
Department of Economics and Business 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

Global Hemispheric Temperature Trends and Co–Shifting: A 

Shifting Mean Vector Autoregressive Analysis 

 

Matthew T. Holt and Timo Teräsvirta 

 

CREATES Research Paper 2012-54 
 
 
 
 

 
 
 



Global Hemispheric Temperature Trends and

Co–Shifting: A Shifting Mean Vector

Autoregressive Analysis∗

Matthew T. Holt†

Department of Economics, Finance & Legal Studies
University of Alabama

Timo Teräsvirta‡
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Abstract
This paper examines trends in annual temperature data for the northern and south-
ern hemisphere (1850–2010) by using variants of the shifting–mean autoregressive
(SM–AR) model of González and Teräsvirta (2008). Univariate models are first
fitted to each series by using the so called QuickShift methodology. Full informa-
tion maximum likelihood (FIML) estimates of a bivariate system of temperature
equations are then obtained. The system is then used to perform formal tests of co–
system in the hemispheric series. The results show there is evidence of co–shifting
in the temperature data, most notably since the early 1980s.
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1 Introduction

In recent years there has been considerable debate in the climate change literature,
interestingly enough, not about whether global warming can be detected in avail-
able time series data but rather the proper way to characterize this phenomenon in
the modelling process. The essence of the debate is this: do global and hemispheric
temperature data follow a unit root (difference stationary) process wherein shocks
to the world’s climate can be expected to have a permeant effect, perhaps with a
shared stochastic trend (cointegration) between northern and southern hemispheric
observations? Or do the observed data fluctuate around a deterministic, perhaps non-
linear trend wherein the mean (trend) of the series might exhibit occasional breaks
or shifts? This recent debate is perhaps best characterized by four recent publica-
tions in the journal Climatic Change. These are: Gay-Garcia, Estrada and Sánchez
(2009), Kaufmann, Kauppi and Stock (2010), Estrada, Gay and Sánchez (2010), and
Mills (2010). Arguing in favor of trend stationarity with occasional but infrequent
mean breaks, Gay-Garcia, Estrada and Sánchez (2009) build on prior work by Perron
(1989), Perron (1990), Leybourne, Newbold and Vougas (1998), Harvey and Mills
(2002), and others who have developed tests for unit roots against the alternative
of trend stationarity with occasional mean breaks (shifts). Related work that has
concluded that temperature data are best characterized by unit roots and, possibly,
stochastic trends include Harvey and Mills (2001), Kaufmann and Stern (2002), Liu
and Rodŕıguez (2005), Kaufmann, Kauppi and Stock (2006a,b), Johansen (2010),
Breusch and Vahid (2011). Relevant studies that have assumed that temperature
series are stationary but that they follow a deterministic and possibly breaking trend
include Harvey and Mills (2001), Seidel and Lanzante (2004), Gil-Alana (2008a,b),
Ivanov and Evtimov (2010), and Breusch and Vahid (2011).1

The approach taken to specifying and estimating statistical models of hemispheric
temperature data and their concomitant trends will, of course, have important im-
plications for conducting inferences and, as well, for making long–term predictions.
Even so, it may well be the case that available sample sizes, at least for hemispheric
data (approximately 160 annual observations), are not sufficient to allow an analyst
to adequately distinguish between models which utilize first differencing along with a
common stochastic trend or, alternatively, which rely on deterministic trends, possibly
with infrequent breaks or shifts (see Mills, 2010, for a related discussion). We there-
fore do not presume to settle this issue here. What is the case, however, is that prior
work on modelling temperature trends has not entertained the possibility of combin-

1Harvey and Mills (2001) report results for both stochastic trend models as well as models with
deterministic trends that change (shift) in a potentially smooth manner. As well, Breusch and
Vahid (2011) also explore the possibility of both stochastic and deterministic trends for available
temperature data, with the latter being allowed to break at least once.
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ing certain features of both approaches. There is a small but growing literature in
time series econometrics on modelling and testing for deterministic co–trending (or
co–breaking) amongst sets of two or more related variables. See, for example, Chap-
man and Ogaki (1993), Hendry and Mizon (1998), Bierens (2000), Camarero and
Ordóñez (2006), Hendry and Massmann (2007), and Franchi and Ordóñez (2008).
to out knowledge the concept of co–trending has not been tested previously in the
context of climate change analysis.

Considering the aforementiond, the primary goal of the present paper is to build upon
and exploit the prior literature on co–trending to explore the possibility that there
is deterministic “co–shifting” in underlying hemispheric temperature means. As such,
our analysis employs variants of the smooth transition autoregrssive model (1994),
wherein time is used as the transition variable (see, e.g., Lin and Teräsvirta, 1994;
González and Teräsvirta, 2008). In so doing we employ the so called Shifting–Mean
Vector Autoregression (SM–VAR) framework. That is, unlike most prior studies in
this area we allow for the possibility that shifts in the underlying means of the data
generating process have occurred gradually over time, and that one or more of these
shifts may be shared by both of the series in question. In terms of a modelling
framework the present paper is most closely related to that of Harvey and Mills
(2001). Even so, these authors did not consider the possibility of co–shifting between
the northern and southern hemisphere in their analysis.

The plan of the paper is a follows. In Section 2 we present the univariate SM–AR
model and in Section 3 its multivariate counterpart, the SM–VAR model. Section 4 is
devoted to modelling and a discussion of the concept of co-shifting. The hemispheric
temperature series are introduced in Section 5. Univariate SM-AR results using these
series are considered in Section 6, whereas Section 7 contains the multivariate SM-
VAR results. Finally, Section 8 concludes.

