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Abstract

We survey the theory and empirical evidence on GARCH option valuation models. Our

treatment includes the range of functional forms available for the volatility dynamic, mul-

tifactor models, nonnormal shock distributions as well as style of pricing kernels typically

used. Various strategies for empirical implementation are laid out and we also discuss the

links between GARCH and stochastic volatility models. In the appendix we provide Matlab

computer code for option pricing via Monte Carlo simulation for nonaffi ne models as well

as Fourier inversion for affi ne models.
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1 Introduction

This survey presents theory and empirical evidence on GARCH option valuation. We focus on

GARCH models for two reasons. First, there is overwhelming empirical evidence that modeling

time-varying volatility and volatility clustering is critically important in modeling equity and

index returns and equity and index options.1 We therefore do not discuss in detail the rich

literature that models options using homoskedastic models with non-normal innovations, because

we believe that from an empirical perspective these models need to be augmented with time-

varying volatility to achieve empirical success.2 Second, we focus on discrete-time GARCH

models because they are relatively straightforward to implement. In our opinion option valuation

models ought to be tested using large option samples that contain a substantial cross-sectional

dimension, as well as an extensive time dimension. Moreover, we will argue below that is it

desirable to combine options and return data when estimating model parameters. The resulting

optimization problem is computationally demanding, and therefore it is important to use models

that capture stylized facts in the data but are computationally less demanding. We believe

GARCH constitutes an interesting framework from this perspective.

We emphasize that we do not attempt to provide an overview of the option valuation liter-

ature more in general. Several such overviews are available, see for instance Bates (2003). We

rather focus more narrowly on GARCH option valuation, because these models are not yet very

well understood, and there are many misconceptions regarding the underlying theory and the

empirical performance of these models. While at times we discuss related empirical findings in

the continuous-time stochastic volatility literature, it is important to keep in mind that available

studies do not yet contain a full-fledged comparison of the option pricing performance of these

two classes of models, and therefore any differences have to be interpreted very carefully.

The paper proceeds as follows. Section 2 briefly discusses GARCH models. Section 3 dis-

cusses risk neutralization for processes with normal innovations, and Section 4 for non-normal

innovations. Section 5 discusses several heteroskedastic models with non-normal innovations.

Section 6 discusses extensions of the GARCH model to multiple shocks, and also discusses the

class of Levy-GARCH processes. Section 7 summarizes valuation techniques for European and

American options. Section 8 discusses estimation and filtering. Section 9 provides a brief compar-

ison of GARCH and stochastic volatility models, and Section 10 presents the available empirical

evidence. Section 11 concludes.
1For evidence on returns, see for example Andersen, Bollerslev, Christoffersen, and Diebold (2006), Bollerslev

(1986), French, Schwert, and Stambaugh (1987) and Schwert (1989). For evidence on index options, see for
example Bakshi, Cao, and Chen (1997) and Duan (1996).

2For models with non-normal innovations see for example Camara (2003), Schroder (2004), Madan and Seneta
(1990), and Heston (1993b, 2004).
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2 GARCH Processes

We assume that the underlying stock price process follows the conditional distribution D under

the physical measure P . We write

Rt ≡ ln

(
St
St−1

)
= µt − γt + εt εt|Ft−1 ∼ D(0, ht) (2.1)

= µt − γt +
√
htzt zt|Ft−1 ∼ D(0, 1)

where St is the stock price at time t, and ht is the conditional variance of the log return in period

t. Unless otherwise mentioned, we assume that γt is defined from

exp (γt) ≡ Et−1 [exp (εt)] ,

which ensures that the conditional expected gross rate of return, Et−1 [St/St−1], equals exp(µt).

Et−1 [St/St−1] = Et−1 [exp (µt − γt + εt)] = exp(µt)

⇐⇒ exp(γt) = Et−1 [exp (εt)]

Note that the conditional mean µt and conditional variance ht are Ft−1 measurable.

The interest in GARCH option valuation models is well-motivated. The literature on GARCH

processes originated with the observation of Engle (1982) that many economic and financial time

series are conditionally heteroskedastic, meaning that the assumption of constant variance is

not appropriate, and that the conditional variance seems to be mean reverting. Option values

critically depend on the variance of the underlying asset, and therefore conditional heteroskedas-

ticity and variance mean reversion are of first-order importance for option valuation. Moreover

for most financial assets estimating the properties of the conditional variance process is relatively

straightforward compared to other conditional moments, including the conditional mean.

Engle’s (ARCH) model was extended by Bollerslev (1986) and Taylor (1986), giving rise to

the GARCH process. Consider the GARCH(1,1) model

Rt ≡ ln

(
St
St−1

)
= µt − γt + εt

ht = w + bht−1 + aε2
t−1 (2.2)

A large number of papers have proposed alternatives to the simple GARCH dynamic in (2.2).3

3The literature on GARCH processes is voluminous. For overviews see Bollerslev, Chou, and Kroner (1992),
Bollerslev, Engle, and Nelson (1994), Diebold and Lopez (1995), and Andersen, Bollerslev, Christoffersen, and
Diebold (2006).
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We present the evidence on the empirical performance of different models in Section 10. However,

we now discuss two issues that are critical to understanding the theory of GARCH option pricing.

First, while the GARCHmodel in (2.2) is prevalent in the empirical literature on stock returns,

interest rates and exchange rates, Heston and Nandi (2000) propose a somewhat different class

of GARCH models. The variance dynamic for the Heston-Nandi GARCH(1, 1) model is

ht = w + bht−1 + a(zt−1 − c
√
ht−1)2 (2.3)

This variance dynamic is designed to yield a closed-form solution for the price of a European call

option, and it is referred to as an affi ne dynamic. The nature of this closed form solution and the

implications of the modeling assumption are discussed in more detail in Sections 7 and 10. At

this point note that the motivation underlying (2.3) differs from the motivation underlying (2.2).

The variance dynamic in (2.3) is designed to make option valuation analytically convenient.

Second, note that under the simplest assumption in (2.2) that εt is i.i.d. N(0, ht), the resulting

distribution of Rt is symmetric, while many financial time series are characterized by asymmetric

returns. A simple approach to modeling return asymmetry is the NGARCH model of Engle and

Ng (1993), which is given by4

ht = w + bht−1 + aht−1 (zt−1 − c)2 (2.4)

Note that while the constant term and the autoregressive term involving b are the same in (2.3)

and (2.4), the so-called news impact term involving a is different in the two specifications.

For c > 0, the distribution of returns is negatively skewed. Negative skewness is often

referred to as the leverage effect, owing to a mechanism first emphasized by Black (1976). There

is some discussion as to the underlying causes of negative skewness in returns, but this need not

concern us here, given the nature of the models under consideration. When allowing for c 6= 0

in fitting returns and option data, we have to keep two stylized facts in mind. When estimating

skewness from historical returns, the distribution of index returns seems to be reliably negatively

skewed, but estimates for stock returns sometimes indicate positive skewness, and often they yield

estimates that are statistically not significantly different from zero (see for instance Campbell, Lo,

and Mackinlay (1997)). Second, the risk-neutral distribution of index returns is more negatively

skewed than the physical distribution, and the risk-neutral distribution of stock returns is mostly

negatively skewed. One of the critical aspects of any option valuation model will therefore be

the relationship between the risk-neutral and physical skewness, but one needs to be mindful of

the difference between index options and stock options in this regard. The latter issue has not

4For alternative approaches to modeling return asymmetry, see for example Glosten, Jagannathan, and Runkle
(1993) and Nelson (1991).
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received much attention in the literature, for the simple reason that most existing papers study

index options.

3 Risk Neutralization for Conditionally Normal Stock Re-

turns

For the purpose of option valuation, it is critical to characterize the risk-neutral dynamic of the

underlying return, which enables option valuation using risk-neutral valuation. In this Section

we discuss the risk neutralization of the simple GARCH models (2.4) and (2.3) with normal

innovations, as well as extensions to GARCH models with multiple volatility components. We

discuss the more general case of non-normal innovations in Section 4.

3.1 Risk Neutralization for One-Component Gaussian Models

First consider the case of (2.2) with zt i.i.d. N(0, 1), but for simplicity assume a constant variance

instead of a time varying ht, and also assume a constant mean return. The resulting lognormal

model may seem similar to the classical Black-Scholes (1973) setup, but the critical difference

is that we are in an incomplete markets setup instead of the Black-Scholes complete markets

economy, which is set in continuous time. Rubinstein (1976) and Brennan (1979) specify a

representative agent economy and establish a set of suffi cient conditions on the representative

agent’s preferences to obtain a risk-neutral valuation relationship (RNVR) for the valuation of

European options in this framework.5 The resulting option price equals the Black-Scholes price.

