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Abstract

This paper considers asymptotic inference in the multivariate BEKK model
based on (co-)variance targeting (VT). By definition the VT estimator is a two-step
estimator and the theory presented is based on expansions of the modified like-
lihood function, or estimating function, corresponding to these two steps. Strong
consistency is established under weak moment conditions, while sixth order moment
restrictions are imposed to establish asymptotic normality. Included simulations in-
dicate that the multivariately induced higher-order moment constraints are indeed
necessary.
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1 Introduction

As shown in Laurent, Rombouts, and Violante (2012) variance targeting (VT) estima-
tion, or simply VT, is highly applicable when forecasting conditional covariance matrices.
This paper derives large-sample properties of the variance targeting estimator (VTE) for
the multivariate BEKK-GARCH model, establishing that asymptotic inference is feasi-
ble in the model when estimated by VT. Whereas large-sample properties of the VTE
have recently been considered by Francq, Horváth, and Zakoïan (2011) for the univariate
GARCH model, the properties have, to our knowledge, not been investigated before for
the multivariate case. We find that the VTE is strongly consistent if the observed process
has finite second-order moments, and asymptotic normality applies if the observed process
has finite sixth-order moments. These moment restrictions for large-sample inference in
the BEKK-GARCH model, when estimated by VT estimation, are in line with existing
literature for large-sample inference with quasi-maximum likelihood estimation (QMLE),
see Hafner and Preminger (2009b). Included simulations indicate that our imposed sixth
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funded by the Danish National Research Foundation, are gratefully acknowledged.
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order moment restrictions cannot be relaxed for VT estimation, see also Avarucci, Beut-
ner, and Zaffaroni (2012) where it is argued that at least fourth order moments are needed
for QMLE. Thus our results points at that while VT estimation is simpler and even possi-
ble to implement for higher order systems, it requires no further moments than for QML
based estimation.
Most financial applications are by nature multivariate with forecasts of conditional

covariance matrices as important components as in for example the rich portfolio choice
and Value-at-Risk literature. Such forecasts may be based on estimation of multivariate
conditionally heteroscedastic (GARCH) models such as the BEKK model proposed by
Engle and Kroner (1995), see e.g. Bauwens, Laurent, and Rombouts (2006) and Lau-
rent, Rombouts, and Violante (2012). This is by now a well-known and much applied
multivariate GARCH model; However, a drawback of the BEKK model, despite the fact
that it is a very simple extension of the popular univariate GARCH model in Bollerslev
(1987), is that it contains a large number of parameters even for a small number of series.
This implies that it is diffi cult, if not impossible, to estimate the model through classical
QMLE. At the same time, recent development in financial applications implies an increas-
ing interest in conditional covariances and correlations based on vast, or high-dimensional
models. In light of this, one may reparametrize, or modify the BEKK model to obtain
fewer parameters, while at the same time one may wish to consider a different estima-
tion method from the usual Gaussian QMLE of all parameters. Examples of reducing
the number of varying parameters in the optimization procedure include, for the BEKK
model, diagonal-BEKK and scalar-BEKK, see Bauwens, Laurent, and Rombouts (2006).
VT estimation was originally proposed by Engle and Mezrich (1996) as a two-step

estimation procedure, where the unconditional covariance matrix of the observed process
is estimated by a moment estimator in a first step. Conditional on this, the remaining
parameters are estimated in a second step by QMLE. This two-step procedure saves the
number of parameters in the optimization step which yields an optimization over fewer
parameters regardless of the model has a restricted or unrestricted BEKK representation.
Recently, Noureldin, Shephard, and Sheppard (2012) have proposed the so-called mul-
tivariate rotated ARCH (RARCH) model that is estimated in two steps closely related
to VT estimation and thus saving the number of varying parameters in the optimization
step.
High-order moment restrictions for the multivariate BEKK model —as contrary to the

univariate GARCH model —is extensively discussed in Avarucci, Beutner, and Zaffaroni
(2012), which argues that the high-order moment restrictions for QMLE cannot be re-
laxed. As mentioned simulations are included which support this view for the VT based
estimation. Note also in this respect that the strong moment restrictions for asymptotic
QML inference in the multivariate BEKK model are similarly in contrast to the very mild
conditions found for univariate GARCH models, see e.g. Jensen and Rahbek (2004) and
Francq and Zakoïan (2012) who find that asymptotic inference in the GARCH model is
feasible even if the observed process is explosive.
The theoretical parts of this paper make extensive use of linear algebra and matrix

differential calculus, see Lütkepohl (1996) and Magnus and Neudecker (2007) respectively.
Some notation throughout the paper: For n ∈ N, In is the n× n identity matrix. The

vector vec(A) stacks the columns of a matrix A, and vech(A) stacks the columns from the
principal diagonal downwards. The trace of a square matrix A is denoted tr{A}, and the
determinant is denoted det(A). For a k× l matrix A = {aij} and an m×n matrix B, the
Kronecker product of A and B is the km × ln matrix defined by A ⊗ B = {aijB}. The
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matrix (Euclidean) norm of the matrix, or vector A, is defined as ‖A‖ = (tr{A′A})1/2.
With λ1, ..., λn the n distinct eigenvalues of a matrix A, ρ(A) = maxi∈{1,...,n} |λi| is the
spectral radius of A. For an n × n matrix A, the n2 × n2 commutation matrix Knn has
the property Knnvec(A) =vec(A′). The letters K and φ denote strictly positive generic
constants with φ < 1.

2 The variance targeting (VT) BEKK model

As in Hafner and Preminger (2009b) we focus on the BEKK(1,1,1) model, the BEKK
model hereafter, which is the predominantly used version of the BEKK models in appli-
cations, see Silvennoinen and Teräsvirta (2009). The BEKK model is given by

Xt = H
1/2
t Zt, (2.1)

where t = 1, ..., T, and Zt is an IID(0, Id) sequence of random variables. H
1/2
t is the

symmetric square-root of Ht given by

Ht = C + AXt−1X
′
t−1A

′ +BHt−1B
′, (2.2)

with X0 and H0 fixed, and H0 positive definite. Moreover, C ∈ Rd×Rd is positive definite
and A,B ∈ Rd × Rd, and hence Ht in (2.2) is positive definite.
Theorem 2.1 below states that, under certain assumptions, there exists a covariance

stationary solution of the BEKK model. More precisely, if {Xt}t=1,...,T is covariance
stationary, then V [Xt] = E [Ht] = Γ where Γ is positive definite and solves the equation

Γ = C + AΓA′ +BΓB′. (2.3)

Boussama, Fuchs, and Stelzer (2011, Lemma 4.2 and Proposition 4.3) establish that such
solution exists if ρ [(A⊗ A) + (B ⊗B)] < 1. Variance targeting can be presented as
rewriting the model so that the unconditional covariance matrix of Xt appears explicitly
in the equation for Ht. Substituting (2.3) into (2.2) yields

Ht = Γ− AΓA′ −BΓB′ + AXt−1X
′
t−1A

′ +BHt−1B
′, (2.4)

and we say that Ht has the variance targeting BEKK representation, see also Noureldin,
Shephard, and Sheppard (2012).
Define γ =vec(Γ) and

λ =
[
vec (A)′ , vec (B)′

]′
, (2.5)

and let θ denote the parameter vector of the model containing all the elements of Γ,
A, and B, so that θ = [γ′, λ′]

′
. Throughout the text we will use the notation Ht(γ, λ),

indicating that Ht depends on the parameters in γ and λ. Then the variance targeting
BEKK model with parameter vector [γ′, λ′]

′ is given by

Xt = H
1/2
t (γ, λ)Zt, (2.6)

where t = 1, ..., T, and Zt is IID(0, Id), and

Ht(γ, λ) = Γ− AΓA′ −BΓB′ + AXt−1X
′
t−1A

′ +BHt−1(γ, λ)B′, (2.7)
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where γ =vec(Γ) and λ =
[
vec (A)′ vec (B)′

]
. Note that the parameters in λ are re-

stricted such that ρ [(A⊗ A) + (B ⊗B)] < 1 on the parameter space Θ ⊂ R3d2 . Moreover,
X0 and H0 are fixed, and H0 and Γ are positive definite.
Some properties of a BEKK process have recently been investigated by Boussama,

Fuchs, and Stelzer (2011) and may be summarized in the following theorem.

Theorem 2.1 (Corollary to Theorem 2.4 of Boussama, Fuchs, and Stelzer (2011))
Let {Xt}t=1,...,T be a process generated by a variance targeting BEKK process and define

Wt =
[
vech (Ht)

′ , X ′t
]′
. (2.8)

Suppose that the distribution of Zt is absolutely continuous with respect to the Lebesgue
measure on Rd, and that zero is an interior point of the support of the density.
Then the Markov chain {Wt}t=1,...,T is geometrically ergodic. Moreover, the strictly sta-
tionary and ergodic solution of the model associated with {Wt}t=1,...,T has E ‖Xt‖2 < ∞
and E ‖Ht‖ <∞ for all t.

Remark 2.1 The geometric ergodicity of {Wt}t=1,...,T implies that there exists a unique
invariant distribution for Wt and that the marginal distribution of {Wt}t=1,...,T converges
to this stationary distribution when the chain is not initialized from its stationary distri-
bution.

Remark 2.2 By initiating {Wt}t=1,...,T from the invariant distribution, Xt is covariance
stationary.

Remark 2.3 In Section 3 we show that asymptotic normality of the variance-targeting
estimator can be established when E ‖Xt‖6 < ∞. Choosing a drift function for Wt in
(2.8) which implies E ‖Xt‖6 <∞ has, to our knowledge, not been considered anywhere in
the literature. In Appendix C we establish conditions for geometric ergodicity and finite
second, fourth, sixth, and eighth-order moments for the simpler BEKK-ARCH(1) model
as in (2.2) with B = 0 and Zt Gaussian.

3 Variance targeting (VT) estimation

Whereas classical QMLE of the BEKK model has been considered by Comte and Lieber-
man (2003) and Hafner and Preminger (2009b) (as a special case of the VEC GARCH
model), we consider the estimation method of variance targeting. VT estimation is a two-
step estimation method where γ is estimated by a the sample unconditional covariance
matrix of Xt, and next λ is estimated by QMLE by optimizing the VT log-likelihood with
respect to λ. The two-step procedure yields the VTE of θ denoted θ̂V T . This will be
explained in detail below.
Let Λ be a space of the same dimension as λ in (2.5). Note that the parameter θ ∈ R3d2

only contains 2d2 + d (d+ 1) /2 unique elements since Γ is symmetric. The VT procedure
suggests that Γ is estimated by the sample covariance, so that

γ̂V T = vec

(
1

T

T∑
t=1

XtX
′
t

)
. (3.1)
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We observe that if Xt is strictly stationary and ergodic with E ‖Xt‖2 < ∞, γ̂V T is a
(strongly) consistent estimator for γ =vec(Γ), by the ergodic theorem.
For the variance targeting BEKK model, the profiled quasi log-likelihood is given by

LT (γ, λ) =
1

T

T∑
t=1

lt(γ, λ) (3.2)

with
lt(γ, λ) = log {det [Ht (γ, λ)]}+ tr

{
XtX

′
tH
−1
t (γ, λ)

}
. (3.3)

Given an estimate (3.1) of γ, the VTE of λ is defined as

λ̂V T = arg min
λ∈Λ

LT (γ̂V T , λ) . (3.4)

and the two-step procedure yields the VTE of γ and λ

θ̂V T =
[
γ̂′V T , λ̂

′
V T

]′
.

