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Stock Return and Cash Flow Predictability:
The Role of Volatility Risk

Abstract

We examine the joint predictability of return and cash flow within a present value framework,

by imposing the implications from a long-run risk model thatallow for both time-varying volatil-

ity and volatility uncertainty. We provide new evidence that the expected return variation and the

variance risk premium positively forecast both short-horizon returnsand dividend growth rates.

We also confirm that dividend yield positively forecasts long-horizon returns, but that it cannot

forecast dividend growth rates. Our equilibrium-based “structural” factor GARCH model permits

much more accurate inference than the reduced form VAR and univariate regression procedures

traditionally employed in the literature. The model also allows for the direct estimation of the

underlying economic mechanisms, including a new volatility leverage effect, the persistence of the

latent long-run growth component and the two latent volatility factors, as well as the contempora-

neous impacts of the underlying “structural” shocks.

JEL classification: G12, G13, C12, C13.

Keywords: Return and dividend growth predictability; variance risk premium; expected varia-

tion; long-run risk; equilibrium pricing; stochastic volatility and uncertainty; reduced form VAR,

“structural” factor GARCH.



1 Introduction

Counter to the “old” efficient market hypothesis dictum that speculative returns are largely unpre-

dictable over time, it is now generally accepted that expected equity returns are both time-varying

and predictable. It is also widely believed that the predictability of the aggregate stock market as

a whole is the strongest over longer multi-year horizons.1 At the same time, to the extend that a

consensus has emerged it suggests that expected dividend growth rates for the aggregate market

portfolio, or aggregate cash flows, are much less predictable than the expected returns.2

Much of the literature underlying these findings, and the choice of predictor variables in par-

ticular, have been guided by the present-value framework pioneered by Campbell and Shiller

(1988a,b), and the implication that the dividend-price ratio, or the dividend yield, is identically

equal to the expected value of the future returns discountedby the future dividend growth rates.

As emphasized by Cochrane (2008, 2011), this intimate link between dividend growth and stock

return predictability also implies that the seemingly stronger empirical evidence for long-run re-

turn predictability is not surprisingly accompanied by seemingly weaker empirical evidence for

long-run dividend growth predictability.

Set against this background, a number of recent studies haveargued that the variance risk

premium, or the difference between options implied and expected variances, possesses superior

forecasting power for stock market returns over shorter within-year horizons; see, e.g., Bollerslev,

Tauchen, and Zhou (2009), Drechsler and Yaron (2011), and Kelly (2011). Motivated by these

more recent empirical findings, we show how explicitly incorporating priced volatility risk into the

present-value framework affords important new insights into the return vis-à-vis dividend growth

predictability debate acrossall horizons.

The reduced form VAR framework, as exemplified by Hodrick (1992) and Campbell (2001),

1Some of the more popular predetermined variables used in establishing long-run return predictability include:
dividend-price, earning-price, and other valuation ratios (Campbell and Shiller, 1988a,b; Fama and French, 1988;
Lamont, 1998; Lewellen, 2004); firms’ net equity payout (Boudoukh, Richardson, and Roberts, 2007) and equity is-
suance (Baker and Wurgler, 2000); interest-rate variablessuch as t-bill and t-bond rates, term spreads, and default
spreads (Campbell, 1987; Fama and French, 1989; Hodrick, 1992); and macroeconomic variables like total invest-
ment (Cochrane, 1991), the consumption-wealth ratio (Lettau and Ludvigson, 2001), and inflation (Campbell and
Vuolteenaho, 2004).

2With a few notable exceptions (e.g., Fama and French, 1988; Lettau and Ludvigson, 2005) cash flow predictability
has historically received much less attention in the literature.
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traditionally used for empirically implementing present value relations does not naturally lend it-

self to the estimation of models involving priced volatility risk. Instead, we follow Sentana and

Fiorentini (2001) and Rigobon (2003) in designing a “structural” factor GARCH model, in which

the factors exhibit time-varying volatility. The dynamicsof the factors is derived endogenously

from an extended long-run risk model explicitly incorporating time-varying consumption volatil-

ity and volatility-of-volatility, or economic uncertainty. The resulting econometric model sepa-

rately identifies the long-run risk, volatility, and economic uncertainty components, as well as the

corresponding structural shocks and their contemporaneous impact on both returns and dividend

growth.

Estimating the “structural” factor GARCH model by standard GMM techniques on data for

the S&P 500 market portfolio, we confirm existing empirical evidence that the dividend-price ra-

tio is useful for predicting long-horizon multi-year returns, but that it has no predictive power for

dividend growth.3 More important, we document a number of new results pertaining to the pre-

dictability of the volatility factors. In particular, while the variance risk premium shows significant

predictability for returns over short within-year horizons, it also helps predict dividend growth.

Similarly, the expected return variation appears to be veryinformative for predicting dividend

growth.

These results are consistent with the findings in Koijen and van Nieuwerburgh (2011) that the

high-frequency component of the dividend-price ratio, which in our setup is driven by two separate

volatility factors, contains useful information for predicting expected dividend growth. Our results

are also related to Binsbergen, Brandt, and Koijen (2012) and their findings that the term structure

of equity risk premia is particularly steep in the short end,while standard asset pricing models

without priced volatility risk typically imply higher equity premia at the long end.

In addition to the new empirical evidence pertaining to the short-run predictability of returns

and dividend growth, by explicitly identifying the systematic risk factors at work, our “struc-

tural” factor GARCH approach also helps shed new light on the underlying economic mecha-

3Compared to earlier empirical findings based on univariate regressions (Rozeff, 1984; Fama and French, 1988;
Campbell and Shiller, 1988b) and traditional present-value homoskedastic VAR’s (Hodrick, 1992; Campbell, 2001;
Cochrane, 2008), our “structural” factor GARCH model results in much sharper inference, with the actual point
estimates systematically falling within the standard error bands obtained from the more conventional procedures.
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nisms. Specifically, we find that the long-run expected growth component is highly persistent with

a first-order autocorrelation coefficient close to one (ρx = 0.988) at the monthly level, consistent

with the idea in Bansal and Yaron (2004) that it acts as the most important driver of the risk pre-

mium dynamics over long horizons.4 The model also clearly differentiates and is able to accurately

estimate the persistence of the consumption volatility component (ρσ = 0.64) and the volatility-

of-volatility, or economic uncertainty, component (ρq = 0.46), advocated by Bollerslev, Tauchen,

and Zhou (2009), both of which are intimately linked to the shorter-run predictability patterns in

the data. In terms of the underlying “structural” shocks, wefind a negative relationship between

the long-run growth and consumption volatility shocks (akin to a “leverage effect”), as well as a

negative relationship between the consumption volatilityand volatility uncertainty shocks (inter-

pretable as a separate new “leverage effect”). The price-dividend ratio also responds negatively to

both consumption volatility and volatility uncertainty shocks.5

The basic motivation behind the new “structural” factor GARCH model is in line with a grow-

ing recent literature seeking to explicitly incorporate the effect of stochastic volatility in asset

pricing models. For example, Bansal, Kiku, Shaliastovich,and Yaron (2012) demonstrate that

ignoring the variation in volatility leads to counter-intuitive economic interpretation of risk pre-

mium dynamics. Similarly, Campbell, Giglio, Polk, and Turley (2012) examine the cross-sectional

return predictability in an ICAPM framework that allows for stochastic volatility.6 In contrast to

these studies, our focus is on thejoint predictability of returns and cash flows within the context

of a “structural” econometric model explicitly designed toaccommodate time-varying volatility

in an internally consistent fashion. Recent studies by Binsbergen and Koijen (2010) and Piatti

and Trojani (2012) have also relied on a latent variable approach with heteroskedastic shocks for

incorporating the effect of time-varying volatility within a present-value framework. Importantly,

however, we differ from both of these studies by specifying an empirically more realistic two-factor

4Nakamura, Sergeyev, and Steinsson (2012) have recently shown how the long-run growth factor may also be
identified from cross-country aggregate consumption data under additional simplifying assumptions.

5The importance of economic uncertainty for explaining asset prices has also recently been emphasized from
different perspectives by Bekaert, Engstrom, and Xing (2009), Nieto and Rubio (2011), and Corradi, Distaso, and
Mele (2012), among others.

6Our “structural” factor GARCH estimate for the persistencein consumption volatilityρσ, and in turn the effect of
allowing for time-varying volatility, are much larger thanthe estimates reported in Campbell, Giglio, Polk, and Turley
(2012) based on simple VAR procedures and imprecise variance measures.
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volatility structure and by explicitly including both the actual and risk-neutral expected variation

in the formulation and estimation of the model.7

The rest of the paper is organized as follows. Section 2 describes the data. Section 3 presents

the general equilibrium model setup underlying our empirical investigations. Section 4 discusses

the formulation of the “structural” factor GARCH model and the GMM-based parameter estima-

tion results. Section 5 details the return and cash flow predictability implied by the model, and

contrast the results with those obtained by other less structured reduced form estimation proce-

dures. Section 6 concludes.

2 Data Description

Our empirical investigations are based on end-of-month S&P500 index returns, as a proxy for the

aggregate market portfolio, and the S&P 500 dividend payments, as a proxy for the corresponding

aggregate cash flows. All of our S&P 500 data are obtained fromDataStream, and cover the period

from January 1990 to November 2011, for a total of 262 monthlyobservations.8

Following standard practice in the literature, we use the trailing 12-month dividend-price ratio

to account for the strong seasonality inherent in the dividend payouts; see, e.g., the discussion in

Bollerslev and Hodrick (1995). Accordingly, the montht log dividend-price ratiodpt, is formally

defined by,

dpt = log

(

Divt−11+ ... + Divt

Pt

)

, (1)

whereDivt denotes the dividend payments from the end-of-montht − 1 to the end-of-montht, and

Pt denotes the end-of-montht price.

Our measures for the montht + 1 log dividend growth rate∆dt+1 and the log returns including

7Other recent studies seeking to incorporate more realistictwo-factor volatility structures in the standard long-run
risk model include Zhou and Zhu (2012), Branger and Vòlkert (2012), and Branger, Rodriguez, and Schlag (2011),
among others.

8While the S&P 500 data are obviously available over a much longer sample period, some of the key variance
measures employed in our analysis are only available starting in 1990.
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dividendsrt,t+1, are similarly defined from this ratio as,

∆dt+1 = log

(

Divt−10+ ... + Divt+1

Divt−11+ ... + Divt

)

, (2)

rt,t+1 = log















Pt+1 +
Divt−10+...+Divt+1

12

Pt















. (3)

Longer-run dividend growth rates and returns are defined in an obvious manner by simple summa-

tion.

We consider three distinct variation measures: the optionsimplied variationIVt, the expected

return variationERVt, and the variance risk premiumVRPt. Our measure for the options implied

variation is the square of the Chicago Board of Options Exchange (CBOE) VIX volatility index,

IVt = VIX2
t . (4)

This model-free measure is (approximately) equal to the market risk-neutral, orQ, expectation of

the one-month-ahead return variation under very general assumptions.

To define the corresponding actual, orP, expectation, we first construct the time series of

monthly model-free realized variances by summing the dailysquare returns within each month,

RVt,t+1 ≡
∑n

i=1 r2
t+ i−1

n ,t+ i
n

, wheren refers to the number of trading days in montht + 1.9 Our measure

for the one-month-ahead expected return variation is obtained from the linear projection of these

monthly realized variances on their own lagged daily, weekly, and monthly values, along with the

lagged implied variance,10

RVt,t+1 = α0 + α1RVt− 1
n ,t
+ α2RVt− 5

n ,t
+ α3RVt−1,t + α4IVt + ςt+1. (5)

Except for the addition ofIVt as an additional right-hand-side variable, this specification directly

mirrors the popular HAR-RV model originally proposed by Corsi (2009).11 In the sequel, we will

9This directly mirrors the use of higher-frequency intradaydata in the construction of daily realized volatility
measures advocated by Andersen, Bollerslev, Diebold, and Ebens (2001) among many others.

10Our estimates of theα’s are based on overlapping daily data. The use of daily as opposed to monthly observations
in estimating the regression greatly enhances the efficiency, and we consequently ignore the small estimation errors in
theα’s in our empirical analysis below.

11Numerous other more complicated models for forecasting realized volatility have been suggested in the literature,
see, e.g., Andersen, Bollerslev, and Diebold (2007) and Corsi, Pirino, and Reǹo (2010) and the many references
therein. However, the relatively simple-to-implement HAR-RV type regression model in (5) is very hard to “beat” for
forecasting the monthly volatility.
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denote this estimate byERVt for short. Finally, our measure for the variance risk premium is

simply defined as the difference between our risk-neutral and statistical expectations of the one-

month-ahead return variation in (4) and (5), respectively,

VRPt = IVt − ERVt. (6)

To illustrate the basic features of the different variables, Figure 1 plots the monthly time se-

ries of stock returns, dividend growth rates, dividend-price ratios, and variance risk premia. The

large losses in market values and the increased volatility during the recent economic downturn are

immediately evident in the plots of the returns and cash flows. The plot for the dividend-yields

shows a sharp drop throughout the 1990s, but an increase after the burst of the tech bubble in 2001,

reaching a new peak in the fourth quarter of 2008 around the advent of the global financial crisis

and the stock market crash.12 The variance risk premium shown in the last panel is on average

positive with occasional negative spikes, the largest of which occur in the fall of 2008 at the onset

of the financial crises.