2 Univariate Modelling Framework

We begin with a brief review of the Shifting Mean Autoregressive (SM–AR) proce-
dures referred to as QuickShift; more details regarding this methodology are provided
by González and Teräsvirta (2008). QuickShift works by starting with a univariate
autoregression for the temperature series in questions, yt, defined as:

yt = δ (t) +

p∑
j=1

ϕjyt−j + εt, (1)
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where εt ∼ iid(0, σ2) and where δ(t) is an intercept term that possibly varies with
time. For example, the intercept term might be defined as:

δ (t) = δ0 +
r∑

i=1

δiG (γ (ηi) , ci, t
∗), (2)

and where

G (γ (ηi) , ci, t
∗) = (1 + exp {−γ (ηi) (t

∗ − ci)})−1 , γ (ηi) > 0, (3)

a logistic function in time. As well, t∗ = t/T , t = 1, . . . , T , (T is the total number of
observations). Following Goodwin, Holt and Prestemon (2011), for numerical reasons
we specify γ (ηi) = exp (ηi).

2 Let L denote the usual lag operator: Lixt = xt−i. It
then follows from (1) that, assuming the characteristic roots of |1 −

∑p
j=1 ϕjL

j| lie
outside the unit circle, the corresponding shifting mean for yt at time t is given by

Etyt =

(
1−

p∑
j=1

ϕjL
j

)−1

δ (t) .

The specification given by (1)–(3) provides considerable flexibility in modelling shift-
ing means in time series data, depending on the number of shifts, r and the values
taken by the parameters. For example, for large values of γ(ηi) the underlying shift,
which occurs at time ci, can be rather abrupt. Alternatively, for small values of γ(ηi)
(and assuming for the moment that r = 1), the shift from δ0 to δ0+ δ1 is smooth, and
will occur over a number of periods.

3 Multivariate Modelling Framework

The primary objective of this paper is to evaluate possible relationships between
hemispheric temperatures and there trends. In order to consider the two temperature
series jointly we therefore define a nonlinear multivariate model that we call the Shift-
ing Mean Vector Autoregressive (SM–VAR) model. It is a multivariate generalisation
of the univariate Shifting Mean Autoregressive model introduced by González and
Teräsvirta (2008) and described briefly in the previous section.

2This parametrization for γi automatically ensures that γi > 0 holds, which implies that the
identification condition γi > 0 holds. Moreover, it facilitates a grid search wherein equal spacings
between (large) γi values are not optimal.
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The basic SM–VAR model is defined as follows:

yt = δ (t) +

p∑
j=1

Φjyt−j + εt (4)

where yt = (y1t, ..., ykt)
′ is a k × 1 stochastic vector, εt ∼ iid(0,Ω), where Eεt = 0,

and Ω is a k × k positive definite covariance matrix, and Φj, j = 1, ..., p, are k × k
parameter matrices. We assume that the roots of |I −

∑p
j=1 Φjz

j| = 0 lie outside

the unit circle. Furthermore, δ(t) = (δ1(t), ...,δk(t))
′ is a k× 1 time–varying intercept

vector comparable to (2), where

δj(t) = δj0 +

rj∑
i=1

δjiG(γ (ηji) , cji, t
∗) (5)

and where again

G(γ (ηji) , cji, t
∗) = (1 + exp{−γ (ηji) (t

∗ − cji)})−1, (6)

for all i and j, and where as before t∗ = t/T and γ (ηji) = exp (ηji). From these
assumptions it follows that (4) defines a nonstationary process, whereas {yt − δ(t)}
is a stationary sequence. Write (4) as(

I−
p∑

j=1

ΦjL
j

)
yt = δ (t) + εt. (7)

Similar to (2), the shifting mean of yt is obtained from the infinite–order vector
moving average representation of (7):

Etyt = (I−
p∑

j=1

ΦjL
j)−1δ(t) =

∞∑
j=0

Ψjδ(t− j) (8)

where Ψ0 = I.

Assuming that |δji| ≤ M < ∞ for all i and j, the vector δ(t) is a vector of bounded
elements, and so yt is bounded in probability. In this respect the SM–VAR model
differs from nonstationary VARs with stochastic as well as broken linear trends, that
is, the SM–VAR is different than the hemispheric models considered by Kaufmann,
Kauppi and Stock (2006a,b, 2010) and others. It is also different from the smooth
transition trend model of Harvey and Mills (2002).
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4 Modelling with the SM–VAR

4.1 Specification of the Model

In practice, the number of lags in (4) and the number of transitions (logistic functions)
in δj(t) are unknown and have to be determined from the data. It may be noted that
there is a potential identification problem due to the construction of (5). If γ (ηji) = 0,
that is, ηji → −∞ in (6), δji and cji are unidentified nuisance parameters. This is a
common problem in many nonlinear time series models; see for example Teräsvirta,
Tjøstheim and Granger (2010, Chapter 5) for discussion. As a result, specification of
the number of transitions rj has to be carried out from specific to general. In this
work we first determine the number of transitions and the lag length p thereafter.
Finding rj can be done as follows:

1. Test linearity against (4). This can be done jointly or equation by equation.
In the latter case, the test is a special case (only the intercept is nonconstant
under the alternative) of the parameter constancy test in Lin and Teräsvirta
(1994). The null hypothesis of the joint test is δ(t) = δ, which is formulated as
γ (ηji) = 0, for all i and j. Note that the test statistic is the same independent
of the (positive) number of transitions in the alternative. Let α0 denote the
significance level of the test.

2. If the null hypothesis is rejected, estimate the SM–VAR model with a single
transition equation by equation. Here it is done using QuickNet, see González,
Hubrich and Teräsvirta (2009). The idea is to form a grid consisting of values
of ηj1 and cj1, and estimate the parameters by minimizing the residual sum of
squares with respect to ηj1, cj1, and δji, i = 0, 1. This amounts to carrying out
a set of linear regressions, whose number equals the number of points in the
grid.