Remark 3.1 Although Zt is not assumed to be necessarily Gaussian, we choose to work
with the Gaussian log-likelihood and hence, similar to the notion of QMLE, one could
denote the estimator QVTE.

Compared to QMLE the VT procedure saves the number of varying parameters in the
optimization step: In the first step d (d+ 1) /2 parameters are estimated by method of
moments, and in the second step 2d2 parameters are estimated through optimization. If
A and B are diagonal matrices, which is a restriction that is often imposed in practice,
the proportion of varying parameters, relative to the total number of parameters to be
estimated, is small for a moderate dimension of the observed process. This suggests
that the combination of a restricted BEKK model, say the diagonal, and VT allows for
estimating high-dimensional systems.
For estimation of C in the original BEKK model in Definition 2.2, recall that

ĈV T = Γ̂V T − ÂV T Γ̂′V T ÂV T − B̂V T Γ̂′V T B̂V T . (3.5)

Its asymptotic distribution is stated in Proposition 4.1 below.

4 Large-sample properties of VT estimation

In this section we establish the consistency and asymptotic normality of the VTE. The
proofs are stated in Appendix A.
As in Comte and Lieberman (2003), Hafner and Preminger (2009b), and Francq,

Horváth, and Zakoïan (2011), we assume that{Xt}t=0,...,T is strictly stationary and er-
godic:

Assumption 4.1 The assumptions of Theorem 2.1 are satisfied, and the observed process
{Xt}t=0,...,T is generated by the strictly stationary and ergodic solution of a variance-
targeting BEKK process.
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Note that one could weaken this assumption so that {Xt}t=0,...,T is initiated from a
fixed value, see Jensen and Rahbek (2004).
In addition to Assumption (4.1) we make the following assumptions:

Assumption 4.2 The true parameter θ0 ∈ Θ and Θ is compact.

Assumption 4.3 For λ ∈ Λ, if λ 6= λ0 then Ht (γ0, λ) 6= Ht (γ0, λ0) almost surely, for
all t ≥ 1.

We are now able to state the following theorem.

Theorem 4.1 Under Assumptions 4.1, 4.2, and 4.3, as T →∞ the VTE satisfies

θ̂V T
a.s.→ θ0.

Remark 4.1 Assumptions 4.2, and 4.3 are in line with Comte and Lieberman (2003)
and Hafner and Preminger (2009b).

Remark 4.2 The finite second-order moments of Xt, implied by Assumption 4.1, are
in line with the moment restrictions for consistency of the VTE in the univariate case,
see Francq, Horváth, and Zakoïan (2011). The relatively weak suffi cient conditions of
Theorem 4.1 suggest that consistency of the VTE applies for many practical purposes.
Notice that the moment restrictions are stronger than the ones that are suffi cient for
consistency of the QMLE for the BEKK model of the form (2.2) where finite second-order
moments of Xt are not necessary, see Hafner and Preminger (2009b).

In order to show that the VTE is asymptotically normal, we make two additional
assumptions:

Assumption 4.4 E ‖Xt‖6 <∞.

Assumption 4.5 θ0 is in the interior of Θ.

Theorem 4.2 Under Assumptions 4.1-4.5, as T →∞

√
T
(
θ̂V T − θ0

)
D→ N

(
0,

(
Id2 0

−J−1
0 K0 −J−1

0

)
Ω0

(
Id2 0

−J−1
0 K0 −J−1

0

)′)
,

where the matrices J0 and K0 are stated in (A.10) and Ω0 is stated in (B.36) below.

Remark 4.3 Assumption 4.4 states that the observed process Xt is required to have fi-
nite sixth-order moments. The moment restrictions are required in order to show that the
second-order derivatives of the log-likelihood function converges uniformly on the parame-
ter space, see the proof of Lemma B.5 below. Notice that the requirement of sixth-order
moments is stronger than the requirement of finite fourth-order moments found by Francq,
Horváth, and Zakoïan (2011) for the univariate case. However, notice that if we choose
d = 1, our model corresponds to the one considered by Francq, Horváth, and Zakoïan
(2011) and Assumption 4.4 can be weakened such that only finite fourth-order moments
of Xt are required. In the case where the dimension is greater than one, the structure of
the BEKK model implies that high-order moments of the Xt are required to be finite. This
issue is discussed extensively in Avarucci, Beutner, and Zaffaroni (2012). Notice that the
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moment conditions are just as weak as the ones found in existing literature on asymp-
totic normality of the QMLE, see Hafner and Preminger (2009b). Assumption 4.4 is a
strong assumption that is rarely satisfied in practice, and illustrates the main drawback of
the BEKK models: Standard large-sample inference requires moment conditions that are
rarely satisfied in real-world applications. Assumption 4.5 is a standard assumption in the
literature.

Given the asymptotic distribution of θ̂V T , we may derive the asymptotic distribution
of the VTE for C in the original BEKK model in (2.2):

Proposition 4.1 Under the assumptions of Theorem 4.2, as T →∞

√
T
(
vec
(
ĈV T

)
− vec (C0)

)
D→ N

(
0,Σ0

(
Id2 0

−J−1
0 K0 −J−1

0

)
Ω0

(
Id2 0

−J−1
0 K0 −J−1

0

)′
Σ′0

)
,

where

Σ0
(d2×3d2)

=
(
[Id2 − (A0 ⊗ A0)− (B0 ⊗B0)] − [Id2 +Kdd] [(A0Γ0)⊗ Id] − [Id2 +Kdd] [(B0Γ0)⊗ Id]

)
.

5 Simulation study

In this section we illustrate the theoretical results of Section 4 through simulations. Specif-
ically, we simulate the large-sample distribution of the VTE for three different cases. In
the first case the suffi cient moment restrictions for asymptotic normality, see Theorem
4.2, are satisfied - in particular the data-generating process (DGP) has finite sixth-order
moments. In the second case the DGP does not have finite sixth-order moments, but finite
fourth-order moments. Hence the conditions of Theorem 4.2 are violated, so the VTE
for the entire parameter vector may not be asymptotically normal. However, the moment
restrictions for asymptotic normality of the VTE for γ are satisfied. In the last case the
DGP has only finite second-order moments which suggests that even the VTE of γ cannot
be asymptotically normally distributed. In order to keep things simple we focus on the
bivariate diagonal-BEKK-ARCH(1) with Gaussian noise , that is the process in (2.2) with
d = 2, A diagonal, B = 0, and Zt IIDN(0, I2). In Appendix C we establish conditions for
the matrix A in a BEKK-ARCH(1) process such that {Xt}t=1,...,T is geometrically ergodic
and such that certain moments of the stationary solution are finite.

5.1 Case 1: The DGP satisfies the suffi cient conditions for as-
ymptotic normality

Consider the bivariate DGP for Xt given by (2.2) with B = 0. That is

Xt = H
1/2
t Zt, Zt IIDN(0, I2), and Ht = C + AXt−1X

′
t−1A

′, (5.1)

with C = (Cij)i,j=1,2 =

(
0.8 0.5
0.5 0.7

)
. (5.2)

First we choose A such that E ‖Xt‖6 <∞. Specifically, we set

A = (Aij)i,j=1,2 =

(
0.6 0
0 0.5

)
, (5.3)
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and observe that ρ (A⊗ A) = 0.36. By Theorem C.1 the stationary solution of the process
has E ‖Xt‖6 <∞, and hence the moment restrictions of Theorem 4.2 are satisfied.
For N = 1000 realizations of (5.1)-(5.3), t = 1, ..., 10000, H1 = C, we estimate A and

C by VTE using the G@RCH Package version 6.1 for OxMetrics 6.1.

A 1 1 N(s=0.0122)

0.56 0.58 0.60 0.62 0.64
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A 1 1 N(s=0.0122) A 1 1 ×  normal

0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63
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C 1 1 N(s=0.0161)

0.750 0.775 0.800 0.825 0.850 0.875
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0.76 0.78 0.80 0.82 0.84

0.750

0.775

0.800

0.825

0.850

QQ plo t
C 1 1 ×  normal

Figure 5.1: Density and Q-Q plots of N = 1000 VT estimates of A11 and C11 of the process
(5.1)-(5.3). In the density plots the red line is the plot of the estimated density of the VT
estimates, and the black dashed line is the plot for the normal distribution. The Q-Q plots
compare the quantiles of the estimate with the ones of a normal distribution (red crosses). The
solid blue lines are the asymptotic 95% standard error bands of a normal distribution.

Figure 5.1 contains density and Q-Q plots of the estimates of A11 and C11 in the process
(5.1)-(5.3). The figure suggests that the estimates seem to fit a normal distribution well,
which is in line with Theorem 4.2.
We now turn to the second case where the DGP does not satisfy the conditions in

Theorem 4.2.

5.2 Case 2: The DGP does not satisfy the suffi cient conditions
for asymptotic normality

Next we consider the DGP (5.1)-(5.2) and choose A such that E ‖Xt‖4 <∞, but E ‖Xt‖6

is not finite. We set

A = (Aij)i,j=1,2 =

(
0.75 0

0 0.5

)
, (5.4)

so that ρ (A⊗ A) = 0.752 = 0.5625. This implies that E ‖Xt‖6 is not finite, however
ρ (A⊗ A) < 1√

3
≈ 0.5774 , so we have that the DGP is geometrically ergodic with
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A 1 1 N(s=0.018)
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A 1 1 N(s=0.018) A 1 1 ×  normal
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C 1 1 N(s=0.0205)

0.725 0.75 0.775 0.8 0.825 0.85 0.875
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0.750 0.775 0.800 0.825 0.850

0.75

0.80

0.85
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Figure 5.2: Density and Q-Q plots of N = 1000 VT estimates of A11 and C11 of the process
(5.1),(5.2),(5.4). In the density plots the red line is the plot of the estimated density of the
VT estimates, and the black dashed line is the plot for the normal distribution. The Q-Q plots
compare the quantiles of the estimate with the ones of a normal distribution (red crosses). The
solid blue lines are the asymptotic 95% standard error bands of a normal distribution.