Summary statistics for the same four variables, along with the options implied and expected

variation measures underlying the variance risk premium, are reported in Table 1. The annualized

mean stock return over the sample equals 8.19 percent with a volatility of 15.33 percent, while

the average dividend growth rate was 3.92 percent with a standard deviation of 8.79 percent. The

log dividend-price ratio is, of course, highly persistent with a first order autocorrelation coefficient

equal to 0.98. Meanwhile, the average implied and expected variances equal 40.30 and 28.54,

respectively, on a percentage-squared monthly basis, implying an on average positive variance risk

premium of 11.75. Interestingly, while the two individual variance series are strongly positively

serially correlated, albeit not as persistent as the dividend-price ratio, the first order autocorrelation

of the variance risk premium is only 0.27.

Turning to the sample correlations reported in the bottom panel of the table, the implied and

expected variances obviously move closely together. The monthly returns are also highly nega-

tively correlated with both measures, while the returns areonly weakly negatively correlated with

12The sharp decline observed in the 1990s is often attributed to firms’ substitution of dividend payments by share
repurchases; see, e.g., Koijen and van Nieuwerburgh (2011), along with the earlier related discussion in Bagwell and
Shoven (1989).
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dividend yields. The positive contemporaneous sample correlation of 0.15 for the returns and the

variance risk premium is largely driven by the negative spike in both series during the financial

crisis. Interestingly, the two individual variance measure are both negatively correlated with the

dividend growth rate.

We turn next to our new present value framework and “structural” model designed to describe

and better understand these dependencies.

3 Asset Pricing Model and Structural Restrictions

Our equilibrium-based approach combines the long-run riskmodel pioneered by Bansal and Yaron

(2004), with the model in Bollerslev, Tauchen, and Zhou (2009) explicitly allowing for stochas-

tic volatility-of-volatility, or time-varying economic uncertainty. This general setup naturally ac-

commodates the magnitude of both the equity and variance risk premia, as well as the long- and

short-horizon predictability patterns in the returns and cash flows within a unified framework.

3.1 Model Setup and Assumptions

Following the long-run risk literature, we assume an endowment economy with a representative

agent equipped with Epstein and Zin (1991) recursive preferences. The logarithm of the intertem-

poral marginal substitution for this agentmt+1 ≡ log(Mt+1), may consequently be expressed as,

mt+1 = θ logδ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1, (7)

where rc,t+1 ≡ log(Rc,t+1) refers to the logarithmic return on the consumption asset,∆ct+1 ≡

log(Ct+1/Ct) denotes the growth rate of consumption, 0< δ < 1 is the time discount factor,

γ > 0 denotes the risk aversion parameter, andθ ≡ 1−γ
1−ψ−1 whereψ > 0 refers to the intertemporal

elasticity of the substitution. As is standard in the long-run risk literature, we will assume that

γ > 1, implying that the representative agent is more risk averse than log utility, and thatψ > 1,

and thereforeθ < 0, implying a preference for early resolution of uncertainty.

For notational convenience, we collect the consumption growth ∆ct, the log dividend growth

7



∆dt, and the latent state variables describing the underlying dynamics in the vectorYt,

Yt ≡



















































∆ct

xt

σ2
t

qt

∆dt



















































, (8)

wherext denotes the long-run mean of consumption growth as in Bansaland Yaron (2004), and

σ2
t andqt refer to two separate volatility factors along the lines of Bollerslev, Tauchen, and Zhou

(2009). The importance of allowing for multiple volatilityfactors in accurately describing both

short- and long-horizon time-varying return and volatility dynamics has also recently been high-

lighted by Bollerslev, Tauchen, and Zhou (2009), Drechslerand Yaron (2011), Bollerslev, Sizova,

and Tauchen (2012b), Zhou and Zhu (2012), Branger and Vòlkert (2012), among others.13

We assume that the state vector has affine conditional mean and variance dynamics,

Yt+1 = µ + FYt + HGtzt+1, (9)

wherezt+1 ≡ [zc,t+1, zx,t+1, zσ,t+1, zq,t+1, zd,t+1]′ denotes a vector of independent standard normally

distributed shocks. The conditional mean ofYt is in turn determined by the constant vectorµ and

the loading matrixF. We assume that the loading matrix takes the sparse form,

F =



















































0 1 0 0 0

0 ρx 0 0 0

0 0 ρσ 0 0

0 0 0 ρq 0

0 φdx 0 0 ρd



















































, (10)

in which the diagonal elements characterize the own lagged dependencies and the off-diagonal

elements describe the dynamic first-order cross dependencies. In particular,φdx allows the divi-

dend growth rate∆dt+1 to directly load on the lagged long-run consumption growth componentxt.

Allowing ∆dt+1 to also depend on its own lag permits a non-redundant pricingeffect of dividend

growth risk on the equity premium. Restricting this coefficientρd to be zero reduces the model’s

13In particular, as discussed in Bollerslev, Tauchen, and Zhou (2009), by allowing for stochastic volatility-of-
volatility it is possible to separate the time-varying market price of risk that drives the consumption risk premium
from the time-varying volatility risk that drives the volatility risk premium.
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growth dynamics to that of a “standard” long-run risk model.However, our estimates of the model

discussed below strongly rejects such a specification.

The conditional second-order dynamics of the state vector is determine by the time-varying

diagonal volatility matrixGt and the constant loading matrixH,

Gt =



















































σt 0 0 0 0

0
√

qt 0 0 0

0 0
√

qt 0 0

0 0 0
√

qt 0

0 0 0 0 σt



















































H =



















































1 0 0 0 0

0 ϕx 0 0 0

0 ϕxsσ,x 1 0 0

0 ϕxsq,x sq,σ ϕq 0

0 ϕxsd,x sd,σ ϕqsd,q ϕd



















































. (11)

Our choice ofGt differs from the models in Drechsler and Yaron (2011) and Brangerand Vòlkert

(2012) by allowing bothxt+1 andσ2
t+1 to have time-varying volatility

√
qt. As discussed further

below, this assumption facilitates our ranking of the “structural” shockszt+1. Our choice ofGt

also nests the model in Bollerslev, Tauchen, and Zhou (2009)by zeroing out the long-run growth

component, equating the dividend and consumption growth, and fixing si, j = 0 for i , j, thereby

renderingH diagonal.14

Identification of the lower triangular volatility loading matrix H is effectively accomplished

through heteroskedasticity, and cross-dependencies between the different state variables implied by

the form of the time-varying volatility. We rank the two “structural” consumption shockszc,t and

zx,t, before shocks to dividendszd,t. Based on the intuition that level shocks are more “fundamental”

than shocks to volatility, we also put the two consumption shocks before the volatility shockszσ,t

andzq,t.

Denoting the rows ofH ≡ [h1, h2, h3, h4, h5], the “square” ofHGt may be conveniently ex-

pressed in affine form as,

HGtG
′
t H
′
=

∑

j=1,5

h jh
′
jσ

2
t +

∑

j=2,3,4

h jh
′
jqt. (12)

This two-factor volatility structure is distinctly different from the one-factor setup recently em-

ployed in Campbell, Giglio, Polk, and Turley (2012). As discussed in more detail below, it affords
14We also experimented with two alternative setups, one closer to Drechsler and Yaron (2011) withGt =

diag[σt,
√

qt, σt,
√

qt, σt], and the other one closer to Branger and Vòlkert (2012) withGt = diag[σt, σt, σt,
√

qt, σt],
resulting in qualitatively similar predictability results to the ones reported below. However, both of these alterna-
tive specifications were rejected at conventional significance levels by the corresponding GMM-basedJ-tests for
over-identifying restrictions. Further details concerning these alternative models and empirical results are reported in
Appendixes C and D.
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an empirically much more realistic description of the return and cash flow dynamics, and in turn

the predictability patterns obtained by imposing the equilibrium-based restrictions.

3.2 Model Implications

In order to deduce the “structural” model-implied restrictions that guide our empirical analysis, we

begin by solving the consumption-based asset pricing modelusing similar techniques to the ones

in Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2007b),and Drechsler and Yaron (2011). In

the spirit of Campbell (1993, 1996), we then substitute out the hard-to-measure consumption and

its volatility dynamics with directly observable market return and its variance measures.

Standard solution methods applied in the long-run risk literature readily imply that the stochas-

tic discount factormt+1, the return on consumptionrc,t+1, and the market return on dividendsrt+1,

must satisfy

mt+1 − Et(mt+1) = −Λ′HGtzt+1,

rc,t+1 − Et(rc,t+1) = Λ′cHGtzt+1,

rt+1 − Et(rt+1) = Λ
′
dHGtzt+1,

(13)

whereΛ = γe1 + κ1(1 − θ)A denotes the price of risk for the factor shocks,Λc = e1 + κ1A,

Λd = e5 + κd,1Ad, κ1 andκd,1 refer to the Campbell and Shiller (1988b) log-linearizationconstants

based on the “usual” approximations for consumption returnrc,t+1 ≈ κ0 + κ1νt+1 − νt + ∆ct+1 and

dividend returnrt+1 ≈ κd,0 + κd,1wt+1 − wt + ∆dt+1, respectively, and the two selection vectors are

defined bye1 ≡ [1,0,0,0,0]′ ande5 ≡ [0,0,0,0,1]′.15 Given these expressions, it is possible to

explicitly solve for the market return varianceVart(rt+1), the variance risk premiumVRPt, and the

log dividend-price ratiodpt, as

Vart(rt,t+1) = (1+ κd,1Ad,d)2ϕ2
dσ

2
t +

∑

j=2,3,4

Λ
′
dh jh

′
jΛdqt, (14)

VRPt =

















∑

j=1,5

Λ
′
dh jh

′
jΛd sq,1 +

∑

j=2,3,4

Λ
′
dh jh

′
jΛd sq,2

















qt, (15)

dpt = −A0,d − Ad,xxt − Ad,σσ
2
t − Ad,qqt − Ad,d∆dt, (16)

15As further detailed in Appendix A, the market prices of risksalso depend implicitly on the coefficients in
the wealth-consumption ratioνt = A0 + [0, Ax, Aσ, Aq,0]′Yt and the price-dividend ratiowt ≡ −dpt = Ad,0 +

[0, Ad,x, Ad,σ, Ad,q, Ad,d]′Yt.
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wheresq,1 = −(ϕxsσ,xh′2 + h′3)Λ and sq,2 = −(ϕxsq,xh′2 + sq,σh′3 + ϕqh′4)Λ. We will impose these

“structural” restrictions on the empirical model estimated below.

Even though our empirical strategy of substituting out consumption means that some of the

parameters in the autoregressive loading matrixF and the volatility loading matrixH are not

identified, the specific structures for the two loading matrices still provide useful guidance on how

to restrict the factor dynamics. In particular, denote the sub-vector ofYt that exclude consumption

growth by ft ≡ [σ2
t , qt,∆dt, xt]′. The dynamic dependencies in the sub-system defined byft may

then be expressed as,

ft+1 = µ + ρ ft + S ǫt+1, (17)

where

ρ =







































ρσ 0 0 0

0 ρq 0 0

0 0 ρd φdx

0 0 0 ρx







































S =







































1 0 0 sσ,x
sq,σ 1 0 sq,x

sd,σ sd,q 1 sd,x

0 0 0 1







































, (18)

and the vector of innovationsǫt+1 ≡ [
√

qtzσ,t+1, ϕq
√

qtzq,t+1, σtzd,t+1, ϕx
√

qtzx,t+1]′ is conditionally

heteroskedastic.16 In our empirical implementation we will use a multivariate GARCH-type model

to describe the dynamic dependencies in theǫt+1 vector.

The state vectorft is, of course, not directly observable. To circumvent this,we define the

“observable” state vectorXt ≡ [ERVt,VRPt,∆dt, dpt]′. From the solution of the model discussed

in Appendix A, theXt vector is directly related to the latentft vector by the linear equations,

Xt = µX + Q ft Q =







































Q1,1 Q1,2 0 0

0 Q2,2 0 0

0 0 1 0

−Ad,σ −Ad,q −Ad,d −Ad,x







































, (19)

whereQ1,1 = (1 + κd,1Ad,d)2ϕ2
dρσ, Q1,2 =

∑

j=2,3,4Λdh jh′jΛdρq, and Q2,2 = (1 + κd,1Ad,d)2sq,1 +

∑

j=2,3,4Λ
′
dh jh′jΛd sq,2. Given the standard set of assumptions about the structuralparameter values

typically employed in the long-run risk literature, all of theQ parameters would be positive. Con-

versely,Ad,σ, Ad,q, andAd,d would all be negative, whileAd,x is naturally expected to be positive.

16The value ofµ is immaterial to all of our predictability results. Also, the reordering of the elements inft relative to
Yt merely serves to facilitate comparisons with other benchmark models below, and does not affect any of the results.
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The relationship betweenft andXt in equation (19) underlies our estimation of (scaled versions

of) the keyρ andS parameter matrices, and the underlying economic mechanisms and different

“structural” shocks.

4 Empirical Methodology and Estimation Results

The consumption-based asset pricing model with volatilityuncertainty, outlined in the previous

section, imposes a number of restrictions pertaining to thedynamic dependencies and possible

feedback effects between the expected variance, the variance risk premium, the dividend growth

rate, and the dividend-price ratio. Our new “structural” factor GARCH model is designed to honor

these restrictions within a tractable econometric framework.

