + L2) and C(M) ≤ −
∫ 1
0 log(1 + b′fb(t))dt, where min0≤t≤ε(1 +

b′fb(t)) ≥ 1/2 and, if M = ε−1(L + [Lq/minε≤t≤cw(t)]), minε≤t≤1(1 + b′fb(t)) ≥ 1 and

minε≤t≤c(1 + b′fb(t)) ≥ 1 + Lq hold for q ≥ 1, where w(t) > 0 for t ∈ (0, c) by Assump-

tion A.1. By choosing q large in this M , C(M) ≤ log 2 − (c − ε) log(1 + Lq) < −2 log(1 + L2)

follows. Then, for large k, it holds that k−1 logRk(vk) < −2 log(1 + L2) < k−1 logRk(µ0),

implying that vk 6∈ Gk, which is a contradiction. Hence, on A, limZnn
1/2 ≤M holds. �

Proof of Theorem 3. As in the proof of Theorem 2, we again embed {Sn(·)} and {B(·)} in a

larger probability space (Ω,F , P ) such that (7) holds with f(t) = w(t)B(t), t ∈ [0, 1], implying

0d is in the interior convex hull of {Ti,µ0 : i = 1, . . . , n} and Rn(µ0) > 0 eventually w.p.1(P ) (as

in the proof of Theorem 2).

Using the proof of Theorem 1, one can show that there exists Ỹp ∈ Rp which is the unique

minimizer of g̃p(a) = −
∫ 1
0 log(1 + a′f̃(t))dt for a ∈ {y ∈ Rp : min0≤t≤1(1 + y′f̃(t)) ≥ 0}, where

f̃(t) = w(t)B̃(t) for B̃(t) = [∇µ0Σ∇′µ0
]−1/2∇µ0Σ1/2B(t). Here, B̃(·) is distributed as vector of p

iid components of standard Brownian motion, so that Ỹp and g̃p(Ỹp) have the same distribution

as Yp and gp(Yp) in Theorem 1, and all properties stated for Yp, gp, f in the Theorem 1 apply

to Ỹp, g̃p, f̃ . In particular, Theorem 1(iv) and Theorem 2(ii) imply 0 <
∫ 1
0 [1 + Ỹ ′p f̃(t)]−1dt <∞

and 0 < F̃1 ≡
∫ 1
0 tw(t)[1 + Ỹ ′p f̃(t)]−1dt < ∞ w.p.1 (while f is bounded with w.p.1) so that

F̃ ≡
∫ 1
0 Σ1/2f(t)[1 + Ỹ ′p f̃(t)]−1dt/F̃1 is a Rp-valued random variable. Hence, as in the proof of

Corollary 1, we may construct an event A ∈ F , with arbitrarily large probability, such that (7),

‖F̃‖ ≤M/2 and limZnn
1/2 < M hold for ω ∈ A for some M > 0 (suppressing the dependence

of the variables on ω). On A, we shall show n−1 logRn(θ0) → g̃p(Ỹp), where again g̃p(Ỹp) has

the same distribution as gp(Yp) in Theorem 1. Since P (A) can be made arbitrarily large, the

distributional convergence in Theorem 3 will then follow.

Fix ω ∈ A. From the proof of Theorem 2, recall 0d is in the interior convex hull of {Ti,µ0 :

i = 1, . . . , n} and Rn(µ0) > 0 eventually. Also, Znn1/2 < M holds eventually, and we may write

Rn(θ0) = supDn for

Dn =

{
n∏
i=1

npi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piTi,µ = 0d, H(µ) = θ0, ‖µ− µ0‖ ≤Mn−1/2

}

Note that, if
∑n

i=1 piTi,µ = 0d holds with min1≤i≤n pi > 0 for some µ ∈ Rq where H(µ) = θ0 and

‖µ− µ0‖ ≤Mn−1/2, then µ =
∑n

i=1 piw(i/n)Sn(i/n)/
∑n

i=1 piiw(i/n) where
∑n

i=1 piiw(i/n) >

0 by Assumption A.1; by Taylor expansion around µ0, ∇µ∗(µ−µ0) = 0p holds for some µ∗ ∈ Rd

with ‖µ∗−µ0‖ ≤Mn−1/2, which implies 0p = [
∑n

i=1 piiw(i/n)]∇µ∗(µ−µ0) = ∇µ∗
∑n

i=1 piTi,µ0 .
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Hence, Dn ⊂ En, where