3. More generally, suppose the jth equation contains q transitions. Then test q
against q+1 transitions in (5) using the same test with the distinction that the
null model now has a time–varying intercept (q transitions). The significance
level is τ qα0, 0 < τ < 1. The significance level is lowered at each step to favour
parsimony. If the null hypothesis is rejected, estimate the q + 1 regression
coefficients of the intercept and the two nonlinear parameters in the (q + 1)th
transition function using the grid. Continue until the first non–rejection of
the null hypothesis. For further details, see González, Hubrich and Teräsvirta
(2009).

In this work we determine the transitions assuming p = 0. This means that the
test statistic has to be robustified against heteroskedasticity and autocorrelation. An

5



alternative would be to first specify and estimate a VAR model with a constant
intercept and determine the number of transitions thereafter. Since we use a reverse
order the lag length p is determined after finding the number of transitions.

4.2 Estimation of Parameters

The accuracy of the linear estimates obtained by using the grid may already be
sufficient for many practical purposes if the grid is sufficiently dense. If not, it is always
possible to build a finer grid around the previous minimum and repeat the search. If
this is not yet satisfactory, one can use the parameter values thus obtained as starting-
values for nonlinear maximum likelihood estimation by a suitable algorithm; see for
example Teräsvirta, Tjøstheim and Granger (2010, Chapter 12). In the application
we have used the Broyden, Fletcher, Goldfarb and Shanno (BFGS) quasi–Newton
method. Note, however, that setting the initial step–length plays a crucial role.
Specifically, if it is too long, the BFGS algorithm may leap to a point that is too far
from the local maximum nearest the starting–value in the sense that the maximum
value of the log–likelihood ultimately found by the algorithm may even be smaller
than the one obtained by the grid.

4.3 Co–shifting

In interpreting empirical results it may be interesting to know whether the shifts in
the equations of our vector SM-AR model have anything in common. In order to do
that, we make use of the concept of common features in Engle and Kozicki (1993).
The shifting mean (or now the shifting intercept) is the feature, and if there is a linear
combination of the elements of yt such that the feature is eliminated, it is a common
feature. To discuss the idea in our framework, consider a bivariate SM–AR model
with two shifts:

yt = δ0 + (δ1 ⊙G1t) + (δ2⊙G2t)+

p∑
j=1

Φjyt−j + εt

where Git = (Gi1(γ(ηi1), ci1, t/T ), Gi2(γ(ηi2), ci2, t/T ))
′, i = 1, 2, and

δi = (δi1, δi2)
′. According to Engle and Kozicki (1993), the shift is a common feature

if there is a 2–dimensional vector α such that α′yt is linear, that is, the two shifts have
been eliminated. A necessary condition for this to happen is thatGij(γ(ηij), cij, t/T ) =
Gi(γ(ηi), ci, t/T ), j = 1, 2, or in matrix notation:

Git = Gi(γ(ηi), ci, t/T )12, i = 1, 2 (9)
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where 12 = (1, 1)′. This implies that the slope and location parameters in the two
transition functions of both transitions are the same. If (9) is completed by the
condition δ2 = λδ1, λ ̸= 0, there exists α ̸= 0 that eliminates the shift.

These conditions are quite strong. Therefore, a partial or weak co–shifting can be of
interest. For example, assume

G1t = G1(γ(η1), c1, t/T )12.

Then there exists a nonzero vector α such that α′δ1 = 0, which eliminates the first
but not the second shift:

α′yt = α′δ0 +α′(δ2⊙G2t) +

p∑
j=1

α′Φjyt−j +α′εt.

If also
G2t = G2(γ(η21), c21, t/T )12

there exists another nonzero vector β such that β′δ2 = 0 and

β′yt = β′δ0 + β′(δ1⊙G1t) +

p∑
j=1

β′Φjyt−j + β′εt.

As already discussed, a single vector α can eliminate both shifts only if δ2 = λδ1.
Note that co–shifting does not mean that the shifts contribute to holding the two
series together. This property of linear cointegration is not present in co–shifting.
This is because the elements of δ1 and δ2 are not restricted to mimic this feature of
cointegrated random variables.

The definition of weak co-shifting accords well with the definition of contemporaneous
mean co-breaking, as stated in Hendry and Mizon (1998) and Hendry and Massmann
(2007). These authors consider a location shift in the unconditional mean at time
t: E(yt − ρ0) = ρt, If there is a time-point t such that ρt ̸= ρt−1, this defines the
co-break. Their definition, however, is only operational in connection with a single
break. It works when

ρt = ρ(0)I(t/T < c) + ρ(1){1− I(t/T < c)}
= ρ(1) + (ρ(0) − ρ(1))I(t/T < c), ρ(0) ̸= ρ(1)

where I(A) is an indicator function: I(A) = 1 when A holds, zero otherwise.
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4.4 Testing Co–shifting Restrictions

Co–shifting may be viewed as a special case of common nonlinearity as defined by
Anderson and Vahid (1998). They derived a general test of common nonlinearity as a
test of overidentifying restrictions in the generalized method of moments framework.
Our test of co–shifting is simply a test of parameter restrictions in the SM-VAR
model. If we test against strong co–shifting, the null hypothesis is

H0: (γ(ηi1), ci1) = . . . = (γ(ηik), cik) , i = 1, ..., r, (10)

and δj = λjδ1, λj ̸= 0, j = 2, ..., r. This amounts to testing k(3r − 1) restrictions
in (4). If only a subset of shifts are under test, the number of restrictions decreases.
Note that the number of transitions need not be the same in all equations of (4).

To implement tests of co–shifting in the SM–VAR it is natural to consider a likelihood
ratio test. The test statistic is defined as:

LR = T
[
ln |Ω̃| − ln |Ω̂|

]
, (11)

where LR has an asymptotic χ2
q0

distribution under the null hypothesis. In (11) Ω̂
denotes the maximum likelihood estimate of the residual covariance matrix for the
general (unrestricted) model and Ω̃ likewise denotes the corresponding estimates for
the co–shifting (restricted) model that involves q0 restrictions on the parameters of
(4).