E ‖Xt‖4 < ∞ for the stationary solution by Theorem C.1. As in Case 1 we consider
N = 1000 realizations of the DGP and estimate A and C by VTE.
Figure 5.2 contains density and Q-Q plots of the estimates of A11 and C11 in the

process (5.1),(5.2),(5.4). The estimates of A11 do not seem to be normally distributed.
The density is skewed compared to normal distribution, which can also be deduced by
the S-shape of the points in the Q-Q plot. The estimates of C11 do seem to fit a normal
distribution, except for a few outliers (see Q-Q plot). In the following we explain why
this can happen.
Recall that vec(ĈV T ) = [Id2 − (ÂV T ⊗ ÂV T )]γ̂V T , so the distribution of vec(ĈV T )

(or more correctly
√
T [vec(ĈV T )−vec(C0)]) depends on the distribution of (ÂV T ⊗ ÂV T )

and γ̂V T . Recall that γ̂V T is asymptotically Gaussian if E ‖Xt‖4 < ∞ by the Central
Limit Theorem, which can be verified by observing that vec(Γ̂V T ) is given by (B.33),
and that

√
T [vec(Γ̂V T )−vec(Γ0)] is asymptotically Gaussian, if E ‖At‖ < ∞, see proof

of Lemma B.9. This is the case if E ‖Xt‖4 < ∞, which holds for our choice of DGP, so√
T [vec(Γ̂V T )−vec(Γ0)] is indeed asymptotically Gaussian. Next

√
Tvec

(
ĈV T − C0

)
=

[
Id2 −

(
ÂV T ⊗ ÂV T

)]√
Tvec

(
Γ̂V T − Γ0

)
(5.5)

−
√
T
[(
ÂV T ⊗ ÂV T

)
− (A⊗ A)

]
vec (Γ0) .

If E ‖Xt‖4 <∞ the first term of the right hand side of (5.5) converges to a Gaussian vari-
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able, and determines the distribution of
√
Tvec

(
ĈV T − C

)
if
[(
ÂV T ⊗ ÂV T

)
− (A⊗ A)

]
converges to some (unknown) distribution with a rate of T 1/2+δ for some δ > 0. Suppose[(
ÂV T ⊗ ÂV T

)
− (A⊗ A)

]
= OP

(
1/T 1/2+δ

)
, then

√
T
[(
ÂV T ⊗ ÂV T

)
− (A⊗ A)

]
=

oP (1), and hence√
Tvec

(
ĈV T − C

)
=
[
Id2 −

(
ÂV T ⊗ ÂV T

)]√
Tvec

(
Γ̂V T − Γ0

)
+ oP (1), which ensures

that
√
Tvec

(
ĈV T − C0

)
is asymptotically normally distributed.

Next we turn to the case where E ‖Xt‖2 <∞, but E ‖Xt‖4 is not finite.

5.3 Case 3: The DGP has E ‖Xt‖2 <∞, but E ‖Xt‖4 is not finite
Finally, we consider the DGP (5.1)-(5.2) and choose A such that E ‖Xt‖2 < ∞, but
E ‖Xt‖4 is not finite. We set

A = (Aij)i,j=1,2 =

(
0.95 0

0 0.8

)
, (5.6)

and we have that ρ (A⊗ A) = 0.952 = 0.9025. This implies that E ‖Xt‖4 is not finite,
however ρ (A⊗ A) < 1 , so we have that the DGP is geometrically ergodic with E ‖Xt‖2 <
∞ by Theorem C.1. As in Case 1 and 2 we consider N = 1000 realizations of the DGP
and estimate A and C by VTE.
Figure 5.3 contains density and Q-Q plots of the estimates of A11 and C11 in the

process (5.1),(5.2),(5.6). None of the estimates seem to be normally distributed. In light

of Case 2 this might be explained by the fact that
√
Tvec

(
Γ̂V T − Γ

)
is not asymptotically

normal as E ‖Xt‖4 is not finite.
Briefly, the simulation study suggests that asymptotic normality of the VTE applies

when Xt has finite sixth-order moments, which is in line with the theory derived in
Section 4. Case 2 showed that when relaxing the moment restrictions, ÂV T is no longer
asymptotically normally distributed. This indicates that E ‖Xt‖6 < ∞ is a necessary
moment restriction for doing standard large-sample inference in the BEKK-ARCH(1)
model when estimated by VTE. Case 2 also showed that ĈV T is asymptotically normal
even if E ‖Xt‖6 is not finite (but E ‖Xt‖4 < ∞) , which might be explained by the fact
that asymptotic normality of Γ̂V T only requires that E ‖Xt‖4 < ∞. Case 3 showed that
when E ‖Xt‖2 < ∞ but E ‖Xt‖4 is not finite, neither ÂV T nor ĈV T are asymptotically
normal.

6 Extensions and concluding remarks

We derive the asymptotic properties of the variance-targeting estimator (VTE) for the
multivariate BEKK-GARCHmodel. Variance-targeting estimation relies on reparametriz-
ing the BEKK model in (2.1)-(2.2) such that the variance of the observed process appears
explicitly in the model equation. This yields a reparametrized (variance-targeting) model
given by (2.6)-(2.7). The parameters of the model are estimated in two steps yielding
the VTE: The variance of the observed process is estimated by method of moments, and
conditional on this, the rest of the parameters are estimated by QMLE. We establish
that the VTE is consistent when the observed process has finite second-order moments,
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Figure 5.3: Density and Q-Q plots of N = 1000 VT estimates of A11 and C11 of the process
(5.1),(5.2),(5.6). In the density plots the red line is the plot of the estimated density of the
VT estimates, and the black dashed line is the plot for the normal distribution. The Q-Q plots
compare the quantiles of the estimate with the ones of a normal distribution (red crosses). The
solid blue lines are the asymptotic 95% standard error bands of a normal distribution.

and is asymptotically Gaussian when the process has finite sixth-order moments. Our
simulations indicate that these moment restrictions cannot be relaxed.
An obvious way to extend our results is to consider the general BEKK(p, q, k) model

and the multivariate Rotated GARCH (RARCH) model recently proposed in Noureldin,
Shephard, and Sheppard (2012). The model and the proposed two-step estimation pro-
cedure has some similarities to VTE, and it may be possible to exploit some of our
theoretical results when investigating the asymptotic properties of the two-step estimator
for the RARCH.

A Proofs of Theorems

In the asymptotic analysis we assume that the observed process {Xt}t=0,...,T is strictly
stationary and ergodic, see Assumption 4.1. Throughout the text we use the probability
measure where Wt =

[
vech (Ht)

′ , X ′t
]′
in (2.8) is strictly stationary and ergodic with

appropriate moments finite. We define for t ≥ 1

Ht(γ, λ) = Γ− AΓA′ −BΓB′ + AXt−1X
′
t−1A

′ +BHt−1(γ, λ)B′, (A.1)

11



where H0(γ, λ) is strictly stationary. For the recursions defining Ht(γ, λ) in (A.1) it is
useful to introduce also Ht,h(γ, λ) given by

Ht,h(γ, λ) = Γ− AΓA′ −BΓB′ + AXt−1X
′
t−1A

′ +BHt−1,h(γ, λ)B′, (A.2)

where H0,h (γ, λ) = h is fixed and positive definite. We observe that as both recursions in
(A.1) and (A.2) are defined for the same strictly stationary {Xt}t=0,...,T ,

vec [Ht(γ, λ)−Ht,h(γ, λ)] = (B ⊗B) vec [Ht−1(γ, λ)−Ht−1,h(γ, λ)] , t ≥ 1. (A.3)

Recall that

LT (γ, λ) =
1

T

T∑
t=1

lt(γ, λ), (A.4)

with
lt(γ, λ) = log {det [Ht (γ, λ)]}+ tr

{
XtX

′
tH
−1
t (γ, λ)

}
, (A.5)

and Ht(γ, λ) given by (A.1). To distinguish between Ht(γ, λ) and Ht,h(γ, λ) we introduce
correspondingly

LT,h(γ, λ) =
1

T

T∑
t=1

lt,h(γ, λ) (A.6)

with
lt,h(γ, λ) = log {det [Ht,h (γ, λ)]}+ tr

{
XtX

′
tH
−1
t,h (γ, λ)

}
, (A.7)

with Ht,h (γ, λ) given by (A.2).

A.1 Proof of Theorem 4.1

In order to make the proof readable, most of its steps rely on lemmas stated and proved
in Section B.1 below.
Observe initially that by the ergodic theorem, as T →∞

γ̂V T
a.s.→ γ0. (A.8)

It now remains to verify that λ̂V T is consistent. The proof follows the technique from the
proof of Theorem 2.1 in Newey and McFadden (1994). We have that for any ε > 0 almost
surely for large enough T

E
[
lt

(
γ0, λ̂V T

)]
< LT

(
γ0, λ̂V T

)
+ ε/5 by Lemma B.3

LT

(
γ0, λ̂V T

)
< LT,h

(
γ̂V T , λ̂V T

)
+ ε/5 by Lemma B.1

LT,h

(
γ̂V T , λ̂V T

)
< LT,h (γ̂V T , λ0) + ε/5 by (3.4)

LT,h (γ̂V T , λ0) < LT (γ0, λ0) + ε/5 by Lemma B.1

LT (γ0, λ0) < E [lt (γ0, λ0)] + ε/5 by Lemma B.3.

Hence for any ε > 0,
E
[
lt

(
γ0, λ̂V T

)]
< E [lt (γ0, λ0)] + ε.

By standard arguments as in Newey and McFadden (1994), it follows that as T → ∞,
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λ̂V T
a.s.→ λ0. Combined with (A.8), we conclude that as T →∞, θ̂V T

a.s.→ θ0.
We now turn to the proof of asymptotic normality of the VTE.

A.2 Proof of Theorem 4.2

Again, in order to make the proof readable, most of the steps rely on lemmas stated in
Section B.2. By Assumption 4.5, (3.4), and the mean-value theorem

0 =
∂LT,h (γ0, λ0)

∂λ
+KT,h (θ∗) (γ̂V T − γ0) + JT,h (θ∗)

(
λ̂V T − λ0

)
(A.9)

where

∂LT,h (γ0, λ0)

∂λ
=

∂LT,h (γ, λ)

∂λ

∣∣∣∣
θ=θ0

, KT,h (θ∗) =
∂2LT,x (γ, λ)

∂λ∂γ′

∣∣∣∣
θ=θ∗

and JT,h (θ∗) =
∂2LT,h (γ, λ)

∂λ∂λ′

∣∣∣∣
θ=θ∗

,

and θ∗ on the line between θ0 and θ̂V T , see also the proof of Lemma 1 in Jensen and
Rahbek (2004). Let

∂LT (γ0, λ0)

∂λ
=
∂LT (γ, λ)

∂λ

∣∣∣∣
θ=θ0

, KT (θ∗) =
∂2LT (γ, λ)

∂λ∂γ′

∣∣∣∣
θ=θ∗

and JT (θ∗) =
∂2LT (γ, λ)

∂λ∂λ′

∣∣∣∣
θ=θ∗

.

By Lemma B.6, Lemma B.7, and Theorem 4.1, JT (θ∗) is invertible with probability
approaching one, so by Lemma B.11

√
Tvec

(
λ̂V T − λ0

)
= −JT (θ∗)

√
T
∂LT (γ0, λ0)

∂λ
−JT (θ∗)−1KT (θ∗)

√
T (γ̂V T − γ0)+oP (1)

Hence

√
T
(
θ̂V T − θ0

)
=

(
Id2 0

−JT (θ∗)−1KT (θ∗) −JT (θ∗)

)√
T

(
(γ̂V T − γ0)
∂LT (γ0,λ0)

∂λ

)
+ oP (1) .