En =

{
n∏
i=1

npi : pi ≥ 0,
n∑
i=1

pi = 1,∇µ
n∑
i=1

piTi,µ0 = 0p, ‖µ− µ0‖ ≤Mn−1/2

}

so that logRn(θ0) = log supDn ≤ log supEn
Writing R̃n(µ) = sup{

∏n
i=1 npi : pi ≥ 0,

∑n
i=1 pi = 1,∇µ

∑n
i=1 piTi,µ0 = 0p} for ‖µ− µ0‖ ≤

Mn−1/2, it holds that log R̃n(µ) = −
∑n

i=1(1 + λ′n,µ∇µTi,µ0) where λn,µ is the minimizer of the

strictly convex function −
∑n

i=1(1 + a′∇µTi,µ0), a ∈ {y ∈ Rd : min1≤i≤n(1 + y′∇µTi,µ0) > 0}
(following from R̃n(µ) > 0 because 0d is in the interior convex hull of {Ti,µ0 : i = 1, . . . , n} and

that n−2
∑n

i=1∇µ0Ti,µ0T
′
i,µ0
∇′µ0

is eventually positive definite by n−2
∑n

i=1∇µ0Ti,µ0T
′
i,µ0
∇′µ0

→∫ 1
0 [∇µ0Σ1/2f(t)][∇µ0Σ1/2f(t)]′dt from (7) and the DCT). One can then show, as in the proof

of Theorem 2, that

1
n

log R̃n(µ0) =
n∑
i=1

log(1 + λ′n,µ0
∇µ0Ti,µ0)→ g̃p(Ỹp),

and n1/2[∇µ0Σ∇′µ0
]1/2λn,µ0 → Ỹp. Also, for Ỹε = (1 − ε)Ỹp + ε0p, it holds that min0≤t≤1(1 +

Ỹ ′ε f̃(t)) > 0, which implies inf‖µ−µ0‖≤Mn−1/2 min1≤i≤n(1 + Ỹ ′ε∇µTi,µ0) > 0 eventually. Since

n−1 log supEn = n−1 sup‖µ−µ0‖≤Mn−1/2 log R̃n(µ) and, for each n, there exists ‖µn − µ0‖ ≤
Mn−1/2 such that

− 1
n

+
1
n

log supEn ≤
1
n

log R̃n(µn) = − 1
n

n∑
i=1

(1 + λ′n,µn
∇µnTi,µ0) ≤ − 1

n

n∑
i=1

(1 + Ỹ ′ε∇µnTi,µ0),

we have

lim
1
n

log supDn ≤ lim
1
n

log supEn ≤ lim − 1
n

n∑
i=1

(1 + Ỹ ′ε∇µnTi,µ0) = g̃p(Ỹε)

by (7) and the DCT. Since limε→0 g̃p(Ỹε) = g̃p(Ỹp) by convexity of g̃p (i.e., 0 ≤ g̃p(Ỹε)− g̃p(Ỹp) ≤
−εg̃p(Ỹp)), it holds that limn−1 log supDn ≤ g̃p(Ỹp).

By Taylor expansion for ‖µ − µ0‖ ≤ Mn−1/2, we can write H(µ) − θ0 = Jµ(µ − µ0),

for the p × d matrix Jµ =
∫ 1
0 ∇µ0+t(µ−µ0)dt. Now similarly to R̃n(µ) above, for R̄n(µ) =

sup{
∏n
i=1 pi : pi ≥ 0,

∑n
i=1 pi = 1, Jµ

∑n
i=1 piTi,µ0 = 0p} with ‖µ−µ0‖ ≤Mn−1/2, we can write

log R̄n(µ) = −
∑n

i=1(1 + λ̄′n,µJµTi,µ0) where λ̄n,µ satisfies

min
1≤i≤n

(1 + λ̄′n,µJµTi,µ0) > 0,
n∑
i=1

1
n(1 + λ̄′n,µJµTi,µ0)

= 1,
n∑
i=1

JµTi,µ0

1 + λ̄′n,µJµTi,µ0

= 0p. (12)