Brennan (1979) interprets his approach as “completing”the market by choice of a utility function

of the representative agent.

Duan (1995) provides the first analysis of a RNVR for a GARCH process. His analysis builds

on Rubinstein (1976) and Brennan (1979) in the sense that he characterizes suffi cient conditions

in a representative agent economy that ensure the existence of a RNVR, which he refers to as

a local risk-neutral valuation relationship (LRNVR). Duan’s result relies on the existence of a

representative agent with constant relative risk aversion or constant absolute risk aversion. Amin

and Ng (1993) obtain a similar result by characterizing the bivariate distribution of stock returns

and the pricing kernel.

We take a somewhat different approach which yields the same results as Duan (1995) in

the case of a conditionally normal innovation, but which can easily be generalized to deal with

non-normal innovations, which we will discuss in detail in Section 4, and which can also eas-

ily be adapted to deal with multiple variance components. This approach does not attempt
5See Camara (2003) for a generalization of Brennan’s approach to transformed normal innovations.

5



to characterize a representative agent economy to obtain an option price. Instead, following

Christoffersen, Elkamhi, Feunou, and Jacobs (2010, henceforth CEFJ), we first specify a class of

Radon-Nikodym (RN) derivatives, and subsequently derive restrictions that ensure the existence

of an equivalent martingale measure (EMM) that makes the discounted stock price process a

martingale. This result will allow us later to obtain the distribution of the stock return under

the EMM.

Note that with zt i.i.d. N(0, 1), we get γt = 1
2
ht since exp(γt) = Et−1 [exp (εt)]. Following

CEFJ, it can be shown that

dQ

dP

∣∣∣∣Ft = exp

(
−

t∑
i=1

(
µi − ri
hi

εi +
1

2

(
µi − ri
hi

)2

hi

))
(3.1)

defines a Radon-Nikodym (RN) derivative. Moreover, it can also be shown that the probability

measure Q defined by the Radon-Nikodym derivative (3.1) is an EMM, that under the EMM Q

defined by (3.1), εt|Ft−1 ∼ N(−(µt − rt), ht), and that under the EMM Q,

ln

(
St
St−1

)
= rt − 1

2
ht + ε∗t (3.2)

with ε∗t |Ft−1 ∼ N(0, ht) and EQ

[
St
St−1

∣∣∣∣Ft−1

]
= exp(rt).

Consider now the NGARCH(1,1) process in (2.2) with normal innovations. Using ε∗t =

εt + µt − rt, the volatility process under Q becomes

ht = w + bht−1 + a
(
ε∗t−1 − µt−1 + rt−1

)2
with ε∗t |Ft−1 ∼ N (0, ht)

This result coincides with Duan (1995). To see this, note that Duan (1995) specifies the physical

GARCH dynamic

Rt ≡ ln

(
St
St−1

)
= r + λ

√
ht −

1

2
ht + εt

ht = w + bht−1 + aε2
t−1 (3.3)

where the price of risk λ is assumed to be constant. To relate this to the notation in (2.1), note

that rt = r and µt = r+ λ
√
ht, or λ = µt−r√

ht
. This corresponds to the Radon-Nikodym derivative

dQ

dP

∣∣∣∣Ft = exp

(
−

t∑
i=1

(
εi√
hi
λ+

1

2
λ2

))
(3.4)
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and risk neutral innovations ε∗t = εt + µt − rt = εt + λ
√
ht. The risk neutral GARCH process is

Rt ≡ ln

(
St
St−1

)
= r − 1

2
ht + ε∗t

ht = w + bht−1 + a
(
ε∗t−1 − λ

√
ht−1

)2

(3.5)

confirming the result in Duan (1995).

Heston and Nandi (2000) start from the following model

Rt ≡ ln

(
St
St−1

)
= r + λht + εt

ht = w + bht−1 + a(zt−1 − c
√
ht−1)2 (3.6)

Using the notational setup in (2.1), Heston and Nandi therefore assume rt = r and µt = r +

λht + 0.5ht. This corresponds to the Radon-Nikodym derivative

dQ

dP

∣∣∣∣Ft = exp

(
−

t∑
i=1

((
λ+

1

2

)
εi +

1

2

(
λ+

1

2

)2

hi

))
(3.7)

and risk-neutral innovations of the form ε∗t = εt + λht + 0.5ht. The risk-neutral GARCH process

is

Rt ≡ ln

(
St
St−1

)
= r − 1

2
ht + ε∗t

ht = w + bht−1 + a(z∗t−1 − (c+ λ+
1

2
)
√
ht−1)2 (3.8)

The Duan (1995) and Heston and Nandi (2000) examples indicate that the risk-neutral volatil-

ity dynamic can be obtained without completely characterizing the underlying economy. This

will be helpful when we consider return processes with non-normal innovations. The use of the

RN derivative in (3.1) and the subsequent characterization of the EMM can be seen as a mini-

malist approach, which exclusively addresses the valuation problem. The characterization of the

economy that gives rise to that particular price is a very interesting question in its own right,

which is ignored. This approach is prevalent in the continuous-time option valuation literature.

Similar results can of course be obtained by specifying the appropriate pricing kernel.

These examples also illustrate the importance of the specification of the conditional mean.

While it may be chosen for analytical convenience, it can actually be specified in a fairly general

way. However, it is important to recognize its importance for asymmetries and skewness. Duan’s

(1995) specification (3.3) starts out with a physical process that is not negatively skewed, whereas
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Heston and Nandi’s (2000) specification (3.6) implies negative skewness for c > 0. The risk-

neutral dynamic (3.5) exhibits negative skewness, since the price of risk λ has to be positive.

The risk neutral asymmetry parameter in (3.8) is larger than the physical asymmetry parameter,

again because λ > 0. These mechanics are consistent with stylized facts, because the risk-neutral

distribution of returns is more negatively skewed than the physical distribution. Therefore, while

we have some flexibility with regard to the specification of the conditional mean, a specification

such as (3.3) or (3.6), where returns are a function of return variance or the standard deviation

of returns, has desirable implications. Note finally that the flexibility in the specification of the

conditional mean obtains because, as discussed above, we are not using a general equilibrium

approach.

3.2 A Two-Component Gaussian Model

The models (2.3) and (2.4) may not exhibit suffi ciently rich volatility dynamics, notably with

respect to their autocorrelation functions and volatility term structures. One way proceed is

to allow for fractionally integrated GARCH models as in Bollerslev and Mikkelsen (1999), but

for the purpose of option valuation this approach may be computationally demanding. An

easier approach is to generalize the GARCH(1,1) models by introducing additional variance

components.

Multi-component models have substantial advantages. The variance is the main determinant

of option prices, and it is likely that one variance component is insuffi cient to explain the variation

in option prices across time, as well as across the maturity and moneyness spectra. In the

continuous-time stochastic volatility literature, Bates (2000) and Christoffersen, Heston, and

Jacobs (2009) study two-component models. It is straightforward to risk-neutralize GARCH

processes with multiple components. Consider the following extension of the NGARCH model

with normal innovations.

Rt ≡ ln

(
St
St−1

)
= µt −

1

2
ht + εt

h1,t = w1 + b1h1,t−1 + a1h1,t−1 (z1,t−1 − c1)2

h2,t = w2 + b2h2,t−1 + a2h2,t−1 (z2,t−1 − c2)2 (3.9)

where ht = h1,t +h2,t. It is easy to see that using the the RN derivative (3.1), risk neutralization

8



is very straightforward, yielding

Rt ≡ ln

(
St
St−1

)
= rt −

1

2
ht + εt

h1,t = w1 + b1h1,t−1 + a1

(
ε∗t−1 − µt−1 + rt−1 −

√
h1,t−1c1

)2

h2,t = w2 + b2h2,t−1 + a2

(
ε∗t−1 − µt−1 + rt−1 −

√
h2,t−1c2

)2

(3.10)

The researcher has considerable freedom in formulating the conditional mean µt, either as a

function of the total variance ht, or as a function of both variance components separately, or

in a different way. Unless long samples of returns are available, it is often diffi cult to reliably

choose between different specifications of the conditional mean from returns only. However, the

conditional mean specification is of paramount importance when estimating the risk-neutralized

version of the model from options, as can be seen from (3.10), because the specification of the

conditional mean determines the risk-neutral return skewness and other moments.

It is of course equally straightforward to specify and estimate a two-component model using

the Heston-Nandi GARCH dynamic (3.9).

3.3 Long-Run and Short Run Volatility Components

Multi-component GARCH models such as (3.10) have to the best of our knowledge not yet been

implemented. However, Christoffersen, Jacobs, Ornthanalai, and Wang (2008), and Christof-

fersen, Dorion, Jacobs, and Wang (2010) study slightly more complex two-component models.