Define

J0 := E

[
∂2lt (γ, λ)

∂λ∂λ′

∣∣∣∣
θ=θ0

]
and K0 := E

[
∂2lt (γ, λ)

∂λ∂γ′

∣∣∣∣
θ=θ0

]
. (A.10)

By Lemma B.6 and Theorem 4.1(
Id2 0

−J−1
T (θ∗)KT (θ∗) −J−1

T (θ∗)

)
P→
(

Id2 0
−J−1

0 K0 −J−1
0

)
.

The asymptotic normality of the VTE now follows from Lemma B.10 and Slutzky’s the-
orem.
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A.3 Proof of Proposition 4.1

Notice that vec[C (θ)] = [Id2 − (A⊗ A)− (B ⊗B)] γ. Since θ =
[
γ′ λ′

]′
,

∂vec [C (θ)]

∂θ′
=
[
∂vec[C(θ)]

∂γ′
∂vec[C(θ)]

∂vec(A)′
∂vec[C(θ)]

∂vec(B)′

]′
.

We have that
∂vec [C (θ)]

∂γ′
= [Id2 − (A⊗ A)− (B ⊗B)] ,

and
∂vec [C (θ)]

∂vec (A)′
= −∂vec (AΓA′)

∂vec (A)′
.

Since Γ is symmetric

∂vec (AΓA′)

∂vec (A)′
= [Id2 +Kdd] [(AΓ)⊗ Id] ,

which follows by Result 7 in Section 10.5.1 of Lütkepohl (1996). Likewise,

∂vec (BΓB′)

∂vec (B)′
= [Id2 +Kdd] [(BΓ)⊗ Id] .

The distribution of
√
T
[
vec
(
ĈV T

)
− vec (C0)

]
now follows by the delta method.

B Lemmas

The following section contains the lemmas that were used for establishing consistency and
asymptotic normality of the VTE in Section 4. Before we turn to the lemmas we introduce
some definitions and useful matrix analysis results for the proofs, see also Lütkepohl
(1996).
If the matrix A is positive definite we write A > 0, and if A is positive semi-definite

we write A ≥ 0. For the matrices A, B, C, and D, suppose ABCD is defined and square.
Then

tr {ABCD} = (vec (D′))
′
(C ′ ⊗ A) vec (B) = (vec (D))′ (A⊗ C ′) vec (B′) .

The spectral norm of the matrix A is defined as ‖A‖spec =
√
ρ (A′A). For the matrices A

and B, if AB is well-defined,
|tr (AB)| ≤ ‖A‖ ‖B‖ , (B.1)

‖AB‖ ≤ ‖A‖spec ‖B‖ , ‖AB‖ ≤ ‖A‖ ‖B‖spec , and ‖A+B‖spec ≤ ‖A‖spec + ‖B‖spec .
(B.2)

If A is n× n, then
‖A‖spec ≤ ‖A‖ ≤

√
n ‖A‖spec . (B.3)

For an n× n matrix A > 0 with eigenvalues λ1 (A) , ..., λn (A), it holds that

log det(A) =
n∑
i=1

log λi (A) ≤
n∑
i=1

λi (A) = tr (A) . (B.4)
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Moreover,

log det(A) = log (det(A′A))
1/2 ≤ n log (ρ(A′A))

1/2
= n log ‖A‖spec , (B.5)

where the inequality follows from the fact that det (A) ≤ ρ (A)n.
For two square matrices A and B it holds that

tr (A⊗B) = tr (A) tr (B) . (B.6)

Consider an n × n matrix A ≥ 0 and an n × n matrix B > 0 with eigenvalues λ1 (B) ≤
· · · ≤ λn (B). Let λ1 (A+B) ≤ · · · ≤ λn (A+B) denote the eigenvalues of (A+B),
Then

λi (A+B) ≥ λi (B) , i = 1, ..., n

by Result 4 in Section 5.3.2 of Lütkepohl (1996). Moreover,

0 < λi
(
(A+B)−1) ≤ λi

(
B−1

)
, i = 1, ..., n.

Hence
0 < tr

[
(A+B)−1] ≤ tr (B−1

)
. (B.7)

For an n× n matrix A and an n× n matrix B ≥ 0, it holds that

det (A+B) ≥ det (A) , (B.8)

by Result 11 in Section 4.2.6 of Lütkepohl (1996).
For two positive semi-definite n× n matrices A and B, it holds that

det (A+B) ≥ det (A) + det (B) , (B.9)

by Result 12 in Section 4.2.6 of Lütkepohl (1996).
For some matrix A we introduce the notation A⊗2 := (A⊗ A).

B.1 Lemmas for the proof of consistency

Lemma B.1 Under Assumptions 4.1-4.3, as T →∞

sup
λ∈Λ
|LT (γ0, λ)− LT,h (γ̂V T , λ)| a.s.→ 0 (B.10)

where LT (γ, λ) is stated in (A.4) and LT,h (γ̂V T , λ) is stated in (A.6).
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Proof. We have that

sup
λ∈Λ
|LT (γ0, λ)− LT,h (γ̂V T , λ)| (B.11)

= sup
λ∈Λ

∣∣∣∣∣ 1

T

T∑
t=1

(
log

{
det [Ht (γ0, λ)]

det [Ht,h (γ̂V T , λ)]

}
+ tr

{
XtX

′
t

[
H−1
t (γ0, λ)−H−1

t,h (γ̂V T , λ)
]})∣∣∣∣∣

≤ 1

T

T∑
t=1

sup
λ∈Λ

∣∣∣∣log

{
det [Ht (γ0, λ)]

det [Ht,h (γ̂V T , λ)]

}∣∣∣∣
+

1

T

T∑
t=1

sup
λ∈Λ

∣∣tr{XtX
′
t

[
H−1
t (γ0, λ)−H−1

t,h (γ̂V T , λ)
]}∣∣ ,

and we want to show that each of the averages in (B.11) converges to zero almost surely.
By definition of Ht (γ, λ) in (2.7), Γ − AΓA′ − BΓB′ > 0 on Θ and AXt−1X

′
t−1A

′ +
BHt−1B

′ ≥ 0 for all t and for all θ ∈ Θ, so applying (B.8) and (B.9) yields

det [Ht (γ, λ)] ≥ det (Γ− AΓA′ −BΓB′) > 0.

In particular, Ht (γ, λ), and similarly for Ht,h (γ, λ), is invertible for all t and all θ ∈ Θ.
Moreover,∥∥H−1

t (γ, λ)
∥∥ ≤ ∥∥∥H−1/2

t (γ, λ)
∥∥∥2

= tr
[
H−1
t (γ, λ)

]
≤ tr

[
(Γ− AΓA′ −BΓB′)

−1
]
,

where the second inequality follows by (B.7). As the eigenvalues ofHt (γ, λ) are continuous
in γ and λ, and Θ is compact,

sup
θ∈Θ

∥∥H−1
t (γ, λ)

∥∥ ≤ sup
θ∈Θ

tr
[
(Γ− AΓA′ −BΓB′)

−1
]
≤ K, (B.12)

and, likewise, supθ∈Θ

∥∥H−1
t,h (γ, λ)

∥∥ ≤ K.
By (A.8) we have that for T suffi ciently large almost surely

sup
λ∈Λ

∥∥H−1
t,h (γ̂V T , λ)

∥∥ ≤ sup
θ∈Θ

∥∥H−1
t,h (γ, λ)

∥∥ ≤ K, and sup
λ∈Λ

∥∥H−1
t (γ0, λ)

∥∥ ≤ sup
θ∈Θ

∥∥H−1
t (γ, λ)

∥∥ ≤ K.

(B.13)

Next, we note that

vec [Ht (γ0, λ)]− vec [Ht,h (γ̂V T , λ)]

=
(
Id2 − A⊗2 −B⊗2

)
(γ0 − γ̂V T ) +B⊗2vec [Ht (γ0, λ)−Ht,x (γ̂V T , λ)]

... (B.14)

=
t−1∑
i=0

(
B⊗2

)i (
Id2 − A⊗2 −B⊗2

)
(γ0 − γ̂V T ) +

(
B⊗2

)t
vec [H0 (γ0, λ)−H0,h] .

As ρ(A⊗2 +B⊗2) < 1 on Θ it follows from Proposition 4.5 of Boussama, Fuchs, and Stelzer
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(2011) that ρ(B⊗2) < 1 on Θ. Hence for any i we have that

sup
λ∈Λ

∥∥∥(B⊗2
)i∥∥∥ ≤ Kφi. (B.15)

As in Francq, Horváth, and Zakoïan (2011, p.644), (B.14), the compactness of Θ, (A.8),
and (B.15) imply that as T →∞

sup
λ∈Λ
‖vec [Ht (γ0, λ)]− vec [Ht,h (γ̂V T , λ)]‖ ≤ Kφt + o (1) a.s. (B.16)

Considering (B.11), we have that for T suffi ciently large

1

T

T∑
t=1

sup
λ∈Λ

∣∣∣∣log

{
det [Ht (γ0, λ)]

det [Ht,h (γ̂V T , λ)]

}∣∣∣∣
=

1

T

T∑
t=1

sup
λ∈Λ

∣∣log det
[
Ht (γ0, λ)H−1

t,h (γ̂V T , λ)
]∣∣

=
1

T

T∑
t=1

sup
λ∈Λ

∣∣log det
{
Id + [Ht(γ0, λ)−Ht,h (γ̂V T , λ)]H−1

t,h (γ̂V T , λ)
}∣∣

≤ K
1

T

T∑
t=1

sup
λ∈Λ

∣∣∣log
∥∥Id + [Ht(γ0, λ)−Ht,h (γ̂V T , λ)]H−1

t,h (γ̂V T , λ)
∥∥
spec

∣∣∣
≤ K

1

T

T∑
t=1

sup
λ∈Λ

∣∣∣log
(
‖Id‖spec +

∥∥[Ht(γ0, λ)−Ht,h (γ̂V T , λ)]H−1
t,h (γ̂V T , λ)

∥∥)∣∣∣
= K

1

T

T∑
t=1

sup
λ∈Λ

∣∣log
(
1 +

∥∥[Ht(γ0, λ)−Ht,h (γ̂V T , λ)]H−1
t,h (γ̂V T , λ)

∥∥)∣∣
≤ K

1

T

T∑
t=1

sup
λ∈Λ

∥∥[Ht(γ0, λ)−Ht,h (γ̂V T , λ)]H−1
t,h (γ̂V T , λ)

∥∥
≤ K

1

T

T∑
t=1

sup
λ∈Λ
‖Ht(γ0, λ)−Ht,h (γ̂V T , λ)‖ ,

where the first inequality follows from (B.5), the second from (B.2) and (B.3), and the
third follows from the fact that log (x) ≤ x− 1 for x ≥ 1. Likewise,

1

T

T∑
t=1

sup
λ∈Λ

∣∣tr{XtX
′
t

[
H−1
t (γ0, λ)−H−1

t,h (γ̂V T , λ)
]}∣∣

=
1

T

T∑
t=1

sup
λ∈Λ

∣∣tr{H−1
t,x (γ̂V T , λ) [Ht,x (γ̂V T , λ)−Ht (γ0, λ)]H−1

t (γ0, λ)XtX
′
t

}∣∣
≤ K

1

T

T∑
t=1

sup
λ∈Λ

∥∥H−1
t,x (γ̂V T , λ)

∥∥ ‖Ht,x (γ̂V T , λ)−Ht (γ0, λ)‖
∥∥H−1

t (γ0, λ)
∥∥ ‖XtX

′
t‖

≤ K
1

T

T∑
t=1

sup
λ∈Λ
‖Ht,x (γ̂V T , λ)−Ht (γ0, λ)‖ ‖Xt‖2 ,
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where the inequalities follow by (B.1) and (B.13) respectively. By (B.16) we conclude
that

sup
λ∈Λ
|LT (γ0, λ)− LT,h (γ̂V T , λ)| ≤ K

1

T

T∑
t=1

φt +K
1

T

T∑
t=1

φt ‖Xt‖2 + o (1) a.s.

