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Stock Return and Cash Flow Predictability:
The Role of Volatility Risk

Abstract

We examine the joint predictability of return and cash flowhiwi a present value framework,
by imposing the implications from a long-run risk model thdiow for both time-varying volatil-
ity and volatility uncertainty. We provide new evidencetthize expected return variation and the
variance risk premium positively forecast both short-hon returnsand dividend growth rates.
We also confirm that dividend yield positively forecastsdemorizon returns, but that it cannot
forecast dividend growth rates. Our equilibrium-basedutstiural” factor GARCH model permits
much more accurate inference than the reduced form VAR andiigie regression procedures
traditionally employed in the literature. The model alstoak for the direct estimation of the
underlying economic mechanisms, including a new volgtiéverage &ect, the persistence of the
latent long-run growth component and the two latent vatgtiactors, as well as the contempora-

neous impacts of the underlying “structural” shocks.

JEL classification: G12, G13, C12, C13.
Keywords: Return and dividend growth predictability; variance rigleqmium; expected varia-
tion; long-run risk; equilibrium pricing; stochastic vailely and uncertainty; reduced form VAR,

“structural” factor GARCH.



1 Introduction

Counter to the “old” &icient market hypothesis dictum that speculative returadagely unpre-
dictable over time, it is now generally accepted that exgeeiquity returns are both time-varying
and predictable. It is also widely believed that the preabdity of the aggregate stock market as
a whole is the strongest over longer multi-year horizbrst the same time, to the extend that a
consensus has emerged it suggests that expected dividenthgates for the aggregate market
portfolio, or aggregate cash flows, are much less predietdizin the expected returfs.

Much of the literature underlying these findings, and theiahof predictor variables in par-
ticular, have been guided by the present-value framewookgsred by Campbell and Shiller
(1988a,b), and the implication that the dividend-priceéorabr the dividend yield, is identically
equal to the expected value of the future returns discoulyetthe future dividend growth rates.
As emphasized by Cochrane (2008, 2011), this intimate linwéen dividend growth and stock
return predictability also implies that the seemingly sger empirical evidence for long-run re-
turn predictability is not surprisingly accompanied by reé@gly weaker empirical evidence for
long-run dividend growth predictability.

Set against this background, a number of recent studies &@ued that the variance risk
premium, or the dference between options implied and expected variancesegess superior
forecasting power for stock market returns over shortehiwityear horizons; see, e.g., Bollersley,
Tauchen, and Zhou (2009), Drechsler and Yaron (2011), arig K2011). Motivated by these
more recent empirical findings, we show how explicitly inoorating priced volatility risk into the
present-value frameworkifards important new insights into the return \@svis dividend growth
predictability debate acrossl horizons.

The reduced form VAR framework, as exemplified by Hodrick42Pand Campbell (2001),

1Some of the more popular predetermined variables used ablegdting long-run return predictability include:
dividend-price, earning-price, and other valuation mt{@ampbell and Shiller, 1988a,b; Fama and French, 1988;
Lamont, 1998; Lewellen, 2004); firms’ net equity payout (Houkh, Richardson, and Roberts, 2007) and equity is-
suance (Baker and Wurgler, 2000); interest-rate variablieh as t-bill and t-bond rates, term spreads, and default
spreads (Campbell, 1987; Fama and French, 1989; Hodri®)1@nd macroeconomic variables like total invest-
ment (Cochrane, 1991), the consumption-wealth ratio duetind Ludvigson, 2001), and inflation (Campbell and
Vuolteenaho, 2004).

2With a few notable exceptions (e.g., Fama and French, 1988ali and Ludvigson, 2005) cash flow predictability
has historically received much less attention in the liteea



traditionally used for empirically implementing preseiaiwe relations does not naturally lend it-
self to the estimation of models involving priced volayiliisk. Instead, we follow Sentana and
Fiorentini (2001) and Rigobon (2003) in designing a “stanat” factor GARCH model, in which
the factors exhibit time-varying volatility. The dynamios the factors is derived endogenously
from an extended long-run risk model explicitly incorpamgttime-varying consumption volatil-
ity and volatility-of-volatility, or economic uncertamt The resulting econometric model sepa-
rately identifies the long-run risk, volatility, and econcrmancertainty components, as well as the
corresponding structural shocks and their contemporaneopact on both returns and dividend
growth.

Estimating the “structural” factor GARCH model by standartMka techniques on data for
the S&P 500 market portfolio, we confirm existing empiricaidence that the dividend-price ra-
tio is useful for predicting long-horizon multi-year retis, but that it has no predictive power for
dividend growth® More important, we document a number of new results pertgitd the pre-
dictability of the volatility factors. In particular, wtelthe variance risk premium shows significant
predictability for returns over short within-year horiznt also helps predict dividend growth.
Similarly, the expected return variation appears to be vefgrmative for predicting dividend
growth.

These results are consistent with the findings in Koijen amNieuwerburgh (2011) that the
high-frequency component of the dividend-price ratio,ethin our setup is driven by two separate
volatility factors, contains useful information for preting expected dividend growth. Our results
are also related to Binsbergen, Brandt, and Koijen (201&)laeir findings that the term structure
of equity risk premia is particularly steep in the short emdhile standard asset pricing models
without priced volatility risk typically imply higher eqty premia at the long end.

In addition to the new empirical evidence pertaining to thersrun predictability of returns
and dividend growth, by explicitly identifying the systeticarisk factors at work, our “struc-

tural” factor GARCH approach also helps shed new light on thdenlying economic mecha-

3Compared to earlier empirical findings based on univariatgassions (Rofk 1984; Fama and French, 1988;
Campbell and Shiller, 1988b) and traditional present@diomoskedastic VAR'’s (Hodrick, 1992; Campbell, 2001;
Cochrane, 2008), our “structural” factor GARCH model résuh much sharper inference, with the actual point
estimates systematically falling within the standard ebands obtained from the more conventional procedures.



nisms. Specifically, we find that the long-run expected ghovamponent is highly persistent with
a first-order autocorrelation ciicient close to oneog = 0.988) at the monthly level, consistent
with the idea in Bansal and Yaron (2004) that it acts as thet ingsortant driver of the risk pre-
mium dynamics over long horizorisThe model also clearly ffierentiates and is able to accurately
estimate the persistence of the consumption volatility ponent o, = 0.64) and the volatility-
of-volatility, or economic uncertainty, componept, (= 0.46), advocated by Bollerslev, Tauchen,
and Zhou (2009), both of which are intimately linked to thersér-run predictability patterns in
the data. In terms of the underlying “structural” shocks, fimel a negative relationship between
the long-run growth and consumption volatility shocks (ata a “leverage fect”), as well as a
negative relationship between the consumption volatditg volatility uncertainty shocks (inter-
pretable as a separate new “leveraffea”). The price-dividend ratio also responds negatively t
both consumption volatility and volatility uncertaintymstks?®

The basic motivation behind the new “structural” factor GAIR model is in line with a grow-
ing recent literature seeking to explicitly incorporates tfect of stochastic volatility in asset
pricing models. For example, Bansal, Kiku, Shaliastovighd Yaron (2012) demonstrate that
ignoring the variation in volatility leads to counter-iitiue economic interpretation of risk pre-
mium dynamics. Similarly, Campbell, Giglio, Polk, and Tyr([@012) examine the cross-sectional
return predictability in an ICAPM framework that allows faoshastic volatility? In contrast to
these studies, our focus is on tjfeent predictability of returns and cash flows within the context
of a “structural” econometric model explicitly designedaocommodate time-varying volatility
in an internally consistent fashion. Recent studies by l#ngen and Koijen (2010) and Piatti
and Trojani (2012) have also relied on a latent variable @ggin with heteroskedastic shocks for
incorporating the fect of time-varying volatility within a present-value framork. Importantly,

however, we dter from both of these studies by specifying an empiricallyerealistic two-factor

4Nakamura, Sergeyev, and Steinsson (2012) have recentiynshow the long-run growth factor may also be
identified from cross-country aggregate consumption datkeuadditional simplifying assumptions.

SThe importance of economic uncertainty for explaining agsies has also recently been emphasized from
different perspectives by Bekaert, Engstrom, and Xing (200#toNand Rubio (2011), and Corradi, Distaso, and
Mele (2012), among others.

50ur “structural” factor GARCH estimate for the persisteirteonsumption volatility,., and in turn the ect of
allowing for time-varying volatility, are much larger thaime estimates reported in Campbell, Giglio, Polk, and Furle
(2012) based on simple VAR procedures and imprecise vagiargasures.



volatility structure and by explicitly including both thewmal and risk-neutral expected variation
in the formulation and estimation of the model.

The rest of the paper is organized as follows. Section 2 descthe data. Section 3 presents
the general equilibrium model setup underlying our empirinvestigations. Section 4 discusses
the formulation of the “structural” factor GARCH model anc&t®MM-based parameter estima-
tion results. Section 5 details the return and cash flow ptelility implied by the model, and
contrast the results with those obtained by other lesstsiret reduced form estimation proce-

dures. Section 6 concludes.

2 Data Description

Our empirical investigations are based on end-of-month S&Pindex returns, as a proxy for the
aggregate market portfolio, and the S&P 500 dividend paymes a proxy for the corresponding
aggregate cash flows. All of our S&P 500 data are obtained DataStream, and cover the period
from January 1990 to November 2011, for a total of 262 montiigervations.

Following standard practice in the literature, we use thdéitrg 12-month dividend-price ratio
to account for the strong seasonality inherent in the dimitpayouts; see, e.g., the discussion in
Bollerslev and Hodrick (1995). Accordingly, the moritlog dividend-price ratiapy, is formally
defined by,

(1)

dp, = IOg(Dlvt_ll + ...+ DIVt)’

Py

whereDiv; denotes the dividend payments from the end-of-monrth to the end-of-month and
P, denotes the end-of-montlprice.

Our measures for the month 1 log dividend growth ratéd,,; and the log returns including

’Other recent studies seeking to incorporate more reatistiefactor volatility structures in the standard long-run
risk model include Zhou and Zhu (2012), Branger anulkért (2012), and Branger, Rodriguez, and Schlag (2011),
among others.

8While the S&P 500 data are obviously available over a muchdosgmple period, some of the key variance
measures employed in our analysis are only available stgirti 1990.



dividendsry,1, are similarly defined from this ratio as,

Divi_10 + ... + Diviyg
i g( Divi_11 + ... + Divg ) ()
P+ Divi_1o+...+DiVesg
e 'og( — ) 3)
t

Longer-run dividend growth rates and returns are defined iolvious manner by simple summa-
tion.

We consider three distinct variation measures: the optimpsied variationl V;, the expected
return variationERV;, and the variance risk premiuRP;. Our measure for the options implied

variation is the square of the Chicago Board of Options Exged@BOE) VIX volatility index,
IV, = VIXZ (4)

This model-free measure is (approximately) equal to theketaisk-neutral, oQ, expectation of
the one-month-ahead return variation under very genesalragtions.

To define the corresponding actual, Br expectation, we first construct the time series of
monthly model-free realized variances by summing the dsdgjyare returns within each month,
RVig = Yy rt2+i,_1,t+l, wheren refers to the number of trading days in month1.° Our measure
for the one-mon:h-anhead expected return variation is nbthfrom the linear projection of these
monthly realized variances on their own lagged daily, wgedhd monthly values, along with the

lagged implied varianc¥,
th,t+1 = Qo+ alRVt_%,t + a’ZRVt—%,t + QgRVt_]_,t + G’4|Vt + Cit+1. (5)

Except for the addition ofV; as an additional right-hand-side variable, this specibcadlirectly

mirrors the popular HAR-RV model originally proposed by Aq2009)1! In the sequel, we will

9This directly mirrors the use of higher-frequency intradista in the construction of daily realized volatility
measures advocated by Andersen, Bollerslev, Diebold, #ed$&(2001) among many others.

100ur estimates of the’s are based on overlapping daily data. The use of daily assgabto monthly observations
in estimating the regression greatly enhances theiency, and we consequently ignore the small estimatiar®m
thea’s in our empirical analysis below.