A well known problem with the test statistic in (11) is that its asymptotically χ2
q0

distribution under the null is not a good approximation to its finite–sample null distri-
bution when the dimension of the model and the null hypothesis are large compared
to the length of the time series. In that case the test suffers from positive size dis-
tortion; see, for example, Candelon and Lütkepohl (2001) and Shukur and Edgerton
(2002). A number of remedies have been proposed, but simulations almost invariably
show that the best solution to the problem is to use Rao’s F–test, see for example
(Rao, 1973, p. 556). This does require, however, that the errors can be assumed inde-
pendent and identically distributed. If the presence of conditional heteroskedasticity
is suspected, one can generate a finite–sample null distribution of the test statistic
by wild bootstrap; see, for example, Ahlgren and Catani (2012). This can be done
even if there is no conditional or unconditional heteroskedasticity, but in that case
computational ease speaks for Rao’s F–test. Additional details on computing and
using Rao’s F in the context of an LM–based test for stationary vector autoregressive
systems are provided by Teräsvirta, Tjøstheim and Granger (2010, pp. 100–102).

8



4.5 Evaluation

The estimated SM–VAR model has to be evaluated. One has to check whether or
not the stability condition concerning the roots of |I −

∑p
j=1Φjz

j| = 0 holds. Mis-
specification tests also need to be carried out. They include the multivariate test of
normality, see Lütkepohl and Krätzig (2004, p. 128), the multivariate test of no error
autocorrelation adopted from Yang (2012), and the test of constancy of the error
covariance matrix by Eklund and Teräsvirta (2007). Their framework can be used for
testing against various alternatives. In this work the alternative is that the variances
are changing smoothly over time whereas the correlations remain constant. It would
also be possible to develop a test of linearity for the VAR component against smooth
transition VAR. In our application, however, this component is rather minor, so we
do not need such a test here.

5 Data

The data used in the empirical analysis are annual average hemispheric tempera-
ture data from 1850–2010, and are described in detail in Brohan et al. (2006). As
mentioned previously, versions of these data have been used by various authors in re-
cent years to empirically investigate feature of global warming, including Gay-Garcia,
Estrada and Sánchez (2009), Kaufmann, Kauppi and Stock (2010), Estrada, Gay
and Sánchez (2010), and Mills (2010). A time series plot of the basic data is re-
ported in Figure 1. As illustrated there, temperatures in both hemispheres appear
to have a slight downward trend between approximately 1880 and 1910, with tem-
peratures in the southern hemisphere showing what appears to be a slightly steeper
decline. Then, from about 1910 until approximately 1945 both series exhibit an up-
ward trend, with temperatures in the northern hemisphere appearing to increase more
rapidly than those in the southern. There is then a leveling off between the 1940s
and approximately 1980, after which both series exhibit a rather steep upward trend
and, moreover, appear to increase at approximately the same rate. Of course these
observations are simply based on a casual inspection of the data and trends in Figure
1; they are not the result of any formal model specification, estimation, and testing
strategy, to which we now turn.
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6 Univariate Results

6.1 Stationary Shifting Means versus Stochastic Trends

Our working hypothesis is that each hemispheric temperature series may be ade-
quately represented as being stationary around a deterministic albeit shifting mean.
A plausible alternative, of course, is that each series is difference stationary, and
therefore behaves in a manner consistent with possessing a unit root (i.e., a stochas-
tic trend). In this sense the natural testing framework is consistent with that proposed
originally by Kwiatkowski, Phillips, Schmidt and Shin (1992) (KPSS) wherein the null
hypothesis is one of stationarity and the alternative is one of difference stationarity.
The standard KPSS test is not appropriate, however, if the series in question contains
several or more breaks or shifts over time. To this end Becker, Enders and Lee (2006)
(BEL) propose a stationarity test similar to the KPSS test but where an unknown
number of intercept shifts are accounted for by using a select number of low frequency
terms from a Fourier approximation (Gallant, 1981). Because of the globally flexible
properties of the Fourier approximation, the approach is useful even if the underlying
shifts were, in fact, generated by some combination of logistic functions as defined by
(2) and (3). See Becker et al. (2006) for additional discussion and simulation results
regarding this point.

Following Becker, Enders and Lee (2006), we assume we can decompose the series yt
into four parts: (1) an intercept and a trend term; (2) leading terms from a Fourier
approximation; (3) a random walk; and (4) a stationary error.3 Specifically, consider
the following model:

yt = δ0 + ζt+
n∑

k=1

{αk sin (2πkt/T ) + βk cos (2πkt/T )}+ rt + εt (12a)

rt = rt−1 + ut, r0 = 0 (12b)

where εt are stationary errors and where ut ∼ iid(0, σ2
u). Likewise, in (12a) the

sine and cosine terms are included as leading terms from a Fourier series used to
approximate any unspecified shifts in the deterministic term. To that end, n denotes
the number of (cumulative) frequencies used in the approximation (n < T/2), and k
denotes a particular frequency. In practice it is likely the case that most shifts can be
reasonably approximated by setting n to a rather low number, say, n = 2 or n = 3.

3Given the nature of the observed hemispheric temperature anomalies, we consider only the
case where yt is a trend–stationarity process. Another option is to consider the possibility that yt
is a level–stationary process, although such a specification hardly seems plausible for hemispheric
temperature data.
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The null hypothesis that the yt series is stationary is then simply

H0 : σ
2
u = 0 (13)

so that the process defined in (12) is stationary around a smooth deterministic com-
ponent.