By Markov’s inequality and E ‖Xt‖2 <∞, it follows that for any ε > 0

∞∑
t=1

P
(
φt ‖Xt‖2 > ε

)
≤

∞∑
t=1

φtE ‖Xt‖2

ε
<∞.

By the Borel-Cantelli lemma φt ‖Xt‖2 a.s.→ 0 as t → ∞. It now follows by Cesàro’s mean
theorem that 1

T

∑T
t=1 φ

t ‖Xt‖2 a.s.→ 0., and we conclude that (B.10) holds.

Lemma B.2 Under Assumptions 4.1-4.3,

E sup
θ∈Θ
|lt (γ, λ)| ≤ K.

Proof. We note that

vec [Ht (γ, λ)] =
(
Id2 − A⊗2 −B⊗2

)
γ + A⊗2vec

(
Xt−1X

′
t−1

)
+B⊗2vec [Ht−1 (γ, λ)]

=
∞∑
i=0

(
B⊗2

)i [(
Id2 − A⊗2 −B⊗2

)
γ + A⊗2vec

(
Xt−1−iX

′
t−1−i

)]
(B.17)

so

sup
θ∈Θ
‖vec [Ht (γ, λ)]‖ ≤

∞∑
i=0

sup
θ∈Θ

∥∥∥(B⊗2
)i [(

Id2 − A⊗2 −B⊗2
)
γ + A⊗2vec

(
Xt−1−iX

′
t−1−i

)]∥∥∥ .
Notice that

∞∑
i=0

E

{
sup
θ∈Θ

∥∥∥(B⊗2
)i [(

Id2 − A⊗2 −B⊗2
)
γ + A⊗2vec

(
Xt−1−iX

′
t−1−i

)]∥∥∥}
≤

∞∑
i=0

(
Kφt +KφtE ‖Xt‖2) <∞.

By Theorem 9.2 of Jacod and Protter (2003) we conclude that

E

[
sup
θ∈Θ
‖Ht (γ, λ)‖

]
≤ K. (B.18)
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Now

E

[
sup
θ∈Θ
|lt (γ, λ)|

]
= E

[
sup
θ∈Θ

∣∣log det [Ht (γ, λ)] + tr
[
XtX

′
tH
−1
t (γ, λ)

]∣∣]
≤ E

[
sup
θ∈Θ

∣∣tr [Ht (γ, λ)] + tr
[
XtX

′
tH
−1
t (γ, λ)

]∣∣]
≤ E

{
sup
θ∈Θ

∣∣K [‖Ht (γ, λ)‖+
∥∥XtX

′
tH
−1
t (γ, λ)

∥∥]∣∣}
≤ K

[
E sup

θ∈Θ
‖Ht (γ, λ)‖

]
+KE

[
sup
θ∈Θ
‖Xt‖2

∥∥H−1
t (γ, λ)

∥∥]
≤ K +KE ‖Xt‖2

≤ K,

where the first inequality follows from (B.4), the second from (B.1), the fourth from (B.18)
and (B.12), and the last inequality follows by the fact that E ‖Xt‖2 <∞.

Lemma B.3 Under Assumptions 4.1-4.3, as T →∞

sup
θ∈Θ
|LT (γ, λ)− E [lt (γ, λ)]| a.s.→ 0

where LT (θ) is the log-likelihood and lt (θ) is the log-likelihood contribution (at time t)
stated in (A.4) and (A.5), respectively.

Proof. The result follows by Lemma B.2 and the Uniform Law of Large Numbers for
stationary ergodic processes, see Theorem A.2.2 of White (1994).

Lemma B.4 Under Assumptions 4.1-4.3,

E |lt (γ0, λ0)| <∞,

and if λ 6= λ0 then
E [lt (γ0, λ)] > E [lt (γ0, λ0)] .

Proof. E |lt (γ0, λ0)| <∞ follows from Lemma B.2.
Following the steps from Section 3 in Comte and Lieberman (2003), suppose λ 6= λ0 and
let {eit : i = 1, .., d} be the (positive) eigenvalues of Ht (γ0, λ0)H−1

t (γ0, λ) for a fixed t.
Note that

tr
{
XtX

′
t

[
H−1
t (γ0, λ)−H−1

t (γ0, λ0)
]}

= tr
{[
H

1/2
t (γ0, λ0)H−1

t (γ0, λ)H
1/2
t (γ0, λ0)− Id

]
ZtZ

′
t

}
By the law of iterated expectations and since Zt is independent of Ft−1 = σ (Xt−1, Xt−2,...),

E
(
tr
{
XtX

′
t

[
H−1
t (γ0, λ)−H−1

t (γ0, λ0)
]})

= E
(
tr
{[
H

1/2
t (γ0, λ0)H−1

t (γ0, λ)H
1/2
t (γ0, λ0)− Id

]})
= E

(
tr
{[
Ht (γ0, λ0)H−1

t (γ0, λ)− Id
]})

= E

[
d∑
i=1

(eit − 1)

]
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Moreover,

log det
[
Ht (γ0, λ)H−1

t (γ0, λ0)
]

= − log det
[
Ht (γ0, λ0)H−1

t (γ0, λ)
]

= − log
d∏
i=1

eit

= −
d∑
i=1

log eit.

Hence

E [lt (γ0, λ)]− E [lt (γ0, λ0)] = E
{

log det
[
Ht (γ0, λ)H−1

t (γ0, λ0)
]}

+E
(
tr
{
XtX

′
t

[
H−1
t (γ0, λ)−H−1

t (γ0, λ0)H−1
t (γ0, λ)−H−1

t (γ0, λ0)
]})

= E

[
d∑
i=1

(eit − 1− log eit)

]
≥ 0

as log x ≤ x − 1 for all x ≥ 0. Since log x = x − 1 if and only if x = 1, the inequality
is strict unless eit = 1 for all i̇ almost surely. eit = 1 for all i̇ almost surely is equiv-
alent to Ht (γ0, λ) = Ht (γ0, λ0) almost surely, but this cannot be the case in light of
Assumption 4.3. Hence the inequality must be strict, and we conclude that if λ 6= λ0 then
E [lt (γ0, λ)] > E [lt (γ0, λ0)].

B.2 Lemmas for the proof of asymptotic normality

In the following we will make use of matrix differentials and apply the following notation:
Let ft be a function of the non-stochastic matrices A and B. Then d {ft (A0, B0) , dA}
denotes the first-order differential of ft in the direction dA and evaluated at (A0, B0).
Let θi, i = 1, ..., 3d2, denote the ith element of θ. Let H0t := Ht (γ0, λ0).

Lemma B.5 Under Assumptions 4.1-4.5 E
[
supθ∈Θ

∣∣∣∂2lt(γ,λ)
∂θi∂θj

∣∣∣] <∞ for all i, j = 1, ..., 3d2.

Proof. Notice that

∂2lt (γ, λ)

∂θi∂θj
= tr

(
H−1
t (γ, λ)

∂2Ht (γ, λ)

∂θi∂θj

)
− tr

(
H−1
t (γ, λ)

∂Ht (γ, λ)

∂θj
H−1
t (γ, λ)

∂Ht (γ, λ)

∂θi

)
+2tr

(
H−1
t (γ, λ)XtX

′
tH
−1
t (γ, λ)

∂Ht (γ, λ)

∂θj
H−1
t (γ, λ)

∂Ht (γ, λ)

∂θi

)
−tr

(
H−1
t (γ, λ)XtX

′
tH
−1
t (γ, λ)

∂2Ht (γ, λ)

∂θi∂θj

)
. (B.19)

By (B.17), Minkowski’s inequality, and Assumption 4.4,

E

(
sup
θ∈Θ
‖Ht (γ, λ)‖

)3

≤ K. (B.20)

Moreover, using Minkowski’s inequality repeatedly (see also Hafner and Preminger, 2009b,
Proof of Lemma 3), and Assumption 4.4 one can show that

E

(
sup
θ∈Θ

∥∥∥∥∂Ht (γ, λ)

∂θi

∥∥∥∥)3

≤ K and E
(

sup
θ∈Θ

∥∥∥∥∂2Ht (γ, λ)

∂θi∂θj

∥∥∥∥)3

≤ K. (B.21)
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By (B.1), (B.12), Hölder’s inequality, and (B.21),

E

[
sup
θ∈Θ

∣∣∣∣tr(H−1
t XtX

′
tH
−1
t

∂Ht

∂θj
H−1
t

∂Ht

∂θi

)∣∣∣∣]

≤ K

[
E

(
sup
θ∈Θ

∥∥∥∥∂Ht

∂θj

∥∥∥∥)3
]1/3 [

E

(
sup
θ∈Θ

∥∥∥∥∂Ht

∂θi

∥∥∥∥)3
]1/3 [

E ‖Xt‖6]1/3
≤ K.

By similar arguments we conclude that E
[
supθ∈Θ

∣∣∣∂2lt(γ,λ)
∂θi∂θj

∣∣∣] < ∞ for all i = 1, ..., 3d2

and, j = 1, ..., 3d2.

Lemma B.6 Under Assumptions 4.1-4.5 supθ∈Θ

∣∣∣∂2LT (γ,λ)
∂θi∂θj

− E
(
∂2lt(γ,λ)
∂θi∂θj

)∣∣∣ a.s.→ 0 for all

i, j = 1, ..., 3d2.

Proof. Notice that ∂2lt(γ,λ)
∂θi∂θj

is a function of (Xt, Xt−1,...) and θ and thereby strictly sta-
tionary and ergodic. Hence the result follows by Lemma B.5 and the Uniform Law of
Large Numbers for stationary ergodic processes, see Theorem A.2.2 of White (1994).

Lemma B.7 Under Assumptions 4.1-4.5 J0 stated in (A.10) is non-singular.

Proof. We prove this lemma arguing in line with the proof of Theorem 3.2 in Francq and
Zakoïan (2010), see also p.77-78 in Comte and Lieberman (2003). By definition

J0 = E

[
∂2lt (γ0, λ0)

∂λ∂λ′

]
,

with ∂2lt(γ,λ)
∂λi∂λj

given by (B.19). Hence, with Ft−1 := σ (Xt−1, Xt−2,...)