INumerous other more complicated models for forecastinkipeshvolatility have been suggested in the literature,
see, e.g., Andersen, Bollerslev, and Diebold (2007) andiC&irino, and Red (2010) and the many references
therein. However, the relatively simple-to-implement HAR type regression model in (5) is very hard to “beat” for
forecasting the monthly volatility.



denote this estimate bRV, for short. Finally, our measure for the variance risk premiis
simply defined as the fierence between our risk-neutral and statistical expectatof the one-

month-ahead return variation in (4) and (5), respectively,
VRP; = IV, — ERV.. (6)

To illustrate the basic features of theffdrent variables, Figure 1 plots the monthly time se-
ries of stock returns, dividend growth rates, dividendzematios, and variance risk premia. The
large losses in market values and the increased volatilitind the recent economic downturn are
immediately evident in the plots of the returns and cash flowse plot for the dividend-yields
shows a sharp drop throughout the 1990s, but an increasetadtieurst of the tech bubble in 2001,
reaching a new peak in the fourth quarter of 2008 around tkergdf the global financial crisis
and the stock market crash.The variance risk premium shown in the last panel is on aeerag
positive with occasional negative spikes, the largest dtiwbccur in the fall of 2008 at the onset
of the financial crises.

Summary statistics for the same four variables, along withdptions implied and expected
variation measures underlying the variance risk premiumyeported in Table 1. The annualized
mean stock return over the sample equals 8.19 percent withadility of 15.33 percent, while
the average dividend growth rate was 3.92 percent with alatardeviation of 8.79 percent. The
log dividend-price ratio is, of course, highly persistenthaa first order autocorrelation cigient
equal to 0.98. Meanwhile, the average implied and expecaeidnces equal 40.30 and 28.54,
respectively, on a percentage-squared monthly basisyingpn on average positive variance risk
premium of 11.75. Interestingly, while the two individuanance series are strongly positively
serially correlated, albeit not as persistent as the didéderice ratio, the first order autocorrelation
of the variance risk premium is only 0.27.

Turning to the sample correlations reported in the bottomepaf the table, the implied and
expected variances obviously move closely together. Thetihpreturns are also highly nega-

tively correlated with both measures, while the returnsaarly weakly negatively correlated with

12The sharp decline observed in the 1990s is often attributéins’ substitution of dividend payments by share
repurchases; see, e.g., Koijen and van Nieuwerburgh (2@ldr)g with the earlier related discussion in Bagwell and
Shoven (1989).



dividend yields. The positive contemporaneous samplestaiiron of 0.15 for the returns and the
variance risk premium is largely driven by the negative spik both series during the financial
crisis. Interestingly, the two individual variance measare both negatively correlated with the
dividend growth rate.

We turn next to our new present value framework and “striatunodel designed to describe

and better understand these dependencies.

3 Asset Pricing Model and Structural Restrictions

Our equilibrium-based approach combines the long-runmekel pioneered by Bansal and Yaron
(2004), with the model in Bollerslev, Tauchen, and Zhou @0&xplicitly allowing for stochas-

tic volatility-of-volatility, or time-varying economic mcertainty. This general setup naturally ac-
commodates the magnitude of both the equity and variankgremia, as well as the long- and

short-horizon predictability patterns in the returns aadftflows within a unified framework.

3.1 Model Setup and Assumptions

Following the long-run risk literature, we assume an endewneconomy with a representative
agent equipped with Epstein and Zin (1991) recursive pegiezs. The logarithm of the intertem-

poral marginal substitution for this agemt,; = log(M;,1), may consequently be expressed as,
0
M1 = 6logd — JACHl + (60— Dregers (7)

whererc,1 = log(Ret+1) refers to the logarithmic return on the consumption asaet,; =

log(Ci,1/C;) denotes the growth rate of consumption,<05 < 1 is the time discount factor,

v > 0 denotes the risk aversion parameter, ansl 1;?1 wherey > 0 refers to the intertemporal
elasticity of the substitution. As is standard in the long-risk literature, we will assume that
v > 1, implying that the representative agent is more risk aénan log utility, and thay > 1,
and therefor@ < 0, implying a preference for early resolution of uncertgint

For notational convenience, we collect the consumptionvtra\c,, the log dividend growth



Ad;, and the latent state variables describing the underlyymguhics in the vectoy,,

Y, 2 (8)

1l
9

wherex; denotes the long-run mean of consumption growth as in BarghlYaron (2004), and
o? andq; refer to two separate volatility factors along the lines aflBrslev, Tauchen, and Zhou
(2009). The importance of allowing for multiple volatilifiactors in accurately describing both
short- and long-horizon time-varying return and volaildynamics has also recently been high-
lighted by Bollerslev, Tauchen, and Zhou (2009), Drechatet Yaron (2011), Bollerslev, Sizova,
and Tauchen (2012b), Zhou and Zhu (2012), Branger abiblevt (2012), among others.

We assume that the state vector hfisma conditional mean and variance dynamics,
Yii1 =+ FYi+ HGiza, 9)

wherez.1 = [Zeti1, Zote1, Zote1, Zgt+1- Zdp+1)” denotes a vector of independent standard normally
distributed shocks. The conditional meanYpis in turn determined by the constant vecgtoand

the loading matriX¥-. We assume that the loading matrix takes the sparse form,

0O 1 0 O O
O px 0 O O
F=|0 0 p, O O}, (20)
0O 0 0 pg O
0 dax 0 O pg

in which the diagonal elements characterize the own lagggetmdencies and thefaliagonal
elements describe the dynamic first-order cross depeneentn particularggy allows the divi-
dend growth raté\d, ,; to directly load on the lagged long-run consumption grovdmponentx;.
Allowing Ady,; to also depend on its own lag permits a non-redundant prigfifegt of dividend

growth risk on the equity premium. Restricting this ffa@entpq to be zero reduces the model’s

BIn particular, as discussed in Bollerslev, Tauchen, anduZfa®09), by allowing for stochastic volatility-of-
volatility it is possible to separate the time-varying netririce of risk that drives the consumption risk premium
from the time-varying volatility risk that drives the voilily risk premium.

8



growth dynamics to that of a “standard” long-run risk modébwever, our estimates of the model

discussed below strongly rejects such a specification.
The conditional second-order dynamics of the state vestaletermine by the time-varying

diagonal volatility matrixG; and the constant loading matik,

oo 0 0 0 O 1 0 0O 0 0
0 & 0 0 O 0 ¢ O 0 0

G=|0 0 g 0 O H=10 ¢xSox 1 0 0. (11)
0 0 0 G O 0 oxSyx Sge 9q O
0 0 0 0 o 0 oxSix S0 ¥qSug ¥d

Our choice ofG; differs from the models in Drechsler and Yaron (2011) and Braagdn\olkert
(2012) by allowing bothx.,; andc?,, to have time-varying volatilityy/G. As discussed further
below, this assumption facilitates our ranking of the “stal” shocksz,;. Our choice ofG;
also nests the model in Bollerslev, Tauchen, and Zhou (2692eroing out the long-run growth
component, equating the dividend and consumption growtth fixing s ; = 0 fori # j, thereby
renderingH diagonal*

Identification of the lower triangular volatility loading atrix H is effectively accomplished
through heteroskedasticity, and cross-dependencie€batthie dierent state variables implied by
the form of the time-varying volatility. We rank the two “stitural” consumption shocks; and
.1, before shocks to dividends;. Based on the intuition that level shocks are more “fundaaién
than shocks to volatility, we also put the two consumptioocts before the volatility shocks.

andzy;.

Denoting the rows oH = [hy, hy, hs, hy, hs], the “square” ofHG; may be conveniently ex-

pressed infline form as,

HGGH = Y hifio?+ > hjhig. (12)

j=15 j=2,34
This two-factor volatility structure is distinctly fferent from the one-factor setup recently em-

ployed in Campbell, Giglio, Polk, and Turley (2012). As dissed in more detail below, itf@rds

4We also experimented with two alternative setups, one cleseDrechsler and Yaron (2011) witls, =
diaglo, v/, ot, +/Gh. 01], and the other one closer to Branger andlkért (2012) withG; = diagfo, o, o, G, ot],
resulting in qualitatively similar predictability resalto the ones reported below. However, both of these alterna-
tive specifications were rejected at conventional sigmifiealevels by the corresponding GMM-basé&dests for
over-identifying restrictions. Further details concegnthese alternative models and empirical results are tegpan
Appendixes C and D.



an empirically much more realistic description of the ratand cash flow dynamics, and in turn

the predictability patterns obtained by imposing the elgtiim-based restrictions.

3.2 Model Implications

In order to deduce the “structural” model-implied resioat that guide our empirical analysis, we
begin by solving the consumption-based asset pricing maglah similar techniques to the ones
in Bansal and Yaron (2004), Bansal, Kiku, and Yaron (200&bd, Drechsler and Yaron (2011). In
the spirit of Campbell (1993, 1996), we then substitute oetthrd-to-measure consumption and
its volatility dynamics with directly observable marketum and its variance measures.
Standard solution methods applied in the long-run riskdiiere readily imply that the stochas-

tic discount factom,, the return on consumptian,,;, and the market return on dividends;,

must satisfy
M1 — Et(rnt+1) = _A,HGtZHla
reeer — Et(rews) = AHGzi 1, (13)
Mesn — Ee(reea) = AGHGz,1,

where A = ye; + k1(1 — 6)A denotes the price of risk for the factor shocks, = e + «1A,

Ag = & + kg1Ad, k1 @andky; refer to the Campbell and Shiller (1988b) log-linearizattmmstants
based on the “usual” approximations for consumption retdfn ~ ko + k1vi41 — vt + ACyyp and
dividend returnr,1 = kgp + kq1Wir1 — We + Adi,1, respectively, and the two selection vectors are
defined bye, = [1,0,0,0,0] andes = [0,0,0,0,1]’.*°> Given these expressions, it is possible to
explicitly solve for the market return variand&r(r,1), the variance risk premiuddRP;, and the

log dividend-price ratiap, as

Var(ra) = (1+ka1Aad)’eior + AghihiAqQy, (14)
j=2,34

VRP, = Z Aghiht AgSqs + AGhiNAgsy2 | (15)
=15 j=234

dpr = —Aod — AdxX — Age0f — Aqqlh — AqaAd, (16)

15As further detailed in Appendix A, the market prices of riskiso depend implicitly on the céiicients in
the wealth-consumption ratiee = Ag + [0, Ay, Ar, Ag, 0]'Y; and the price-dividend ratioy = —dpy = Agp +
[0’ Ad,X’ 'Ad,o'v Ad,q’ 'Ad,d]’Yt'

10



wheresy: = —(oxSoxh, + M)A and sy = —(xSyxh, + Sq0hy + ogh))A. We will impose these
“structural” restrictions on the empirical model estinthteelow.

Even though our empirical strategy of substituting out congtion means that some of the
parameters in the autoregressive loading mafriand the volatility loading matriXxd are not
identified, the specific structures for the two loading ntasistill provide useful guidance on how
to restrict the factor dynamics. In particular, denote thie-gector ofY; that exclude consumption
growth by f, = [0?, ¢, Adk, %]’. The dynamic dependencies in the sub-system definefd imay

then be expressed as,

fi1=w+pf + Sesq, (17)
where
oo 0 0 O 1 0 0 sy«
0 0O O - 1 O
p=| s=|% Rl (18)
0O O Pd Pax S0 Sq 1 Sd,x
0O 0 0 pg 0 0O 0 1

and the vector of innovationg,; = [ V0iZrt+1, ©q VO0Zote1, TtZdtr1, ©x VO Zi+1]” IS conditionally
heteroskedastitS In our empirical implementation we will use a multivariatA BCH-type model
to describe the dynamic dependencies inghgvector.

The state vectoff; is, of course, not directly observable. To circumvent thwe, define the
“observable” state vectoX; = [ERV;, VRP, Ad;, dp]’. From the solution of the model discussed
in Appendix A, theX; vector is directly related to the latefitvector by the linear equations,

Ql,l Q1,2 0 0
0 Qg2 O 0

0 0 1 0
—Ade —Adg —Add —Adx

X = ux + Qf; Q= ) (19)

where Qi1 = (1 + ka1Add)’¢500, Qa2 = =234 AdNjh{Agpq, and Qz2 = (1 + Kd1Add) Sq1 +
Yj=234 AghjAgsy2. Given the standard set of assumptions about the strugtarameter values
typically employed in the long-run risk literature, all dfeQ parameters would be positive. Con-

versely,Aq-, Adq, andAyq would all be negative, whiléy  is naturally expected to be positive.

18The value ofr is immaterial to all of our predictability results. Also gheordering of the elements farelative to
Y: merely serves to facilitate comparisons with other benakimedels below, and does natect any of the results.

11



The relationship betweef andX; in equation (19) underlies our estimation of (scaled versio
of) the keyp andS parameter matrices, and the underlying economic mecharasm diterent

“structural” shocks.