4.1 “Structural” Factor GARCH

Combining the model forft in equations (17) and (18) with the expression forXt in equation (19),

it follows that

BXt+1 = µ̃ + ρ̃BXt + S̃ ǫ̃t+1, ǫ̃t+1 = G̃tzt+1, (20)

whereG̃t = diag[Q1,1
√

qt,Q2,2ϕq
√

qt, σt,−Ad,xϕx
√

qt], and17

B =









































1 −Q1,2

Q2,2
0 0

0 1 0 0

0 0 1 0
Ad,σ

Q1,1

Q1,1Ad,q−Ad,σQ1,2

Q1,1Q2,2

ρd

1−κd,1ρd
1









































ρ̃ =







































ρσ 0 0 0

0 ρq 0 0

0 0 ρd
φdx

−Ad,x

0 0 0 ρx







































(21)

S̃ =









































1 0 0 Q1,1

−Ad,x
sσ,x

Q2,2

Q1,1
sq,σ 1 0 Q2,2

−Ad,x
sq,x

1
Q1,1

sd,σ
1

Q2,2
sd,q 1 1

−Ad,x
sd,x

0 0 0 1









































. (22)

Multiplying the “structural” VAR in equation (20) byB−1, the corresponding reduced form VAR(1)

representation forXt+1 becomes,

Xt+1 = B−1µ̃ + ΦXt + ut+1, (23)

17As explained in more detail in Appendix B, theB matrix is obtained from theQ matrix by normalizing its diagonal
elements to unity.
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whereΦ=B−1
ρ̃B, ut+1 = Φ

−1
0 ǫ̃t+1, andΦ−1

0 = B−1S̃ . As this representation makes clear, ignoring

the heteroskedasticity in the reduced form shocksut+1, and interpreting the model forXt+1 in (20)

as a standard homoskedastic VAR(1), theB and S̃ matrices aren’t jointly identified. In empiri-

cal macroeconomics, this lack of identification is usually “solved” by imposing thatΦ0 is lower

triangular. However, as argued by Sentana and Fiorentini (2001), Rigobon (2003) and Rigobon

and Sack (2003), among others, under the maintained assumption that the underlying “structural”

shocks are independent, it is possible to identify theΦ0 matrix, and in turn bothB andS̃ , through

the heteroskedasticity in ˜ǫt+1.

Rather than specifying the time-varying covariance matrixfor the “structural” shocks as an

explicit function of the latentqt andσ2
t risk factors, in the implementation reported on below we

adopt a more flexible and empirically realistic GARCH approach for characterizing the dynamic

dependencies in ˜ǫt+1. Specifically, letΣt+1 denote the conditional covariance matrix of ˜ǫt+1. We

will assume thatΣt+1 may be described by the following relatively simple yet flexible diagonal

GARCH(1,1) model,

diag(Σt+1) = (I − Γ − Υ)Θ−1
0 ̟u + Γdiag(Σt) + Υǫ̃

2
t , (24)

whereΘ0 = Φ
−1
0 ⊙ Φ−1

0 , and̟u denotes the unconditional covariance matrix of the reducedform

shocksut+1 = Φ
−1
0 ǫ̃t+1. Consequently, the second order dynamics ofut+1 will follow the more

complicated non-diagonal GARCH(1,1) structure,18

vec(Ωt+1) = Θ1(I − Γ − Υ)Θ−1
0 ̟u + Θ1ΓΘ

−1
0 diag(Ωt) + Θ1ΥΘ2vec(utu

′
t). (25)

By explicitly parameterizing this implied conditional heteroskedasticity inut+1, it is possible to

identify and separately estimateall of the “structural” parameters in (20)-(22).

Let ξ denote the vector of stacked parameters comprised of the conditional mean parameters in

B, S̃ , µ̃, andρ̃, along with all of the conditional variance parameters inΓ,Υ, and̟h. Assuming that

the reduced form shocksut+1 are jointly normally distributed, the logarithm of the density for Xt+1

conditional onXt andΩt+1, or equivalently the contribution to the log-likelihood function coming

18More formally,Θ1 = (Φ−1
0
⊗ Φ−1

0 )Il, Θ2 = [vec(Φ−1′
0,(1)Φ

−1
0,(1)), vec(Φ−1′

0,(2)Φ
−1
0,(2)), vec(Φ−1′

0,(3)Φ
−1
0,(3)), vec(Φ−1′

0,(4)Φ
−1
0,(4))]

′,
whereΦ−1

0,(i) denotes theith row of the square matrixΦ−1
0 , and the 16×4 matrix Il helps to transform the vector vec(Ωt)

into diagonal matrix form.
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from Xt+1, may be expressed as,

Lt(Xt+1, ξ) = − 2 log 2π − 1
2

log |Ωt| −
1
2

(Xt+1 − B−1µ̃ − ΦXt)
′
Ω
−1
t (Xt+1 − B−1µ̃ − ΦXt)

= − 2 log 2π − 1
2

log |Σt| + log |S̃ −1B| (26)

− 1
2

(Xt+1 − B−1µ̃ − B−1
ρ̃BXt)

′S̃ −1BΣ−1
t B′S̃ −1′(Xt+1 − B−1µ̃ − B−1

ρ̃BXt).

Even if the assumption of conditional normality is violatedempirically, the estimate forξ obtained

by maximizing the resulting log-likelihood function, defined by summing (26) over the full sample,

remains consist and asymptotically normally distributed under quite general conditions; see, e.g.,

Bollerslev and Wooldridge (1992).

The diagonal GARCH(1,1) model in (24) freely parametrizes the persistence in the “structural”

shocks. Consistent with the implication from the underlyingconsumption-based asset pricing

model, we impose the restriction that the autoregressive dependencies in the GARCH expected

variance and the dividend-price ratio are the same, i.e.,Γ1,1 + Υ1,1 = Γ4,4 + Υ4,4 = ρq. Guided by

our initial diagnostic tests, we also restrict the dividendgrowth shock to have only ARCH and no

GARCH effect, i.e.,Γ3,3 = 0.

The long-run implications from multivariate GARCH models can be very sensitive to estima-

tion errors and small perturbations in a few parameters. To help guard against this, we augment the

Gaussian-based score for the “structural” VAR-GARCH model with an additional set of moment

conditions designed to ensure that the unconditional variances of the reduced form errors implied

by the model match their standard VAR-based analogues.19 Expressing this additional set of mo-

ments in parallel to equation (26) and the contribution to the likelihood function coming fromXt+1,

we have

Wt(Xt+1, ξ) = ̟u − diag
(

(Xt+1 − µOLS− ΦOLSXt)(Xt+1 − µOLS− ΦOLSXt)
′
)

, (27)

where the “OLS” superscript indicates the parameters obtained from equation-by-equation least

squares estimation of the reduced form VAR.

19This mirrors the variance targeting approach originally advocated by Engle and Mezrich (1996). However, in
contrast to that two-step approach, the GMM-based procedure applied here jointly estimates all of the parameters inξ

in a single step.
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The estimates forξ reported below are obtained by applying standard iterated GMM to the con-

ditional set of moments defined by the score for the conditional density in (26), say∂ξLt(Xt+1, ξ),

augmented with the moment conditions in (27),

g(Xt+1, ξ) =















∂ξLt(Xt+1, ξ)

Wt(Xt+1, ξ)















. (28)

We turn next to a discussion of the resultingξ̂, and the implications of the estimates in regards to

the dynamics of the systematic risk factors and the dependencies among the “structural” shocks.

4.2 Estimation Results and “Structural” Inference

The dynamic dependencies in the observable state vectorXt = [ERVt,VRPt,∆dt, dpt]′ underlying

our GMM estimation is directly related to the latent state vector ft = [σ2
t , qt,∆dt, xt]′ of interest

by Xt = µX + Q ft. This allows us to infer both the contemporaneous interaction matrixQ and the

autoregressive matrixρ describing the mean dynamics inft+1 = µ + ρ ft + S ǫt+1 from the estimates

for B andρ̃ based onBXt+1 = µ̃+ ρ̃BXt + S̃ ǫ̃t+1, and the relations in equation (21) above. Similarly,

the estimated volatility loading matrix̃S for the observable state vectorXt allow us to infer the

volatility loading matrixS for the latent state vectorft from equation (22), while the estimated

volatility dynamics of the ˜ǫt+1 shocks effectively determines the implied volatility dynamics of the

“structural” ǫt+1 shocks.

We begin with a discussion of the estimates forB andρ̃,

B̂ =



















































1 −0.02
(0.11)

0 0

0 1 0 0

0 0 1 0

−0.60
(0.03)

−1.44
(0.10)

−0.19 1



















































ˆ̃ρ =





















































0.64
(0.05)

0 0 0

0 0.46
(0.07)

0 0

0 0 −0.23
(0.03)

−0.002
(0.004)

0 0 0 0.988
(0.009)





















































(29)

where the numbers in parentheses represent asymptotic standard errors. With the exception of

B1,2 and ρ̃3,4, all of the individual parameter estimates are highly statistically significant. All of

the estimates also have the “correct” signs vis-a-vis the implications from the equilibrium-based

model and the “structural” VAR.

In particular, the negative estimates for the loadings for the dividend price ratio reported in the

last row of theB matrix are consistent with the idea that the two volatility componentsσ2
t and
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qt, and cash flow growth∆dt, are all genuine risk factors with negative market prices ofrisks.20

Within the context of the standard Bansal and Yaron (2004) long-run risk model, these negative

contemporaneous relationships between the dividend-price ratio and the other state variables, or

risk factors, are critically dependent on the risk aversionparameterγ > 1 and the intertemporal

elasticity of substitutionψ > 1. As such, our “structural” estimation results indirectlysupport this

commonly invoked set of assumptions.

Our estimate for̃ρ4,4 = ρx = 0.988 also points to a highly persistent and very accurately

estimated long-run risk factor. This contrasts with the typical practice of simply fixing the long-

run persistence coefficient at some “large” value, as in, e.g., Bansal, Gallant, and Tauchen (2007a),

and clearly highlights the advantages of the more structured GMM estimation approach and richer

data sources applied here. Meanwhile, even though our estimate forφdx = ρ̃3,4 =
φdx

−Ad,x
= −0.002

is “correctly” signed, the parameter is not significantly different from zero, and as such offers only

limited support to the idea that the long-run risk factorxt contemporaneously impacts cash flows

∆dt.

Interestingly, our use of more accurate volatility measures results in a much more persistent

consumption variance estimateρ̃1,1 = ρσ = 0.64 compared to the estimates recently reported in

Campbell, Giglio, Polk, and Turley (2012). Moreover, our estimates forρ̃1,1 = ρσ = 0.64> ρ̃2,2 =

ρq = 0.46 imply that the consumption varianceσ2
t is more persistent than the variance-of-variance

qt, or economic uncertainty, which is directly in line with theimplicit assumptions invoked in the

calibrations reported in Bollerslev, Tauchen, and Zhou (2009).

Turning to our estimates for the volatility dependence matrix S̃ ,

ˆ̃S =

















































1 0 0 0.08
(0.04)

−0.29
(0.06)

1 0 −0.09
(0.02)

−0.36
(0.05)

−0.09
(0.08)

1 0.15
(0.03)

0 0 0 1

















































(30)

all of the individual parameters, exceptS̃ 3,2, are again highly statistically significant. This clearly

underscores the idea that multiple volatility factors are indeed needed to accurately describe the

20Note that the market price of dividend riskB4,3 = −0.19 is imputed to by the constraintAd,d =
ρd

1−κd,1ρd
imposed in

equation (21).
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dynamic dependencies observed in the data, and that the standard long-run risk model with a single

stochastic volatility factor is misspecified. To more fullyappreciate this and the other implications

of the estimates recall again the relationship betweenS̃ and the “structural”S matrix for the latent

state vector in equation (22).

It follows from this relation that shocks to cash flow growth∆dt are adversely affected by

shocks to the long-run risk componentxt, assd,x ∝ −S̃ 3,4 = −0.15.21 This is consistent with the

idea that companies tend to distribute more in dividends when long-run growth opportunities are

poor. The “structural” long-run risk shock affects the two variance processesσ2
t andqt in opposite

directions. Good news about long-run consumption growth reduces the consumption variance, as

sσ,x ∝ −S̃ 1,4 = −0.08 < 0, but increases economic uncertainty, assq,x ∝ −S̃ 2,4 = 0.09 > 0.

The first effect represents the well known “leverage effect”, whereby a negative growth shock is

associated with higher volatility, and vice versa. The second effect, however, is more subtle. Since

qt directly affects the time-varying volatility of the long-run risk component, a positivesq,x implies

that when a positivezx,t shock occurs, the volatility of next period’sǫx,t+1 will also be higher, and

vice versa. Intuitively, this could happen when good news inconsumption growth is accompanied

by better investment opportunities, in turn resulting in higher economic uncertainty, possibly due

to over-investment. Interestingly, our estimates forS̃ also suggest thatsq,σ ∝ S̃ 2,1 = −0.29 < 0,

implying that a positive “structural” shock to consumptionvolatility σ2
t reduces the uncertainty of

volatility qt. This effect is naturally interpreted as a new “leverage effect” between volatility and

volatility-of-volatility.22

Before turning to our main empirical investigations related to the return and cash flow pre-

dictability patterns implied by the “structural” factor GARCH estimates, we will briefly discuss a

series of statistical diagnostic tests designed to assess the quality of the fit of the model.