Here we consider the affi ne version of this model studied in Christoffersen, Jacobs, Ornthanalai,

and Wang (2008). Note that the unconditional variance for the Heston-Nandi dynamic in (2.3)

is given by

E [ht] ≡ σ2 =
w + a

1− b− ac2

The variance process can then be rewritten by substituting out w,

ht = σ2 + b
(
ht−1 − σ2

)
+ a

(
(zt−1 − c

√
ht−1)2 − (1 + c2σ2)

)
. (3.11)

Christoffersen, Jacobs, Ornthanalai, and Wang (2008) generalize (2.3) by replacing σ2 with the

time-varying component qt, which gives

ht = qt + β (ht−1 − qt−1) + α
(

(zt−1 − γ1

√
ht−1)2 − (1 + γ2

1qt−1)
)
. (3.12)
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This is an affi ne version of the component model of Engle and Lee (1999), where qt is referred to

as the long-run component, and ht− qt as the short-run component, which has zero mean. Engle
and Lee (1999) find that this model provides a very good fit to return data. This model also

has an extensive history in the natural sciences, where natural phenomena are often modeled as

a stochastic process with a time-varying long-run mean. The risk-neutralization of this model is

more complex than (3.10), and the reader is referred to Christoffersen, Jacobs, Ornthanalai, and

Wang (2008) for details.

One final remark is that the two-component models in this Section and Section 3.2 are

relatively simple because they are formulated using nonlinear functions of a single innovation

zt−1. This simple structure is one of the advantages of the GARCH framework, as it greatly

facilitates estimation which can be done using conventional maximum likelihood techniques.

However, the question arises whether generalizations of these models with multiple innovations

could perform even better. We will address this question below, but first we consider GARCH

models with non-normal innovations.

4 Non-Normal Innovations: A General Framework for

Risk Neutralization

We now provide results on the risk-neutralization of returns with non-normal innovations. We

discuss in detail the empirical evidence on non-normal innovations in Section 10. At this point,

it is important to keep the following in mind. First, it is well-known that stock returns are

not normally distributed, and there is a long tradition in finance of modeling fat-tailed returns,

going back to Mandelbrot (1963). Second, there is a rich tradition in the GARCH literature of

modeling non-normal innovations in returns. See for instance Bollerslev (1987) and Nelson (1991)

for early examples. Third, even if the one-period conditional returns are assumed to be normally

distributed in the GARCH model (2.2), then neither the multiperiod conditional returns, nor the

unconditional returns will be normally distributed because of the mixing of dependent normal

distributions with different variances.

While the implications of assuming non-normal innovations in GARCH option pricing mod-

els may therefore not be immediately evident for long-maturity options, these assumptions are

relevant because there is considerable evidence of model misspecification for daily return models

that assume normal innovations. Here we provide the general framework for risk-neutralization,

and we discuss several examples below in Section 5.

CEFJ (2010) provide a more general valuation result for the processes in (2.2) and its ex-

tensions when εt|Ft−1 ∼ D(0, ht). For a given predetermined sequence {νt}, define the following
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candidate Radon-Nikodym derivative

dQ

dP

∣∣∣∣FT = exp

(
−

T∑
t=1

(νtεt + Ψt (νt))

)
(4.1)

where Ψt (u) is defined as the natural logarithm of the moment generating function

Et−1 [exp(−uεt)] ≡ exp (Ψt (u))

The mean correction factor in (2.1) is given by γt = Ψt (−1). In the normal case we have

Ψt (u) = 1
2
htu

2 and γt = Ψt (−1) = 1
2
ht. CEFJ (2010) show that (4.1) is a Radon-Nikodym

derivative. For an EMM to exist, the expected return under the risk neutral measure must be

equal to the risk-free rate.

Et−1

[
dQt
dPt
dQt−1
dPt−1

Rt

]
= exp (rt) (4.2)

Using (4.1) this gives

Et−1 [exp(−νtεt −Ψt (νt)) exp(εt) exp(µt − γt)] = exp (rt)

Therefore the probability measure Q defined by the Radon-Nikodym derivative in (4.1) is an

EMM if and only if

Ψt (νt − 1)−Ψt (νt) + µt − rt − γt = 0. (4.3)

The use of the moment generating function in the candidate Radon-Nikodym derivative is

merely a convenient mathematical tool to find an analytical expression for risk neutralization in

this incomplete markets setup. However, the formulation of the Radon-Nikodym derivative in

(4.1) is useful in the sense that it clarifies the relationship between the condition (4.3) and the

EMM condition (4.2), and the role of the affi ne structure of the Radon-Nikodym in assumption

(4.1). Alternative choices of the Radon-Nikodym derivative will lead to other EMMs and therefore

different derivative prices. CEFJ (2010) discuss such generalizations using a quadratic and even

more general EMMs.

Denote the moment generating function as MGFt (νt) = exp(Ψt (νt)). Then using the defin-

ition of the Esscher (1932) transform

ETt (z; νt) =
MGFt (z + νt)

MGFt (νt)
, (4.4)
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it can be seen that the problem at hand amounts to finding a νt such that6

rt = ln (ETt (1; νt)) (4.5)

In our opinion it is more straightforward to use equation (4.1). While it does not require the

specification of an underlying economy, it captures the intuition of the intertemporal optimality

through (4.2). While the use of (4.4) and (4.5) is algebraically equivalent, it is not very infor-

mative on how to analyze more general cases. Moreover, when formulated as (4.5), the role of

the specification of the conditional mean of returns is ignored, while it is clear from (4.2) that

it critically affects the result. In other words, the formulation in terms of the Esscher transform

(4.5) effectively assumes a return process that is distributed with mean zero. It is arguably

simpler and more intuitive to formulate the problem using (4.1) and (4.2).

The nonnormal models we discuss in this survey are all parametric in nature: The researcher

specifies a particular parametric distribution which is then risk-neutralized and used to compute

option prices. Barone-Adesi, Engle, and Mancini (2008) introduce an interesting nonparametric

alternative where the empirical return shocks are used in the simulation when computing option

prices. This approach requires an assumption that the distribution of the return shocks is the

same under the physical and risk neutral measures.

5 Non-Normal Innovations: Examples

We now discuss several specific option pricing models that are more general than (2.3) and (2.4)

in that the return innovations are non-normal. Section 5.1 introduces the inverse Gaussian model

and risk neutralizes it using the framework in Section 4. Section 5.2 analyzes the Generalized

Error Distribution using the risk neutralization procedure in Duan (1999). Section 5.3 discusses

a particular jump GARCH model which motivates the development of a general class of jump

GARCH models in Section 6.

5.1 Conditionally Inverse Gaussian Returns

Christoffersen, Heston and Jacobs (2006) analyze a GARCH model with an inverse Gaussian

innovation, yt ∼ IG(σ2
t/η

2). This model can be analyzed using the valuation framework in

6The insurance literature has also suggested the use of the Esscher transform for the purpose of option valu-
ation. See Buhlmann, Delbaen, Embrechts, and Shiryaev (1996,1998), Gerber and Shiu (1994), and Siu, Tong,
and Yang (2004).
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Section 4. The return dynamic is

Rt = r +
(
ζ + η−1

)
ht + εt, where (5.1)

εt = ηyt − η−1ht (5.2)

and where the conditional return variance, ht, is of the GARCH form. The conditional log MGF

is

Ψt (u) =

(
u+

1−
√

1 + 2uη

η

)
ht
η

The EMM condition

Ψt (νt − 1)−Ψt (νt)−Ψt (−1) + µt − r = 0

is solved by the constant

νt = ν =
1

2η

[
(2 + ζη3)

2

4ζ2η2
− 1

]
, ∀t

The EMM is given by

dQ

dP

∣∣∣∣Ft = exp

(
−

t∑
i=1

(
νεi +

(
ν +

1−
√

1 + 2νη

η

)
hi
η

))
= exp

(
−νtεt − δthi

)
where εt = 1

t

∑t
i=1 εi, hi = 1

t

∑t
i=1 hi, and δ = ν

η
+ 1−

√
1+2νη
η2

. The risk neutral return dynamic

can be written as

Rt ≡ ln

(
St
St−1

)
= r −ΨQ∗

t (−1) + ε∗t = r +
(
ζ∗ + η∗−1

)
σ∗2t + ε∗t

where

ζ∗ =
1− 2η∗ −

√
1− 2η∗

η∗2
and ε∗t = η∗y∗t − η∗−1σ∗2t

The risk neutral process thus takes the same form as the physical process. Option values can be

obtained in closed form using the characteristic function. See Christoffersen, Heston and Jacobs

(2006) for more details.