4 Empirical Methodology and Estimation Results

The consumption-based asset pricing model with volatilitgertainty, outlined in the previous
section, imposes a number of restrictions pertaining todyreamic dependencies and possible
feedback #ects between the expected variance, the variance risk prenthe dividend growth
rate, and the dividend-price ratio. Our new “structuralttr GARCH model is designed to honor

these restrictions within a tractable econometric framé&wo

4.1 “Structural’ Factor GARCH

Combining the model fof, in equations (17) and (18) with the expressionXpm equation (19),
it follows that

BX1 = fi + pPBX; + Sé&.1, &1 = Giziaa, (20)

whereG, = diag[Q11 v Q2204 VT Tt» —Adx@x VG, and”’

1 _ngi 0O O pr 00 0
SFR S S e
1 0 0 s,
a_|omme 10 s (22)

1 1 1 :
01 Mo [ Siq 1 “Aax Sd,x
0 0 0 1

Multiplying the “structural” VAR in equation (20) b2, the corresponding reduced form VAR(1)

representation fok,; becomes,

Xis1 = BT+ OX; + Ugst, (23)

17As explained in more detail in Appendix B, tBamatrix is obtained from th€ matrix by normalizing its diagonal
elements to unity.

12



where®=B"1$B, U1 = ©;'&.1, anddyt = B-1S. As this representation makes clear, ignoring
the heteroskedasticity in the reduced form shagks and interpreting the model fof;., in (20)

as a standard homoskedastic VAR(1), Biand S matrices aren't jointly identified. In empiri-
cal macroeconomics, this lack of identification is usualiplVed” by imposing tha®, is lower
triangular. However, as argued by Sentana and Fiorentd®1}, Rigobon (2003) and Rigobon
and Sack (2003), among others, under the maintained assumtipat the underlying “structural”
shocks are independent, it is possible to identifydgematrix, and in turn bottB andS, through
the heteroskedasticity i, 7.

Rather than specifying the time-varying covariance mdixthe “structural” shocks as an
explicit function of the latenty ando? risk factors, in the implementation reported on below we
adopt a more flexible and empirically realistic GARCH appio&mr characterizing the dynamic
dependencies ia,;. Specifically, letX;,; denote the conditional covariance matrixepf,.” We
will assume that;,; may be described by the following relatively simple yet flégi diagonal

GARCH(1,1) model,
diagE:1) = (I - T - 1Oy @, + I'diagE:) + T, (24)

where®, = ®;' © d;t, andw, denotes the unconditional covariance matrix of the reddiced
shocksu, 1 = (Dalaﬂ. Consequently, the second order dynamicsxof will follow the more

complicated non-diagonal GARCH(1,1) structte,
vecQu1) = 0:(1 - T - 1)0; @y + OO diag;) + O, TOvecul). (25)

By explicitly parameterizing this implied conditional leebskedasticity iru.4, it is possible to
identify and separately estimad# of the “structural” parameters in (20)-(22).

Let £ denote the vector of stacked parameters comprised of thaitamral mean parameters in
B, S, /i, andp, along with all of the conditional variance parameterE,iff, andw;,. Assuming that
the reduced form shocks,; are jointly normally distributed, the logarithm of the d@gpgor X, 1

conditional onX; andQ, 1, or equivalently the contribution to the log-likelihoodnittion coming

“More formally, ©, = (5" & Dgh)l}, Oz = [vecqy Py (). Vecly i Po (), VeCly 5o ). VECs iy P )T
wherecIJ(;yli denotes thé" row of the square matri;bgl, and the 1&4 matrix |, helps to transform the vector vey
into diagonal matrix form.
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from X1, may be expressed as,

1 1 - o 1~
Li(%:1,€) = = 2109 21 = 1091 — 5K = BT = OX) QX1 — B — ©X)
1 .
=-2log2r - > log|Z| + log|S™1B] (26)

1 -1~ -1~ r&— -lpra-1 -1~ -1~
-~ é(xt+1 - B i - B pBX)SBE ' B'SY (X1 — B i — BIpBX).

Even if the assumption of conditional normality is violattpirically, the estimate faf obtained
by maximizing the resulting log-likelihood function, dedith by summing (26) over the full sample,
remains consist and asymptotically normally distributeder quite general conditions; see, e.g.,
Bollerslev and Wooldridge (1992).

The diagonal GARCH(1,1) model in (24) freely parametrizesgarsistence in the “structural”
shocks. Consistent with the implication from the underlysansumption-based asset pricing
model, we impose the restriction that the autoregressiyenidencies in the GARCH expected
variance and the dividend-price ratio are the same,lis@.# T11 = 14 + T44 = pq. Guided by
our initial diagnostic tests, we also restrict the dividgmdwth shock to have only ARCH and no
GARCH dfect, i.e.I'33 = 0.

The long-run implications from multivariate GARCH modelsdze very sensitive to estima-
tion errors and small perturbations in a few parameters.€lp guard against this, we augment the
Gaussian-based score for the “structural” VAR-GARCH modighwan additional set of moment
conditions designed to ensure that the unconditional neeis of the reduced form errors implied
by the model match their standard VAR-based analog§u&xpressing this additional set of mo-
ments in parallel to equation (26) and the contribution ®ltkelihood function coming fronxy,,,

we have
Wi(Xei1.8) = @y — diag((Xier — 1O = @K (Xg — 1O — 295X, (27)

where the “OLS” superscript indicates the parameters nbthfrom equation-by-equation least

squares estimation of the reduced form VAR.

19This mirrors the variance targeting approach originally@zhted by Engle and Mezrich (1996). However, in
contrast to that two-step approach, the GMM-based proesgiplied here jointly estimates all of the parametets in
in a single step.

14



The estimates fof reported below are obtained by applying standard iteratdd/Go the con-
ditional set of moments defined by the score for the condifidensity in (26), sag:L:(Xi1,¢),
augmented with the moment conditions in (27),
OeLi(Xea, f)] .

Vvt(xt+17 é‘:)

We turn next to a discussion of the resultisgand the implications of the estimates in regards to

9(Xi1,€) = [ (28)

the dynamics of the systematic risk factors and the depaemeeamong the “structural” shocks.

4.2 Estimation Results and “Structural” Inference

The dynamic dependencies in the observable state v&ctof ERV;, VRP;, Ad;, dp]” underlying
our GMM estimation is directly related to the latent statetee f, = [0?, ¢, Ad,, %]’ of interest
by X; = ux + Qf;. This allows us to infer both the contemporaneous intevaatiatrix Q and the
autoregressive matrix describing the mean dynamicsin;, = w + p f; + Se,1 from the estimates
for Bandp based orBX,1 = i+ pBX; + 8., and the relations in equation (21) above. Similarly,
the estimated volatility loading matri® for the observable state vects allow us to infer the
volatility loading matrixS for the latent state vectok from equation (22), while the estimated
volatility dynamics of thes7; shocks &ectively determines the implied volatility dynamics of the
“structural” .1 shocks.

We begin with a discussion of the estimatesBandp,

— 064 O 0 0
1 (81(1))2 0 0 (0.05)
) 0 1 0 0 | o o046 o0 0
B = 5 — (0.07) (29)
0 0 1 0 0 0 -023 -0002
(0.03) (0.004)
-0.60 -144 -0.19 1 0 0 0 Q988

0.03)  (0.10) (0.009)

where the numbers in parentheses represent asymptotdastharrors. With the exception of
B1, andps4, all of the individual parameter estimates are highly stadally significant. All of
the estimates also have the “correct” signs vis-a-vis th@igations from the equilibrium-based
model and the “structural” VAR.

In particular, the negative estimates for the loadingstierdividend price ratio reported in the

last row of theB matrix are consistent with the idea that the two volatiliyngponentsr-? and
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o, and cash flow growtiAd;, are all genuine risk factors with negative market pricesisks2°
Within the context of the standard Bansal and Yaron (2004g-un risk model, these negative
contemporaneous relationships between the dividené-pato and the other state variables, or
risk factors, are critically dependent on the risk avergianametety > 1 and the intertemporal
elasticity of substitutiony > 1. As such, our “structural” estimation results indirecilypport this
commonly invoked set of assumptions.

Our estimate fops4 = px = 0.988 also points to a highly persistent and very accurately
estimated long-run risk factor. This contrasts with theidgbpractice of simply fixing the long-
run persistence céiécient at some “large” value, as in, e.g., Bansal, Gallard, Bauchen (2007a),
and clearly highlights the advantages of the more strudt@®& M estimation approach and richer
data sources applied here. Meanwhile, even though our @stiforgg, = pss = 2 = —0.002

Adx
is “correctly” signed, the parameter is not significantlyfelient from zero, and as sucki@rs only

limited support to the idea that the long-run risk facxpcontemporaneously impacts cash flows
Ad,.

Interestingly, our use of more accurate volatility measuesults in a much more persistent
consumption variance estimaie; = p, = 0.64 compared to the estimates recently reported in
Campbell, Giglio, Polk, and Turley (2012). Moreover, oulimasites forp;; = p, = 0.64 > p,, =
pq = 0.46 imply that the consumption varianag is more persistent than the variance-of-variance
g:, Or economic uncertainty, which is directly in line with theplicit assumptions invoked in the
calibrations reported in Bollerslev, Tauchen, and ZhoW@0

Turning to our estimates for the volatility dependence ira;

1 0 0 Q08
(0.04)
~ |-029 1 0 -0.09
S =] (0.06) (0.02) (30)
-0.36 -0.09 1 015
(0.05) (0.08) (0.03)
0 0 0 1

all of the individual parameters, exceisg,z, are again highly statistically significant. This clearly

underscores the idea that multiple volatility factors aréeied needed to accurately describe the

2ONote that the market price of dividend rifg 3 = —0.19 is imputed to by the constraifg 4 = 1_fd“1pd imposed in
equation (21). '
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dynamic dependencies observed in the data, and that ttaastdong-run risk model with a single
stochastic volatility factor is misspecified. To more fudlgpreciate this and the other implications
of the estimates recall again the relationship betw&end the “structural’S matrix for the latent
state vector in equation (22).

It follows from this relation that shocks to cash flow growtk; are adversely féected by
shocks to the long-run risk componeRt assyx o« —§3,4 = —0.152! This is consistent with the
idea that companies tend to distribute more in dividendsnatbreg-run growth opportunities are
poor. The “structural” long-run risk shockfacts the two variance processesanddg, in opposite
directions. Good news about long-run consumption growtluces the consumption variance, as
Srx & —§1,4 = —0.08 < 0, but increases economic uncertainty,sgg o —§2,4 = 0.09 > 0.
The first dfect represents the well known “leveragéeet”, whereby a negative growth shock is
associated with higher volatility, and vice versa. The seogtect, however, is more subtle. Since
: directly atfects the time-varying volatility of the long-run risk compent, a positives,  implies
that when a positive,; shock occurs, the volatility of next periodg;., will also be higher, and
vice versa. Intuitively, this could happen when good newsonsumption growth is accompanied
by better investment opportunities, in turn resulting igler economic uncertainty, possibly due
to over-investment. Interestingly, our estimates $oalso suggest thag,, o S,; = -029<0,
implying that a positive “structural” shock to consumptiasiatility o2 reduces the uncertainty of
volatility g;. This dfect is naturally interpreted as a new “leveradgieet” between volatility and
volatility-of-volatility. 22

Before turning to our main empirical investigations rethte the return and cash flow pre-
dictability patterns implied by the “structural” factor GXCH estimates, we will briefly discuss a

series of statistical diagnostic tests designed to assesgiality of the fit of the model.

2lWe use the symbot to denote proportional to.

22This new equilibrium-based “leveragfect” is also consistent with the asymmetries in daily andhHrgquency
intraday VIX and S&P 500 returns documented in Aboura andW¥a2012) and Bollerslev, Osterrieder, Sizova, and
Tauchen (2012a), respectively.
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4.3 Model Fit and Diagnostics

Our identification and estimation of the “structural” mogarameters rely crucially on the pres-
ence of time-varying conditional heteroscedasticity ia ¢h; shocks. The GMM parameter es-
timates for the “structural” factor GARCH model describirigst heteroscedasticity are reported
in Table 2. As the table shows, all of the shocks do indeedbéxhighly significant (G)ARCH
effects?® The overall good fit of the model is also supported by the cotiwaal J-test statistic for
general model misspecification and the minimized value efGIMM objective function equal to
12.76, which has a p-value of 0.12 in the corresponding asytiegchi-square distributioff:

The importance of explicitly allowing for time-varying \atility is further highlighted by the
Ljung-Box tests for residual serial correlation reportadiable 3. The tests for the absolute and
squared raw residuals ignoring heteroscedasticity regdartthe top panel all exceed their relevant
quantiles in the chi-square distributions with ten and tyetfegrees of freedom, respectivéty.
Meanwhile, the corresponding tests for the standardizedaral absolute residuals reported in the
bottom panel are all much smaller and with a few exceptiosgymficant when judged by their
conventional 95-percent chi-square critical values, tmderscoring the overall satisfactory fit of
the “structural” GARCH model.