E

[
∂2lt (γ0, λ0)

∂λi∂λj

∣∣∣∣Ft−1

]
= tr

(
H−1

0t

∂H0t

∂λj
H−1

0t

∂H0t

∂λi

)
(B.22)

= h′jhi,

where

hti =
(
H
−1/2
0t

)⊗2

kti, and kti = vec
(
∂H0t

∂λi

)
,

noting that ∂H0t
∂λi

is symmetric. We now define the d2 × 2d2 matrices

ht =

(
ht1
... · · · ...ht2d2

)
and kt =

(
kt1
... · · · ...kt2d2

)
.

Let Ht =
(
H
−1/2
0t

)⊗2

, and that ht = Htkt and J0 = E [h′tht]. Suppose J0 is singular. Then

there exists a non-zero c ∈ R2d2 such that c′J0c = E [c′h′thtc] = 0. As c′h′thtc ≥ 0, then
almost surely

c′h′thtc = c′k′tH2
tktc = 0.
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Since H2
t is positive definite a.s.,

ktc =

d2∑
i=1

ci
∂

∂λi
vec (H0t) = 0 a.s. for all t. (B.23)

Let ω = (Id2 − A⊗2 −B⊗2) γ, then (B.23) gives

ω̃ + Ãvec
(
Xt−1X

′
t−1

)
+ B̃vec (H0t−1) +B⊗2

2d2∑
i=1

ci
∂

∂λi
vec (H0t−1) = 0 a.s. (B.24)

where

ω̃ =

2d2∑
i=1

ci
∂

∂λi
ω

∣∣∣∣
θ=θ0

, Ã =

d2∑
i=1

ci
∂

∂λi
A⊗2

∣∣∣∣
θ=θ0

, B̃ =
2d2∑
i=d2

ci
∂

∂λi
B⊗2

∣∣∣∣
θ=θ0

.

By (B.23), (B.24) reduces to

ω̃ + Ãvec
(
Xt−1X

′
t−1

)
+ B̃vec (H0t−1) = 0 a.s. (B.25)

Subtracting (B.25) from vec(H0t) yields

vec (H0t) = (ω0 − ω̃) +
(
A⊗2

0 − Ã
)
vec
(
Xt−1X

′
t−1

)
+
(
B⊗2

0 − B̃
)
vec (H0t−1) .

Since c 6= 0, we have found another representation of vec(H0t), which contradicts As-
sumption 4.3 that ensures that vec(H0t) has a unique representation. Hence J0 must be
non-singular.

Lemma B.8 Under Assumptions 4.1-4.5, as T →∞,

√
T

(
γ̂V T − γ0
∂LT (γ0,λ0)

∂λ

)
=

1√
T

T∑
t=1

Yt (γ0, λ0) vec (ZtZ
′
t − Id) + oP (1) (B.26)

where

Yt (γ0, λ0) =



{
Id2 − A⊗2

0 −B⊗2
0

}−1
(
H

1/2
0t

)⊗2[
−
∞∑
i=0

(
B⊗2

0

)i
Mt−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2

[
−
∞∑
i=0

(
B⊗2

0

)i
M̃t−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2


, (B.27)

with

Mt (γ, λ) := ({[A (XtX
′
t − Γ)]⊗ Id}+ {Id ⊗ [A (XtX

′
t − Γ)]}Kdd) , (B.28)

and

M̃t (γ, λ) := [({B [Ht (γ, λ)− Γ]} ⊗ Id) + (Id ⊗ {B [Ht (γ, λ)− Γ]})Kdd] . (B.29)
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Proof. The first-order differential of the log-likelihood contribution at time t with respect
to A and evaluated in (γ0, λ0) is given by

d {lt (γ0, λ0) , dA} = tr
{
H
−1/2
0t [d {Ht (γ0, λ0) , dA}]H−1/2

0t

}
− tr

{
H
−1/2
0t XtX

′
tH
−1/2
0t H

−1/2
0t [d {Ht (γ0, λ0) , dA}]H−1/2

0t

}
= tr

{
H
−1/2
0t [d {Ht (γ0, λ0) , dA}]H−1/2

0t

}
− tr

{
ZtZ

′
tH
−1/2
0t [d {Ht (γ0, λ0) , dA}]H−1/2

0t

}
= vec(Id − ZtZ ′t)′

(
H
−1/2
0t

)⊗2

vec [d {Ht (γ0, λ0) , dA}] .

Likewise,

d {lt (γ0, λ0) , dB} = vec(Id − ZtZ ′t)′
(
H
−1/2
0t

)⊗2

vec [d {Ht (γ0, λ0) , dB}] .

Notice that

Ht (γ, λ) = Γ + A
(
Xt−1X

′
t−1 − Γ

)
A′ −B [Ht−1 (γ, λ)− Γ]B′.

The first-order differential of Ht (γ, λ) with respect to A is

d {Ht (γ, λ) , dA} = (dA)
(
Xt−1X

′
t−1 − Γ

)
A′+A

(
Xt−1X

′
t−1 − Γ

)
(dA)′+B [d {Ht−1 (γ, λ) , dA}]B′,

implying directly

vec [d {Ht (γ, λ) , dA}] (B.30)

= vec
[
(dA)

(
Xt−1X

′
t−1 − Γ

)
A′ + A

(
Xt−1X

′
t−1 − Γ

)
(dA)′

]
+B⊗2vec [d {Ht−1 (γ, λ) , dA}] .

We note that

vec
[
(dA)

(
Xt−1X

′
t−1 − Γ

)
A′ + A

(
Xt−1X

′
t−1 − Γ

)
(dA)′

]
= vec

[
(dA) (Xt−1X

′
t−1 − Γ)A′

]
+ vec

[
A(Xt−1X

′
t−1 − Γ)(dA)′

]
=
{[
A
(
Xt−1X

′
t−1 − Γ

)]
⊗ Id

}
vec(dA) +

{
Id ⊗

[
A
(
Xt−1X

′
t−1 − Γ

)]}
vec(dA′)

=
{[
A
(
Xt−1X

′
t−1 − Γ

)]
⊗ Id

}
vec(dA) +

{
Id ⊗

[
A
(
Xt−1X

′
t−1 − Γ

)]}
Kddvec(dA)

=
({[

A
(
Xt−1X

′
t−1 − Γ

)]
⊗ Id

}
+
{
Id ⊗

[
A
(
Xt−1X

′
t−1 − Γ

)]}
Kdd

)
vec(dA).

With Mt (γ, λ) defined in (B.28), recursions yield

vec [d {Ht (γ, λ) , dA}] =

∞∑
i=0

(
B⊗2

)i
Mt−1−i (γ, λ) vec(dA).

We conclude that

d {lt (γ0, λ0) , dA} = vec(ZtZ ′t − Id)′
(
H
−1/2
0t

)⊗2
[
−
∞∑
i=0

(
B⊗2

0

)i
Mt−1−i (γ0, λ0)

]
vec(dA).

Identifying the Jacobian from the first-order differential, see e.g. Magnus and Neudecker

23



(2007, p. 199), we find that the score of the log-likelihood function with respect to vec(A)
and evaluated at θ = θ0 is given by

∂LT (γ0, λ0)

∂vec(A)
=

1

T

T∑
t=1

[
−
∞∑
i=0

(
B⊗2

0

)i
Mt−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2

vec(ZtZ ′t − Id).

By similar arguments

∂LT (γ0, λ0)

∂vec(B)
=

1

T

T∑
t=1

[
−
∞∑
i=0

(
B⊗2

0

)i
M̃t−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2

vec(ZtZ ′t − Id),

with M̃t (γ, λ) defined in (B.29).
Consider the sample covariance matrix on vec form:

γ̂V T =
1

T

T∑
t=1

(
H

1/2
0t

)⊗2

vec (ZtZ
′
t − Id) + vec

(
1

T

T∑
t=1

H0t

)
. (B.31)

Moreover,

vec

(
1

T

T∑
t=1

H0t

)
=
[
Id2 − A⊗2

0 −B⊗2
0

]
γ0 + A⊗2

0 vec

(
1

T

T∑
t=1

Xt−1X
′
t−1

)
+B⊗2

0 vec

(
1

T

T∑
t=1

H0t−1

)

=
[
Id2 − A⊗2

0 −B⊗2
0

]
γ0 + A⊗2

0 vec

(
1

T

T∑
t=1

XtX
′
t

)
+B⊗2

0 vec

(
1

T

T∑
t=1

H0t

)
+ A⊗2

0

1

T
vec (X0X

′
0 −XTX

′
T ) +B⊗2

0

1

T
vec (H00 −H0T ) ,

and collecting terms

vec

(
1

T

T∑
t=1

H0t

)
=

[
Id2 −B⊗2

0

]−1 [
Id2 − A⊗2

0 −B⊗2
0

]
γ0 +

[
Id2 −B⊗2

0

]−1
A⊗2

0 γ̂V T (B.32)

+
[
Id2 −B⊗2

0

]−1
[
A⊗2

0

1

T
vec (X0X

′
0 −XTX

′
T ) +B⊗2

0

1

T
vec (H00 −H0T )

]
.

Notice that (Id2 −B⊗2
0 ) is invertible since ρ(B⊗2

0 ) < 1, as already mentioned in the proof
of Lemma B.1. Next, inserting (B.31) in (B.32) and isolating γ̂V T yields

[
Id2 − A⊗2

0 −B⊗2
0

]
γ̂V T =

[
Id2 −B⊗2

0

] 1

T

T∑
t=1

(
H

1/2
0t

)⊗2

vec (ZtZ
′
t − Id) +

[
Id2 − A⊗2

0 −B⊗2
0

]
γ0

+

[
A⊗2

0

1

T
vec (X0X

′
0 −XTX

′
T ) +B⊗2

0

1

T
vec (H00 −H0T )

]
.
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Hence

γ̂V T − γ0 =
[
Id2 − A⊗2

0 −B⊗2
0

]−1 [
Id2 −B⊗2

0

] 1

T

T∑
t=1

(
H

1/2
0t

)⊗2

vec (ZtZ
′
t − Id)

+
[
Id2 − A⊗2

0 −B⊗2
0

]−1
[
A⊗2

0

1

T
vec (X0X

′
0 −XTX

′
T ) +B⊗2

0

1

T
vec (H00 −H0T )

]
.

For any ε > 0, by Markov’s inequality,

P

(∥∥∥∥A⊗2
0

1√
T
vec (X0X

′
0 −XTX

′
T ) +B⊗2

0

1√
T
vec (H00 −H0T )

∥∥∥∥ > ε

)
≤ KE ‖Xt‖2

√
Tε

→ 0

as T →∞, which yields

γ̂V T−γ0 =
[
Id2 − A⊗2

0 −B⊗2
0

]−1 [
Id2 −B⊗2

0

] 1

T

T∑
t=1

(
H

1/2
0t

)⊗2

vec (ZtZ
′
t − Id)+oP

(
T−1/2

)
.

(B.33)
We conclude that (B.26) holds.