5.2 Conditionally Generalized Error Distribution Returns

Duan (1999) introduces a model with innovations that follow the generalized error distribution.

This model is also of interest because the approach to risk-neutralization is somewhat different

from the approach discussed in Section 4. Stentoft (2008) also uses this approach to obtain a
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risk-neutral dynamic for the normal inverse Gaussian model. Consider a GARCH model such

as (2.2) or (2.3), and now assume that the i.i.d. return shock zt follows the Generalized Error

Distribution (GED). For notational convenience we denote the innovation by ζt. Normalizing to

obtain zero mean and unit variance, the probability density function is given by

gϕ(ζ) =
ϕ

21+ 1
ϕ θ (ϕ) Γ

(
1
ϕ

) exp

(
−1

2

∣∣∣∣ ζ

θ (ϕ)

∣∣∣∣ϕ) for 0 < ϕ ≤ ∞

where Γ (.) is the gamma function and where θ (ϕ) =

(
2
− 2
ϕ Γ( 1ϕ)
Γ( 3ϕ)

) 1
2

. The expected return exists

provided ϕ > 1. The GED innovation ζ has a skewness of zero and a kurtosis of κ(ϕ) =
Γ( 5ϕ)Γ( 1ϕ)

Γ( 3ϕ)
2

It can be verified that κ(2) = 3, and g2(ζ) = 1√
2π

exp
(
−1

2
ζ2
)
. Therefore the standardized GED

conveniently nests the standard normal distribution which obtains when ϕ = 2. For ϕ < 2, the

density function has tails that are fatter than the normal distribution and vice versa. Nelson

(1991), Hamilton (1994) and Duan (1999) provide more detail on the properties of the GED

distribution.

Duan (1999) extends the risk-neutralization for the normal case in Duan (1995) to the GED

or other nonnormal distributions, as follows. Recall that for an i.i.d. Normal innovation zt we

have the following mean shift between the two measures

ηt = z∗t − zt (5.3)

For a GED distributed ζt shock, write instead

ηt = z∗t − Φ−1 (Gϕ (ζt))

where Φ−1 () is the standard normal inverse CDF so that zt = Φ−1 (Gϕ (ζt)) is normally distrib-

uted. We can then rewrite the linear normal mapping in (5.3) as a nonlinear GED mapping

given by

ζt = G−1
ϕ (Φ (z∗t − ηt)) (5.4)

The derivation of the risk-neutral model requires solving for ηt. This is done by setting the

conditionally expected risk-neutral asset return in each period equal to the risk-free rate. In

general we can write

exp (r) = EQ
t−1

[
exp

{
Et−1 [Rt] +

√
htG

−1
ϕ (Φ (z∗t − ηt))

}]
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An exact solution for ηt in the GED case involves a prohibitively cumbersome numerical solu-

tion for ηt on every day and on every Monte Carlo path. The following approximation from

Christoffersen, Dorion, Jacobs, and Wang (CDJW, 2010) can be used. In the normal special

case we have G−1
ϕ (Φ (z)) = z for all z. As the Normal and GED are both symmetric we know

that G−1
ϕ (Φ (0)) = 0 for all ϕ. This suggests the linear approximation

G−1
ϕ (Φ (z)) ≈ bϕz

where bϕ is easily found for a given value of ϕ by fitting ζ i = G−1
ϕ (Φ (zi)) to zi for a wide

grid of zi values. CDJW motivate this approximation by the fact that the probability integral

transform, ζ = G−1
ϕ (Φ (z)) is very close to linear in ϕ for their parameter estimates. Using this

approximation and taking logs, and solving for ηt yields

ηt =

(
λ

bϕ
+

1

2
bϕ

)√
ht (5.5)

where the normal case obtains when bϕ = 1. The solution in (5.5) can be used in (5.4), and

substituting into the return dynamic yields the risk-neutral processes. Note that while the linear

approximation greatly facilitates the computation of ηt in the GED models, the GED option

prices still require frequent inversion of the GED cumulative distribution function.

Lehnert (2003) applies an asymmetric version of the GED distribution in an exponential

GARCH model and uses it for option valuation of DAX index contracts.

5.3 Conditionally Poisson-Normal Jumps

A very interesting approach to generating non-normal innovations in a heteroskedastic model

is to use Poisson-normal innovations mixed with normals. This approach is used for option

valuation in Duan, Ritchken and Sun (DRS, 2005). DRS (2005) consider the return process

Rt = αt + εt, (5.6)

where αt is the conditional mean component.7 The Poisson-normal innovation εt is defined by

εt =
√
ht

(
zt +

Nt∑
i=1

xjt

)
with

zt ∼ N (0, 1) , xjt ∼ N
(
θ, δ2

)
for j = 1, 2, ..Nt, and Nt ∼ Poisson (χ)

7Duan, Ritchken, and Sun (2006) consider the continuous-time limit of this model.
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The number of jumps Nt that arrives from time t−1 to t is Poisson distributed with intensity χ.

The jump size is independently drawn from a normal distribution with mean θ and variance δ2.

The conditional return variance equals
(
1 + χ

(
θ2 + δ2

))
ht, where ht follows a GARCH process.

The log return mean µt can be a function of ht as well as the jump and risk premium parameters.

The conditional log MGF of a Poisson-Normal innovation εt is given by

Ψt (u) = ln(Et−1 [exp (−uεt)])

=
1

2
u2ht + χ

[
exp

(
−θu

√
ht +

1

2
δ2u2ht

)
− 1

]
.

In DRS (2005), the mean component αt is chosen for tractability in the risk neutralization.

Specifically, it is defined as

αt = −1

2
ht+1 − ν

√
ht + χ exp

(
νθ +

1

2
δ2ν2

)
(1−∆t) with

∆t = exp

((
νδ2 + θ

)√
ht+1 +

1

2
δ2ht

)
.

Using the Radon-Nikodym derivative (4.1) implies that (5.6) is an EMM if and only if

αt = Ψt (νt)−Ψt (νt − 1)− r = 0.

Solving the above restriction shows that νt = ν. The risk-neutral distribution is from the same

family as the physical distribution. This can be inferred from the risk-neutral log MGF of a

Poisson-Normal innovation

ΨQ∗
t (u) = lnEQ

t−1 [exp (−uε∗t )]

=
1

2
u2ht + χ∗t

[
exp

(
−θ∗tu

√
ht +

1

2
δ2u2ht

)
− 1

]
where

χ∗t = χ exp

(
−θν

√
ht +

1

2
δ2ν2ht

)
and θ∗t = θ − δ2

√
htν.

In summary, the risk-neutral Poisson-normal innovation ε∗t can be written as

ε∗t =
√
ht

(
z∗t +

N∗t∑
i=1

(x∗t )
j

)
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with

z∗t ∼ N (0, 1) ; (x∗t )
j ∼ N

(
θ∗, δ2

)
for j = 1, 2, ..N∗t ; and N∗t ∼ Poisson (χ∗) .

The DRS (2005) approach is very interesting in that it allows for building various types of non-

normal innovations by adding normal and Poisson components. We will next develop a general

framework that builds on this idea and allows the multiple components to have separate moment

dynamics and risk premia.

6 Models with Multiple Shocks

In the standard GARCH literature, asset returns are driven by a univariate innovation. How-

ever, empirical evidence from the continuous-time option pricing literature suggests that it may

be beneficial to separate returns into two components, a jump part and a diffusive part. Christof-

fersen, Jacobs, and Ornthanalai (CJO, 2012) study a multiple-shock version of the model with

Poisson-Normal innovations in Section 5.3 by separately modeling the compound Poisson jump

and the normal component in returns.8 The advantage of this approach is that it allows for

time-varying jump intensity as well as for separate modeling of the jump and normal risk pre-

mia. Ornthanalai (2009) develops a more general class of multifactor return models, which he

refers to as Lévy GARCH. In this approach, return innovations follow Lévy processes and affi ne

GARCH dynamics are used to generate heteroskedasticity in the models.

We introduce the return processes and the risk neutralization in a multiple-shock setting in

Sections 6.1 and 6.2. Section 6.3 discusses the jump model of CJO (2012). Finally, Section 6.4

discusses the Lévy GARCH framework.