In order to further gauge the quality of the fit@rded by the model, Figure 2 plots the time-
series of “structural” shocks associated with each of the &guations. The top two panels show
the volatility shocksz,; andz,;. Both of these shocks experienced unprecedented largeit alb
opposite signed, realizations during the 2007-2009 “GReatession.” Interestingly, neither one
of the earlier 1990-1991 and 2001-2002 NBER-dated recessiere accompanied by especially
large “structural” volatility shocks. The general timerigss pattern of the equilibrium-based cash
flow shockszyg: appear quite similar to that of the normalized cash flow newSampbell, Giglio,

Polk, and Turley (2012). Although not quite as dramatic astle two volatility shocks, the

23This is, of course, directly in line with the burgeon litarsg on the estimation of reduced form GARCH and
stochastic volatility models for a wide array offi@irent financial and macroeconomic time series.

24By contrast, the two alternative specifications discussedppendix C and D, one closer to Drechsler and
Yaron (2011) withG; = diagfot, v/ o, 0 o], and one closer to Branger andoKert (2012) withG; =
diago, o, o1, /T, 0t), result in GMM-basedl-statistics equal to 26.31 and 37.02, respectively, witliespond-
ing p-values essentially zero.

25The 95-percent critical values for the chi-square distidns with ten and twenty degrees of freedom equal 18.3
and 31.4, respectively.
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permanent growth shocks; also experienced their most extreme realizations duried'@reat
Recession.” This basic dynamic pattern in the equilibriobased growth shocks is again quite
similar to that of the normalized discount rate news shoef®mrted in Campbell, Giglio, Polk,
and Turley (20125°

The marginal unconditional distributions of the cash flow; and long-run riskz,; shocks,
shown in the lower two diagonal elements in Figure 3, are lwegl approximated by normal
distributions. However, the volatility shocks; and, to a lessor degree, the volatility-of-volatility
shockszy; are clearly not normally distributed. At the same time, the cloud-like patterns of the
six scatter plots for the pairwise shocks reported in theeumart of the figure, indicate that the
“structural” shocks are largely independent, although mextessarily jointly normal. Of course,
the apparent violation of normality for some of the shockegloot invalidate our GMM-based
estimation procedure, which by design remains consistedé¢uquite general conditions.

In lieu of these generally supportive diagnostic teststierstructural” factor GARCH model,
we turn next to our main empirical investigations, showing/tincorporating the additional variance-
related state variables in the equilibrium-based modegd kked new light on the return and divi-

dend growth predictability patterns inherent in the data.

5 Model Implied Return and Cash Flow Predictability

Our predictability analysis is based on recasting the tdtmal” factor GARCH model in the form
of an expanded VAR system, along with the use of the standamgp8ell-Shiller approximation

for expressing the return as a function of the observabte stxiables.

5.1 VAR and Predictability

The first order VAR for the state vectof,=[ERV;, VRP,, Ad, dp] implied by the “structural”
factor GARCH model in equation (23) doesn’t directly involtlee return. However, by the

standard Campbell-Shiller approximation, the return mayteveniently expressed ag,; =

26This is also consistent with the findings in Lettau and Ludwigy (2011), who suggest that large negative perma-
nent growth shocks might have adversefieated housing wealth.

2’Eraker and Shaliastovich (2008) and Drechsler and YaroniP@ave both advocated the use of compound
Poisson processes for more accurately describing the ogstgn variance process.
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Kd0 — kg10Pe1 + dpy + Ad,1.22 Combining this equation fark,,; with the VAR for X, 1, it follows
that

M1 = fr + (1@ + €)X + 11Dy &, 1, (31)

wherey;, collects all of the relevant constant ternhs,= (0,0, 1, —k; 4), and the selection vector
e, = (0,0,0,1). Iterating the VAR forX; forward, it is therefore possible to derive closed-form
expressions for the model-implied multi-period retuff., = rite1 + ... + lyn-1t4n regressions
based any explanatory variable spanned byXi&tate vector.

In the analysis reported on below we will focus on the threg fxedictor variables: the log
dividend-price ratiodp,, the variance risk premiuifRP;, and the expected variatidéRV;. In

particular, consider the regression of ti@eriod returns on the dividend-price ratio,

1 h
b D M = argp + Bran() - dpr + G (32)

i=1
By similar arguments to the ones in Hodrick (1992) and Cam@B6eD1), it is possible to show

that
(11®@ + &) (I — D) (I - CI)h)C(O)eﬁl
e,C(0)e,

whereC(0) = 32, ®!®;'diag@;'w.)®," " denotes the model-implied unconditional covari-

Brap(h) = (33)

ance matrix forX;, ande, = (0,0,0,1)2° Similarly, the implied cofficients for the return pre-

dictability regressions based MRP; andERV; may be expressed in close form as,

(1@ + ey)(I = @)*(1 - @")C(0)e,

ﬁr,VRP(h) = GQC(O)G(Z (34)
(110 +e)(1 = ®)H(1 — D")C(0)e;
Breru(h) = TR (35)

where thee, ande, selection vectors are defined in an obvious ma#gher.

28The accuracy of the Campbell-Shiller approximation hagmély been corroborated by Engsted, Pedersen, and
Tanggaard (2012). By definitiory; = expE(dp))[1 + expE(dpy))]~t. In the estimation results reported on
below we rely on the sample average of the monthly dividenckepatio from January 1965 to November 2011 when
calculatingE(dpy), implying a value ofg, = 0.9721.

29In the empirical results reported on below, we truncate tHi@ite sum in the expression f@(0) at 120, or ten
years; see Bollerslev and Hodrick (1995) for further disiois along these lines.

30Analytical expressions for thB?s from the regressions may be derived in a similar manner.citgadly, for
the dividend-price ratio regressidkﬁdp(h) = hzﬂfw(h)e;;C(O)te/Var(ij‘=1 Metr])s whereVar(Z*j‘=1 Meeej) = h(® +
€3)C(0)(11® + €)' + hiy(I - D)CO); + T 2(h — )(11® + €5)D'C(0) (1D + €)' + (1@ + )@ (1 — D)C(0)ey).
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In parallel to equation (31) for the returns, the growth taamics implied by the “structural”

factor GARCH may be expressed in linear form as,

AGi1 = pg + 30X + €305 & 41, (36)

wherepugy collects all the relevant constant terms. Thus, replatidg+ e, with es® in the formu-
las for the regression céicients above, comparable expressions for the cash flowqbedulity
regression ca@icientsBag ap(N), Bagvre(h), andBaq erv(N) are readily available. When interpreting
these cofficients, it is important to keep in mind the relationsByAd;,1) = ¢axX + 0gAd; implied
by equations (17) and (18), and the fact that within the ttrral” model the expected value of
next periods dividend growth rate is linearly related to thgged dividend growth rate and the

long-run risk component.

5.2 Model-Implied Reduced Form VAR Estimates

The reduced form VAR parameter matdxand the unconditional covariance mat@x0) for X;
entering the expressions for the predictive regressiolffictents in equations (33)-(35) could, of
course, be estimated directly by OLS equation-by-equatitmwever, that obviously would ignore
any of the equilibrium-based “structural” restrictions.also would not permit the separate iden-
tification of the contemporaneods, matrix entering the expressions for the return and dividend
growth rate in equations (31) and (36), respectively.

Instead, theb, and ® parameter matrices may both be deduced from the “struéttaetor
GARCH model parameters and the relatiansBpB and®;* = B-1S derived above. Substitut-

ing the previously discussed estimatesBpp andS into these expressions, yields,

064 -0003 O 0 0.995 0.02 0 0.08

(0.05)  (0.020) (0.033)  (0.11) (0.04)

0 046 0 0 -0.29 1 0 -0.09

& = (0.07) (ﬁo _| o8 (0.02) 37)

0.001 0.002 -0.23 -0.002 -034 -009 1 015
(0.002)  (0.005)  (0.03)  (0.004) (0.06)  (0.08) (0.03)
-0.21 -0.76 -0.23 0.988 011 144 019 094

(0.03) (0.13) (0.03)  (0.087) (0.09)  (013) (0.02) (0.03)

where the numbers in parentheses represent standard éerorsd by the delta-method.

Based on these estimates fbrand®,, the return equation in (31) may be expressed numeri-
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cally as,

reeer = 0.18+ 0.20ERV; + 0 74VRPt O 007Adt + O 038:ipt
(0.02)  (0.03) 0.002)

_(9648]')7E0',t+1 7&i‘ll)8 €qt+1 T %g%EAd,Hl _(c()).bZ)G Ext+1- (38)

Of course, this “estimated” return equation does not alytualy on the return data, but instead
is deduced from our estimates for the equilibrium-basedehadd the observable state vector in-
volving the dividend growth rate and the log dividend-priago. Again, this mirrors the approach
of Cochrane (2008). However, in contrast to the return eqoaterein, which only involves the
dividend-price ratio, we purposely include the two vari@mariables, both of which enters with
highly significant co#icients.

Further underscoring the importance of incorporating theation measures into the analysis,
the model-implied loadings for all of the “structural” shkscare also highly significant. Among the
four shocks, the ones for the long-run risk component ancctimsumption variance uncertainty
have the largest impacts, accounting for 43 percan) @nd 26 percentz(;) of the unexpected
unconditional return variation, respectively. The “estbted” return equation in (38) also implies
that the total one-month explainable return variation éxa percent, far exceeding thaf@aded
by traditional univariate return predictability regremss that does not includeRV; andVRP;.

Explicitly writing out the second equation for the variantgk premium in the model-implied
VAR,

VRPt+1 = (()0(0)8}+ %é‘-g\/RPt (O .29 € €rt+1 T Eq t+1 —O 09 Extrl- (39)

shows that the only “structural” shock that enters the reand VRP equations with the opposite
sign iséy:. Indeed, excluding the impact of the economic uncertaihtpck from both equations
changes the monthly conditional correlation, or “leveraffect,” from a negative -0.09 to a pos-
itive 0.66, again reinforcing the importance of jointly nedithg all of the elements in th&; state

vector.

5.3 Model-Implied Predictability Relations

The VAR-based formula for the slope deients presented above allow for a direct assessment of

the statistical significance of theftérent predictor variables acrossidrent forecast horizons. The

22



formula also allow us to directly assess the enhanégciency dforded by the “structural” factor
GARCH model compared to the reduced form VAR and simple urataregression procedures
traditionally used in the literature.

To begin, Figure 4 reports the implied slope fia@ents for forecasting 1-month to 10-year
returns by the dividend-price ratip,. Consistent with the vast existing literature on return pre-
dictability, all of the coéficient estimates (indicated by the dotted lines) are higiggiscant and
well within the 95 percent confidence intervals includedhe figure (indicated by the shaded
area). Also, the magnitude of the predictability appeardgoay over time, with the most signif-
icant codficients and narrowest confidence bands occurring at the 448 y®rizon. Comparing
the results for the “structural” factor GARCH model reportadthe top panel with the results
in the bottom panel obtained by a traditional two-variabbenloskedastic VAR for the dividend-
price ratio and the dividend growth, as in Cochrane (200&arty highlights the more accurate
inference &orded by explicitly incorporating the equilibrium-basegktrictions and the strong
heteroskedasticity inherent in the data in the estimation.

This visual impression is confirmed by the actual model-ietbklope cofficient and stan-
dard error estimates for the 1-10 year predictive regressieported in the top panel in Table 4.
Meanwhile, the results for the within year regressions regubin the lower panel of the table are
virtually the same for the two procedures. For comparisomppses, the lower panel of the table
also include the estimated regressionfiiognts from simple univariate unconstrained return re-
gressions. In contrast to the VAR-based results, thesessmgms indicate little or no predictability,
thus underscoring the advantage of the more structured \ffRoach.