Write

hn(µ) =
n∑
i=1

Sn(i/n)w(i/n)
n3/2(1 + λ̄′n,µJµTi,µ0)

/
n∑
i=1

iw(i/n)
n3/2(1 + λ̄′n,µJµTi,µ0)

,
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which is a continuous function of µ, ‖µ−µ0‖ ≤Mn−1/2, because λ̄n,µ is as well by the implicit

function theorem (following from the fact that, as mentioned above, that n−2
∑n

i=1∇µ0Ti,µ0T
′
i,µ0
∇′µ0

is eventually positive definite); see Qin and Lawless (1994, p. 305). Note also that

n1/2(hn(µ)− µ0) =
n∑
i=1

Ti,µ0

n3/2(1 + λ̄′n,µJµTi,µ0)

/
n∑
i=1

iw(i/n)
n2(1 + λ̄′n,µJµTi,µ0)

.

Using (7) and DCT, one can show sup‖µ−µ0‖≤Mn−1/2 ‖n1/2(hn(µ) − µ0) − F̃‖ → 0 so that,

on A (for which ‖F̃‖ ≤ M/2), sup‖µ−µ0‖≤Mn−1/2 ‖hn(µ) − µ0‖ ≤ Mn−1/2 holds eventually.

That is, for all large n, hn(µ) − µ0 is a continuous mapping from the closed ball ‖µ − µ0‖ ≤
Mn−1/2 to itself. By Brouwer’s fixed point theorem, there then exists µ∗n such that hn(µ∗n) =

µ∗n for ‖µ∗n − µ0‖ ≤ Mn−1/2. This implies 0p = hn(µ∗n) − µ∗n, which when multiplied by∑n
i=1 iw(i/n)/[1 + λ̄′n,µ∗nJµ

∗
n
Ti,µ0 ] > 0 (positivity by (12) and Assumption A.1), further implies

that

0p =
n∑
i=1

Ti,µ∗n
n(1 + λ̄′n,µ∗nJµ

∗
n
Ti,µ0)

(13)

and also
n∑
i=1

iw(i/n)
1 + λ̄′n,µ∗nJµ

∗
n
Ti,µ0

· Jµ∗n(µ∗n − µ0) =
n∑
i=1

Jµ∗nTi,µ0

1 + λ̄′n,µ∗nJµ
∗
n
Ti,µ0

= 0p

by µ∗n − µ0 = hn(µ∗n) − µ0 and (12); from
∑n

i=1 iw(i/n)/[1 + λ̄′n,µ∗nJµ
∗
n
Ti,µ0 ] > 0, it holds that

Jµ∗n(µ∗n−µ0) = 0p or equivalently H(µ∗n) = H(µ0) = θ0. In other words, this last fact combined

with (12)-(13) entail that all conditions are satisfied for
∏n
i=1[1+ λ̄′n,µ∗nJµ∗nTi,µ0 ]−1 ∈ Dn. Hence,

lim
1
n

log R̄n(µ∗n) ≤ lim
1
n

log supDn ≤ lim
1
n

log supDn ≤ g̃p(Ỹp),

the last inequality being established earlier. One can then show 1
n log R̄n(µ∗n)→ g̃p(Ỹp) using (7)

so that, on A, n−1 logRn(θ0) = n−1 log supDn → g̃p(Ỹp), completing the proof of Theorem 3.

�
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Figure 2: Coverage rates of nominal 90% CIs for the process mean with Models a-h using

N(0, 1) (left) or centered χ2
1 (right) innovations for sample sizes n = 250, 500 or 1000. Axis

labels for EBEL denote the weight functions in Table 2; labels 1-3 for NBEL/BEL/TBEL

denote increasing block sizes.
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Figure 3: Coverage rates of nominal 90% CIs for the process mean with Models 1, . . . , 9, 0 using

centered Pareto (left) or Ber(0.5) (right) innovations, for sample sizes n = 250, 500 or 1000.

Pareto innovations Ber(0.5) innovations
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Figure 4: Coverage rates of nominal 90% (left) and 95% (right) CIs for the process mean with

Models 1, . . . , 9, 0 using centered χ2
1 innovations, for sample sizes n = 250, 500 or 1000.
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