6.1 Multiple Innovations

CJO (2012) and Ornthanalai (2009) consider a return process that is more general than (2.2) in

two ways. First, they allow for multiple shocks in the return process. Second, these shocks can

be normal, non-normal, or both. Let Xt be a d-dimensional vector of Lévy processes that drive

changes in asset price. The return process can be written as

Rt = log

(
St
St−1

)
= r + µt + ϑ

′
Xt − ξX (ϑ)′ ht, (6.1)

8The discussion of CJO (2012) in this survey is based on the 2009 working paper version of the paper.
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where ϑ, and ht are d-dimensional vectors. Note that we use bold-faced font to represent a

vector. The elements in ht are parameters that control the time-varying dynamics of Xt. When

ht follows a GARCH dynamic, the model exhibits heteroskedasticity. The setup in (6.1) can be

motivated using the time-homogeneity property of Lévy processes. Ornthanalai (2009) shows

that in most cases, the log MGF of a scalar Lévy process xt can be written as consisting of two

parts

Ψt (u) = ln(Et−1 [exp (−uxt)]) = ξx (−u)ht.

The first part, ξx (−u), is time independent and is referred to as the coeffi cient in the log MGF.

The second part, ht, can be modeled as time varying. In the case of a normal innovation,

Ψt (u) = 1
2
u2ht, thus ht is the variance, and ξx (−u) =1

2
u2.

This decomposition can easily be extended to the multiple shock case. If the Lévy processes

in Xt are independently distributed, then its log MGF can be written as Ψt (u) = ξX (−u)′ ht.

The mean correction factor in (6.1) is given by Ψt (−ϑ) = ξX (ϑ)′ ht, which serves the same

purpose as γt in the univariate setup (2.1).

Taking the conditional expectation of the price process in (6.1) shows that the log return in

excess of the risk-free rate is equal to

logEt−1 [exp (Rt)]− r = µt.

We thus refer to µt as the conditional equity premium. The conditional variance of the log return

is given by V art−1(Rt) = ϑ
′
Covt−1 (Xt)ϑ, where Covt−1 (Xt) is the conditional covariance matrix

that is diagonal and affi ne in ht. Consequently, the conditional return variance will also be an

affi ne function of ht.

6.2 Risk Neutralization

CJO (2012) and Ornthanalai (2009) provide a general valuation result for the process in (6.1).

A candidate for the Radon-Nikodym derivative is

dQ

dP

∣∣∣∣FT = exp

(
−

T∑
t=1

(ν ′tXt + Ψt (νt))

)
, (6.2)

where Ψt (νt) is the log of the MGF that is evaluated at a d-dimensional vector νt of EMM

coeffi cients. The above Radon-Nikodym derivative can be thought of as a multiple-shock version

of (4.1). Applying (6.2) to the return process in (6.1), we can establish the following requirement
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for (6.2) to be an EMM

Ψt (νt − 1)−Ψt (νt)− ξX (ϑ)′ ht + µt = 0 (6.3)

Multiple solutions νt exist for these EMM conditions. For tractability, CJO (2012) and Orn-

thanalai (2009) introduce an affi ne structure on the conditional equity premium specification,

µt = λ′ht, where λ is a d-dimensional vector with each element denoted by λi, for i = 1..d.

When ht follows a GARCH dynamic, the model produces time-varying risk premia. CJO (2012)

furthermore set νt = ν in (6.2). In this case, Ornthanalai (2009) shows that the solution to each

element ν
i
in ν is found by solving

λ
i

= ξxi (ϑi) + ξxi (−νi)− ξxi (ϑi − νi) . (6.4)

For instance, if xt is distributed as N (0, ht), the solution to (6.4) is ν = λ. If xt is a Compound

Poisson process, an analytical solution to (6.4) does not exist, but the numerical solution is well-

behaved. Note that the above EMM condition is very general, and can be applied to any Lévy

process. See Ornthanalai (2009) for more details.

6.3 Poisson Jump and Normal Innovations

Christoffersen, Jacobs, Ornthanalai, and Wang (2009) and CJO (2012) study option valuation

for various two-shock models consisting of a normal and a compound Poisson jump component.

Maheu and McCurdy (2004) consider a different discrete-time jump model but do not use it for

option valuation. The return process studied by CJO (2012) is

Rt ≡ log

(
St
St−1

)
= r +

(
λz − 1

2

)
hz,t +

(
λy − ξy (1)

)
hy,t + zt + yt, (6.5)

which is a special case of (6.1) with ϑ = (1, 1) and µt = λzhz,t + λyhy,t. This return dynamic

does not nest the nonaffi ne model in DRS (2005) which assumes a constant jump intensity.

In (6.5), the return process is a function of a normal innovation zt, which is assumed to be

distributedN (0, hz,t), and a pure-jump component yt, which is assumed to be contemporaneously

independent from zt. Therefore, the jump and the normal shocks are modeled separately in the

return dynamic (6.5), which is not the case in the DRS (2005) model.

CJO (2012) assume that yt is conditionally distributed as compound Poisson with jump

intensity hy,t, mean jump size θ, and jump variance δ
2. The log MGF of a compound Poisson

process is given by

Ψt (u) = ξy (−u)hy,t.
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Due to the time homogeneity property of a compound Poisson process, its log MGF can be written

in two parts, with hy,t being the time homogeneous parameter and ξy (−u) = exp (−uθ+u2δ2

2
)− 1

being the coeffi cient. The terms 1
2
hz,t and ξy (1)hy,t ≡

(
exp (θ+ δ2

2
)−1

)
hy,t in (6.5) are mean-

adjustment terms for the normal and jump components respectively. The jump component in

the period t return is given by yt =
∑nt

j=0 x
j
t , where x

j
t , j = 0, 1, 2, ...nt, is an i.i.d. sequence of

normally distributed random variables such that xjt ∼ N
(
θ, δ2

)
. The number of jumps nt arriving

between times t − 1 and t is a Poisson counting process with intensity hy,t. The conditional

expectation of the number of jumps arriving over the time interval (t− 1, t) is Et−1 [nt] = hy,t.

The conditional variance and skewness of the return process (6.5) are

V art−1 (Rt) = hz,t +
(
δ2 + θ2

)
hy,t (6.6)

Skewt−1 (Rt) =
θ
(
3δ2 + θ2

)
hy,t(

hz,t +
(
δ2 + θ2

)
hy,t
)3/2

, (6.7)

which show that the model’s time-varying dynamics will depend on how hz,t and hy,t are specified.

In the most general case, CJO (2012) specify that hz,t and hy,t are governed by two Heston-Nandi

type GARCH(1,1) dynamics

hz,t = wz + bzhz,t−1 +
az
hz,t

(zt−1 + yt−1 − czhz,t−1)2 (6.8)

hy,t = wy + byhy,t−1 +
ay
hy,t

(zt−1 + yt−1 − cyhy,t−1)2

CJO (2012) empirically study this case, as well as more parsimonious special cases, for instance

by letting the jump intensity be a linear function of the variance of the normal component,

hy,t = khz,t.

The model is risk-neutralized using the multiple-shock Radon-Nikodym derivative (6.2) and

setting νt = ν. For the two-factor model in CJO (2012), this implies

dQ

dP

∣∣∣∣FT = exp

(
−

T∑
t=1

(
νzzt + νyyt +

1

2
ν2
zhz,t + ξy (−νy)hy,t

))
, (6.9)

where

Ψt (νt) = Et−1 [exp (−νzzt − νyyt)] =
1

2
ν2
zhz,t + ξy (−νy)hy,t

is the joint log MGF of [zt, yt]. We also recall that ξy (−νy) is the coeffi cient in the log MGF of
a compound Poisson process.

The general solution that makes the above Radon-Nikodym derivative an EMM is given in
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(6.4). For the return process studied in CJO (2012), this implies the following restrictions

λy =
(
e
δ2

2
+θ − 1

)
+ e

ν2yδ
2

2
−νyθ

(
1− e(

1
2
−νy)δ2+θ

)
(6.10)

λz = νz (6.11)

Note that (6.11) is identical to the result implied by Duan’s (1995) LRNVR method for a con-

ditionally normal innovation. It is not possible to solve for the second EMM coeffi cient νy in

(6.10) analytically, but it is well behaved and can easily be solved numerically. Using a change

of measure according to (6.9), the stock return process can be written under the risk-neutral

measure as

log

(
St
St−1

)
= r − 1

2
hz,t − ξ∗y (1)h∗y,t + zt + y∗t , (6.12)

hz,t = wz + bzhz,t−1 +
az

hz,t−1

(
zt−1 + y∗t−1 − c∗zhz,t−1

)2

h∗y,t = w∗y + byh
∗
y,t−1 +

a∗y
h∗y,t−1

(
zt−1 + y∗t−1 − νzhz,t−1 − c∗yh∗y,t−1

)2
.

where y∗t is compound Poisson with intensity h
∗
y,t, mean θ

∗, and variance δ2, and for Π = e
ν2yδ

2

2
−νyθ

we have

h∗y,t = hy,tΠ , ξ∗y (1) = e
δ2

2
+θ∗ − 1, w∗y = wyΠ

a∗y = Π2ay, c∗z = (cz + νz) , c∗y =
cy
Π

Due to the fact that the jump innovation does not yield an exponentially affi ne moment generating

function, closed-form option valuation results are not available, but the discrete-time GARCH

structure of the model renders option valuation straightforward via Monte-Carlo simulation.