21We use the symbol∝ to denote proportional to.
22This new equilibrium-based “leverage effect” is also consistent with the asymmetries in daily and high-frequency

intraday VIX and S&P 500 returns documented in Aboura and Wagner (2012) and Bollerslev, Osterrieder, Sizova, and
Tauchen (2012a), respectively.
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4.3 Model Fit and Diagnostics

Our identification and estimation of the “structural” modelparameters rely crucially on the pres-

ence of time-varying conditional heteroscedasticity in the ǫt+1 shocks. The GMM parameter es-

timates for the “structural” factor GARCH model describing this heteroscedasticity are reported

in Table 2. As the table shows, all of the shocks do indeed exhibit highly significant (G)ARCH

effects.23 The overall good fit of the model is also supported by the conventionalJ-test statistic for

general model misspecification and the minimized value of the GMM objective function equal to

12.76, which has a p-value of 0.12 in the corresponding asymptotic chi-square distribution.24

The importance of explicitly allowing for time-varying volatility is further highlighted by the

Ljung-Box tests for residual serial correlation reported in Table 3. The tests for the absolute and

squared raw residuals ignoring heteroscedasticity reported in the top panel all exceed their relevant

quantiles in the chi-square distributions with ten and twenty degrees of freedom, respectively.25

Meanwhile, the corresponding tests for the standardized raw and absolute residuals reported in the

bottom panel are all much smaller and with a few exceptions insignificant when judged by their

conventional 95-percent chi-square critical values, thusunderscoring the overall satisfactory fit of

the “structural” GARCH model.

In order to further gauge the quality of the fit afforded by the model, Figure 2 plots the time-

series of “structural” shocks associated with each of the four equations. The top two panels show

the volatility shockszσ,t and zq,t. Both of these shocks experienced unprecedented large, albeit

opposite signed, realizations during the 2007-2009 “GreatRecession.” Interestingly, neither one

of the earlier 1990-1991 and 2001-2002 NBER-dated recessions were accompanied by especially

large “structural” volatility shocks. The general time-series pattern of the equilibrium-based cash

flow shocksz∆d,t appear quite similar to that of the normalized cash flow news in Campbell, Giglio,

Polk, and Turley (2012). Although not quite as dramatic as for the two volatility shocks, the

23This is, of course, directly in line with the burgeon literature on the estimation of reduced form GARCH and
stochastic volatility models for a wide array of different financial and macroeconomic time series.

24By contrast, the two alternative specifications discussed in Appendix C and D, one closer to Drechsler and
Yaron (2011) withGt = diag[σt,

√
qt, σt,

√
qt, σt], and one closer to Branger and Vòlkert (2012) withGt =

diag[σt, σt, σt,
√

qt, σt], result in GMM-basedJ-statistics equal to 26.31 and 37.02, respectively, with correspond-
ing p-values essentially zero.

25The 95-percent critical values for the chi-square distributions with ten and twenty degrees of freedom equal 18.3
and 31.4, respectively.
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permanent growth shockszx,t also experienced their most extreme realizations during the “Great

Recession.” This basic dynamic pattern in the equilibrium-based growth shocks is again quite

similar to that of the normalized discount rate news shocks reported in Campbell, Giglio, Polk,

and Turley (2012).26

The marginal unconditional distributions of the cash flowz∆d,t and long-run riskzx,t shocks,

shown in the lower two diagonal elements in Figure 3, are bothwell approximated by normal

distributions. However, the volatility shockszσ,t and, to a lessor degree, the volatility-of-volatility

shockszq,t are clearly not normally distributed.27 At the same time, the cloud-like patterns of the

six scatter plots for the pairwise shocks reported in the upper part of the figure, indicate that the

“structural” shocks are largely independent, although notnecessarily jointly normal. Of course,

the apparent violation of normality for some of the shocks does not invalidate our GMM-based

estimation procedure, which by design remains consistent under quite general conditions.

In lieu of these generally supportive diagnostic tests for the “structural” factor GARCH model,

we turn next to our main empirical investigations, showing how incorporating the additional variance-

related state variables in the equilibrium-based model help shed new light on the return and divi-

dend growth predictability patterns inherent in the data.

5 Model Implied Return and Cash Flow Predictability

Our predictability analysis is based on recasting the “structural” factor GARCH model in the form

of an expanded VAR system, along with the use of the standard Campbell-Shiller approximation

for expressing the return as a function of the observable state variables.

5.1 VAR and Predictability

The first order VAR for the state vectorXt=[ERVt,VRPt,∆dt, dpt] implied by the “structural”

factor GARCH model in equation (23) doesn’t directly involvethe return. However, by the

standard Campbell-Shiller approximation, the return may beconveniently expressed asrt,t+1 =

26This is also consistent with the findings in Lettau and Ludvigson (2011), who suggest that large negative perma-
nent growth shocks might have adversely affected housing wealth.

27Eraker and Shaliastovich (2008) and Drechsler and Yaron (2011) have both advocated the use of compound
Poisson processes for more accurately describing the consumption variance process.
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κd,0 − κd,1dpt+1 + dpt + ∆dt+1.28 Combining this equation forrt,t+1 with the VAR for Xt+1, it follows

that

rt,t+1 = µr + (l1Φ + e4)Xt + l1Φ
−1
0 ǫ̃t+1, (31)

whereµr collects all of the relevant constant terms,l1 ≡ (0,0,1,−k1,d), and the selection vector

e4 ≡ (0,0,0,1). Iterating the VAR forXt forward, it is therefore possible to derive closed-form

expressions for the model-implied multi-period returnrt,t+h = rt,t+1 + ... + rt+h−1,t+h regressions

based any explanatory variable spanned by theXt state vector.

In the analysis reported on below we will focus on the three key predictor variables: the log

dividend-price ratiodpt, the variance risk premiumVRPt, and the expected variationERVt. In

particular, consider the regression of theh-period returns on the dividend-price ratio,

1
h

h
∑

i=1

rt,t+i = αr,dp + βr,dp(h) · dpt + ςt,t+h. (32)

By similar arguments to the ones in Hodrick (1992) and Campbell (2001), it is possible to show

that

βr,dp(h) =
(l1Φ + e4)(I − Φ)−1(I − Φh)C(0)e′4

e4C(0)e′4
(33)

whereC(0) =
∑∞

j=0Φ
j
Φ
−1
0 diag(Θ−1

0 ̟u)Φ−1′
0 Φ

j′ denotes the model-implied unconditional covari-

ance matrix forXt, ande4 ≡ (0,0,0,1).29 Similarly, the implied coefficients for the return pre-

dictability regressions based onVRPt andERVt may be expressed in close form as,

βr,VRP(h) =
(l1Φ + e4)(I − Φ)−1(I − Φh)C(0)e′2

e2C(0)e′2
(34)

βr,ERV(h) =
(l1Φ + e4)(I − Φ)−1(I − Φh)C(0)e′1

e1C(0)e′1
(35)

where thee1 ande2 selection vectors are defined in an obvious manner.30

28The accuracy of the Campbell-Shiller approximation has recently been corroborated by Engsted, Pedersen, and
Tanggaard (2012). By definitionκd,1 = exp(−E(dpt))[1 + exp(−E(dpt))]−1. In the estimation results reported on
below we rely on the sample average of the monthly dividend-price ratio from January 1965 to November 2011 when
calculatingE(dpt), implying a value ofκd,1 = 0.9721.

29In the empirical results reported on below, we truncate the infinite sum in the expression forC(0) at 120, or ten
years; see Bollerslev and Hodrick (1995) for further discussion along these lines.

30Analytical expressions for theR2s from the regressions may be derived in a similar manner. Specifically, for
the dividend-price ratio regressionR2

r,dp(h) = h2β2
r,dp(h)e4C(0)e′4/Var(

∑h
j=1 rt,t+ j), whereVar(

∑h
j=1 rt,t+ j) = h(l1Φ +

e3)C(0)(l1Φ + e3)′ + hl1(I − Φ)C(0)l′1 +
∑h−1

i=1 2(h − i)((l1Φ + e3)ΦiC(0)(l1Φ + e3)′ + (l1Φ + e3)Φi−1(I − Φ)C(0)e′3).
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In parallel to equation (31) for the returns, the growth ratedynamics implied by the “structural”

factor GARCH may be expressed in linear form as,

∆dt+1 = µd + e3ΦXt + e3Φ
−1
0 ǫ̃t+1, (36)

whereµd collects all the relevant constant terms. Thus, replacingl1Φ + e4 with e3Φ in the formu-

las for the regression coefficients above, comparable expressions for the cash flow predictability

regression coefficientsβ∆d,dp(h), β∆d,VRP(h), andβ∆d,ERV(h) are readily available. When interpreting

these coefficients, it is important to keep in mind the relationshipEt(∆dt+1) = φdxxt+ρd∆dt implied

by equations (17) and (18), and the fact that within the “structural” model the expected value of

next periods dividend growth rate is linearly related to thelagged dividend growth rate and the

long-run risk component.

5.2 Model-Implied Reduced Form VAR Estimates

The reduced form VAR parameter matrixΦ and the unconditional covariance matrixC(0) for Xt

entering the expressions for the predictive regression coefficients in equations (33)-(35) could, of

course, be estimated directly by OLS equation-by-equation. However, that obviously would ignore

any of the equilibrium-based “structural” restrictions. It also would not permit the separate iden-

tification of the contemporaneousΦ0 matrix entering the expressions for the return and dividend

growth rate in equations (31) and (36), respectively.

Instead, theΦ0 andΦ parameter matrices may both be deduced from the “structural” factor

GARCH model parameters and the relationsΦ=B−1
ρ̃B andΦ−1

0 = B−1S̃ derived above. Substitut-

ing the previously discussed estimates forB, ρ̃ andS̃ into these expressions, yields,

Φ̂ =






















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





















0.64
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(0.020)

0 0

0 0.46
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0 0

0.001
(0.002)

0.002
(0.005)

−0.23
(0.03)

−0.002
(0.004)

−0.21
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−0.76
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−0.23
(0.03)
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Φ̂0 =


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
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




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
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0.995
(0.033)

0.02
(0.11)

0 0.08
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−0.29
(0.06)

1 0 −0.09
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−0.34
(0.06)

−0.09
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(37)

where the numbers in parentheses represent standard errorsderived by the delta-method.

Based on these estimates forΦ andΦ0, the return equation in (31) may be expressed numeri-
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cally as,

rt,t+1 = 0.18
(0.02)
+ 0.20

(0.03)
ERVt + 0.74

(0.12)
VRPt − 0.007

(0.002)
∆dt + 0.038

(0.011)
dpt

−0.47
(0.08)

ǫ̃σ,t+1 −1.48
(0.11)

ǫ̃q,t+1 + 0.82
(0.04)

ǫ̃∆d,t+1 −0.76
(0.03)

ǫ̃x,t+1. (38)

Of course, this “estimated” return equation does not actually rely on the return data, but instead

is deduced from our estimates for the equilibrium-based model and the observable state vector in-

volving the dividend growth rate and the log dividend-priceratio. Again, this mirrors the approach

of Cochrane (2008). However, in contrast to the return equation therein, which only involves the

dividend-price ratio, we purposely include the two variance variables, both of which enters with

highly significant coefficients.

Further underscoring the importance of incorporating the variation measures into the analysis,

the model-implied loadings for all of the “structural” shocks are also highly significant. Among the

four shocks, the ones for the long-run risk component and theconsumption variance uncertainty

have the largest impacts, accounting for 43 percent (zx,t) and 26 percent (zq,t) of the unexpected

unconditional return variation, respectively. The “estimated” return equation in (38) also implies

that the total one-month explainable return variation equals 13 percent, far exceeding that afforded

by traditional univariate return predictability regressions that does not includeERVt andVRPt.

Explicitly writing out the second equation for the variancerisk premium in the model-implied

VAR,

VRPt+1 = 0.001
(0.001)

+ 0.46
(0.07)

VRPt −0.29
(0.06)

ǫ̃σ,t+1 + ǫ̃q,t+1 −0.09
(0.02)

ǫ̃x,t+1. (39)

shows that the only “structural” shock that enters the return and VRP equations with the opposite

sign is ǫ̃q,t. Indeed, excluding the impact of the economic uncertainty shock from both equations

changes the monthly conditional correlation, or “leverageeffect,” from a negative -0.09 to a pos-

itive 0.66, again reinforcing the importance of jointly modeling all of the elements in theXt state

vector.

5.3 Model-Implied Predictability Relations

The VAR-based formula for the slope coefficients presented above allow for a direct assessment of

the statistical significance of the different predictor variables across different forecast horizons. The
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formula also allow us to directly assess the enhanced efficiency afforded by the “structural” factor

GARCH model compared to the reduced form VAR and simple univariate regression procedures

traditionally used in the literature.

To begin, Figure 4 reports the implied slope coefficients for forecasting 1-month to 10-year

returns by the dividend-price ratiodpt. Consistent with the vast existing literature on return pre-

dictability, all of the coefficient estimates (indicated by the dotted lines) are highly significant and

well within the 95 percent confidence intervals included in the figure (indicated by the shaded

area). Also, the magnitude of the predictability appear to decay over time, with the most signif-

icant coefficients and narrowest confidence bands occurring at the 4-6 years horizon. Comparing

the results for the “structural” factor GARCH model reportedin the top panel with the results

in the bottom panel obtained by a traditional two-variable homoskedastic VAR for the dividend-

price ratio and the dividend growth, as in Cochrane (2008), clearly highlights the more accurate

inference afforded by explicitly incorporating the equilibrium-based restrictions and the strong

heteroskedasticity inherent in the data in the estimation.

This visual impression is confirmed by the actual model-implied slope coefficient and stan-

dard error estimates for the 1-10 year predictive regressions reported in the top panel in Table 4.

Meanwhile, the results for the within year regressions reported in the lower panel of the table are

virtually the same for the two procedures. For comparison purposes, the lower panel of the table

also include the estimated regression coefficients from simple univariate unconstrained return re-

gressions. In contrast to the VAR-based results, these regressions indicate little or no predictability,

thus underscoring the advantage of the more structured VAR approach.