Qualitatively similar findings obtain for the dividend griwpredictability regressions shown
in Figure 5. Although, the dividend-price ratio is not sificant at any horizon, the confidence
bands based on the “structural” factor GARCH model in the upa@éel are noticeably sharper.
The specific numbers in Table 4 also corroborate the idedhbéstructural” model-implied coef-
ficients are more accurate, albeit not significant. The gdrmenclusion emerging from the results
in Table 4, namely that the variation in the dividend-priaga is almost exclusively related to vari-

ation in expected returns as opposed to variation in futash dlows, thus confirm the summary
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view of the literature expressed by Cochrane (2G11).

Even though our longer multi-year horizon regressionsoreal in the top part of Table 4 and
Figures 4 and 5, are in line with the results reported in a remobexisting studies based on longer
calendar time span of data, with only slightly more than tiygrears worth of monthly observa-
tions these results should obviously be taken with a grasatif For the remainder of this section
pertaining to our empirical investigations of the “new” aarce related forecasting variables, we
consequently restrict our attention to within-year hongoOf course, the univariate return regres-
sions reported in Bollerslev, Tauchen, and Zhou (2009) aretiisler and Yaron (2011) that in
part motivate our analysis also suggest that the returnigigdality inherent in the variance risk
premium is confined to relatively short horizons.

Turning to the results for the two filerent variation measures, Figure 6 shows the regres-
sion slope coféicients for the variance risk premiuMRP; implied by the the “structural” factor
GARCH model (indicated by dots) along with the correspond@Bgercent confidence intervals
(indicated by the shaded area). For comparison purposeslseeinclude the estimated slope
codficients from simple univariate predictive regressions dasethe variance risk premium (in-
dicated by the stars) along with their 95 percent confidentervals (indicated by the dashed
lines). Focusing on the top panel for the returns, both pioges result in significant estimates for
up to eight months. It is noteworthy that even though the rodplied point estimates are sys-
tematically lower than the unrestricted OLS estimatesy #re also less erratic, and the confidence
intervals much smaller. Indeed, looking at the numbers il@#, the t-statistics for testing the
null hypothesis of no return predictability are uniform@rder for the “structural” approach.

This discrepancy in the results across the two approachegeis stronger for the cash flow
predictability regressions reported in the bottom pandtigure 6. Whereas the estimated slope
codficients from the univariate regressions are all insignifictre t-statistics associated with the
VAR-based model-implied cdigcients are all negative and exceed conventional signifetevwels
for up to six months. Hence, not only are higher variance pismia positively related to future

returns, as previously documented in the literature, they predict lower near-term future cash

31Maio and Santa-Clara (2012) have recently challenged this, whowing that for portfolios comprised of small
and value stocks, the dividend-price ratio is primarilyatet to future changes in cash flows.
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flows3? This, of course, contrasts with the view commonly expregséik literature that dividend
growth rates are largely unpredictable over short withéayhorizons.

Of course, the much-studied classical risk-return traffesonot based on the variance risk
premium, but rather the return variation itself. In spitetioé¢ intuitively appealing idea behind
such a relationship, empirical attempts at establishingrafecant risk-return traded have largely
proven futile; see, e.g., the discussion in Bollerslev ahdw(2006) and Guo and Whitelaw (2006),
and the many other references therein. The result for theauate return regressions based on
ERV, reported in the top panel in Figure 7 and Table 6 undersc@elilisive nature of a simple
linear relationship between the expected returns and theat&d variation in the data analyzed
here. None of the regression ¢heients are significant, and most have the “wrong” sign. By
contrast, the VAR-based estimates implied by the “strattunodel are all positive and marginally
significant for return horizons in excess of 4 months.

The diference in the quality of the inferenc@ded by standard univariate regression-based
procedures traditionally employed in the literature arel“Structural” approach advocated here is
even more dramatic for the cash flow predictions reportetiéniottom panel in Figure 7. While
the simple univariate regressions suggest that the 1-6hmalntidend growth rate is unpredictable,
the regression cdicients implied by the “structural” model are all highly sificant. Interestingly,
whereas an increase RP; predicts lower future cash flows, and increas&RV, is associated
with significantly higher future cash flows. Again, this stgpempirical evidence for short-run
within-year cash flow predictability stands in sharp cositta the results reported in the existing
literature based on other more traditional predictor J@lga and valuation ratios.

At a more general level, the results for the twéfelient approaches reported in Tables 4-6 and
Figures 4-7 may also be seen as providing indirect suppoth®equilibrium-based “structural”

model, in that the more accurate model-implied predictelations systematically fall within the

32This is also related to the observation by Bloom (2009) thainarease in economic uncertainty causes firms to
temporarily reduce their investment and hiring, in turnuléiag in a short-term productivity drop.

33The use oflV; = VRP, + ERV, results in qualitatively similar patterns, but slightly recsignificant cofficient
estimates, compared to the ones reportedfaY,, thus confirming earlier empirical findings in Bollerslevidazhou
(2006) and Guo and Whitelaw (2006) of a stronger risk-retwadd-dt when using implied as opposed to realized
variation. Still, none of the univariate return regressitiased onV; result in any significant predictability. Further
details of these results are available upon request.

25



wider standard error bands associated with the unreddriegressions. This, of course, would not

necessarily be the case if the assumptions underlying thectaral” model were violated.

5.4 Further Discussion and Interpretation

The contrast between the long-run predictability inhererihe dividend-price ratio, and the vari-
ance variables ability to predict both return and cash flowrahorter within-year horizons is
intimately related to our equilibrium-based long-run riskodel, and the way in which the funda-
mental risk factors ffiect the state variables.

In particular, while the dividend-price ratidp; loads on the long-run risk factog and both
of the volatility factorso? andq, the expected variatioERV; depends only on the two volatility
factorso? andq, and the variance risk premiuliRP; is exclusively determined by the volatility-
of-volatility factor ;. Consistent with earlier less formal model calibrationsorgd in the litera-
ture, our GMM-based estimates imply that the long-run raktdr is highly persistent with AR(1)
codficient equal tgo, = 0.988, while the consumption volatility factor is moderatglgrsistent
with AR(1) cosdficient equal tqo, = 0.64, and the consumption volatility-of-volatility factos i
quickly mean-revering with AR(1) cdicient equal toy = 0.46.

In light of these estimates for the underlying systemasik factors, it is therefore not surprising
that the “structural” model implied return predictabiltggressions based MRP;, which depends
solely ong, result in the most significant cicients over relatively short 1-6 months horizon,
while the regressions based dp;, which loads heavily orx, remain significant over longer
multi-year horizons. Also, whereas the variance risk premis most significant over horizons
less than 6 months, the expected variatieRV; displays the most significant predictability over
6-12 months horizons, as the more persistgnprocess “shifts” the predictable to longer horizons.

The documented fierences in the degree of cash flow predictability are modieasierstood
in terms of the correlations among the “structural” shodk®m the model estimates the cash flow
shock is more strongly negatively correlated with the comgeraneous variance shocgf o
Ss1 = —0.36), than it is with the uncertainty shockyg o Sz, = —0.09) or the long-run risk
shock &y x o —§3,4 = -0.15). Since the expected variation loads more heavilyrthan g,

while the dividend-price ratio and the variance risk premiare mostly determined by andq;,
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respectivelyERV; will be more strongly negatively related taj, than eithedp, or VRP;. Because
of the negative autocorrelation d; (oq = —0.23 < 0), this in turn translates into the strongest
positive short-run cash flow predictability results for tBRV; predictor variable implied by the

“structural” VAR.

6 Conclusion

We examine the joint predictability of return and dividenabwgth rates within a present value
framework, explicitly imposing the economic equilibriupased constraints from a long-run risk
model with time-varying consumption volatility and voléti-of-volatility risk. The model clearly
differentiate the long-run predictability channels assodiatigh the dividend-price ratio from the
economic mechanisms responsible for the short-run pigdlidy inherent in the variance risk
premium and the expected return variation.

Consistent with Bansal and Yaron (2004), our GMM-based ed&mof the “structural” fac-
tor GARCH model point to a highly persistent latent long-rusk rfactor. Our estimates also
corroborate the calibrations in Bollerslev, Tauchen, amdw (2009), and the notion that con-
sumption volatility is more persistent than consumptiomhatibity-of-volatility. In addition, the
“structural” shocks identified within the model reveal thatsh flow respond negatively to con-
temporaneous long-run growth shocks, while consumptidatiity decreases with shocks to the
long-run growth factor, and volatility uncertainty incsss with long-run growth shocks. A new
“leverage €fect” whereby shocks to consumption volatility is negagvedlated to volatility-of-
volatility also emerges from our “structural” estimation.

By allowing for much sharper and accurate inference thamttiariate unconstrained regres-
sions or reduced form VAR procedures traditionally emptbyrethe literature, the VAR implied
by the “structural” model also provides striking new evideron the return and cash flow pre-
dictability inherent in the data. Specifically, we find thia¢ tvariance risk premium, and to a lesser
extend the expected return variation, significantly presdghort-run within-year returns. On the
other hand, the expected return variation, and to a lessendsthe variance risk premium, strongly

predicts short-run within-year dividend growth rates. Jhaitter finding stands in sharp contrast to

27



the view expressed by a number of studies in the literatuiectish flows are largely unpredictable.
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Table 1 Summary Statistics

The table reports standard summary statistics and cdoetator the S&P 500 return .1, dividend growth rate\d,
dividend-price ratialp;, options implied varianc&V;, expected variancERV;, and variance risk premiuvRP;. The
returns, dividend growth, and dividend-price ratio areéirmtnnualized percentage form. All of the variance variable
are in monthly percentage form. The sample period exterms frebruary 1990 to November 2011, for a total of 262
monthly observations.

Mean Std Skew Kurt AC1
risa | 8.19 1533 -0.76 4.48 0.07
Ady 392 879 -046 10.02 -0.26
dpe | -3.91 031 0.08 232 0.98
IVy | 40.30 36.47 3.23 18.07 0.81
ERV; | 2854 36.64 4.62 30.08 0.69
VRP; | 11.75 14.93 -3.37 38.42 0.27
Correlations
reer Ade  dpy IVy  ERV; VRP;
rea | 1.000 0.34 -0.03 -042 -048 0.15
Adk 1.00 -0.02 -0.25 -0.25 -0.01
dpt 1.00 -0.05 -0.02 -0.07
(AVA 1.00 092 0.19
ERV; 1.00 -0.21
VRP; 1.00

Table 2 “Structural” Factor GARCH Estimation

The table reports the GMM estimation result for the condilovariance parameters for the “structural” factor GARCH
model discussed in the main text. The column labelgdjives the unconditional variance of the reduced form shocks
. Y andI’ denote the ARCH and GARCH parameters, respectively, fofdtmactural” shockss. The estimates are

based on monthly data from February 1990 to November 201 & total of 262 observations.

& wy r T
ERV; | 0.0011 (0.0002) 0.189 0.273 (0.0751)
VRP; | 0.0003 (0.0000) 0.758 (0.080) 0.239 (0.077)
Ad | 0.0006 (0.0001) 0 0.524  (0.100)
de1/pe | 0.0016 (0.0002) 0.299 0.163 (0.082)
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Table 3 Residual Serial Correlation Tests

The table reports the Ljung-Box portmanteau tests for ugmtht and twentieth order serial correlation in the raw ~
and standardized/VZ; “structural” shocks from the estimated factor GARCH modstdssed in the main text. The

estimates of the model are based on monthly data from Febt9®0 to November 2011.

Raw residuals

& |& &
Lags | 10 20 10 20 10 20
ERV; | 20.41 25.35| 74.76 75.58| 31.30 32.14
VRP; | 36.03 63.04| 147.77 181.49 65.95 71.42
Ad; | 16.30 40.63| 100.04 108.56 86.42 91.84
di/pr | 958 17.26] 57.55 82.24| 38.80 49.20
Standardized residuals
&/ VI &/ V=il &/ V=
Lags | 10 20 10 20 10 20
ERV; | 19.04 25.26] 13.80 15.53| 256 2.90
VRP, | 482 8.94| 6.62 22.75| 2.30 7.88
Adk 16.27 40.74| 11.20 18.74| 10.59 14.89
d/pr | 11.56 18.25| 31.95 45.44| 25.72 31.33
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Table 4 Predictive Regressions based on the Dividend-Pri¢atio
The table reports the slope dheients in the return and cash flow predictability regressjon
# Zily T = ardp + Brap(h) - dpe + G
2 2N Aditi = aaddp + Badap(h) - dpx + Cien
implied by the parameter estimates for the “structural” faG&RCH model discussed in the main text, with asymptotic stahdeors in paren-
theses. The table also reports the slopdfients implied by a two-variable reduced form homoskedasAR Yor the dividend growth rate and

the dividend-price ratio, as in Cochrane (2008), along whithresults from simple univariate predictive regressidri®e time horizorh runs from
one to ten years in the first two panels, and from one to twelvethsan the bottom three panels. All of the results are basedanthly data from

February 1990 to November 2011.