Lemma B.9 Under Assumptions 4.1-4.5

E ‖Yt (γ0, λ0) vec (ZtZ
′
t − Id)‖

2
<∞,

where Yt (γ0, λ0)is given by (B.27).

Proof. By definition

Yt (γ0, λ0) =



{
Id2 − A⊗2

0 −B⊗2
0

}−1
(
H

1/2
0t

)⊗2[
−
∞∑
i=0

(
B⊗2

0

)i
Mt−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2

[
−
∞∑
i=0

(
B⊗2

0

)i
M̃t−1−i (γ0, λ0)

]′ (
H
−1/2
0t

)⊗2


.

Define

εt := vec (ZtZ
′
t − Id) , ηMt :=

[
−
∞∑
i=0

(
B⊗2

0

)i
Mt−1−i (γ0, λ0)

]
, ηM̃t :=

[
−
∞∑
i=0

(
B⊗2

0

)i
M̃t−1−i (γ0, λ0)

]
,

and observe that

Yt (γ0, λ0) vec (ZtZ
′
t − Id) [vec (ZtZ

′
t − Id)]

′
Yt (γ0, λ0)′ =

At Bt CtB′t Dt Et
C ′t E ′t Gt



25



where

At =
[
Id2 − A⊗2

0 −B⊗2
0

]−1
(
H

1/2
0t

)⊗2

εtε
′
t

(
H

1/2
0t

)⊗2 [
Id2 − A⊗2

0 −B⊗2
0

]−1
,

Bt =
[
Id2 − A⊗2

0 −B⊗2
0

]−1
(
H

1/2
0t

)⊗2

εtε
′
t

(
H
−1/2
0t

)⊗2

ηMt ,

Ct =
[
Id2 − A⊗2

0 −B⊗2
0

]−1
(
H

1/2
0t

)⊗2

εtε
′
t

(
H
−1/2
0t

)⊗2

ηM̃t ,

Dt = ηM ′t

(
H
−1/2
0t

)⊗2

εtε
′
t

(
H
−1/2
0t

)⊗2

ηMt ,

Et = ηM ′t

(
H
−1/2
0t

)⊗2

εtε
′
t

(
H
−1/2
0t

)⊗2

ηM̃t ,

Gt = ηM̃ ′t

(
H
−1/2
0t

)⊗2

εtε
′
t

(
H
−1/2
0t

)⊗2

ηM̃t .

Hence Yt (γ0, λ0)vec(ZtZ ′t − Id) is square-integrable if E ‖At‖ ≤ K, E ‖Bt‖ ≤ K, E ‖Ct‖ ≤
K, E ‖Dt‖ ≤ K, E ‖Et‖ ≤ K, and E ‖Gt‖ ≤ K.
Using Minkowski’s inequality,

E
∥∥ηMt ∥∥3 ≤

{ ∞∑
i=1

φi
(
K +KE ‖Xt‖6)1/3

}3

≤ K. (B.34)

Likewise, by Minkowski’s inequality and (B.20)

E
∥∥∥ηM̃t ∥∥∥3

≤
{ ∞∑

i=1

φi
(
K +KE ‖H0t‖3)1/3

}3

≤ K.

We note that

E ‖At‖ ≤ KE

∥∥∥∥(H1/2
0t

)⊗2
∥∥∥∥2

E ‖εt‖2

by the independence between Zt and Wt−1. Moreover,

E

∥∥∥∥(H1/2
0t

)⊗2
∥∥∥∥2

= E

∣∣∣∣tr[(H1/2
0t

)⊗2 (
H

1/2
0t

)⊗2
]∣∣∣∣ = Etr2 (H0t) ≤ KE ‖H0t‖2 ≤ K,

by (B.6) and (B.20). Moreover,

E ‖εt‖2 ≤ E ‖Zt‖4 +K ≤ K,

as E ‖Zt‖4 ≤ KE ‖Xt‖4. Hence E ‖At‖ ≤ K. Next,

E ‖Bt‖ ≤ KE

∥∥∥∥(H1/2
0t

)⊗2
∥∥∥∥∥∥∥∥(H−1/2

0t

)⊗2
∥∥∥∥∥∥ηMt ∥∥ ‖εt‖2

≤ KE

∥∥∥∥(H1/2
0t

)⊗2
∥∥∥∥∥∥∥∥(H−1/2

0t

)⊗2
∥∥∥∥∥∥ηMt ∥∥ .

Note that ∥∥∥∥(H−1/2
0t

)⊗2
∥∥∥∥ =

√
tr
(
H−1

0t ⊗H−1
0t

)
= tr

(
H−1

0t

)
≤ K

∥∥H−1
0t

∥∥ ≤ K,
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by (B.6) and (B.12). Hence by Hölder’s inequality and (B.34)

E ‖Bt‖ ≤ KE

[∥∥∥∥(H1/2
0t

)⊗2
∥∥∥∥∥∥ηMt ∥∥]

≤ K

{
E

∥∥∥∥(H1/2
0t

)⊗2
∥∥∥∥2
}1/2 {

E
∥∥ηMt ∥∥2

}1/2

≤ K.

By similar arguments E ‖Ct‖ ≤ K, E ‖Dt‖ ≤ K, E ‖Et‖ ≤ K, and E ‖Gt‖ ≤ K.

Lemma B.10 Under Assumptions 4.1-4.5, as T →∞

1√
T

T∑
t=1

Yt (γ0, λ0) vec (ZtZ
′
t − Id)

D→ N (0,Ω0) , (B.35)

where

Ω0 = E
{
Yt (γ0, λ0) vec (ZtZ

′
t − Id) [vec (ZtZ

′
t − Id)]

′
Yt (γ0, λ0)′

}
, (B.36)

and Yt (γ0, λ0) is given by (B.27)

Proof. Let Ft = σ (Wt,Wt−1, ...) with Wt =
[
vech (H0t)

′ , X ′t
]′
, see Theorem 2.1. Since

Yt(θ0) isFt−1-measurable and vec(ZtZ ′t − Id) andFt−1 are independent, {Yt (γ0, λ0) vec (ZtZ
′
t − Id) , Ft}

is an ergodic martingale difference sequence. Moreover, from Lemma B.9 the sequence
is square-integrable, and the regularity conditions of Brown (1971) are satisfied by the
ergodic theorem, which establishes (B.35).

Lemma B.11 Under Assumptions 4.1-4.5, as T →∞,∣∣∣∣√T [∂LT (γ0, λ0)

∂λi
− ∂LT,h (γ0, λ0)

∂λi

]∣∣∣∣ a.s.→ 0, (B.37)

for i = 1, ..., 2d2, and

sup
θ∈Θ

∣∣∣∣∂2LT (γ, λ)

∂θi∂θj
− ∂2LT,h (γ, λ)

∂θi∂θj

∣∣∣∣ a.s.→ 0 (B.38)

for i, j = 1, ..., 3d2.’

Proof. We have that∣∣∣∣[∂lt (γ0, λ0)

∂λi
− ∂lt,h (γ0, λ0)

∂λi

]∣∣∣∣
≤

∣∣∣∣tr{H−1
0t

∂Ht (γ0, λ0)

∂λi
− ∂Ht,h (γ0, λ0)

∂λi
H−1

0t,h

}∣∣∣∣
+

∣∣∣∣tr{H−1
0t,hXtXtH

−1
0t,h

∂Ht,h (γ0, λ0)

∂λi
− ∂Ht (γ0, λ0)

∂λi
H−1

0t XtXtH
−1
0t

}∣∣∣∣
≤ K

∥∥∥∥vec[∂Ht,h (γ0, λ0)

∂λi
− ∂Ht (γ0, λ0)

∂λi

]∥∥∥∥
+K ‖Xt‖4

∥∥∥∥vec[∂Ht,h (γ0, λ0)

∂λi
− ∂Ht (γ0, λ0)

∂λi

]∥∥∥∥ .
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If i = 1, ..., d2 (corresponding to the elements of A) using (B.14) repeatedly∥∥∥∥vec[∂Ht,h (γ0, λ0)

∂λi
− ∂Ht (γ0, λ0)

∂λi

]∥∥∥∥
=

∥∥∥∥ ∂

∂λi

{(
B⊗2

0

)t
vec [H00,h −H00]

}∥∥∥∥
≤ Kφt

∥∥∥∥vec[∂H0 (γ0, λ0)

∂λi

]∥∥∥∥
≤ Kφt,

since ‖vec [H00,h −H00]‖ and
∥∥∥vec [∂H0(γ0,λ0)

∂λi

]∥∥∥ can be treated as constants, as they do
not depend on t. Hence∣∣∣∣[∂lt (γ0, λ0)

∂λi
− ∂lt,h (γ0, λ0)

∂λi

]∣∣∣∣ ≤ Kφt ‖Xt‖4 ,

and∣∣∣∣√T [∂LT (γ0, λ0)

∂λi
− ∂LT,h (γ0, λ0)

∂λi

]∣∣∣∣ =
1√
T

∣∣∣∣∣
T∑
t=1

[
∂lt (γ0, λ0)

∂λi
− ∂lt,h (γ0, λ0)

∂λi

]∣∣∣∣∣
≤ 1√

T

T∑
t=1

Kφt ‖Xt‖4 .

Since

lim
T→∞

T∑
t=1

E
[
Kφt ‖Xt‖4] ≤ K,

it follows by Theorem 9.2 of Jacod and Protter (2003) that

T∑
t=1

Kφt ‖Xt‖4 = Oa.s. (1) ,

Similarly, if i = d2 + 1, ..., 2d2 (corresponding to the elements of B),∣∣∣∣[∂lt (γ0, λ0)

∂λi
− ∂lt,h (γ0, λ0)

∂λi

]∣∣∣∣ ≤ K
(
tφt−1 + φt

) (
1 + ‖Xt‖4) ,

and∣∣∣∣√T [∂LT (γ0, λ0)

∂λi
− ∂LT,h (γ0, λ0)

∂λi

]∣∣∣∣ =
1√
T

∣∣∣∣∣
T∑
t=1

[
∂lt (γ0, λ0)

∂λi
− ∂lt,h (γ0, λ0)

∂λi

]∣∣∣∣∣
≤ 1√

T

T∑
t=1

K
(
tφt−1 + φt

) (
1 + ‖Xt‖4) ,

and we conclude that (B.37) holds.
Next, we turn to (B.38) which we establish along the lines of the proof of Lemma 4
in Hafner and Preminger (2009a). From (B.19) and suppressing notation for parameter
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dependence, we have that

∂2lt (γ, λ)

∂θi∂θj
− ∂2lt,h (γ, λ)

∂θi∂θj

= −tr
{
H−1
t

∂Ht

∂θj
H−1
t

∂2Ht

∂θi∂θj
− ∂2Ht,h

∂θi∂θj
H−1
t,h

∂Ht,h

∂θj
H−1
t,h

}
+ tr

{
H−1
t

∂2Ht

∂θi∂θj
− ∂2Ht,h

∂θi∂θj
H−1
t,h

}
+2tr

{
H−1
t XtX

′
tH
−1
t

∂Ht

∂θj
H−1
t

∂Ht

∂θi
− ∂Ht,h

∂θi
H−1
t,hXtX

′
tH
−1
t,h

∂Ht,h

∂θj
H−1
t,h

}
−tr

{
H−1
t XtX

′
tH
−1
t

∂2Ht

∂θi∂θj
− ∂2Ht,h

∂θi∂θj
H−1
t,hXtX

′
tH
−1
t,h

}
. (B.39)