Qualitatively similar findings obtain for the dividend growth predictability regressions shown

in Figure 5. Although, the dividend-price ratio is not significant at any horizon, the confidence

bands based on the “structural” factor GARCH model in the upper panel are noticeably sharper.

The specific numbers in Table 4 also corroborate the idea thatthe “structural” model-implied coef-

ficients are more accurate, albeit not significant. The general conclusion emerging from the results

in Table 4, namely that the variation in the dividend-price ratio is almost exclusively related to vari-

ation in expected returns as opposed to variation in future cash flows, thus confirm the summary
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view of the literature expressed by Cochrane (2011).31

Even though our longer multi-year horizon regressions, reported in the top part of Table 4 and

Figures 4 and 5, are in line with the results reported in a number of existing studies based on longer

calendar time span of data, with only slightly more than twenty years worth of monthly observa-

tions these results should obviously be taken with a grain ofsalt. For the remainder of this section

pertaining to our empirical investigations of the “new” variance related forecasting variables, we

consequently restrict our attention to within-year horizons. Of course, the univariate return regres-

sions reported in Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2011) that in

part motivate our analysis also suggest that the return predictability inherent in the variance risk

premium is confined to relatively short horizons.

Turning to the results for the two different variation measures, Figure 6 shows the regres-

sion slope coefficients for the variance risk premiumVRPt implied by the the “structural” factor

GARCH model (indicated by dots) along with the corresponding95 percent confidence intervals

(indicated by the shaded area). For comparison purposes, wealso include the estimated slope

coefficients from simple univariate predictive regressions based on the variance risk premium (in-

dicated by the stars) along with their 95 percent confidence intervals (indicated by the dashed

lines). Focusing on the top panel for the returns, both procedures result in significant estimates for

up to eight months. It is noteworthy that even though the model-implied point estimates are sys-

tematically lower than the unrestricted OLS estimates, they are also less erratic, and the confidence

intervals much smaller. Indeed, looking at the numbers in Table 5, the t-statistics for testing the

null hypothesis of no return predictability are uniformly larger for the “structural” approach.

This discrepancy in the results across the two approaches iseven stronger for the cash flow

predictability regressions reported in the bottom panel inFigure 6. Whereas the estimated slope

coefficients from the univariate regressions are all insignificant, thet-statistics associated with the

VAR-based model-implied coefficients are all negative and exceed conventional significance levels

for up to six months. Hence, not only are higher variance riskpremia positively related to future

returns, as previously documented in the literature, they also predict lower near-term future cash

31Maio and Santa-Clara (2012) have recently challenged this view, showing that for portfolios comprised of small
and value stocks, the dividend-price ratio is primarily related to future changes in cash flows.
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flows.32 This, of course, contrasts with the view commonly expressedin the literature that dividend

growth rates are largely unpredictable over short within-year horizons.

Of course, the much-studied classical risk-return trade-off is not based on the variance risk

premium, but rather the return variation itself. In spite ofthe intuitively appealing idea behind

such a relationship, empirical attempts at establishing a significant risk-return tradeoff have largely

proven futile; see, e.g., the discussion in Bollerslev and Zhou (2006) and Guo and Whitelaw (2006),

and the many other references therein. The result for the univariate return regressions based on

ERVt reported in the top panel in Figure 7 and Table 6 underscore the elusive nature of a simple

linear relationship between the expected returns and the expected variation in the data analyzed

here. None of the regression coefficients are significant, and most have the “wrong” sign. By

contrast, the VAR-based estimates implied by the “structural” model are all positive and marginally

significant for return horizons in excess of 4 months.33

The difference in the quality of the inference afforded by standard univariate regression-based

procedures traditionally employed in the literature and the “structural” approach advocated here is

even more dramatic for the cash flow predictions reported in the bottom panel in Figure 7. While

the simple univariate regressions suggest that the 1-6 months dividend growth rate is unpredictable,

the regression coefficients implied by the “structural” model are all highly significant. Interestingly,

whereas an increase inVRPt predicts lower future cash flows, and increase inERVt is associated

with significantly higher future cash flows. Again, this strong empirical evidence for short-run

within-year cash flow predictability stands in sharp contrast to the results reported in the existing

literature based on other more traditional predictor variables and valuation ratios.

At a more general level, the results for the two different approaches reported in Tables 4-6 and

Figures 4-7 may also be seen as providing indirect support for the equilibrium-based “structural”

model, in that the more accurate model-implied predictive relations systematically fall within the

32This is also related to the observation by Bloom (2009) that an increase in economic uncertainty causes firms to
temporarily reduce their investment and hiring, in turn resulting in a short-term productivity drop.

33The use ofIVt = VRPt + ERVt results in qualitatively similar patterns, but slightly more significant coefficient
estimates, compared to the ones reported forERVt, thus confirming earlier empirical findings in Bollerslev and Zhou
(2006) and Guo and Whitelaw (2006) of a stronger risk-return trade-off when using implied as opposed to realized
variation. Still, none of the univariate return regressions based onIVt result in any significant predictability. Further
details of these results are available upon request.
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wider standard error bands associated with the unrestricted regressions. This, of course, would not

necessarily be the case if the assumptions underlying the “structural” model were violated.

5.4 Further Discussion and Interpretation

The contrast between the long-run predictability inherentin the dividend-price ratio, and the vari-

ance variables ability to predict both return and cash flow over shorter within-year horizons is

intimately related to our equilibrium-based long-run riskmodel, and the way in which the funda-

mental risk factors affect the state variables.

In particular, while the dividend-price ratiodpt loads on the long-run risk factorxt and both

of the volatility factorsσ2
t andqt, the expected variationERVt depends only on the two volatility

factorsσ2
t andqt, and the variance risk premiumVRPt is exclusively determined by the volatility-

of-volatility factor qt. Consistent with earlier less formal model calibrations reported in the litera-

ture, our GMM-based estimates imply that the long-run risk factor is highly persistent with AR(1)

coefficient equal toρx = 0.988, while the consumption volatility factor is moderatelypersistent

with AR(1) coefficient equal toρσ = 0.64, and the consumption volatility-of-volatility factor is

quickly mean-revering with AR(1) coefficient equal toρq = 0.46.

In light of these estimates for the underlying systematic risk factors, it is therefore not surprising

that the “structural” model implied return predictabilityregressions based onVRPt, which depends

solely onqt, result in the most significant coefficients over relatively short 1-6 months horizon,

while the regressions based ondpt, which loads heavily onxt, remain significant over longer

multi-year horizons. Also, whereas the variance risk premium is most significant over horizons

less than 6 months, the expected variationERVt displays the most significant predictability over

6-12 months horizons, as the more persistentσ2
t process “shifts” the predictable to longer horizons.

The documented differences in the degree of cash flow predictability are most easily understood

in terms of the correlations among the “structural” shocks.From the model estimates the cash flow

shock is more strongly negatively correlated with the contemporaneous variance shock (sd,σ ∝

S̃ 3,1 = −0.36), than it is with the uncertainty shock (sd,q ∝ S̃ 3,2 = −0.09) or the long-run risk

shock (sd,x ∝ −S̃ 3,4 = −0.15). Since the expected variation loads more heavily onσ2
t thanqt,

while the dividend-price ratio and the variance risk premium are mostly determined byxt andqt,

26



respectively,ERVt will be more strongly negatively related to∆dt than eitherdpt or VRPt. Because

of the negative autocorrelation in∆dt (ρd = −0.23 < 0), this in turn translates into the strongest

positive short-run cash flow predictability results for theERVt predictor variable implied by the

“structural” VAR.

6 Conclusion

We examine the joint predictability of return and dividend growth rates within a present value

framework, explicitly imposing the economic equilibrium-based constraints from a long-run risk

model with time-varying consumption volatility and volatility-of-volatility risk. The model clearly

differentiate the long-run predictability channels associated with the dividend-price ratio from the

economic mechanisms responsible for the short-run predictability inherent in the variance risk

premium and the expected return variation.

Consistent with Bansal and Yaron (2004), our GMM-based estimates of the “structural” fac-

tor GARCH model point to a highly persistent latent long-run risk factor. Our estimates also

corroborate the calibrations in Bollerslev, Tauchen, and Zhou (2009), and the notion that con-

sumption volatility is more persistent than consumption volatility-of-volatility. In addition, the

“structural” shocks identified within the model reveal thatcash flow respond negatively to con-

temporaneous long-run growth shocks, while consumption volatility decreases with shocks to the

long-run growth factor, and volatility uncertainty increases with long-run growth shocks. A new

“leverage effect” whereby shocks to consumption volatility is negatively related to volatility-of-

volatility also emerges from our “structural” estimation.

By allowing for much sharper and accurate inference than theunivariate unconstrained regres-

sions or reduced form VAR procedures traditionally employed in the literature, the VAR implied

by the “structural” model also provides striking new evidence on the return and cash flow pre-

dictability inherent in the data. Specifically, we find that the variance risk premium, and to a lesser

extend the expected return variation, significantly predicts short-run within-year returns. On the

other hand, the expected return variation, and to a lessor extend the variance risk premium, strongly

predicts short-run within-year dividend growth rates. This latter finding stands in sharp contrast to
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the view expressed by a number of studies in the literature that cash flows are largely unpredictable.
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Table 1 Summary Statistics

The table reports standard summary statistics and correlations for the S&P 500 returnrt,t+1, dividend growth rate∆dt,
dividend-price ratiodpt, options implied varianceIVt, expected varianceERVt, and variance risk premiumVRPt. The
returns, dividend growth, and dividend-price ratio are allin annualized percentage form. All of the variance variables
are in monthly percentage form. The sample period extends from February 1990 to November 2011, for a total of 262
monthly observations.

Mean Std Skew Kurt AC1

rt,t+1 8.19 15.33 -0.76 4.48 0.07

∆dt 3.92 8.79 -0.46 10.02 -0.26

dpt -3.91 0.31 0.08 2.32 0.98

IVt 40.30 36.47 3.23 18.07 0.81

ERVt 28.54 36.64 4.62 30.08 0.69

VRPt 11.75 14.93 -3.37 38.42 0.27

Correlations

rt,t+1 ∆dt dpt IVt ERVt VRPt

rt,t+1 1.00 0.34 -0.03 -0.42 -0.48 0.15

∆dt 1.00 -0.02 -0.25 -0.25 -0.01

dpt 1.00 -0.05 -0.02 -0.07

IVt 1.00 0.92 0.19

ERVt 1.00 -0.21

VRPt 1.00

Table 2 “Structural” Factor GARCH Estimation

The table reports the GMM estimation result for the conditional variance parameters for the “structural” factor GARCH
model discussed in the main text. The column labeled̟u gives the unconditional variance of the reduced form shocks
ut. Υ andΓ denote the ARCH and GARCH parameters, respectively, for the“structural” shocks ˜ǫt. The estimates are
based on monthly data from February 1990 to November 2011, for a total of 262 observations.

ǫ̃t ̟u Γ Υ

ERVt 0.0011 ( 0.0002) 0.189 0.273 ( 0.0751)

VRPt 0.0003 ( 0.0000) 0.758 ( 0.080) 0.239 ( 0.077)

∆dt 0.0006 ( 0.0001) 0 0.524 ( 0.100)

dt+1/pt 0.0016 ( 0.0002) 0.299 0.163 ( 0.082)
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Table 3 Residual Serial Correlation Tests

The table reports the Ljung-Box portmanteau tests for up to tenth and twentieth order serial correlation in the raw ˜ǫt

and standardized ˜ǫt/
√
Σt “structural” shocks from the estimated factor GARCH model discussed in the main text. The

estimates of the model are based on monthly data from February 1990 to November 2011.

Raw residuals

ǫ̃t |ǫ̃t | ǫ̃2
t

Lags 10 20 10 20 10 20

ERVt 20.41 25.35 74.76 75.58 31.30 32.14

VRPt 36.03 63.04 147.77 181.49 65.95 71.42

∆dt 16.30 40.63 100.04 108.56 86.42 91.84

dt/pt 9.58 17.26 57.55 82.24 38.80 49.20

Standardized residuals

ǫ̃t/
√
Σt |ǫ̃t/

√
Σt | ǫ̃2

t /
√
Σt

Lags 10 20 10 20 10 20

ERVt 19.04 25.26 13.80 15.53 2.56 2.90

VRPt 4.82 8.94 6.62 22.75 2.30 7.88

∆dt 16.27 40.74 11.20 18.74 10.59 14.89

dt/pt 11.56 18.25 31.95 45.44 25.72 31.33
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Table 4 Predictive Regressions based on the Dividend-PriceRatio
The table reports the slope coefficients in the return and cash flow predictability regressions,

1
h

∑h
i=1 rt,t+i = αr,dp + βr,dp(h) · dpt + ζt,t+h

1
h

∑h
i=1∆dt,t+i = α∆d,dp + β∆d,dp(h) · dpt + ζt,t+h

implied by the parameter estimates for the “structural” factorGARCH model discussed in the main text, with asymptotic standard errors in paren-
theses. The table also reports the slope coefficients implied by a two-variable reduced form homoskedastic VAR for the dividend growth rate and
the dividend-price ratio, as in Cochrane (2008), along withthe results from simple univariate predictive regressions.The time horizonh runs from
one to ten years in the first two panels, and from one to twelve months in the bottom three panels. All of the results are based on monthly data from
February 1990 to November 2011.