Years 1 2 3 4 5 6 7 8 9 10
Structural Model Implied
Br.dp(h) 0.037 0.034 0.032 0.030 0.028 0.026 0.025 0.023 0.022 0.021

(0.008) (0.006) (0.004) (0.003) (0.002) (0.002) (0.002) .003) (0.003)  (0.004)

Badgap(h)  -0.0013  -0.0012  -0.0011  -0.0011  -0.0010  -0.0009  -0.00090.0008 ~ -0.0008  -0.0007
(0.0028) (0.0027) (0.0026) (0.0024) (0.0023) (0.0022) 00@1) (0.0020) (0.0019) (0.0018)

Reduced Form Implied
Brdp(h) 0.036 0.033 0.031 0.028 0.026 0.024 0.022 0.021 0.019 0.018
(0.007) (0.006) (0.005) (0.004) (0.004) (0.004) (0.004) .0pa) (0.004) (0.004)

Bagap(h)  -0.0039  -0.0035  -0.0032  -0.0030  -0.0027  -0.0025  -0.00230.0022  -0.0020  -0.0019
(0.0055) (0.0049) (0.0045) (0.0041) (0.0038) (0.0035) 0082) (0.0030) (0.0028) (0.0026)

Months 1 2 3 4 5 6 9 12
Structural Model Implied
Br.dp(h) 0.043 0.041 0.041 0.040 0.039 0.039 0.038 0.037

(0.013) (0.012) (0.012) (0.011) (0.011) (0.010)  (0.009) .008)

Badap(h)  -0.0022  -0.0017  -0.0016  -0.0015  -0.0015  -0.0014  -0.0014 0.0013
(0.0023) (0.0027) (0.0028) (0.0029) (0.0029) (0.0029) 00@9) (0.0028)

Reduced Form Implied
Br.ap(h) 0.040 0.039 0.039 0.039 0.038 0.038 0.037 0.036
(0.009) (0.009) (0.008) (0.008) (0.008) (0.008) (0.007) .009)

Badap(h)  -0.0047  -0.0043  -0.0042  -0.0042  -0.0041  -0.0041  -0.0040 0.0039
(0.0073) (0.0064) (0.0062) (0.0060) (0.0059) (0.0058) 00B6) (0.0055)

Univariate Regression
Br.ap(h) 0.011 0.012 0.012 0.012 0.013 0.013 0.015 0.016
(0.009) (0.008) (0.008) (0.008) (0.007) (0.007) (0.007) .007)

Bagap(h)  -0.0029  -0.0011  -0.0004  -0.0001  -0.0000  0.0001  0.0002 0010
(0.0030) (0.0015) (0.0012) (0.0008) (0.0007) (0.0006) 0Q05) (0.0004)
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Table 5 Predictive Regressions based on the Variance Risk &nium

The table reports the slope dheients in the return and cash flow predictability regressjon
3 S i = arvee + Brvre(h) - VRP + Giaen

I3 Adigi = aadvre +Badvre(h) - VRP: + iten

implied by the parameter estimates for the “structuraltda¢éGARCH model discussed in the main text, with asymp-
totic standard errors in parentheses. The table also efietslope cdéicients from simple univariate predictive
regressions. The time horizdnruns from one to twelve months. All of the results are basedhonthly data from
February 1990 to November 2011.

Months 1 2 3 4 5 6 9 12
Structural Model Implied
Brvre(h) 0.514 0.346 0.244 0.180 0.138 0.109 0.064 0.042
(0.101) (0.057) (0.042) (0.037) (0.034) (0.031) (0.024) .02)

Bravre(h)  -0.0393  -0.0147  -0.0103 -0.0074 -0.0058  -0.0047  -0.00290.0020
(0.0154) (0.0057) (0.0041) (0.0031) (0.0026) (0.0023) 00@8) (0.0016)

Univariate Regression
Brvre(h) 0.545 0.406 0.362 0.364 0.349 0.268 0.134 0.091
(0.219) (0.145) (0.109) (0.132) (0.140) (0.103) (0.077) .06@)

Bravre(h)  -0.121  0.003 0.028 0.058 0.018 0.023  -0.007  -0.001
(0.242) (0.109) (0.048) (0.064) (0.046) (0.031) (0.024) .0(B)
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Table 6 Predictive Regressions based on the Expected Variati

The table reports the slope dheients in the return and cash flow predictability regressjon
i S M = arery + Brerv(h) - ERVL + Gsn

E 3 Adii = @aderv + Baderv() - ERVL + Lo

implied by the parameter estimates for the “structuraltdaéGARCH model discussed in the main text, with asymp-
totic standard errors in parentheses. The table also efietslope cdéicients from simple univariate predictive
regressions. The time horizdnruns from one to twelve months. All of the results are basedhonthly data from
February 1990 to November 2011.

Months 1 2 3 4 5 6 9 12
Structural Model Implied
Brerv(n) 0.035 0.048 0.051 0.050 0.047 0.044 0.034 0.028
(0.043) (0.034) (0.028) (0.024) (0.021) (0.018) (0.013) .020)

Braerv(h)  0.0396  0.0152  0.0107 0.0079  0.0063  0.0052  0.0034  0.0025
(0.0081) (0.0029) (0.0021) (0.0016) (0.0013) (0.0011) 0Q08) (0.0006)

Univariate Regression
Brerv(h) -0.104 -0.048 -0.055 -0.049 -0.027 -0.000 0.019 0.014
(0.127) (0.108) (0.096) (0.091) (0.074) (0.053) (0.031) .0¢a)

Baserv(h)  0.117 0.008  -0.000  0.007 0.011 0.015 0.014 0.012
(0.105) (0.040) (0.024) (0.024) (0.013) (0.008) (0.006) .00&)
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Figure 1 Returns and Dividends

The figure shows the monthly S&P500 returns (upper left patted log dividend growth rate (upper right panel), the
log dividend-price ratio (lower left panel), and the vagarrisk premium (lower right panel). The returns, dividend
growth, and dividend-price ratio are in annualized peragatform. The variance risk premium is in monthly per-
centage square form. The sample period extends from Fght980 to November 2011. The shaded areas indicate
NBER dated recessions.
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Figure 2 Model Implied Structural Shocks

The figure plots the estimated “structural” shoakérom the factor GARCH model discussed in the main text. The
sample period extends from February 1990 to November 2044 shaded areas indicate NBER dated recessions.
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Figure 3 Unconditional Distributions of Model Implied Stru ctural Shocks

The diagonal elements show kernel density estimates ofrthenditional distributions of the “structural” shocks
from the estimated factor GARCH model discussed in the maih (dashed lines) along with the standard normal
distribution (solid lines). Thefé-diagonal show scatter plots show the pairwise combinatidrall of the “structural”
shocks. The estimates are based on monthly data from Fgti86 to November 2011.
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Figure 4 Predictive Return Regressions based on the DivideRPrice Ratio

The figure shows the VAR-based slope fmgents for 1-10 years long-horizon return predictabiliégressions (dots),
along with the corresponding 95% confidence intervals (stiadeas). The upper panel shows the results implied by
the estimates for the four dimensional “structural” fadB%kRCH model discussed in the main text. The bottom panel
shows the results based on a two-variable reduced form VAR kdmoscedastic errors, as in Cochrane (2008). All
of the estimates are based on monthly data from February tto08vember 2011.
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Figure 5 Predictive Cash Flow Regressions based on the Divedd-Price Ratio

The figure shows the VAR-based slope ffméents for 1-10 years long-horizon cash flow predictabitiégressions
(dots), along with the corresponding 95% confidence inter(ghaded areas). The upper panel shows the results
implied by the estimates for the four dimensional “struatufactor GARCH model discussed in the main text. The
bottom panel shows the results based on a two-variable egldioecm VAR with homoscedastic errors, as in Cochrane
(2008). All of the estimates are based on monthly data frobrigey 1990 to November 2011.
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Figure 6 Predictive Regressions based on the Variance Riské&mium

The figure shows the “structural” factor GARCH model impli&dpe cofficients (dots) for 1-12 months return pre-
dictability regressions (upper panel) and cash flow preditity regressions (lower panel) using the variance risk
premium as a predictor variable, along with 95% confidenderuals (shaded areas). The figure also shows the
estimated slope cdiécients from simple univariate predictability regressiarsng the variance risk premium as a
predictor variable (stars), along with their 95% confideintervals (dashed lines). All of the estimates are based on
monthly data from February 1990 to November 2011.
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Figure 7 Predictive Regressions based on the Expected Variah

11

12

The figure shows the “structural” factor GARCH model impligdpe cofficients (dots) for 1-12 months return pre-
dictability regressions (upper panel) and cash flow praditity regressions (lower panel) using the expected varia
tion as a predictor variable, along with 95% confidence irgksr (shaded areas). The figure also shows the estimated
slope cofficients from simple univariate predictability regressiosing the expected variation as a predictor variable
(stars), along with their 95% confidence intervals (dasleediines). All of the estimates are based on monthly data

from February 1990 to November 2011.
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A Model Solution

Our basic solution method for the model is adopted from Blearsa Yaron (2004), Bansal, Kiku,
and Yaron (2007b), and Drechsler and Yaron (2011). To beginfollow Campbell and Shiller
(1988b) and solve for the return on consumption by log-lire#ag r.;., around the unconditional
mean of the wealth-consumption ratiQ

letel ¥ Ko + K1Vie1 — Vi + ACu 1, (A.1)

wherex, =7t andko=l0g[1 + expE(»))] - k1E(v). We then conjecture a solution feyas a
linear function of the state vectdf,

Vi = AO + A,Yt, (A2)

whereA, is a scalar, ané=(0, A, A, Ay, 0) refer to the pricing cdécients. Next, by substituting
vt andw,; into equation (A.1), both..,; and the stochastic discount factoy,; in equation (7)
may be expressed as linear functions of the state vector,

M1 =pm — (Y€ + (1 = 0)aA)Yea — (0 — DAY, (A.3)
Fetel =Hre + (dl + KlA,)Yt+l - A'Y,. (A-4)

Going one step further, it follows that the innovations te fhricing kernel and the return on
the wealth claim may be expressed as,

M1 — E(My1) = —A'HGzi,4, (A.5)
Mete1 — Et(rc,t+1) = A:;HGtZHl, (AG)

whereA denotes the price of risk for the factor shocks,
A =ye; + k(1 - 0)A,

fore; = [1,0,0,0,0], andA. = e; + k;A. The magnitude and sign of are determined by the
preference parametérand the pricing co@cient vectorA. If investors prefer early resolution of
uncertainty, i.e.y > ¢~1, A reveals the sensitivity of the market prices for th&atient shocks
to higher order consumption dynamics. Whesap~! (CRRA case)A collapses toye;, and only
transient shocks to consumption growth lexgl, are priced.

Since the no-arbitrage condition must hold regardlessefdilization of the state vecty, it
is possible to solve foA by imposing the Euler equation,

1
0 =pm+pr, +[(-A + A)'F — 0ATY; + E(_A + A)HGGH' (—A + Ao). (A.7)
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This in turn implies that

6A) + (AF )i ——[1. 3 ) A2+ 1 D (Aehy), (A-8)

j=15 =234
0 =fm + Hres (Ag)

wheref\C:—AC + A=(y — 1)ey — kq10A, i refers to tha™ element of vector, and_1, is an indicator
function. The solutions are,

___r-1

AX - 9(1 . Klpx) ’ (A.lO)
_ (y-1p

A, = xp)’ (A.11)

while A, solves the equatiopaq6?AZ + (bq +(1- Klpq)) (—6A) + 3¢ = 0, where

aq =Ky (P5Shx + S0 + #3) > O,
by =K (@3(—Ax — Av0S,2)Sqx — AsbSy.r)
Cq =K% (£2(—AW0 — AL05,,)* + AZ?) > 0.

Sinceay > 0 andcy > 0, the two roots are either negative or positive. We choosddtyer root
for —0A; if by + (1 — k1pg) > 0, or the smaller root iby + (1 — k104) < 0. In both casedy, reduces
to zero whers,y, S andyq are zero.