Observe that by (A.3)

E sup
θ∈Θ

∥∥∥∥vec[∂Ht (γ, λ)

∂θi
− ∂Ht,h (γ, λ)

∂θi

]∥∥∥∥ = E sup
θ∈Θ

∥∥∥∥ ∂

∂θi

{(
B⊗2

)t
vec [H0,h −H0 (γ, λ)]

}∥∥∥∥ .
Hence by (B.21), Hölder’s inequality and as H0,h is fixed, we get

E sup
θ∈Θ

∥∥∥∥vec[∂Ht (γ, λ)

∂θi
− ∂Ht,h (γ, λ)

∂θi

]∥∥∥∥ = O
(
φt
)
, i = 1, ..., 2d2, and (B.40)

E sup
θ∈Θ

∥∥∥∥vec[∂Ht (γ, λ)

∂θi
− ∂Ht,h (γ, λ)

∂θi

]∥∥∥∥ = O
(
tφt−1

)
, i = 2d2 + 1, ..., 3d2.(B.41)

Likewise, using (A.3) as above

E sup
θ∈Θ

∥∥∥∥vec[∂2Ht (γ, λ)

∂θi∂θj
− ∂2Ht,h (γ, λ)

∂θi∂θj

]∥∥∥∥ = E sup
θ∈Θ

∥∥∥∥ ∂2

∂θi∂θj

{(
B⊗2

)t
vec [H0,h −H0 (γ, λ)]

}∥∥∥∥ ,
and by (B.21) and Hölder’s inequality

E sup
θ∈Θ

∥∥∥∥vec[∂2Ht (γ, λ)

∂θi∂θj
− ∂2Ht,h (γ, λ)

∂θi∂θj

]∥∥∥∥ = O
(
φt
)
, i, j = 1, ..., 2d2 (B.42)

E sup
θ∈Θ

∥∥∥∥vec[∂2Ht (γ, λ)

∂θi∂θj
− ∂2Ht,h (γ, λ)

∂θi∂θj

]∥∥∥∥ = O
(
t (t− 1)φt−2

)
, i, j = 2d2 + 1, ..., 3d2

(B.43)

E sup
θ∈Θ

∥∥∥∥vec[∂2Ht (γ, λ)

∂θi∂θj
− ∂2Ht,h (γ, λ)

∂θi∂θj

]∥∥∥∥ = O
(
tφt−1

)
, otherwise. (B.44)

Observe that

vec [Ht,h (γ, λ)] =
t−1∑
i=0

{(
B⊗2

)i (
Id2 − A⊗2 −B⊗2

)
γ
}

+

t−1∑
i=0

(
B⊗2

)i
A⊗2vec

(
Xt−1−iX

′
t−1−i

)
+
(
B⊗2

)t
vec (H0,h) . (B.45)

By simple differentiation of (B.45) and using that H0,h is fixed, we conclude that

E sup
θ∈Θ

∥∥∥∥∂Ht,h (γ, λ)

∂θi

∥∥∥∥ ≤ K. (B.46)
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Considering the last term in (B.39) and using Hölder’s inequality, Assumption 4.4, and
(B.12),

E sup
θ∈Θ

∣∣∣∣tr{H−1
t XtX

′
tH
−1
t

∂2Ht

∂θi∂θj
− ∂2Ht,h

∂θi∂θj
H−1
t,hXtX

′
tH
−1
t,h

}∣∣∣∣1/4 (B.47)

≤ K

(
E sup

θ∈Θ

∥∥∥∥∂2Ht (γ, λ)

∂θi∂θj
− ∂2Ht,h (γ, λ)

∂θi∂θj

∥∥∥∥)1/4 (
E ‖Xt‖4)1/4

,

which is either O
(
φt
)
, O
(
t (t− 1)φt−2

)
, or O

(
tφt−1

)
in light of (B.42)-(B.44). By similar

arguments together with (B.40)-(B.41) and (B.46), it follows by the Cr inequality (White,

2001, Proposition 3.8) that E supθ∈Θ

∣∣∣∂2lt(γ,λ)
∂θi∂θj

− ∂2lt,h(γ,λ)

∂θi∂θj

∣∣∣1/4 is O (t2φt). Next, by the
generalized Chebyshev inequality for any ε > 0

∞∑
t=0

P

(
sup
θ∈Θ

∣∣∣∣∂2lt (γ, λ)

∂θi∂θj
− ∂2lt,h (γ, λ)

∂θi∂θj

∣∣∣∣ > ε

)
≤

∞∑
t=0

1

ε1/4
E

[
sup
θ∈Θ

∣∣∣∣∂2lt (γ, λ)

∂θi∂θj
− ∂2lt,h (γ, λ)

∂θi∂θj

∣∣∣∣1/4
]
<∞,

so by the Borel-Cantelli lemma as t→∞

sup
θ∈Θ

∣∣∣∣∂2lt (γ, λ)

∂θi∂θj
− ∂2lt,h (γ, λ)

∂θi∂θj

∣∣∣∣ a.s.→ 0. (B.48)

By (B.48) and Cesàro’s mean theorem we conclude that (B.38) holds.

C Drift criteria for the BEKK-ARCH(1) model

In order to find conditions for which the BEKK-ARCH(1) model with Gaussian noise is
geometrically ergodic with high-order moments we will make use of the following lemmas.

Lemma C.1 (Bec and Rahbek, 2004, Proof of Theorem 1)
Let (Xt)t=0,1,... be a time-homogeneous Markov chain on the state space Rd endowed with
the Borel σ-algebra, Bd. Assume that for all sets A ∈ Bd and for some integer m ≥ 1,
that the m-step transition density with respect to the Lebesgue measure f (·|·) as defined
by

P (Xt ∈ A|Xt−m = x) =

∫
A

f (y|x) dy

is strictly positive and bounded on compact sets. Let v : Rd 7→ [1,∞) be some drift
function. Assume there exists an integer k ≥ 1, a compact set B ⊂ Rd and constants
0 < γ < 1, g > 0 such that

E [v (Xt+k) |Xt = x] ≤ γv (x)

for x ∈ Bc, while E [v (Xt+k) |Xt = x] is bounded by g on B.
Then Xt is geometrically ergodic and X0 can be given an initial distribution such that Xt

is stationary. Moreover, all moments bounded by v (·) exist.

Lemma C.2 (Corollary 1 (i)-(iii) in Ghazal (1996))
Let Q = x′Ωx be a quadratic form where Ω is a d × d symmetric non-stochastic matrix
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and x is IIDN(0, Id). Then

E
[
(x′Ωx)

2
]

= tr2 {Ω}+ 2tr
{

Ω2
}

E
[
(x′Ωx)

3
]

= tr3 {Ω}+ 6tr {Ω} tr
{

Ω2
}

+ 8tr
{

Ω3
}

E
[
(x′Ωx)

4
]

= tr4 {Ω}+ 12tr2 {Ω} tr
{

Ω2
}

+ 12tr2
{

Ω2
}

+ 32tr {Ω} tr
{

Ω3
}

+ 48tr
{

Ω4
}
.

We are now able to prove the following theorem,

Theorem C.1 Let {Xt}t=1,...,T follow a BEKK-ARCH(1) process as in (2.2) with B = 0
and Zt IIDN(0, Id). Then Xt is geometrically ergodic and the strictly stationary solution
has (i) E ‖Xt‖2 < ∞ if ρ (A⊗ A) < 1, (ii) E ‖Xt‖4 < ∞ if ρ (A⊗ A) < 1√

3
≈ 0.5774,

(iii) E ‖Xt‖6 < ∞ if ρ (A⊗ A) < 1
151/3

≈ 0.4055, and (iv) E ‖Xt‖8 < ∞ if ρ (A⊗ A) <
1

1051/4
≈ 0.3124.

Proof. Results (i) and (ii) are established in Rahbek (2004), see also Rahbek, Hansen,
and Dennis (2002). Now consider (iii): Clearly Xt is a Markov chain and, conditional
on Xt−1, Xt is Gaussian with mean zero and covariance Ht. So indeed the one-step
(m = 1) transition density of Xt conditional on Xt−1 is continuous in both Xt and Xt−1

and positive. Hence we can apply Lemma C.1. Define the drift function

v (x) = 1 + (x′x)
3

= 1 + ‖x‖6 = 1 + tr3 (xx′) .

Define Ωx = C + Axx′A′, then

E (v (Xt) |Xt−1 = x) = 1 + E
(

(X ′tXt)
3 |Xt−1 = x

)
= 1 + E

(
(Z ′tHtZt)

3 |Xt−1 = x
)

= 1 + E
[
(Z ′tΩxZt)

3
]

= 1 + tr3 {Ωx}+ 6tr {Ωx} tr
{

Ω2
x

}
+ 8tr

{
Ω3
x

}
,

where the fourth equality follows by Lemma C.2. Ignoring terms of lower order than ‖x‖6,
the right-hand side equals 15 (x′A′Ax)3 .
Let L

(
Rd
)
denote the space of linear mappings from Rd 7→ Rd. For linear mappings φ :

L
(
Rd
)
7→ L

(
Rd
)
we use the operator norm defined by

‖φ‖op := sup
‖x‖6=0

‖φ (x)‖
‖x‖ .

It holds that
lim
k→∞

∥∥φk∥∥1/k

op
= ρ(φ). (C.1)

Let X be a d× d matrix in L
(
Rd
)
, and define the mapping φ = (A⊗ A) from L

(
Rd
)
7→

L
(
Rd
)
by

φ (X) := (A⊗ A) (X) = AXA′.

We notice that φk (X) = AkXAk′ and Ωx = C0+ φ (xx′).
Recursions give that E (v (Xt+k) |Xt = x) , apart from the lower-order terms, equals

15k
(
x′Ak′Akx

)3
=
(
15k/3x′Ak′Akx

)3
=
∥∥∥(151/3

)k
φk (xx′)

∥∥∥3

≤
∥∥∥(151/3φ

)k∥∥∥3

op
‖x‖6 .
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In light of (C.1), by choosing k large enough, we have that the drift condition is satisfied,
if ρ
(
151/3φ

)
< 1,which means that ρ (φ) = ρ (A⊗ A) < 1/151/3 ≈ 0.4055.

Result (iv) follows by similar arguments.

Remark C.1 Theorem C.1 can be adjusted in order to establish conditions on ρ (A⊗ A)
for bounding other higher-order moments of Xt. If one seeks to verify that Xt is geo-
metrically ergodic and E ‖Xt‖n < ∞, n = 2k, k ∈ N, one can define the drift function
v (x) = 1 + (x′x)n/2 and use general results for nth-order moments of quadratic forms, see
e.g. Corollary 2 of Bao and Ullah (2010).
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