Years 1 2 3 4 5 6 7 8 9 10

Structural Model Implied

βr,dp(h) 0.037 0.034 0.032 0.030 0.028 0.026 0.025 0.023 0.022 0.021

( 0.008) ( 0.006) ( 0.004) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.003) ( 0.003) ( 0.004)

β∆d,dp(h) -0.0013 -0.0012 -0.0011 -0.0011 -0.0010 -0.0009 -0.0009 -0.0008 -0.0008 -0.0007

( 0.0028) ( 0.0027) ( 0.0026) ( 0.0024) ( 0.0023) ( 0.0022) ( 0.0021) ( 0.0020) ( 0.0019) ( 0.0018)

Reduced Form Implied

βr,dp(h) 0.036 0.033 0.031 0.028 0.026 0.024 0.022 0.021 0.019 0.018

( 0.007) ( 0.006) ( 0.005) ( 0.004) ( 0.004) ( 0.004) ( 0.004) ( 0.004) ( 0.004) ( 0.004)

β∆d,dp(h) -0.0039 -0.0035 -0.0032 -0.0030 -0.0027 -0.0025 -0.0023 -0.0022 -0.0020 -0.0019

( 0.0055) ( 0.0049) ( 0.0045) ( 0.0041) ( 0.0038) ( 0.0035) ( 0.0032) ( 0.0030) ( 0.0028) ( 0.0026)

Months 1 2 3 4 5 6 9 12

Structural Model Implied

βr,dp(h) 0.043 0.041 0.041 0.040 0.039 0.039 0.038 0.037

( 0.013) ( 0.012) ( 0.012) ( 0.011) ( 0.011) ( 0.010) ( 0.009) ( 0.008)

β∆d,dp(h) -0.0022 -0.0017 -0.0016 -0.0015 -0.0015 -0.0014 -0.0014 -0.0013

( 0.0023) ( 0.0027) ( 0.0028) ( 0.0029) ( 0.0029) ( 0.0029) ( 0.0029) ( 0.0028)

Reduced Form Implied

βr,dp(h) 0.040 0.039 0.039 0.039 0.038 0.038 0.037 0.036

( 0.009) ( 0.009) ( 0.008) ( 0.008) ( 0.008) ( 0.008) ( 0.007) ( 0.007)

β∆d,dp(h) -0.0047 -0.0043 -0.0042 -0.0042 -0.0041 -0.0041 -0.0040 -0.0039

( 0.0073) ( 0.0064) ( 0.0062) ( 0.0060) ( 0.0059) ( 0.0058) ( 0.0056) ( 0.0055)

Univariate Regression

βr,dp(h) 0.011 0.012 0.012 0.012 0.013 0.013 0.015 0.016

( 0.009) ( 0.008) ( 0.008) ( 0.008) ( 0.007) ( 0.007) ( 0.007) ( 0.007)

β∆d,dp(h) -0.0029 -0.0011 -0.0004 -0.0001 -0.0000 0.0001 0.0002 0.0001

( 0.0030) ( 0.0015) ( 0.0012) ( 0.0008) ( 0.0007) ( 0.0006) ( 0.0005) ( 0.0004)
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Table 5 Predictive Regressions based on the Variance Risk Premium

The table reports the slope coefficients in the return and cash flow predictability regressions,

1
h

∑h
i=1 rt,t+i = αr,VRP + βr,VRP(h) · VRPt + ζt,t+h

1
h

∑h
i=1∆dt,t+i = α∆d,VRP + β∆d,VRP(h) · VRPt + ζt,t+h

implied by the parameter estimates for the “structural” factor GARCH model discussed in the main text, with asymp-
totic standard errors in parentheses. The table also reports the slope coefficients from simple univariate predictive
regressions. The time horizonh runs from one to twelve months. All of the results are based onmonthly data from
February 1990 to November 2011.

Months 1 2 3 4 5 6 9 12

Structural Model Implied

βr,VRP(h) 0.514 0.346 0.244 0.180 0.138 0.109 0.064 0.042

( 0.101) ( 0.057) ( 0.042) ( 0.037) ( 0.034) ( 0.031) ( 0.024) ( 0.021)

β∆d,VRP(h) -0.0393 -0.0147 -0.0103 -0.0074 -0.0058 -0.0047 -0.0029 -0.0020

( 0.0154) ( 0.0057) ( 0.0041) ( 0.0031) ( 0.0026) ( 0.0023) ( 0.0018) ( 0.0016)

Univariate Regression

βr,VRP(h) 0.545 0.406 0.362 0.364 0.349 0.268 0.134 0.091

( 0.219) ( 0.145) ( 0.109) ( 0.132) ( 0.140) ( 0.103) ( 0.077) ( 0.054)

β∆d,VRP(h) -0.121 0.003 0.028 0.058 0.018 0.023 -0.007 -0.001

( 0.242) ( 0.109) ( 0.048) ( 0.064) ( 0.046) ( 0.031) ( 0.024) ( 0.013)
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Table 6 Predictive Regressions based on the Expected Variation

The table reports the slope coefficients in the return and cash flow predictability regressions,

1
h

∑h
i=1 rt,t+i = αr,ERV + βr,ERV (h) · ERVt + ζt,t+h

1
h

∑h
i=1∆dt,t+i = α∆d,ERV + β∆d,ERV (h) · ERVt + ζt,t+h

implied by the parameter estimates for the “structural” factor GARCH model discussed in the main text, with asymp-
totic standard errors in parentheses. The table also reports the slope coefficients from simple univariate predictive
regressions. The time horizonh runs from one to twelve months. All of the results are based onmonthly data from
February 1990 to November 2011.

Months 1 2 3 4 5 6 9 12

Structural Model Implied

βr,ERV (h) 0.035 0.048 0.051 0.050 0.047 0.044 0.034 0.028

( 0.043) ( 0.034) ( 0.028) ( 0.024) ( 0.021) ( 0.018) ( 0.013) ( 0.010)

β∆d,ERV (h) 0.0396 0.0152 0.0107 0.0079 0.0063 0.0052 0.0034 0.0025

( 0.0081) ( 0.0029) ( 0.0021) ( 0.0016) ( 0.0013) ( 0.0011) ( 0.0008) ( 0.0006)

Univariate Regression

βr,ERV (h) -0.104 -0.048 -0.055 -0.049 -0.027 -0.000 0.019 0.014

( 0.127) ( 0.108) ( 0.096) ( 0.091) ( 0.074) ( 0.053) ( 0.031) ( 0.024)

β∆d,ERV (h) 0.117 0.008 -0.000 0.007 0.011 0.015 0.014 0.012

( 0.105) ( 0.040) ( 0.024) ( 0.024) ( 0.013) ( 0.008) ( 0.006) ( 0.004)
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Figure 1 Returns and Dividends

The figure shows the monthly S&P500 returns (upper left panel), the log dividend growth rate (upper right panel), the

log dividend-price ratio (lower left panel), and the variance risk premium (lower right panel). The returns, dividend

growth, and dividend-price ratio are in annualized percentage form. The variance risk premium is in monthly per-

centage square form. The sample period extends from February 1990 to November 2011. The shaded areas indicate

NBER dated recessions.
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Figure 2 Model Implied Structural Shocks

The figure plots the estimated “structural” shockszt from the factor GARCH model discussed in the main text. The

sample period extends from February 1990 to November 2011. The shaded areas indicate NBER dated recessions.
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Figure 3 Unconditional Distributions of Model Implied Stru ctural Shocks

The diagonal elements show kernel density estimates of the unconditional distributions of the “structural” shockszt

from the estimated factor GARCH model discussed in the main text (dashed lines) along with the standard normal

distribution (solid lines). The off-diagonal show scatter plots show the pairwise combinations of all of the “structural”

shocks. The estimates are based on monthly data from February 1990 to November 2011.
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Figure 4 Predictive Return Regressions based on the Dividend-Price Ratio

The figure shows the VAR-based slope coefficients for 1-10 years long-horizon return predictability regressions (dots),

along with the corresponding 95% confidence intervals (shaded areas). The upper panel shows the results implied by

the estimates for the four dimensional “structural” factorGARCH model discussed in the main text. The bottom panel

shows the results based on a two-variable reduced form VAR with homoscedastic errors, as in Cochrane (2008). All

of the estimates are based on monthly data from February 1990to November 2011.
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Figure 5 Predictive Cash Flow Regressions based on the Dividend-Price Ratio

The figure shows the VAR-based slope coefficients for 1-10 years long-horizon cash flow predictabilityregressions

(dots), along with the corresponding 95% confidence intervals (shaded areas). The upper panel shows the results

implied by the estimates for the four dimensional “structural” factor GARCH model discussed in the main text. The

bottom panel shows the results based on a two-variable reduced form VAR with homoscedastic errors, as in Cochrane

(2008). All of the estimates are based on monthly data from February 1990 to November 2011.
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Figure 6 Predictive Regressions based on the Variance Risk Premium

The figure shows the “structural” factor GARCH model impliedslope coefficients (dots) for 1-12 months return pre-

dictability regressions (upper panel) and cash flow predictability regressions (lower panel) using the variance risk

premium as a predictor variable, along with 95% confidence intervals (shaded areas). The figure also shows the

estimated slope coefficients from simple univariate predictability regressionsusing the variance risk premium as a

predictor variable (stars), along with their 95% confidenceintervals (dashed lines). All of the estimates are based on

monthly data from February 1990 to November 2011.
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Figure 7 Predictive Regressions based on the Expected Variation

The figure shows the “structural” factor GARCH model impliedslope coefficients (dots) for 1-12 months return pre-

dictability regressions (upper panel) and cash flow predictability regressions (lower panel) using the expected varia-

tion as a predictor variable, along with 95% confidence intervals (shaded areas). The figure also shows the estimated

slope coefficients from simple univariate predictability regressionsusing the expected variation as a predictor variable

(stars), along with their 95% confidence intervals (dashed red lines). All of the estimates are based on monthly data

from February 1990 to November 2011.
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A Model Solution

Our basic solution method for the model is adopted from Bansal and Yaron (2004), Bansal, Kiku,

and Yaron (2007b), and Drechsler and Yaron (2011). To begin,we follow Campbell and Shiller

(1988b) and solve for the return on consumption by log-linearizing rc,t+1 around the unconditional

mean of the wealth-consumption ratioνt,

rc,t+1 ≈ κ0 + κ1νt+1 − νt + ∆ct+1, (A.1)

whereκ1=
exp(E(ν))

1+exp(E(ν)) , andκ0=log[1+ exp(E(ν))] − κ1E(ν). We then conjecture a solution forνt as a

linear function of the state vectorYt,

νt = A0 + A′Yt, (A.2)

whereA0 is a scalar, andA=(0, Ax, Aσ, Aq,0) refer to the pricing coefficients. Next, by substituting

νt andνt+1 into equation (A.1), bothrc,t+1 and the stochastic discount factormt+1 in equation (7)

may be expressed as linear functions of the state vector,

mt+1 =µm − (γe′1 + (1− θ)κ1A′)Yt+1 − (θ − 1)A′Yt, (A.3)

rc,t+1 =µrc + (e′1 + κ1A′)Yt+1 − A′Yt. (A.4)

Going one step further, it follows that the innovations to the pricing kernel and the return on

the wealth claim may be expressed as,

mt+1 − Et(mt+1) = −Λ′HGtzt+1, (A.5)

rc,t+1 − Et(rc,t+1) = Λ
′
cHGtzt+1, (A.6)

whereΛ denotes the price of risk for the factor shocks,

Λ =γe1 + κ1(1− θ)A,

for e1 ≡ [1,0,0,0,0], andΛc = e1 + κ1A. The magnitude and sign ofΛ are determined by the

preference parameterθ and the pricing coefficient vectorA. If investors prefer early resolution of

uncertainty, i.e.,γ > φ−1, A reveals the sensitivity of the market prices for the different shocks

to higher order consumption dynamics. Whenγ=φ−1 (CRRA case),Λ collapses toγe1, and only

transient shocks to consumption growth levelzg,t+1 are priced.

Since the no-arbitrage condition must hold regardless of the realization of the state vectorYt, it

is possible to solve forA by imposing the Euler equation,

0 = µm + µrc + [(−Λ + Λc)
′F − θA′]Yt +

1
2

(−Λ + Λc)
′HGtG

′
t H
′(−Λ + Λc). (A.7)
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This in turn implies that

θA{i} + (Λ̃′cF){i} =
1
2

[1i=3

∑

j=1,5

˜(Λ′ch j)
2
+ 1i=4

∑

j=2,3,4

(Λ̃′ch j)
2], (A.8)

0 =µm + µrc , (A.9)

whereΛ̃c=−Λc + Λ=(γ − 1)e1 − κd,1θA, i refers to theith element of vector, and 1i=n is an indicator

function. The solutions are,

Ax = −
γ − 1

θ(1− κ1ρx)
, (A.10)

Aσ =
(γ − 1)2

2θ(1− κ1ρσ)
, (A.11)

while Aq solves the equation12aqθ
2A2

q +

(

bq + (1− κ1ρq)
)

(−θAq) + 1
2cq = 0, where

aq =κ
2
1(ϕ

2
xs2

q,x + s2
q,σ + ϕ

2
q) > 0,

bq =κ
2
1

(

ϕ2
x(−Axθ − Aσθsσ,x)sq,x − Aσθsq,σ

)

,

cq =κ
2
1

(

ϕ2
x(−Axθ − Aσθsσ,x)

2
+ A2

σθ
2
)

> 0.

Sinceaq > 0 andcq > 0, the two roots are either negative or positive. We choose the larger root

for −θAq if bq + (1− κ1ρq) > 0, or the smaller root ifbq + (1− κ1ρq) < 0. In both casesAq reduces

to zero whensq,x, sq,σ andϕq are zero.