The testing regression for the BEL test of stationarity is then:

yt = δ0 + ζt+
n∑

k=1

{αk sin (2πkt/T ) + βk cos (2πkt/T )}+ et. (14)

Let ẽt, t = 1, . . . , T , denote the residuals obtained from the estimate of (14). The
BEL test statistic associated with testing (13) becomes

ττ (n) =
1

T 2

T∑
t=1

S̃t (n)
2

σ̃2
, (15)

where S̃t (n) =
∑t

j=1 ẽj. The test statistic can be viewed as a comparison of the

short–run variance to the long–run variance, σ̃2. A nonparametric estimate of the
long–run variance is typically obtained from:

σ̃2 = γ̃0 + 2
ℓ∑

j=1

wj γ̃j,

where γ̃j is the jth sample autocovariance of the residuals ẽt from (14), ℓ is the
truncation lag and wj are a set of weights. In implementing the test we use the
Newey and West (1987) procedure, and set the truncation lag, ℓ, to the greatest

integer less than or equal to 4 (T/100)2/9 (see, e.g., Lee and Mossi, 1996).

The BEL stationarity test was carried out on the hemispheric temperature data. A
key issue is the number of frequencies, n, to include in the auxiliary regression in
(14). By considering all cumulative frequencies over the range n = 1, . . . , 5, the
Rissanen–Schwarz Bayesian Information Criterion (BIC) indicated that n = 3 was
the preferred number of cumulative frequencies for both series. A truncation lag of
ℓ = 4 was used to estimate the long–run variance in the denominator of the ττ (n)
test statistic in (15). Test results are recorded in Table 1. As indicated there, in
both instances the null hypothesis of stationarity (around a shifting mean) cannot be
rejected at any usual significance level. Moreover, additional test results reported in
Table 1–notably, a bootstrapped F test of the joint significance of the trigonometric
Fourier terms–the so called Ftrig test–indicate that movements of each series over time
cannot be adequately characterized by a linear trend alone.
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Results for the BEL stationarity test compare favorably with those reported pre-
viously by Harvey and Mills (2002) and Gay-Garcia, Estrada and Sánchez (2009),
among others. The BEL test results therefore provide further support for the Quick-
Shift and SM–VAR analysis, to which we now turn.

6.2 QuickShift Results

To implement QuickShift with the temperature data for the northern (j = 1) and
southern (j = 2) hemispheres, we set α0 = 0.20 and τ = 0.25 in controlling the
significance level, αq = τ qα0, in the LM testing sequence. We set the upper limit for
the number of mean shifts, qmax, to ten; we restrict the search for ci’s to 100 equally
spaced values in the [0.05, 0.95] interval; and we search over 100 equally spaced values
for ηi in the [−1, 3.401] interval.4 As well, the parameter γ(η) is normalized by σ̂t∗ ,
the ‘standard deviation’ of t∗ = t/T , in order to render it unit free.

The results obtained by applying QuickShift with these settings are as follows:

Northern Hemisphere:

y1t = − 0.277
(0.027)

+ 0.687
(0.231)

(1 + exp{− 1.823
(−)

[t∗ − 0.950
(−)

]/0.289})−1

+ 0.253
(0.056)

(1 + exp{− 30
(−)

[t∗ − 0.460
(−)

]/0.289})−1

+ 0.376
(0.092)

(1 + exp{− 30
(−)

[t∗ − 0.905
(−)

]/0.289})−1

− 0.117
(0.040)

(1 + exp{− 30
(−)

[t∗ − 0.205
(−)

]/0.289})−1 + ε̂1t

(16a)

R2 = 0.777, σ̂1 = 0.136,

Southern Hemisphere:

y2t = − 0.473
(0.011)

+ 1.360
(0.090)

(1 + exp{− 1.744
(−)

[t∗ − 0.932
(−)

]/0.289})−1

− 0.115
(0.045)

(1 + exp{− 30
(−)

[t∗ − 0.250
(−)

]/0.289})−1

+ 0.153
(0.026)

(1 + exp{− 30
(−)

[t∗ − 0.096
(−)

]/0.289})−1 + ε̂2t

(16b)

R2 = 0.796, σ̂2 = 0.117.

The estimated transitions in (16a) and (16b) appear in the order they are selected
by QuickShift. All standard errors, which appear in parentheses below estimated pa-
rameters, are obtained from the heteroskedasticity–autocorrelation (HAC) consistent

4The corresponding grid for γ is [0.368, 30].
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covariance matrix, which in turn are obtained by applying the estimator developed
by Newey and West (1987). Of course estimates for the γi and ci parameters have no
corresponding standard errors, as these values are determined by using the QuickShift
grid search. Plots of the underlying transition functions (dash–dot lines), shifting
means (dashed lines), and actual observations (solid lines) are reported in Panel A
(northern hemisphere) and Panel B (southern hemisphere) of Figure 2. The dates that
correspond to when each transition function for each series, G (γ̂ji, ĉji, t

∗), j = 1, 2,
i = 1, . . . , rj, equals, respectively, 0.1 (10%), 0.5 (Centre), and 0.9 (90%) are reported
in the left–hand columns of Table 2.

The Quickshift procedure picks four transitions for the Northern hemisphere temper-
ature series and three for the Southern. Of interest is that in both instances the first
transition is rather slow, that is, the estimated γ1 parameters, are qualitatively small
(-1.823 and -1.744, respectively) and the corresponding c1 parameters are qualita-
tively large (0.950 and 0.932, respectively). In Figure 2 these are the relatively long,

smooth transitions. Moreover, given that both δ̂11 and that δ̂21 are positive, these
transitions capture the general upward trend in northern and southern hemispheric
temperatures over the past 160 years. As indicated in (16), the estimate δ̂21 = 1.360

is almost twice as large as that of δ̂11 = 0.687, which implies that the long–term
increase in temperatures (i.e., over approximately the last 80 years) in the southern
hemisphere has occurred at effectively twice the rate as in the northern. Finally, both
of these transitions have an estimated c value that is at or close to the upper bound:
0.95. As recorded in Table 2, the implication is that these long–term upward trends
do not near completion until well into the later part of the current century.