6.4 Affi ne Lévy GARCH Processes

The CJO (2012) model with jump and normal innovations in Section 6.3 is just one example

of a model with multiple innovations that can be handled within the structure of the Lévy

GARCH framework in Sections 6.1 and 6.2. The class of Lévy processes encompasses most of the

distributions used in the finance and economics literature. Besides the normal and the compound

Poisson processes, some of the well-known Lévy processes include the Normal Inverse Gaussian

(NIG) processes of Barndorff-Nielsen (1998), the Variance Gamma (VG) model of Madan and

Milne (1991), and the CGMY process of Carr, Geman, Madan and Yor (2002). Therefore, most

existing GARCH processes can be nested within the Lévy framework.
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Ornthanalai (2009) studies a class of multifactor models by combining the versatility of Lévy

processes with the ease of implementation of GARCH dynamics, and refers to this new class of

models as affi ne Lévy GARCH. For tractability, Ornthanalai (2009) chooses an affi ne specification

for the risk premium. That is, the conditional equity premium in (6.1) is given by

µt = logEPt−1 [exp (Rt)]− r =
d∑
i=1

λ
i
h
i,t,

where λ
i
and h

i,t are the market price of risk and the time-homogenous parameters associated

with the ith Lévy innovation in Xt. Using this specification, for most of the well-known Lévy

processes, the risk-neutral dynamics obtained using (6.2) are from the same family as the physical

distribution. The risk-neutral dynamics of asset prices can therefore be simulated, and derivatives

can be priced via Monte Carlo simulation as in Duan (1995). Risk-neutralization results for

various Lévy processes are summarized in Ornthanalai (2009).

Ornthanalai (2009) further shows that when combining Lévy processes with certain affi ne

GARCH dynamics, the asset return processes will have analytical solutions for their conditional

transform. Consequently, the price of zero-coupon bonds is available in closed-form, and the

prices of European-style derivatives can be computed using the Fourier inversion method (see

Heston (1993a)). This special sub-class of the Lévy GARCH framework is referred to as affi ne

Lévy GARCH. In this framework, the variance of the normal component hz,t is governed by a

Heston-Nandi type dynamic

hz,t = wz + bzhz,t−1 +
az
hz,t

(zt−1 − czhz,t−1)2 . (6.13)

The jump intensity dynamic is given by hy,t = khz,t.

It is important to note that the GARCH process (6.13) that is considered in Ornthanalai

(2009) differs in an important way from the standard models used in the literature. Unlike

standard GARCH models, the total return residual zt + yt does not enter into the GARCH

updating dynamic. This has important implications in comparison with the more standard

setup in (6.8), where the total return residual zt + yt enters directly into the GARCH dynamic.

In the standard case, the filtration of hz,t and hy,t in (6.8) is extremely simple and we can

directly estimate the model using standard maximum likelihood techniques. Unfortunately, the

dynamic of (6.8) does not admit tractable formulae for the cumulant exponent and hence no

closed-form solution for European-style derivatives exists. In (6.13) on the other hand, only

the normal innovation zt−1 enters the news impact function, which enables the derivation of a

closed-form option valuation formula, but on the other hand estimation has to rely on a filtering

technique which is not required in standard GARCH models. Ornthanalai (2009) proposes that
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the auxiliary particle filtering (APF) technique is used for the filtration of the return innovation.

The use of APF has many advantages. It can handle high degrees of nonlinearity, which is an

inherent feature of Lévy jump processes. Moreover, the APF builds on a filtering algorithm

that facilitates the estimation of the models using the maximum likelihood method, and the

implementation of APF does not require that the analytical density of the Lévy processes is

known, as long as these processes can be simulated using a robust algorithm. This is clearly

advantageous as most of the Lévy processes do not have a closed-form density function. For

further details of maximum likelihood estimation using the APF, see Christoffersen, Jacobs and

Mimouni (2010) and Ornthanalai (2009).

The added filtering step required in implementing the model in (6.13) means that it can be

viewed as a hybrid between the GARCH and SV approaches. It differs from GARCH in that the

next period’s conditional volatility is not a function of the total return residual. On the other

hand, it differs from SV because the next period’s conditional volatility is known expost of the

return today. Although the implementation of the model in (6.13) is more involved than that

of a standard GARCH, it is simpler to implement than that of the SV approaches. For clarity,

we distinguish the mechanic of (6.13) from the SV approaches by comparing it to the stochastic

volatilities with jump model (SVJ). For ease of comparison, we cast the continuous-time SVJ

model into a discrete-time setting, using the Euler discretization (see for example Johannes and

Polson (2006)). The resulting dynamic is given by

Rt = r + µt +
√
vtz1,t + yt (6.14)

vt = a+ bvt−1 + σ
√
vt−1

(
ρz1,t +

√
1− ρ2z2,t

)
, (6.15)

where yt represents the compound Poisson jump process, and z1,t and z2,t are i.i.d. normal shocks.

The contemporaneous correlation between return and variance is captured by Corrt (Rt, vt) = ρ.

These dynamics contain three independent shocks. It is possible to decompose the diffusive part
√
vtz1,t from the and the jump part yt in (6.14) using a filtering technique. However, unlike the

model in (6.13), we cannot determine the next period’s conditional volatility given z1,t because

vt also depends on the Brownian shock z2,t, which cannot be inferred from today’s return. The

filtration of future’s volatility in the SVJ model therefore requires an additional step.

The modeling approach in (6.13) differs from (6.8) in another respect. Bates (2006, 2012)

argues that standard GARCH models such as NGARCH and the Heston-Nandi model generate

excessively large estimates of conditional variance after large stock market movements. As the

total return residuals are not always used in the GARCH updating process in (6.13), the models

do not suffer from the problem of excessively large estimates of conditional variance after large

stock market movements. Figure 1 illustrates this model feature using the news impact curve for
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the HN GARCH(1,1) model and the two-factor normal and Lévy jump model (Lévy GARCH)

studied in Ornthanalai (2009). The news impact curve illustrates how the current period’s return

residuals (news impact) conditionally affect the volatility of returns in the next period. The x-

axis represents standardized returns Rt/
√
V art−1 (Rt). The y-axis represents the percentage

change in the annualized return volatilities
(√

V art (Rt+1)−
√
V art−1 (Rt)

)
. Current volatility

is set to equal the model’s implied long-run volatility level. Figure 1 clearly indicates how the

approach in (6.13) can address Bates’(2006, 2012) concern.

Figure 1: News impact curves
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7 Valuation

We discuss the valuation of European options when the stock price follows a GARCH process.

We first discuss Monte-Carlo valuation. We then discuss how the affi ne GARCH dynamic (2.3)

leads to a (quasi) closed form option price. Subsequently we summarize the literature on ap-

proximations to European option prices for GARCH processes. Finally, we discuss the valuation

of American options.

7.1 Monte-Carlo Valuation of European Options

European call option prices can be computed using Monte Carlo simulation by simulating the

risk-neutral return process R∗t and computing the sample analogue of the discounted risk neutral
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expectation.9 For a call option, C, quoted at the close of day t with maturity on day T , and

with strike price X we have

Ct,T = exp (−r(T − t))E∗t [Max(ST −X, 0)]

≈ exp (−r(T − t)) 1

MC

MC∑
i=1

[
Max

(
St exp

(
T−t∑
τ=1

R∗i,t+τ

)
−X, 0

)]

where R∗i,t+τ denotes future daily log-return simulated under the risk-neutral measure. The

subscript i refers to the ith out of a total of MC simulated paths. It is advisable to use

numerical techniques to increase numerical effi ciency. Good candidates are stratified random

numbers, antithetic variates, control variate techniques, for instance using the Black-Scholes

price as the control, and the empirical martingale method of Duan and Simonato (1998). Using

these techniques, we have found Monte Carlo simulation to be very reliable. Christoffersen,

Dorion, Jacobs, and Wang (2010) provide evidence on the accuracy of Monte Carlo simulation

for the Heston and Nandi (2000) model. It stands to reason that Monte Carlo simulation is

equally reliable for other models. Appendix A contains matlab code for the computation of

Heston-Nandi option prices using Monte Carlo simulation. The code uses Duan and Simonato’s

empirical martingale technique, and uses a control variate technique with the Black-Scholes price

as the control. The code can easily be adapted for other GARCH models.