Even though no closed-form expressions forA are available when we considerκ0 andκ1 as

endogenous, the system of equations are still solvable. As shown in equation (A.8),A depends

on κ1, µ, F, H, as well as the preference parameters. Considering the definitions ofκ1 andκ0, κ1

andA are the only unknowns in the constant term in the Euler equation, so thatκ1 may be solved

endogenously together withA. Finally, κ0 andA0 can be expressed as functions ofA andκ1. For

detailed numerical solutions, see Drechsler and Yaron (2011) Appendix A.1 and A.2.

Applying a similar conjecture-evaluation type method, it is possible to solve for the aggregate

market returnrt,t+1. Denote the price-dividend ratio bywt, and consider the conjecture solution

wt=Ad,0 + A′dYt. Log-linearizert,t+1 around the unconditional mean of the price-dividend ratio the

yields,

rt,t+1 ≈ κd,0 + κd,1wt+1 − wt + ∆dt+1. (A.12)

Substituting outwt andwt+1 in the above equation, the return on the market may be rewritten as,

rt,t+1 =µrd + (e′5 + κd,1A′d)Yt+1 − A′dYt, (A.13)

whereΛd=e5 + κ1Ad andAd=[0, Ad,x, Ad,σ, Ad,q, Ad,d]′ is a vector of pricing coefficients.
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Using the same solution method as the one previously used forA, it follows by the no-arbitrage

condition,

0 = µm + µrd + [(−Λ + Λd)′F − (θ − 1)A′ − A′d]′Yt + 0.5(−Λ + Λd)′HGtG
′
t H
′(−Λ + Λd), (A.14)

which implies that

(θ − 1)A{i} + Ad,{i} + (Λ̃′dF){i} =0.5[1i=3

∑

j=1,5

˜(Λ′dh j)
2
+ 1i=4

∑

j=2,3,4

(Λ̃′dh j)
2], (A.15)

0 =µm + µrd , (A.16)

whereΛ̃d=−Λd + Λ=γe1 − e5 + κ1(1− θ)A − κd,1Ad.

The solution forAd may therefore be expressed as,

Ad,d =
ρd

1− κ1ρd
< 0 i f ρd < 0 (A.17)

(1− θ)Ax − Ad,x = −
−γ + φdx(1+ κ1Ad,d)

1− κd,1ρx
> 0 i f φdx < (1− κd,1ρd)γ (A.18)

(1− θ)Aσ − Ad,σ = −
1
2

γ2
+ ϕ2

d(1+ κ1Ad,d)2

1− κd,1ρσ
< 0 (A.19)

(1− θ)Aq − Ad,q = −
1
2

ad,q

(

(1− θ)Aq − Ad,q

)2
+ 2bd,q

(

(1− θ)Aq − Ad,q

)

+ cd,q

1− κd,1ρq
< 0 (A.20)

where

ad,q =aq = κ
2
d,1(ϕ

2
xs2

q,x + s2
q,σ + ϕ

2
q) > 0

bd,q =κ
2
d,1

(

ϕ2
x

(

(1− θ)Ax − Ad,x +
(

(1− θ)Aσ − Ad,σ
)

sσ,x +
−1

1− κd,1ρd
sd,x

)

sq,x

)

+ κ2
1

((

(1− θ)Aσ − Ad,σ +
−1

1− κd,1ρd
sd,σ

)

sq,σ +
−1

1− κd,1ρd
sd,qϕ

2
q

)

cd,q =κ
2
d,1













ϕ2
x

(

(1− θ)Ax − Ad,x +
(

(1− θ)Aσ − Ad,σ
)

sσ,x +
−1

1− κd,1ρd
sd,x

)2










+ κ2
d,1













(

(1− θ)Aσ − Ad,σ +
−1

1− κd,1ρd
sd,σ

)2

+

(

−1
1− κd,1ρd

sd,q

)2

ϕ2
q













> 0.

Note, (1− θ)Aq−Ad,q solves the equation12aqx2
+

(

bq + (1− κd,1ρq)
)

x+ 1
2cq = 0. Sincead,q > 0 and

cd,q > 0, the two roots are either negative or positive. We choose the larger root for (1− θ)Aq − Ad,q

if bd,q + 1− κd,1ρq > 0, and smaller root ifbd,q + 1− κd,1ρq < 0. In both casesAq andAd,q reduce to

zero whensq,x, sq,σ andϕq are all zero. Also,Ad,x andAd,σ may be explicitly expressed as,

Ad,x =
(1− γ)/θ − 1+ φdx/(1− κd,1ρd)

1− κd,1ρx
=
−ψ−1

+ φdx/(1− κd,1ρd)
1− κd,1ρx

(A.21)

Ad,σ =
(γ − 1)2 + 2θγ + θ(ϕ2

d/(1− κd,1ρd)2 − 1)

2θ(1− κd,1ρσ)
. (A.22)
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B Variance Risk Premium

In order to determine the factor structure for the variance risk premium, we first need to solve for

the second order moment of the returnrt,t+1. It follows from above thatrt,t+1−Et(rt,t+1)=Λ′dHGtzt+1,

so that the conditional variance of the return is affine inσ2
t andqt,

Vart(rt,t+1) =
∑

j=1,5Λ
′
dh jh′jΛdσ

2
t +

∑

j=2,3,4Λ
′
dh jh′jΛdqt

= (1+ κd,1Ad,d)2ϕ2
dσ

2
t +

∑

j=2,3,4Λ
′
dh jh′jΛdqt. (B.23)

The first term is associated with the volatility of cash flow shocks, and the second term represents

the consumption uncertainty. Accordingly, the equity riskpremium may be expressed as,

Et(rt,t+1) − r f ,t +
1
2

Vart(rt,t+1) = −Covt(mt+1, rt,t+1)

=
∑

j=2,3,4Λ
′
dh jh′jΛqt. (B.24)

The expectations ofVart(rt,t+1) under the physical and risk-neutral probability measuresare,

Et(Vart+1(rd,t+2)) =
∑

j=1,5

Λ
′
dh jh

′
jΛd(µσ + ρσσ

2
t ) +

∑

j=2,3,4

Λ
′
dh jh

′
jΛd(µq + ρqqt), (B.25)

EQ
t (Vart+1(rd,t+2)) =

∑

j=1,5

Λ
′
dh jh

′
jΛd(µσ + ρσσ

2
t + sq,1qt) +

∑

j=2,3,4

Λ
′
dh jh

′
jΛd(µq + ρqqt + sq,2qt).

(B.26)

Under the risk-neutral measure, if investors prefer early resolution of uncertainty, the conditional

means of thezt+1 shocks shift away from zero,

sq,1qt = Covt(e3HGtzt+1,−Λ′HGtzt+1)

= −(ϕxsσ,xh′2 + h′3)Λqt, (B.27)

sq,2qt = Covt(e4HGtzt+1,−Λ′HGtzt+1)

= −(ϕxsq,xh′2 + sq,σh′3 + ϕqh′4)Λqt, (B.28)

where,

sq,1 = − κd,1(1− θ)
(

Axϕ
2
xsσ,x + Aσ(ϕ2

xs2
σ,x + 1)+ Aq(ϕ

2
xsσ,xsq,x + sq,σ)

)

= − κd,1(1− θ)(ϕ2
xsσ,xsq,x + sq,σ)













Axϕ
2
xsσ,x + Aσ(ϕ2

xs2
σ,x + 1)

ϕ2
xsσ,xsq,x + sq,σ

+ Aq













,

sq,2 = − κd,1(1− θ)
(

Axϕ
2
xsq,x + Aσ(ϕ2

xsσ,xsq,x + sq,σ) + Aq(ϕ
2
xs2

q,x + s2
q,σ + ϕ

2
q)
)

= − κd,1(1− θ)κ2
1aq

(

bq

−θaq
+ Aq

)

.
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By definition, sq,1 andsq,2 represent the market prices of shocks toσ2
t andqt, respectively. Thus,

the variance risk premium is naturally defined by,

VRPt ≡ EQ
t (Vart+1(rd,t+2)) − Et(Vart+1(rd,t+2))

= (
∑

j=1,5Λ
′
dh jh′jΛd sq,1 +

∑

j=2,3,4Λ
′
dh jh′jΛd sq,2)qt. (B.29)

In the main text, we will refer to the expected return variation and the variance risk premium

as,

ERVt =
Q1,1

ρσ
(µσ + ρσσ

2
t ) +

Q1,2

ρq
(µq + ρqqt),

VRPt =Q2,2qt

for short, where

Q1,1 =
∑

j=1,5Λ
′
dh jh′jΛdρσ > 0, (B.30)

Q1,2 =
∑

j=2,3,4Λ
′
dh jh′jΛdρq > 0, (B.31)

Q2,2 =
Q1,1

ρσ
sq,1 +

Q1,2

ρq
sq,2. (B.32)

In order to determine the signs ofAd,x, Ad,σ andAd,q, it is informative to write out the formula in

terms of the estimatedB andρ̃ matrices,

φd,x

−Ad,x
=ρ̃3,4,

Ad,σ

Q1,1
= B4,1,

Q1,2

Q2,2
= −B1,2,

Ad,q

Q2,2
= B4,2 − B1,2B4,1. (B.33)

Sinceρ̃3,4 < 0, φd,x andAd,x must have the same signs. Thus, by definitionQ1,1 > 0 andQ1,2 > 0,

which together with the estimates forB4,1 = −0.60< 0 andB1,2 = −0.02< 0, imply thatAd,σ < 0

andQ2,2 > 0. ConsequentlyAd,q = Q2,2(B4,2 − B1,2B4,1) = −1.45Q2,2 < 0.

C Alternative Setups

C.1 Separate Volatility Processes

We will consider the following alternative setup forGt andH, with F unchanged,

Gt =



















































σt 0 0 0 0

0
√

qt 0 0 0

0 0 σt 0 0

0 0 0
√

qt 0

0 0 0 0 σt



















































H =



















































1 0 0 0 0

0 1 0 0 0

0 sσ,x ϕσ 0 0

0 sq,x 0 ϕq 0

0 sd,x ϕσsd,σ ϕqsd,q ϕd



















































(C.34)
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This setup is related to Bansal and Shaliastovich (2012), where the volatilities ofxt andσ2
t are

modeled as two separate processes.

For simplicity, we use the same general notation as in the main setup forA, Λ, Λc andΛd.

However, the solutions for the pricing coefficients are obviously different from the main setup,

except forAd,d=
ρd

1−κd,1ρd
,

θA{i} + (Λ̃′cF){i} = 1
2[1i=3

∑

j=1,3,5
˜(Λ′ch j)2

+ 1i=4
∑

j=2,4(Λ̃′ch j)2], (C.35)

(θ − 1)A{i} + Ad,{i} + (Λ̃′dF){i} = 1
2[1i=3

∑

j=1,3,5
˜(Λ′dh j)2

+ 1i=4
∑

j=2,4(Λ̃
′
dh j)2]. (C.36)

Sincert,t+1 − Et(rt,t+1)=Λ′dHGtzt+1, the conditional variance of the return is again affine,

Vart(rt,t+1) =
∑

j=1,3,5Λ
′
dh jh′jΛdσ

2
t +

∑

j=2,4Λ
′
dh jh′jΛdqt (C.37)

The expectations ofVart(rt,t+1) under the physical and risk-neutral probability measuresmay fur-

ther be expressed as,

Et(Vart+1(rd,t+2)) =
∑

j=1,3,5

Λ
′
dh jh

′
jΛd(µσ + ρσσ

2
t ) +

∑

j=2,4

Λ
′
dh jh

′
jΛd(µq + ρqqt) (C.38)

EQ
t (Vart+1(rd,t+2)) =

∑

j=1,3,5

Λ
′
dh jh

′
jΛd(µσ + ρσσ

2
t + sq,1qt + sσ,1σ

2
t ) +

∑

j=2,4

Λ
′
dh jh

′
jΛd(µq + ρqqt + sq,2qt)

(C.39)

If investors prefer early resolution of uncertainty, the conditional means of thezt+1 shocks shift

away from zero under the risk-neutral measure,

sσ,1σ
2
t + sq,1qt = Covt(e′3HGtzt+1,−Λ′HGtzt+1)

= −h′3Λσ
2
t − (ϕxsσ,xh′2)Λqt, (C.40)

sq,2qt = Covt(e4HGtzt+1,−Λ′HGtzt+1)

= −(ϕxsq,xh′2 + ϕqh′4)Λqt. (C.41)

Defining the variance risk premium as before,

VRPt ≡EQ
t (Vart+1(rd,t+2)) − Et(Vart+1(rd,t+2))

=

∑

j=1,3,5

Λ
′
dh jh

′
jΛd(sσ,1σ

2
t + sq,1qt) +

∑

j=2,4

Λ
′
dh jh

′
jΛd sq,2qt, (C.42)

we may express the expected return variation and premium in short-hand form as,

ERVt =
Q1,1

ρσ
(µσ + ρσσ

2
t ) +

Q1,2

ρq
(µq + ρqqt),

VRPt =Q2,1σ
2
t + Q2,2qt,
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where

Q1,1 =

∑

j=1,3,5

Λ
′
dh jh

′
jΛdρσ > 0 Q1,2 =

∑

j=2,4

Λ
′
dh jh

′
jΛdρq > 0

Q2,1 =
Q1,1

ρq
sσ,1 Q2,2 =

Q1,1

ρσ
sq,1 +

Q1,2

ρq
sq,2.