For both series the remaining shifts are rather abrupt–in each case the corresponding
γi parameters are set at 30, the upper limit–and generally pick out various features
of the data prior to 1940. See Table 2. The exception is the third shift identified for
the northern hemisphere, which is abrupt, positive, and occurs toward the end of the
sample period. Even so, the fourth shift for the northern series and the second for
the southern seem to be rather sharp changes that occur at approximately the same
time in the late 1800s. As indicated in Figure 2, both are associated with a rather
abrupt but temporary downward movement in temperatures.

7 SM–VAR Results

The results of the previous section suggest that a shifting–mean vector autoregressive
modelling approach is potentially feasible. As well, given the close correspondence
between the long–term shifts (trends) for both hemispheres, the possibility of (weak)
co–shifting also seems plausible. To this end we specified and estimated a bivariate
SM–VAR for the hemispheric temperature data similar to that specified in (4).
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The analysis begins by taking as given the number of shifts for each series, rj, identified
in the univariate analysis. We also use the parameter estimates obtained by QuickShift
as starting values for the BFGS estimation of the bivariate system.5 The system lag
length, p, was determined by using a sequence of likelihood ratio tests; coincident
with results reported by Harvey and Mills (2001), we find that p = 3 is adequate.
The results of various system tests applied to the SM–VAR are reported in Table 3.

A question of primary interest is whether the two series in question exhibit any form
of co–shifting. As already illustrated with the QuickShift results, there is reason
to believe that the hemispheric temperature data have at least one logistic function
intercept shift in common, and perhaps two. The possibilities include a long, relatively
slow shift that started in the second half of the 20th century and another shift that
occurred late in the 19th century. The results for a test of this co–shifting hypothesis
are reported in Table 3.6

Based on either a standard Likelihood Ratio (LR) test or Rao’s F , the null hypothesis
of co–shifting cannot be rejected at any standard significance level. We therefore
proceed by imposing the corresponding co–shifting restrictions. Following Kaufmann
and Stern (1997) and Harvey and Mills (2001), we also perform Granger non–causality
tests with respect to lags of northern temperatures in the southern equation. Results
for this test, also reported in Table 3, strongly suggest that the implied exclusion
restrictions cannot be rejected. Finally, by using the base SM–VAR model a test for
remaining (excluded) mean shifts is performed. Specifically, this test is conducted
by using a third–order Taylor approximation of the (omitted) logistic function in
each equation in the system; again, the null hypothesis cannot be rejected at any
plausible significance level. Based on these results we conclude that the SM–VAR with
four mean shifts in the northern hemisphere equation; with three mean shifts in the
southern hemisphere equation; with two sets of co–shifting restrictions imposed; and
with temperatures in the southern hemisphere being treated as strongly exogenous is
a reasonable representation of the hemispheric temperature data.

Estimation results for the preferred bivariate SM–VAR model are recorded in Table
4. As well, results for various system diagnostic tests are also reported at the bottom
of Table 4. Importantly, the estimated SM–VAR with two co–shifting restrictions
maintained provides a reasonable characterization of the hemispheric temperature
data–there is no evidence of omitted of (vector) autoregressive errors; the estimated

5In obtaining ML estimates we follow established practice (see, e.g., van Dijk, Strikholm and
Teräsvirta, 2003) and constrain values of γi(ηi) to be bounded above, in this case at 50. Doing
so helps avoid potential numerical problems. As with our implementation of QuickShift, we also
constrain the values of ci parameters to be bounded on the [0.05, 0.95] interval.

6As a result of the way the shifts were re–ordered when obtaining the initial system estimates,
the second candidate for co–shifting, that is, the shifts that occurred in the later part of the 19th
century, are now associated with the fourth shift in the northern series and the third in the southern.
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covariance matrix is seemingly stable over time; and the model’s estimated residuals
behave in a manner consistent with multivariate normality. Furthermore, the domi-
nant root for the companion matrix associated with the VAR terms in the SM–VAR
model is complex, but with a modulus of 0.584, implying the estimated model is
dynamically stable. Plots of the implied shifting means along with the estimated
transition functions are presented in Figure 3. As well, we again report dates that
correspond to when each transition function for each series, G (γ̂ji, ĉji, t

∗), j = 1, 2,
i = 1, . . . , rj, equals, respectively, 0.1 (10%), 0.5 (Centre), and 0.9 (90%); these values
are recorded in the right–hand columns of Table 2.

Results in Table 2 show that the estimated transition functions have some similarities
to those obtained by using QuickShift, but there are some differences as well. For
example, the leading logistic component for each equation (and the one associated
with co–shifting) occurs more rapidly and is centered earlier (1994) than the com-
parable components obtained with QuickShift (2014 for the north and 2011 for the
south). Of interest, and as indicated in Table 4, is that the corresponding estimates
for δ̂11 (1.017) and δ̂21 (0.434), while continuing to be positive, have very different
implications relative to the comparable QuickShift results. In other words, the SM–
VAR results imply that over approximately the past 40 years temperatures in the
north have been increasing at a rate that is over twice that of the south. This result
seems reasonable in light of Figure 3. The other shared logistic function component
captures a relatively slow shift in temperatures that occurred during the later part
of the 19th and the early part of the 20th century (from approximately 1873 through
1920, and centered during 1897). See Table 2.

As identified in (8), the shifting mean for northern hemisphere temperatures in par-
ticular will be a function of all logistic function shifts included in the system, and
notably those embedded in the equation for temperature anomalies in the southern
hemisphere. Even so, because in the present case a form of co–shifting was found to
hold, the shifting mean will be function of only five unique shifts. With the model’s
estimates in hand, it is possible to derive the shifting means for each series by using
(8).7 The results are reported in Figure 3 as the dashed line passing through the
observed data points.