7.2 Closed-Form European Option Valuation

Heston and Nandi’s (2000) affi ne dynamic is specifically designed to yield a closed-form solution.

Heston and Nandi (2000) show that a European call option with strike price K that expires at

time T is worth

Call Price = e−r(T−t)E∗t [Max(ST −K, 0)] (7.1)

=
1

2
St +

e−r(T−t)

π

∫ ∞
0

Re

[
K−iφf ∗(t, T ; iφ+ 1)

iφ

]
dφ

−Ke−r(T−t)
(

1

2
+

1

π

∫ ∞
0

Re

[
K−iφf ∗(t, T ; iφ)

iφ

]
dφ

)
where f ∗(t, T ; iφ) is the conditional characteristic function of the logarithm of the spot price

under the risk neutral measure. For affi ne GARCH processes, this generating function can be

characterized with a set of difference equations. For instance, for the GARCH(1,1) representation

9See for instance Boyle (1977).
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in (2.3) we have

f ∗(t, T ;φ) = Sφt exp(At +Btht+1)

with coeffi cients

At = At+1 + φr +Bt+1w − 1
2

ln (1− 2aBt+1)

Bt = φ(−0.5 + c∗)− 0.5c∗2 +
1/2(φ− c∗)2

1− 2Bt+1a
+ b1Bt+1

where c∗ is the risk-neutral leverage parameter in (3.8), which is equal to c + λ + 1
2
. Note that

At and Bt implicitly are functions of T and φ. This system of difference equations can be solved

backwards using the terminal condition AT = BT = 0. Appendix B contains matlab code for the

GARCH(1,1) case. Heston and Nandi (2000) provide solutions for the more general GARCH(p,q)

case, but their expressions contain some typos. Appendix C contains revised formulas, and also

covers the GARCH(2,2) case in order to better motivate the GARCH(p,q) expressions.

Note from (7.1) that even the affi ne GARCH model does not yield a true closed-form solu-

tion, because finding the call price necessitates univariate numerical integration. However, this

integration problem is in general well-behaved and the integration is not computer- or time-

intensive. Some authors nevertheless prefer to refer to (2.3) as a quasi closed-form solution. A

more important question is whether the added convenience of the affi ne form of the variance

dynamic in (2.3) leads to a deterioration in empirical fit. We will address this issue in detail in

Section 10.

7.3 Approximations for European Option Prices

Duan, Gauthier, and Simonato (1999) provide an analytical approximation for NGARCH Euro-

pean option prices, using the Edgeworth expansions previously used by Jarrow and Rudd (1982).

The approximation works very well for short-maturity options. For long-maturity options and

very persistent GARCH processes, the approximation is somewhat less reliable. Duan, Gauthier,

Sasseville, and Simonato (2006) provide approximations to European option prices under the

GJR GARCH of Glosten et al. (1993) and the exponential GARCH of Nelson (1991), and in-

vestigate their empirical performance. The results are similar to those for the NGARCH process

in Duan, Gauthier, and Simonato (1999). Duan, Gauthier, Sasseville, and Simonato (2006) also

provide computation times for the approximations. However, to the best of our knowledge the

literature does not contain a detailed comparison of computation times for these approxima-

tions and effi ciently implemented Monte Carlo prices. Given the trade-off between accuracy and

computation time inherent in the use of these approximations, such an exercise would be very

valuable.
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7.4 The Valuation of American Options

Much of the empirical literature on GARCH option valuation is conducted using European-style

index options. However, the majority of exchange-traded options are American, and therefore

we need techniques that allow for the optimal exercise strategy to be determined as part of the

option valuation exercise. For constant volatility models, American options can be valued using

Monte Carlo techniques. See for instance Tilley (1993), Barraquand and Martineau (1995), and

Broadie, Glasserman, and Jain (1997). Unfortunately, it is not straightforward to implement

these Monte Carlo methods for the valuation of American options under GARCH because of the

increased complexity.

Instead, three other approaches exist. Duan and Simonato (2001) propose American option

valuation for GARCH processes by approximating the underlying asset price process by a finite-

state, time-homogeneous Markov chain. They find it provides a very good approximation to

the Monte Carlo prices. Ritchken and Trevor (1999) propose a lattice scheme. Stentoft (2005,

2008) analyzes American option valuation for GARCH processes using the least squares Monte

Carlo method of Longstaffand Schwartz (2001). Stentoft (2005) investigates NGARCH processes

with normal innovations, and finds that the resulting option prices with normal innovations are in

most cases very close to the prices obtained using the methods of Duan and Simonato (2001) and

Ritchken and Trevor (1999). Stentoft (2008) uses the same approach to value American options

for a normal inverse Gaussian (NIG) GARCH model that allows for conditional skewness and

kurtosis. Stentoft (2005, 2008) documents that the early exercise premium is substantial and

should not be ignored.

8 Estimation and Filtering

We first discuss estimation of GARCH processes using return data, and how these estimates

can be used for option valuation. We then discuss estimation using option data, and finally we

highlight the benefits of estimating and testing GARCH models using a mixture of return and

option data.

8.1 Estimation Using Returns

It is very straightforward to estimate traditional GARCH processes such as (2.4) or the affi ne

Heston and Nandi (2000) GARCH process (2.3) on return data using maximum likelihood, for a

variety of return innovations. See for instance Engle (1982) and Bollerslev (1986). For instance,

using the notation for the return dynamic in (2.1), with normal innovations the conditional

27



density of daily returns is normal, so that

f (R(t)|h(t)) =
1√

2πh(t)
exp

(
−(R(t)− µt + γt)

2

2h(t)

)
.

The return log likelihood is therefore

lnLR ∝ −1

2

T∑
t=1

{
ln (h(t)) + (R(t)− µt + γt)

2 /h(t)
}
. (8.1)

and we can obtain the parameters of the GARCH process by maximizing the log likelihood.

Several studies estimate GARCH parameters using maximum likelihood, and subsequently risk-

neutralize the parameters and value options. See for instance Engle and Mustafa (1992), Satchell

and Timmermann (1995), Heston and Nandi (2000), Duan and Zhang (2001), Christoffersen and

Jacobs (2004), Christoffersen, Heston, and Jacobs (2006), Christoffersen, Jacobs, Ornthanalai

and Wang (2008), and Christoffersen, Dorion, Jacobs, and Wang (2010).

It is sometimes argued that unlike the case of option valuation using stochastic volatility

models, all parameters needed for option valuation can thus be obtained by estimating the

GARCH process under the physical measure using return data. We can risk neutralize the

parameters using the arguments in Section 3 or 4, and all parameters needed for option valuation

are available. For stochastic volatility models, which contain two sources of uncertainty, the price

of volatility risk cannot be estimated from return data, and has to be estimated from option data.

See CEFJ (2010) for an extensive discussion. However, Christoffersen, Heston and Jacobs (2010)

note that when valuing options using GARCHmodels, an additional price of volatility risk can be

specified which needs to be estimated using option data, just like the case of stochastic volatility

models. Effectively this additional risk premium is set to zero in many GARCH option valuation

studies. See Christoffersen, Heston and Jacobs (2010) for details.

8.2 Estimation using Options

When discussing the evaluation and assessment of GARCH models from option data, it is im-

portant to make a number of important distinctions. First, it is possible to estimate GARCH

processes on return data as discussed in Section 8.1, to subsequently use these estimates to price

options, and to evaluate the models using a variety of loss functions. On the other hand, the

GARCH model parameters can also directly be estimated from option prices. Second, when esti-

mating GARCH parameters from option prices, it is critically important whether one estimates

a different set of parameters for each cross-section of options, or one set of parameters which is

used to price all cross-sections in the sample. The former approach is used for stochastic volatil-
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ity models in Bakshi, Cao, and Chen (1997), for example. Duan (1996) estimates a GARCH

model using a single cross-section. The latter approach is used in Heston and Nandi (2000) and

Christoffersen and Jacobs (2004), for example. A third important distinction is the use of return

data when estimating GARCH models on option data. When estimating model parameters using

several cross-sections of options, it is in principle necessary to filter volatility from underlying

returns, unless one dramatically increases the parameter space by adding a volatility parameter

for each cross-section.10 This is done in most studies that estimate GARCH models from option

data, because the required filtering exercise is very simple.11 The resulting estimates are there-

fore consistent with returns, in the sense that the volatility used to value options is consistent

with the models’risk neutralization and the underlying return data. However, while returns are

used in the filtering exercise, the loss function does not explicitly contain a component based on

returns. This exercise, which necessitates combining loss functions for options data and returns

data, is discussed below in Section 8.3.