C.2 Long-Run Stochastic Volatility

We will consider the following alternative setup forGt, H, with F unchanged,

Gt =



















































σt 0 0 0 0

0 σt 0 0 0

0 0 σt 0 0

0 0 0
√

qt 0

0 0 0 0 σt



















































H =



















































1 0 0 0 0

0 ϕx 0 0 0

0 ϕxsσ,x ϕσ 0 0

0 ϕxsq,x 0 ϕq 0

0 ϕxsd,x ϕσsd,σ ϕqsd,q ϕd



















































(C.43)

This setup is motivated by the model analyzed by Branger and Vòlkert (2012), among others,

allowing for a time-varying mean of the consumption varianceσ2
t .

Again, for simplicity we will use the same general notation as in the main setup forA, Λ, Λc

andΛd. The solution forAd,d=
ρd

1−κd,1ρd
remains the same, but the other the pricing coefficients now

take the form,

θA{i} + (Λ̃′cF){i} =
1
2

[1i=3

∑

j=1,2,3,5

˜(Λ′ch j)
2
+ 1i=4

∑

j=4

(Λ̃′ch j)
2], (C.44)

(θ − 1)A{i} + Ad,{i} + (Λ̃′dF){i} =
1
2

[1i=3

∑

j=1,2,3,5

˜(Λ′dh j)
2
+ 1i=4

∑

j=4

(Λ̃′dh j)
2]. (C.45)

As before,rt,t+1 − Et(rt,t+1)=Λ′dHGtzt+1, so that the conditional variance of the return may be ex-

pressed as,

Vart(rt,t+1) =
∑

j=1,2,3,5Λ
′
dh jh′jΛdσ

2
t +

∑

j=4Λ
′
dh jh′jΛdqt. (C.46)

The expectation ofVart(rt,t+1) under the physical and risk-neutral probability measuresare,

Et(Vart+1(rd,t+2)) =
∑

j=1,2,3,5

Λ
′
dh jh

′
jΛd(µσ + ρσσ

2
t + qt) +

∑

j=4

Λ
′
dh jh

′
jΛd(µq + ρqqt),

EQ
t (Vart+1(rd,t+2)) =

∑

j=1,2,3,5

Λ
′
dh jh

′
jΛd(µσ + ρσσ

2
t + qt + sσ,1σ

2
t ) +

∑

j=4

Λ
′
dh jh

′
jΛd(µq + ρqqt + sσ,2σ

2
t + sq,2qt).
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The shifts in the conditional means of thezt+1 shocks under the risk-neutral measure become,

sσ,1σ
2
t = Covt(e′3HGtzt+1,−Λ′HGtzt+1)

= −h′3Λσ
2
t − (ϕxsσ,xh′2)Λσ

2
t , (C.47)

sσ,2σ
2
t + sq,2qt = Covt(e4HGtzt+1,−Λ′HGtzt+1)

= −(ϕxsq,xh′2)Λσ
2
t − (ϕqh′4)Λqt. (C.48)

As before, the expected return variation and variance risk premium, may be conveniently expressed

as,

ERVt =
Q1,1

ρσ
(µσ + ρσσ

2
t ) +

Q1,2

ρq
(µq + ρqqt),

VRPt =Q2,1σ
2
t + Q2,2qt,

where

Q1,1 =

∑

j=1,2,3,5

Λ
′
dh jh

′
jΛdρσ > 0 Q1,2 =

∑

j=4

Λdh jh
′
jΛdρq > 0

Q2,1 =
Q1,1

ρσ
sσ,1 +

Q1,2

ρq
sσ,2 Q2,2 =

Q1,2

ρq
sq,2.

D Detailed Derivations for Section 3.2

Substitutingft by Q−1(Xt − µX) in the basic relationft+1 = µ + ρ ft + S ǫt+1, it follows that

Q−1Xt+1 = µ + Q−1µX − ρQ−1µX + ρQ−1Xt + S ǫt+1. (D.49)

Normalizing each element ofQ−1Xt+1 by the corresponding diagonal element ofQ−1, the model

may be rewritten as,

BXt+1 = µ̃ + ρ̃BXt + S̃ ǫ̃t+1,

where

B ≡
(

1
diag(Q−1)

⊗ l1×4

)

⊙ Q−1.

To match with equation (D.49),

µ̃ =

(

1
diag(Q−1)

⊗ l1×4

)

⊙ (µ − ρQ−1µX),

and

ρ̃ =

[(

1
diag(Q−1)

⊗ l1×4

)

⊙ ρQ−1
]

B−1.
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Defining ǫ̃t+1 as

ǫ̃t+1 ≡ 1
diag(Q−1)

⊙ ǫt+1,

it follows again from equation (D.49) that

S̃ =
(

1
diag(Q−1)

⊗ l1×4

)

⊙ S ⊙ 1
1

diag(Q−1)
′
⊗ ln×4

.

Based on the formula forQ in the main text, the inverseQ−1 and 1
diag(Q−1)

may be expressed

as,
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Combining the expressions forρ andS , it therefore follows that
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⊙ ǫt+1.

D.1 Separate Volatility Dynamics

In the alternative setup with separate volatility dynamic,ρ, ǫt+1 and S may be expressed as,
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Consequently,,
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Combining these expressions, it follows that
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⊙ ǫt+1.

D.2 Stochastic Volatility in the Long-Run

In the alternative setup with stochastic volatility in the long-run drift,ρ, ǫt+1 and S may be expressed

as,
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Combining these expressions, it follows that
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Table D.1 Structural Factor GARCH Estimates—Separate Volatility Dynamics
The table reports the “structural” factor GARCH estimates for the alternative setup with separate volatility dynamics described in Sections C.1 and
D.1, with the three restrictions:Ad,d =

ρd
1−κd,1ρd

, Γ4,4 + Υ4,4 = ρq, andΓ3,3 = 0. The resultingJ-test with 7 degrees-of-freedom for the GMM-based

estimation equals 26.31, corresponding to a p-value 0.0004.

B ERVt+1 VRPt+1 ∆dt+1 dt+1/pt+1

ERVt+1 1 -0.490 ( 0.117) 0 0

VRPt+1 -0.022 ( 0.030) 1 0 0

∆dt+1 0 0 1 0

dt+1/pt+1 -0.110 ( 0.141) -1.595 ( 0.063) -0.158 1

ρ̃ constant ERVt VRPt ∆dt dt/pt

ERVt+1 0.009 ( 0.003) 0.827 ( 0.089) 0 0 0

VRPt+1 0.008 ( 0.002) 0 0.312 ( 0.071) 0 0

∆dt+1 -0.002 ( 0.016) 0 0 -0.187 ( 0.035) -0.001 ( 0.004)

dt+1/pt+1 -0.080 ( 0.029) 0 0 0 0.980 ( 0.008)

S̃ ǫ̃σ2
t+1

ǫ̃qt+1 ǫ̃∆dt+1 ǫ̃x,t+1

ERVt+1 1 0 0 0.316 ( 0.038)

VRPt+1 0 1 0 -0.245 ( 0.017)

∆dt+1 -0.387 ( 0.080) -0.134 ( 0.160) 1 0.095 ( 0.034)

dt+1/pt+1 0 0 0 1

ǫ̃ ̟u Γ Υ

ERVt+1 0.001 ( 0.000) 0.153 ( 0.360) 0.388 ( 0.138)

VRPt+1 0.000 ( 0.000) 0.537 ( 0.335) 0.116 ( 0.079)

∆dt+1 0.001 ( 0.000) 0 0.449 ( 0.115)

dt+1/pt+1 0.002 ( 0.000) 0.167 0.144 ( 0.106)

Table D.2 Structural Model Implications—Separate Volatility Dynamics
The table reports the contemporaneous matrixΦ0, the reduced form matrixΦ, and the return equation, implied by the alternative “structural” factor
GARCH model defined in Sections C.1 and D.1).

Φ
−1
0 ≡ B−1S̃ ERVt+1 VRPt+1 ∆dt+1 dt+1/pt+1

ERVt+1 1.011 ( 0.015) 0.496 ( 0.118) 0 0.198 ( 0.049)

VRPt+1 0.022 ( 0.030) 1 0 -0.241 ( 0.017)

∆dt+1 -0.387 ( 0.080) -0.134 ( 0.160) 1 0.095 ( 0.034)

dt+1/pt+1 0.085 ( 0.134) 1.646 ( 0.079) 0.158 ( 0.025) 0.652 ( 0.047)

Φ ≡ B−1ρ̃B constant ERVt VRPt ∆dt dt/pt

ERVt+1 0.013 ( 0.003) 0.833 ( 0.091) -0.255 ( 0.075) 0 0

VRPt+1 0.008 ( 0.001) 0.012 ( 0.016) 0.306 ( 0.070) 0.000 ( 0.000) 0.000 ( 0.000)

∆dt+1 -0.002 ( 0.016) 0.000 ( 0.000) 0.002 ( 0.006) -0.187 ( 0.035) -0.001 ( 0.004)

dt+1/pt+1 -0.066 ( 0.030) 0.002 ( 0.045) -1.103 ( 0.130) -0.185 ( 0.035) 0.980 ( 0.008)

GMM Implied Return Equation

rt,t+1 constant ERVt VRPt ∆dt dt/pt

0.062 ( 0.029) -0.002 ( 0.044) 1.074 ( 0.127) -0.007 ( 0.002) 0.046 ( 0.009)

ǫ̃σ2
t+1

ǫ̃qt+1 ǫ̃∆dt+1 ǫ̃x,t+1

stru-shocks -0.470 ( 0.213) -1.734 ( 0.178) 0.846 ( 0.041) -0.539 ( 0.036)
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Table D.3 Structural Factor GARCH Estimates—Long-Run Stochastic Volatility
The table reports the “structural” factor GARCH estimates for the alternative setup with long-run stochastic volatility described in Sections C.2 and
D.2, with the two restrictions:Ad,d =

ρd
1−κd,1ρd

andΓ3,3 = 0. The resultingJ-test with 6 degrees-of-freedom for the GMM-based estimation equals

37.02, corresponding to a p-value 0.0000.

B ERVt+1 VRPt+1 ∆dt+1 dt+1/pt+1

ERVt+1 1 0.000 ( 0.189) 0 0

VRPt+1 0.120 ( 0.039) 1 0 0

∆dt+1 0 0 1 0

dt+1/pt+1 -0.016 ( 0.086) -2.007 ( 0.156) -0.249 1

ρ̃ constant ERVt VRPt ∆dt dt/pt

ERVt+1 0.003 ( 0.002) 1.001 ( 0.077) -0.070 (0.255) 0 0

VRPt+1 0.006 ( 0.001) 0 0.609 ( 0.079) 0 0

∆dt+1 -0.000 ( 0.014) 0 0 -0.329 ( 0.040) -0.001 ( 0.004)

dt+1/pt+1 -0.075 ( 0.028) 0 0 0 0.982 ( 0.007)

S̃ ǫ̃σ2
t+1

ǫ̃qt+1 ǫ̃∆dt+1 ǫ̃x,t+1

ERVt+1 1 0 0 0.332 ( 0.036)

VRPt+1 0 1 0 -0.186 ( 0.016)

∆dt+1 -0.524 ( 0.061) -0.069 ( 0.147) 1 0.061 ( 0.024)

dt+1/pt+1 0 0 0 1

ǫ̃ ̟u Γ Υ

ERVt+1 0.001 ( 0.000) 0.001 ( 0.051) 0.776 ( 0.062)

VRPt+1 0.000 ( 0.000) 0.000 ( 0.139) 0.322 ( 0.147)

∆dt+1 0.001 ( 0.000) 0 0.454 ( 0.095)

dt+1/pt+1 0.002 ( 0.000) 0.766 ( 0.061) 0.160 ( 0.041)

Table D.4 Structural Model Implications–Long-Run Stochastic Volatility
The table reports the contemporaneous matrixΦ0, the reduced form matrixΦ, and the return equation, implied by the alternative “structural” factor
GARCH model in Sections C.2 and D.2.

Φ
−1
0 ≡ B−1S̃ ERVt+1 VRPt+1 ∆dt+1 dt+1/pt+1

ERVt+1 1.000 ( 0.023) -0.000 ( 0.189) 0 0.332 ( 0.032)

VRPt+1 -0.120 ( 0.037) 1 0 -0.226 ( 0.025)

∆dt+1 -0.524 ( 0.061) -0.069 ( 0.147) 1 0.061 ( 0.024)

dt+1/pt+1 -0.356 ( 0.052) 1.990 ( 0.158) 0.249 ( 0.023) 0.568 ( 0.051)

Φ ≡ B−1ρ̃B constant ERVt VRPt ∆dt dt/pt

ERVt+1 0.003 ( 0.002) 0.993 ( 0.089) -0.070 ( 0.194) 0 0

VRPt+1 0.005 ( 0.001) -0.046 ( 0.020) 0.618 ( 0.069) 0 0

∆dt+1 -0.000 ( 0.014) 0.000 ( 0.000) 0.003 ( 0.007) -0.328 ( 0.040) -0.001 ( 0.004)

dt+1/pt+1 -0.065 ( 0.029) -0.093 ( 0.041) -0.732 ( 0.174) -0.326 ( 0.041) 0.982 ( 0.007)

GMM Implied Return Equation

rt,t+1 constant ERVt VRPt ∆dt dt/pt

0.063 ( 0.027) 0.090 ( 0.040) 0.714 ( 0.169) -0.011 ( 0.002) 0.045 ( 0.008)

ǫ̃σ2
t+1

ǫ̃qt+1 ǫ̃∆dt+1 ǫ̃x,t+1

stru-shocks -0.178 ( 0.124) -2.004 ( 0.181) 0.758 ( 0.050) -0.491 ( 0.035)
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