Focusing first on the shifting mean for the north in upper panel of Figure 3, results
show that temperatures declined from the early 1880s until approximately 1912, at
which point there is a slight but steady decrease until the early 1920s. Moreover,
the mean shifts the temperatures in the northern hemisphere up until the early 1920s
are, as indicated in upper panel of Figure 3, apparently due to the interactions of
the fourth logistic function shift in the equation for the north and the third in the

7In approximating the moving average representation for the shifting means in (8), we truncate
the lag order at six. Indeed, only minor changes to the imputed shifting means were observed after
truncating the approximation at four lags.
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equation for the south. Starting in the early 1920s mean temperatures in the north
increase abruptly, with much of this shift being completed by the late 1920s. In turn,
this shift is apparently due to the second logistic function in the equation for the
north. See Table 2. The mean path for northern temperatures rises rather slowly
from the early 1930s until the mid 1960s, with most of this increase attributable to
the dominant first (and shared) logistic function shift. Mean temperatures for the
north decline rapidly from the late 1960s until the early 1970s, due entirely to the
third logistic function shift in the northern equation. From the mid 1970s on until
the present, mean temperatures in the north increase rapidly, again due to the first
logistic function shift.

The shifting mean for southern temperatures is plotted in the lower panel of Figure
3. As illustrated there, there is a notable increase in mean temperature beginning in
1850 continuing through 1885. This increase is attributed to third logistic function
in the southern equation, a logistic function that is, moreover, co–shifting with the
northern equation. Indeed, and as reported in Table 4, the estimate, δ̂23, associated
with this logistic function has the largest positive value among the three logistic
function components included in the southern equation. Of additional interest is
that no sustained increase in temperatures over the same period is observed for the
northern hemisphere. The second logistic function shift in the southern equation is
associated with a comparatively large and negative estimate of the corresponding δ22
parameter. The result, as indicated in Figure 3, is that the shifting mean for southern
temperatures has a rather steep decline from 1885 until approximately 1905, at which
point it begins to turn up again, and then increases rapidly from about 1910 until
the early 1930s. The shifting mean for temperatures in the south continue to increase
modestly from the late 1930s through the mid 1960s, at which point the effects of
the first logistic function component in the southern equation begin to take hold (a
component that is also co–shifting with the northern equation). Due entirely to this
component (and, of course, the corresponding positive estimate for δ21), the shifting
mean for temperature anomalies in the south increases rapidly starting in the mid
1970s and continues to increase through the end of the sample period.

There are notable differences between the shifting means obtained by applying Quick-
Shift and those obtained by FIML estimation. These differences are identified by
contrasting Figure 2 with Figure 3. Compared with the QuickShift results, the FIML
results that incorporate co–shifting apparently offer greater refinements to the esti-
mates of shifting means. Importantly, the FIML results imply steeper increases in the
shifting mean for northern temperatures over the past 35 years relative to the Quick-
Shift results. What seems apparent is that QuickShift is a reasonable diagnostic tool,
but that further insights may be obtained by using a system estimation framework
where, moreover, appropriate co–shifting restrictions are incorporated.

Additionally, the model was simulated ahead for an additional 50 years. In conducting
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the simulations random errors were added to the model by drawing from the multivari-
ate normal distribution with a covariance matrix equal to Ω̂, the estimated covariance
matrix for the SM–VAR model. In this manner the forward simulations were repeated
25,000 times. Actual values over the sample period (1860–2010) and simulated values
(2011–2060) are illustrated in Figure 4. Approximate 95–percent confidence intervals
are represented by the shaded areas during the forecasting period. The results show
that temperatures in both hemispheres will continue to increase for at least the next
twenty years, with temperatures in the south remaining somewhat below those in
the north. Even so, the confidence intervals overlap, so that it is difficult to say if
differences in future hemispheric temperatures will truly be significant.

As a final caveat, this analysis is based on the assumption that no further mean
shifts in temperature occur. Given past experience, this assumption is probably
too restrictive and, consequently, the confidence intervals presented in Figure 4 are
likely too narrow. Constructing more realistic confidence intervals in the SM–VAR
framework is an interesting research problem that is left for future work.

8 Conclusions

This paper builds on prior work that has examined co–trending among two or more
variables. While there is a small but relevant literature on the topic of co–trending, to
our knowledge this concept has not been used heretofore to examine co–movements in
hemispheric temperatures. Nor, for that matter, has the logistic function framework
(i.e., the TV–AR model of Lin and Teräsvirta, 1994) been formally developed as a
useful construct for examining co–trending (co–shifting) amongst two or more related
variables. This paper therefore accomplishes two important yet related goals. Firstly,
we present a framework that defines the concept of and the testing for co–shifting in
the context of an SM–VAR model. Secondly, we utilize the conceptual framework to
examine the possibilities for co–shifting between surface temperatures in the northern
and southern hemisphere.

In the empirical analysis the modelling sequence begins by using the QuickShift proce-
dure developed by González and Teräsvirta (2008) to identify the number of relevant
shifts in each series. In as much as QuickShift is a univariate procedure, and given
that we wish to employ it in a bivariate setting, we find that it is expedient to use a
relatively strict control sequence for the significance level cutoff applied in the tests
conducted in each iteration of QuickShift. When we apply this approach to the hemi-
spheric temperature data we find that four logistic function components are adequate
to characterize the shifts in the mean of the northern series whilst only three are re-
quired for the southern series. These logistic function components and the parameter
estimates embedded in them, as obtained by applying QuickShift, are then used as a
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starting point to estimate the parameters of the the bivariate SM–VAR. Subsequent
testing reveal that two logistic function components are common to both equations,
that is, the hemispheric temperatures data do, in fact, behave in a manner consistent
with co–shifting. Moreover, one of these common shifts has occurred during the past
40 years, and, based on the estimate of the corresponding centrality parameter, is far
from being complete.