Even though no closed-form expressions foare available when we considey and«; as
endogenous, the system of equations are still solvable.hAwrs in equation (A.8)A depends
onki, u, F, H, as well as the preference parameters. Considering the towisiofx; andxg, «;
andA are the only unknowns in the constant term in the Euler eqoasio thak; may be solved
endogenously together with. Finally, ko and A can be expressed as functionsfoéndk;. For
detailed numerical solutions, see Drechsler and YaronipBppendix A.1 and A.2.

Applying a similar conjecture-evaluation type methodsipbssible to solve for the aggregate
market returmry,1. Denote the price-dividend ratio by, and consider the conjecture solution
Wi=Aqpo + A,Y;. Log-linearizer;,, around the unconditional mean of the price-dividend rdim t
yields,

Mite1 = Kdo + KdaWeer — We + Ak . (A.12)

Substituting outyv; andw, ; in the above equation, the return on the market may be renrés,
Mite1 =Hrg + (dj + Kd,lA(,j)Yt+1 - AEth, (A13)
whereAq=6s + k1Aq andA¢=[0, Ay x, Ad» Adq. Ada]’ IS @ vector of pricing coicients.
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Using the same solution method as the one previously usey fofollows by the no-arbitrage
condition,

0=pum+pry +[(-A + Ag)'F — (6 — )A" — A[]'Y: + 0.5(-A + Ag) HGG{H (A + Ag), (A.14)
which implies that

(0= DA + Aagy + (AgF)iy =05[Lis > (Agh)? + 1iea >~ (Aghy)?], (A.15)

=15 j=2,34
O =Hm + /’er’ (A16)

whereAg=—Ag + A=ye; — & + k1(1 — 6)A — kg1Aq.
The solution forAy may therefore be expressed as,

Aoa =7 LA 9 if pg<0 (A.17)
— K1Pd
_ 1
(L= O)A - Agy = - L P0ddtahad) o1 )y (A.18)
’ 1 — k41Px ’
2 + 2 1+ 2
(1A, - A, = — 27 el ¥ ahad) (A.19)
, 2 1- Kd,100
180q((1- 0)A; - Ag ) + 2byq ((1 - 0)Aq — Adg) + Cagq
1- -z A2
(L= A - Agg=— 5 — <0 (A20)
where
ad,q =g = Ky 1(‘:0x5§ %0‘ + ()0c21) >0

-1
Ba g :Kg,l (90>2< ((1 — A~ Agx + (1 - 0)As — Agy) Srx + msd,x) Sq,x)

-1
+ Ky (((1 G)AO‘ Ad o Sy 0') Sq o —Sd,qgoé)

1 Kd,10d 1—Kd,1pd

-1 2
Caq =KEz (wi ((1 = A Adx+ (L= OA = Aag) Src+ msﬁ’“) )

2 2
e O e I Frre A
Note, (1-6)Aq — Aqq Solves the equatiobagx® + (by + (1 - kq10q)) X+ 3Cq = 0. Sinceayq > 0 and
Caq > O, the two roots are either negative or positive. We chooséattyer root for (1 6)Aq — Aqq
if byg+ 1 —kq10q > 0, and smaller root ibyq + 1 — kg 104 < 0. In both cases; andAy 4 reduce to
zero whensyx, S, andeg are all zero. AlsoAqx andAq,, may be explicitly expressed as,

_(@=7)/0 -1+ $ax/(L ~ kdapa) _ —t + pax/ (1 — kg104)

Agx = (A.21)
1- Kd 10x 1- Kd,1Px
— 172 + 20y + 6(03/(1 - 2_1
A :(7 ) Y + 6(¢5/ (1 — Kk4,104) ). (A22)
’ 29(1 - Kd,lp(r)
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B Variance Risk Premium

In order to determine the factor structure for the variansk premium, we first need to solve for
the second order moment of the retuyp,. It follows from above that;,1 — Ei(rit.1)=A HGZ.1,
so that the conditional variance of the returnfisree ino? andg,

Vary(rign) = Xje1s Agh; h]/\do't2 + Yj—234 Aghjhi AqCy
= (1+ka1Add)@507 + X j-234 Aghihi Adt. (B.23)

The first term is associated with the volatility of cash flowwsks, and the second term represents
the consumption uncertainty. Accordingly, the equity fiskmium may be expressed as,

1
Ee(ree) — Mee + Evart(rt,Hl) =  —Covi(My1, Mege1)
= Zj:2,3,4 Aéhjh][\qt (824)

The expectations of ar(r::.1) under the physical and risk-neutral probability measares

Ei(Vary1(rawee)) = Z AghihiAqg(us + Pe0d) + Z AghihiAd(uq + pqh), (B.25)
j=15 j=2,34
EtQ(Vart+1(rd,t+2)) = Z AghihiAg(us + Pao'tz + Sqa0h) + Z AghihiAd(ug + pok + Sq20h)-
=15 j=2.3.4
(B.26)

Under the risk-neutral measure, if investors prefer eagotution of uncertainty, the conditional
means of the,,; shocks shift away from zero,

1% = Cowi(esHGiz.1, —A’HGz:11)

= —(@xSexh, + N Aq, (B.27)
Su20k = Cowvi(esHGiz,1, —A'HGZ11)
= —(pxSgxh, + Sy + g A, (B.28)

where,

Sg1 =~ Kd,l(l - 9) (Axﬁoiscr,x + Ao'(‘Piszzr,x + 1) + Aq(gaisaxsq,x + Sq""))
Ax90)2<3cr,x + A(r(‘p)Z(Sc%-x +1) )
2 ’ Al
Y5SoxSox T Sy
Sg2 = — Kd,l(l — 9) (Axcpisq,x + AU(QD)Z(Sa,xSq,x + Sq,O') + Aq(90>2<%x + %,0' + SOCZ] )

b,
= —kg1(1 - 0)ilay (ﬁ + Aq) .

= — ka1(1 — O)(#5SrxSux + Sy0) (
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By definition, 5,1 and s, represent the market prices of shocks-foandq, respectively. Thus,
the variance risk premium is naturally defined by,

E2(Varyi(raw2) — E(Varui(raee))
(Zj:l,S Aahj h/JAd Sq’]_ + Zj:2,3,4 A:jhj h]Ad Sq,Z)qt‘ (829)

VRP;

In the main text, we will refer to the expected return vadatand the variance risk premium

as,
Qu Qs
ERVt :j o +p0'0-t2) + _12(/1q +pqqt)’
Po Pq
VRP; =Q20
for short, where
Q1= Zj:l,S Aahj h'j/\dp(r >0, (B.30)
Ql’z = Zj:2,3,4 Azjhjh]Adpq > O, (831)
Qo2 = %Sq,l + %fsq,z- (B.32)

In order to determine the signs 8§, A4, andAq, it is informative to write out the formula in
terms of the estimatel andp matrices,

X ~ Ad,(r Q > Ad’
—¢/§de :p3,4a Q_Ll = B4,l, Q_z’z = _Bl,25 Q_Z’(: = B4»2 - BLZBLL]_- (833)

Sincepsz4 < 0, ¢gx andAqx must have the same signs. Thus, by definit@an > 0 andQ;, > 0,
which together with the estimates B, = —0.60 < 0 andB;, = —0.02 < 0, imply thatAy,, < O
ansz’z > 0. Consequenﬂﬁd,q = Q2’2(B472 — Bl’zB4,1) = —1.45Q272 < 0.

C Alternative Setups

C.1 Separate Volatility Processes

We will consider the following alternative setup @& andH, with F unchanged,

oo 0 0 0 O 1 0 0 0 o0
0 vG 0 0 O 01 o0 0 o0

G=|0 0 oo 0O O H=|0 s,x & 0 0 (C.34)
0 0 0 g O 0 5 O ¢q 0O
0 0 0 0 o 0 Six @rSuc @qSuq @
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This setup is related to Bansal and Shaliastovich (2012grevthe volatilities ofx, and o are
modeled as two separate processes.

For simplicity, we use the same general notation as in thers@iup forA, A, A. and Ag.
However, the solutions for the pricing déieients are obviously élierent from the main setup,

except forAgg= 1_5;’% ,

oA + (ALF)y = 3[1i-s Y135 (ALh)? + Lica X jooa(Ath))2, (C.35)
(6 - DA + Aggiy + (AGF)i = 3[Lics X joras (A4N)? + Lica T jooa(A)2. (C.36)

Sincery,1 — Ei(riw1)=A HGz.1, the conditional variance of the return is agaffiree,
Var(ries) = Xje135 Agh h}AdU'tz + 2j=24 Aghjh Ady (C.37)

The expectations dfar(r:(.1) under the physical and risk-neutral probability measuney fur-
ther be expressed as,

E(Varui(rawe) = Z AghihiAd(s + poog) + Z AghihiAa(ug + poth) (C.38)
j=135 j=24
EtQ(Vart+1(rd,t+2)) = Z AghihiAg(uy +P00't2 + S0 + Sa,lo'tz) + Z AghihiAg(ug + pqG + Sq20k)

=135 =24

(C.39)

If investors prefer early resolution of uncertainty, thenddional means of the,; shocks shift
away from zero under the risk-neutral measure,

Sr107 + Sk = Covi(€HGzi1, ~A’HG 1)

= —hAT? - (xS A (C.40)
Sg20 = Cov(esHGizii1, ~A'HGz41)
= —(exSuxhl + ogh) A, (C.41)

Defining the variance risk premium as before,

VRP, =E2(Var,1(ras2)) — Ex(Varyi(fai.2))

= > AU AG(S,107 + S1) + DAY Agsgo, (C.42)
=135 j=2.4

we may express the expected return variation and premiutmari-band form as,

Ql,l Ql,2
(:uo' + pzro-tz) + (.Uq +Pth),
Po Pq

VRP, =Q2107 + Q220

ERV; =
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where

Qui= ) AihihjAgo, >0 Quz= ) AghihAgpq >0
=135 j=2.4
Qy Qy QL

Q1 =25, Qup = 51 + 25y
Pq Po Pq

C.2 Long-Run Stochastic Volatility

We will consider the following alternative setup Gk, H, with F unchanged,

ocpc. 0 0 O O 1 0 0 0 0
O oo O O O 0 ¢ 0 0 0
Gi=|0 0 oy O O H=10 oxSx @0 0 0 (C.43)
0 0 0 o O 0 oxSyx 0 ®q 0
0O 0 0 O o 0 oxSux $oSo $qSug @d

This setup is motivated by the model analyzed by Branger aditevt (2012), among others,
allowing for a time-varying mean of the consumption variaog.

Again, for simplicity we will use the same general notatiegnimthe main setup foh, A, A
remains the same, but the other the pricingfioents now

andAq. The solution forAg 4= 24—
take the form,

0A + (ALF) = %[ng Do (Ath)?+ 1 ) (Ath)?],  (C.44)

j=12.35 =4
NG 1 N Y
@ = DAi + Aair + (AgFiy = Sl D, (Rgh)?+ 1 ) (Kh)]. (C.45)
j=1235 =4

As before,ry 1 — Ei(r.1)=A3HGz.1, so that the conditional variance of the return may be ex-

pressed as,
Var((ris) = Xj-1235 Aahjh]AdO'tz + Dj=a Agh; h}Ade (C.46)
The expectation o¥ar(r::.1) under the physical and risk-neutral probability measares

El(Varea(rae2)) = Z AghiNAg(us + poof + a) + Z AghihAd(ug + pqh)
j=1235 j=4

EtQ(Vart+1(rd,t+2)) = Z AghihiAg(uy + Pgo'tz + G+ So—,lo-tz) + Z AghihiAg(ug + pot + 50,20}2 + Sg.20k)-
j=1235 j=4
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The shifts in the conditional means of the, shocks under the risk-neutral measure become,

Sr107 = Cow(e,HGz11, ~A’HGz11)
= —hyAc? - (exSrxhy)Ac?, (C.47)

Sr207 + Sg20k = Covi(&sHGzi11, ~A’HG 1)
= —(xSax)ATT — (e g (C.48)

As before, the expected return variation and variance nisknjgum, may be conveniently expressed

as,
Q11 Q2
ERV, = (us + pUO'tZ) + —=(uq + Pqt);
p(r Pq
VRP; =Q, 10 tz + Q220,
where
Qui= Y. AihjhiAg, >0 Quz = ) AdhjhAgpg > 0
j=1235 j=4
Qy, Qy Q12
Q21 Sh ot Sr1 + =2 Sr2 Q22 = —=Sy2.
Po Pq Pq

D Detailed Derivations for Section 3.2

Substitutingf, by Q=1(X; — ux) in the basic relatiorf,,; = u + pf; + Se.1, it follows that