Importantly, the estimated SM–VAR has been subjected to a battery of diagnostic
and evaluative tests. In every instance the estimated model appears to be acceptable.
We are therefore confident that the estimated SM–VAR model of hemispheric tem-
peratures provides a reasonable representation of the data and, moreover, an accurate
representation of the mean shifts that have occurred in these series over time.
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Table 1: Stationarity Test Results for Hemispheric
Temperature Data.

Northern Southern
Hemisphere Hemisphere

ττ (n) 0.0199 0.0172

Ftrig 41.16
(0.001)

27.02
(0.001)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Critial Values:

10% 0.0201

5% 0.0222

1% 0.0268

Note: Test statistics are calculated by setting ℓ = 4 for the
truncation lag in computing the long–run variance, and by using
n = 3 cumulative frequencies in the Fourier series approximation.
The critical values are taken from Becker, Enders and Lee (2006),
and correspond to a sample size of 100. Ftrig is the standard F
statistic associated with the null hypothesis that the correspond-
ing trigonometric terms in the Fourier approximation should be
excluded. Numbers in parentheses below the Ftrig statistics are
bootstrapped p–values based on 999 bootstrap draws of the null
model without trigonometric terms. The F statistics as well as
the empirical distributions of these statistics were constructed
by using the Newey and West (1987) covariance estimator with
truncation lag ℓ = 4.
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Table 4: System Estimates for the Hemispheric Temperature SM–VAR with
Co–Shifting Restrictions Imposed.

Northern Hemisphere:†

ynt = − 0.147
(0.043)

+ 1.017
(0.257)

(1 + exp{− 3.890
(0.685)

[t/T − 0.900
(0.036)

]/0.289})−1

+ 0.304
(0.061)

(1 + exp{− 29.971
(4.887)

[t/T − 0.461
(0.007)

]/0.289})−1

− 0.296
(0.064)

(1 + exp{− 49.459
(11.982)

[t/T − 0.743
(0.005)

]/0.289})−1

− 0.151
(0.050)

(1 + exp{− 4.288
(0.490)

[t/T − 0.284
(0.019)

]/0.289})−1

+ 0.144
(0.070)

ynt−1 + 0.042
(0.071)

ynt−2 − 0.188
(0.071

ynt−3 + 0.392
(0.097)

yst−1 − 0.235
(0.103)

yst−2 + 0.167
(0.099

yst−3 + ε̂nt

R2 = 0.846, σ̂n = 0.112, Sk = 0.005, Ek = 0.270, LJB = 0.481(0.786)

Southern Hemisphere:†

yst = − 0.299
(0.037)

+ 0.434
(0.111)

(1 + exp{− 3.890
(0.685)

[t/T − 0.900
(0.036)

]/0.289})−1

− 1.105
(0.461)

(1 + exp{− 7.027
(0.556)

[t/T − 0.275
(0.014)

]/0.289})−1

+ 1.292
(0.443)

(1 + exp{− 4.288
(0.490)

[t/T − 0.284
(0.019)

]/0.289})−1

+ 0.473
(0.070)

yst−1 − 0.182
(0.080)

yst−2 + 0.119
(0.071)

yst−3 + ε̂st

R2 = 0.858, σ̂s = 0.097 Sk = 0.133, Ek = −0.098, LJB = 0.528(0.768)

ρ̂ns = 0.579

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
System Statistics:

lnL = 298.536, AIC = −9.062, BIC = −8.461, LMΩt = 3.196× 10−4(0.999), Sks = 0.681(0.711),

Eks = 0.351(0.839), LJBs = 1.032(0.905), LMV AR(4) = 0.260(0.999), LMV AR(6) = 0.378(0.997),

LMV AR(8) = 0.517(0.988), LMV AR(10) = 0.733(0.887), LMV AR(12) = 1.027(0.428)

† See footnote 6.

Note: ρ̂ns is the estimated correlation between the residuals. Sk denotes skewness and Ek excess
kurtosis. LJB is the Lomnicki–Jarque–Bera test of normality of the residuals. These same statistics
with a subscripted s are for the system, as described by Lütkepohl and Krätzig (2004). AIC and
BIC denote, respectively, the system Akaike information criterion and the Rissamen–Schwarz Bayesian
information criterion. LMΩt denotes the system LM test of Eklund and Teräsvirta (2007) for a time–
varying covariance matrix. LMV AR(j) denote system LM F–tests, based on Rao’s F , for remaining
vector autocorrelation at lags j = 4, 6, 8, 10, 12. Values in parentheses beside test statistics are p–values.
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Panel A: Northern Hemisphere
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Panel B: Southern Hemisphere

Actual

Shifting Mean

G(1)

G(2)

G(3)

Time

T
e
m

p
e
ra

tu
re

 A
n

o
m

a
ly

T
ra

n
sitio

n

1860 1880 1900 1920 1940 1960 1980 2000
-0.75

-0.50

-0.25

0.00

0.25

0.50

0.00

0.25

0.50

0.75

1.00

Figure 2: QuickShift Results for Temperature Anomalies for the Northern (Panel
A) and Southern (Panel B) Hemispheres, 1850–2010. The dashed line indicates the
shifting mean and the dash–dot lines indicate the estimated transition functions.
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Panel A: Northern Hemisphere
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Panel B: Southern Hemisphere

Actual

Shifting Mean

G(1)

G(6)

G(4)

Time

T
e
m

p
e
ra

tu
re

 A
n

o
m

a
ly

T
ra

n
sitio

n

1860 1880 1900 1920 1940 1960 1980 2000
-0.75

-0.50

-0.25

0.00

0.25

0.50

0.00

0.25

0.50

0.75

1.00

Figure 3: Bivariate VAR Results with Co–Trending Restrictions for Temperature
Anomalies for the Northern (Panel A) and Southern (Panel B) Hemispheres, 1850–
2010. The dashed line indicates the shifting mean and the dash–dot lines indicate the
estimated transition functions.
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