Q Xerr = p+ Q ux — pQ ux + pQ X + Serar. (D.49)

Normalizing each element @X.., by the corresponding diagonal element@f!, the model
may be rewritten as,

BXis1 = i +pBX + égt+1,
where

B

1 -1
(@ ©tr) 0@
To match with equation (D.49),
f= (m ® |1><4) ® (1 — pQ ux),
and
~ 1 -1 -1
7= |(aades @) o] B
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Defining &, as

~  _ 1
€41 = diago O €41,

it follows again from equation (D.49) that

S= ( L ®I1X4)®S®+.
a|agQ 1) W ® Inva

Based on the formula foR in the main text, the invers@! andfﬂa&ﬁ may be expressed
as,

1 —Qu

Qu1 Q1.1(1?§.2 0 0 Ql,l
ot=| © o o 0 1| Qo

0 0 1 0 diag@?) 1

At —Q1AgtQ2Ade —Add 1 —Agx

Q11Adx Q11Q22Ad,x Adx  Adx
Combining the expressions fprandsS, it therefore follows that

1 - 0 0 o 0 0 O
B 0 1 0O O 5= 0 pg O 0
0 0 1 0 0 0 pg =
Adr  QuiAdg—Ads Q12
Qu1 Q10,|1Q2,2 Ad’d 1 0 0 O Px
1 0 0 _Q/jix Srx Q.1
Q22 Q22
- 0100 1 0 ¥ ~
S= Qi'l N 1 "i"“ » G+1 = Q2 O €41.
QT,lsd’f’ szsd,q 1 TAg, XX 1
0 0 0 1 —Ad.x

D.1 Separate Volatility Dynamics

In the alternative setup with separate volatility dynarmics,; and S may be expressed as,

Po 0 0 0 PorOtlyt+1 1 0 0 Sox
0 0 1 O
o= 0 pg O €l = Pq VOZg+1 S = Sax (D.50)
0 0 pg ¢ax PdOtZdt+1 St S 1 Sux
0 0 0 py V0tZxt+1 0 0O 0 1

Qui Q2 0 0
Q1 Q22 0 0
0 0 1 0

—Ade —Adg —Add —Adx

Xt = ux + Qf; Q=
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Consequently,,

Q22 —Q12 0 0 Q11Q22-Q12Q21
Q11Q22-Q1,2Q21 Q11Q22-Q1,2Q21 Q22
Q21 Qu1 0 0 1 Q11Q22-Q12Q21
Q—l — Q11Q22-Q12Q21 Q11Q22-Q12Q21 - _ Q11
0 0 1 0 diag@Q™) 1
Q21Ad,q—Q22Ad, —Q11Adq+Q12Ad “Add 1 Ay
(Q11Q22-Q12Q21)Adx  (Qu1Q22-Q12Q21)Adx  Adx Adx X
Combining these expressions, it follows that
1 2 0 0 0 0 O
o Q22 Pa
-Q21
o % 1 0 0o 10 s 0 ¢o
0 0 1 O 0 0 pg 2
—Ad x
-Q21Adq+tQ22Ade +Q11A4q—Q12Ad»
Q11Q22-Q12Q21 Q1,1Q22-Q1,2Q21 Ad’d 1 0 0 0 Px
1 0 0 le(_;(zgzz—z(éji(;u Syx zl,lzz,é;zl.zzz,l
. 0 1 0 w1QR2-Quo 2,1qu N 11Q22-0Q12Q21
S= Q22 Q11 1 _Ql’iAd’X , €+l = Qil © €41-
Q1,1Q22-Q12Q21 Sie Q1,1Q22-Q12Q21 Siq ~Ad x Sd.x
0 0 0 1 —Adx

D.2 Stochastic Volatility in the Long-Run

In the alternative setup with stochastic volatility in thadj-run drift,p, &,1 and S may be expressed
as,

Po 1 0 0 PorOtlyt+1 1 0

0 Six
0 0 O 0 1 0
p=l, o = | VR g > (s
0 O pa dax A0 1Zd 141 S Sig 1 Sux
0 0 0 px PxOtZyxt+1 0 0O 0 1

Q1 Q2 0 0
Q1 Q22 0 0
0 0 1 0

_Ad,(r _Ad,q _Ad,d _Ad,x

Xt = ux + Qf; Q=

Consequently,

Q22 —Q12 0 0 Q11Q22-Q12Q21

Q11Q22-Q1,2Q21 Q11Q22-Q12Q21 Q22
-Q21 Qu1 0 0 1 Q11Q22-Q12Q21

Q—l — Q11Q22-Q12Q21 Q11Q22-Q12Q21 — = Q11

0 0 1 0 diag@Q™) 1

Q21Adq—Q22Ad —Q11A4q+Q12Ad “Add 1 Ay

(Q11Q22-Q12Q21)Adx  (Qu1Q22-Q12Q21)Adx  Adx Adx X
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Combining these expressions, it follows that

Q11

-Qu2 Qi1
1 Q22 0 0 P Q22 0 0
5 = 1 0 0 |0 pg 0 O
0 0 1 0 0 0 pg 5=
-Q21Adq+Q22Ad e +Q11Adq~Q12Ad '
Q11Q22-Q12Q21 Q11Q22-Q1,2Q21 Ad’d 1 0 0 0 Px
Q11Q22-Q12Q21 Q11Q22-Q12Q21
X ° e 0110250120
11Q22-Q12Q21 11Q22-Q12Q21
é — 0 1 0 —Q1.1Ad So.x P Q11 o
Q2 Q1 1 1 €t+1 1 Et+1.
Q11Q22-Q1.2Q21 o Q11Q22-Q1,2Q21 Sdq —Ad x Sd.x
0 0 0 1 —Adx
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Table D.1 Structural Factor GARCH Estimates—Separate Volaility Dynamics

The table reports the “structural” factor GARCH estimatastiie alternative setup with separate volatility dynamicsatied in Sections C.1 and

D.1, with the three restrictiong\g g = 1_;;% T44 + Y44 = pg, andl'z 3 = 0. The resultingl-test with 7 degrees-of-freedom for the GMM-based

estimation equals 26.31, corresponding to a p-value 0.0004.

B ERVt, 1 VRPy, 1 Adki1 Ot 1/Pet
ERVis1 1 -0.490 (0.117) 0 0
VRP;1 -0.022  (0.030) 1 0 0
Adi+1 0 0 1 0
div1/Pts1 -0.110 (0.141) -1.595 (0.063) -0.158 1
P constant ERV; VRP; Ad; di/pt
ERVt.1 0.009 (0.003) 0.827 (0.089) 0 0 0
VRP;1 0.008 (0.002) 0 0.312 (0.071) 0 0
A1 -0.002  (0.016) 0 0 -0.187 -0.001  (0.004)
Oiv1/ Pt -0.080 (0.029) 0 0 0 0.980 (0.008)
S Nzr[2+ N € Endiy Extrl
ERVi,1 1 0 0 0.316 (0.038)
VRPy;1 0 1 0 -0.245 (0.017)
Adi1 -0.387 (0.080) -0.134 (0.160) 1 0.095 (0.034)
dt+l/ Pt+1 0 0 0 1
€ wy r T
ERVis1 0.001  (0.000) 0.153 (0.360) 0.388  (0.138)
VRP,1 0.000  (0.000) 0537 (0.335) 0.116 (0.079)
Adg1 0.001 (0.000) 0 0.449  (0.115)
os1/Pw1 | 0.002  (0.000) 0.167 0.144  (0.106)

Table D.2 Structural Model Implications—Separate Volatility Dynamics

The table reports the contemporaneous mabgxthe reduced form matrisb, and the return equation, implied by the alternative “stedt factor
GARCH model defined in Sections C.1 and D.1).

ol =B1S ERVi,1 VRPy1 Aty Ohy1/Pre1
ERVi4+1 1.011 (0.015) 0.496 (0.118) 0 0.198 (0.049)
VRP,1 0.022  (0.030) 1 0 0241  (0.017)
Adii1 -0.387  (0.080) -0.134 (0.160) 1 0.095 (0.034)
Ori1/Pre1 0.085  (0.134) 1.646 (0.079) 0.158 0.652 (0.047)
®=B15B | constant ERV; VRP; Ady ai/p
ERVi4+1 0.013 (0.003) 0.833 (0.091) -0.255 (0.075) 0 0
VRP,1 0.008  (0.001) 0.012 (0.016) 0.306 (0.070) 0.000 (0.000) O0®.0 (0.000)
Adii1 -0.002  (0.016)  0.000 (0.000) 0.002 (0.006) -0.187 (0.035) 0.001 (0.004)
dev1/Pre1 -0.066  (0.030) 0.002 (0.045) -1.103 (0.130) -0.185 (0.035)0.980 (0.008)
GMM Implied Return Equation
Mtt+1 constant ERV; VRP; Adg di/pt
0.062 (0.029) -0.002 (0.044) 1.074  (0.127) -0.007 (0.002) .046 (0.009)
g(r!{l g%u EAdHl Ext+l
stru-shocks -0.470 (0.213) -1.734 (0.178) 0.846 -0.539  (0.036)
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Table D.3 Structural Factor GARCH Estimates—Long-Run Stoclastic Volatility

The table reports the “structural” factor GARCH estimatediie alternative setup with long-run stochastic volatitiescribed in Sections C.2 and
D.2, with the two restrictionsAgg = 24

) 1-d10d
37.02, corresponding to a p-value 0.0000.

andI'33 = 0. The resulting)-test with 6 degrees-of-freedom for the GMM-based estimagiguals

B ERViy1 VRPt,1 AdHl dt+l/pt+l
ERVis1 1 0.000 (0.189) 0 0
VRPy;1 0.120 (0.039) 1 0 0
Adgy1 0 0 1 0
Oi+1/Prs1 -0.016 (0.086) -2.007 (0.156) -0.249 1
o constant ERV; VRP; Adg ot/ pt
ERViy1 0.003 (0.002) 1.001 (0.077) -0.070 (0.255) 0 0
VRPy;1 0.006 (0.001) 0 0.609 (0.079) 0 0
Adi1 -0.000 (0.014) 0 0 -0.329 (0.040) -0.001 (0.004)
Oi1/Prs1 -0.075 (0.028) 0 0 0 0.982 (0.007)
S Nulz,r . [z €,y Extil
ERVi,1 1 0 0 0.332 (0.036)
VRPi+1 0 1 0 -0.186 (0.016)
Adi+1 -0.524 (0.061) -0.069 (0.147) 1 0.061 (0.024)
O+1/Pre1 0 0 0 1
€ wu r T
ERVi41 0.001 (0.000) 0.001 (0.051) 0.776 (0.062)
VRP4+1 0.000 (0.000) 0.000 (0.139) 0.322 (0.147)
Adi+1 0.001 (0.000) 0 0.454 (0.095)
i1/ Pte1 0.002 (0.000) 0.766 (0.061) 0.160 (0.041)

Table D.4 Structural Model Implications—Long-Run Stochagic Volatility

The table reports the contemporaneous mabgxthe reduced form matrisb, and the return equation, implied by the alternative “stiedt factor
GARCH model in Sections C.2 and D.2.

-1 _ p-18&
0,1 =815

ERVi11 VRPy; 1 Adg;1 Ot 1/Pea
ERVi:1 1.000 (0.023) -0.000 (0.189) 0 0.332 (0.032)
VRPt41 -0.120  (0.037) 1 0 -0.226 (0.025)
Adts1 -0.524  (0.061) -0.069 (0.147) 1 0.061 (0.024)
Otr1/Pre1 -0.356  (0.052) 1.990 (0.158) 0.249 (0.023) 0.568 (0.051)
®=B15B | constant ERV; VRP; Ady o/ px
ERVi:1 0.003 (0.002) 0.993 (0.089) -0.070 (0.194) 0 0
VRPt1 0.005 (0.001) -0.046 (0.020) 0.618 (0.069) 0 0
Adis1 -0.000 (0.014) 0.000 (0.000) 0.003 (0.007) -0.328 (0.040) 0.001 (0.004)
Otr1/Prs1 -0.065 (0.029) -0.093 (0.041) -0.732 (0.174) -0.326 (0)041 0.982 (0.007)
GMM Implied Return Equation
ltt+1 constant ERV; VRP; Adg di/pt
0.063 (0.027) 0.090 (0.040) 0.714 (0.169) -0.011 (0.002) 049. (0.008)
E(r‘{l €t €Adyy Extrl
stru-shocks -0.178  (0.124) -2.004 (0.181) 0.758 (0.050) -0.491 (0.035)
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