We now outline estimation using options data, and we discuss the empirically most relevant

case where multiple cross-sections of options are used. This necessitates linking volatility on

different dates using the time-series of stock returns. Consider for example the specification of

the conditional mean in (3.3). Solving for zt we get

zt =

(
Rt − r − λ

√
ht +

1

2
ht

)
/
√
ht =

[(
Rt − r +

1

2
ht

)
/
√
ht

]
− λ. (8.2)

The updating from ht to ht+1 can then be formulated in terms of observables and parameters

only by substituting (8.2) in the variance dynamic. Using the NGARCH dynamic in (2.4) for

instance, this gives

ht = w + bht−1 + aht−1

([(
Rt−1 − r +

1

2
ht−1

)
/
√
ht−1

]
− (λ+ c)

)2

(8.3)

We can therefore write any loss function of interest as a function of the parameters and ob-

servables only. It is important to note that option theory does not suggest the appropriate loss

function, as option pricing formulae such as (7.1) do not contain an error term. Loss functions

are thus largely chosen out of econometric convenience. For instance, we can minimize the dollar

root mean squared option valuation error from a given sample, as in

$RMSE =

√
1

NT

∑
t,i

(Ci,t − Ci,t(ht(ξ∗)))2 (8.4)

10See Bates (2000) and Christoffersen, Heston, and Jacobs (2009) for examples of this approach.
11See Heston and Nandi (2000), Christoffersen and Jacobs (2004), Christoffersen, Jacobs, Ornthanalai and

Wang (2008), and Christoffersen, Heston, and Jacobs (2006).
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where Nt is the number of option prices present in the sample at time t, NT =
T∑
t=1

Nt and T is

the total number of days included in the sample, ξ∗ is the vector of risk-neutral parameters to

be estimated, and Ci,t(ht(ξ
∗) is the model price.

A potential problemwith the $RMSE loss function is that the weight associated with different

option contracts may be highly dependent on moneyness and maturity. Alternatively, relative

errors could be used as in

%RMSE =

√√√√ 1

NT

∑
t,i

(
Ci,t − Ci,t(ht(ξ∗))

Ci,t

)2

(8.5)

A popular approach is to use a loss function based on implied volatilities

IV RMSE =

√
1

NT

∑
t,i

[σi,t − σi,t(Ci,t(ht(ξ∗)))]2 (8.6)

where σi,t and σi,t(Ci,t(ht(ξ
∗))) are implied Black-Scholes volatilities from the market price and

the model price respectively. This choice of loss function is econometrically convenient because

implied volatilities, unlike call option prices, are not dramatically different across maturities

and moneyness, thereby avoiding that some options receive much larger weights than others.

Unfortunately, the IVMSE loss function may cause problems when using large option datasets

because it is computationally intensive, as it requires inversion of the Black-Scholes formula at

each step of the numerical search procedure. To get around this problem, note that we can

think of the model option price as an approximation to the market price using a first order

approximation around implied Black-Scholes volatility

Ci,t(ht(ξ
∗)) ≈ Ci,t + V egai,t [σi,t − σi,t(Ci,t(ht(ξ∗)))]

where V egai,t is the Black-Scholes sensitivity of the option price with respect to volatility, com-

puted using σi,t. Using this approximation, we can assess model fit using the implied volatility

root mean squared error (IV RMSE) loss function as follows

IV RMSE ≡

√√√√ 1

NT

NT∑
i,t

[σi,t − σi,t(Ci,t(ht(ξ∗)))]2 ≈

√√√√ 1

NT

NT∑
i,t

[Ci,t − Ci,t(ht(ξ∗))]2 /V ega2
i,t

The approximation to the implied volatility errors is extremely useful in large scale empirical

estimation exercises such as ours, where the Black-Scholes inversion of model prices becomes

very costly numerically. See for instance Carr and Wu (2007) and Trolle and Schwartz (2009)
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for applications.

A priori we would expect to obtain lower pricing errors when estimating risk-neutral pa-

rameters from options, as compared with estimation from return data. Option prices contain

forward looking information over and beyond historical returns, and thus using option prices to

find parameters can have an important advantage simply from the perspective of the data used.

Second, when using maximum likelihood to estimate parameters under the physical measure, it

is clear that the loss function is quite different from an out-of-sample loss function which could

be something like the mean-squared dollar errors in (8.4) or IVRMSE in (8.6). Following the

intuition of Granger (1969), this will lead to larger out-of-sample errors.

8.3 Estimation using Returns and Option Data

When estimating model parameters from options as in Section 8.2, GARCH filtering ensures that

the estimated parameters are consistent with the return data, as is clear from (8.2) and (8.3).

However, because returns are not explicitly weighted in the loss function, it is still possible that we

will overfit the option data, and consequently end up with a poor fit to the return data, especially

with richly parameterized models. Bates (1996) was the first to notice that this is indeed the case,

pointing out that model estimates for a stochastic volatility model obtained from option data

were inconsistent with estimates obtained from returns. In recent years increasing importance

has been placed on models’ability to reconcile the price of the options and the underlying returns,

see for example Pan (2002), Eraker (2004), Santa-Clara and Yan (2010), and Broadie, Chernov,

and Johannes (2007).

Despite the consensus that this issue is critically important, most papers continue to estimate

option pricing models using either returns or options. Pan (2002) and Chernov and Ghysels

(2000) combine returns and options in a loss function based on the method of moments, but they

use a univariate time series of an at-the-money option in estimation rather than a time-series of

cross-sections. Santa-Clara and Yan use a likelihood-based loss function that combines returns

and options, using a more extensive option data sample.

The limited evidence based on loss functions involving returns and options is largely due to the

computational complexity associated with most option pricing models. In our opinion, discrete-

time models, and GARCH models in particular, have a substantial advantage here, because the

computational burden is substantially lower, due to the simple structure of the GARCH filter.

In the recent literature, Christoffersen, Jacobs, and Ornthanalai (CJO, 2012), Christoffersen,

Heston, and Jacobs (CHJ, 2010), and Ornthanalai (2009) report estimation results using a long

time series of results and extensive cross-sections of option data.

In order to combine returns and option data in a single loss function, some error structure
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must be assumed on the option data. With σi,t and σi,t(Ci,t(ht(ξ
∗))) denoting the implied Black-

Scholes volatilities from the market price and the model price, CJO and CHJ assume

σi,t = σi,t(Ci,t(ht(ξ
∗))) + εi,t (8.7)

and further assume that the implied volatility error εi,t ∼ Normal (0, σ2
ε) is uncorrelated with

shocks in returns. Given the normality assumption, the log-likelihood associated with the options

data, Loptions, is easily constructed, and can be combined with the log-likelihood associated with

the return data, Lreturns, which is given in (8.1).

While this construction is conceptually straightforward, a practical problem remains. Option

prices are available in the time-series as well as in the cross section, thus the number of data

points available for computing Loptions is significantly larger than the number of data points

available for computing Lreturns. In order to ensure that the parameter estimates from the joint

estimation are not dominated by the option prices, CJO (2012) assign an equal weight to each

data point when computing the total log likelihood, as follows

Ljoint =
T +NT

2

Lreturns
T

+
T +NT

2

Loptions
N

, (8.8)

where T is the number of days in the return sample, and NT is the total number of option

contracts. Christoffersen, Heston, and Jacobs (2010) try to address this problem by using a

return sample in estimation which is considerably longer than the option sample.

9 Stochastic Volatility

Most option pricing models are formulated in continuous time. It is therefore useful to investigate

the relationship between GARCH models and the benchmark continuous time models. The

benchmark model in the continuous time literature is the Heston (1993a) stochastic volatility

model. Consider first the one-factor Heston (1993a) model which is one of the most popular

models in the option valuation literature. This model specifies the dynamics of the spot price

S (t) as follows

dS (t) = (r + µv(t))S (t) dt+
√
v(t)S (t) dz1(t), (9.1)

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)

(
ρdz1(t) +

√
1− ρ2dz2(t)

)
,

where z1(t) and z2(t) are independent Wiener processes. The correlation between the innovations

to the stock return and variance is ρ. A negative ρ captures negative skewness in the return

distribution. Most of the literature follows Heston (1993a) and specifies the following risk-neutral
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dynamic

dS (t) = rS (t) dt+
√
v(t)S (t) dz∗1(t), (9.2)

dv(t) = (κ(θ − v(t))− λv(t))dt+ σ
√
v(t)(ρdz∗1(t) +

√
1− ρ2dz∗2(t)),

where z∗1(t) and z∗2(t) are independent Wiener processes under the risk-neutral measure. The

method underlying this risk neutralization is similar to the one outlined in Section 3 for GARCH

processes. The variance process is usually re-written as

dv(t) = (κ∗(θ∗ − v(t))dt+ σ
√
v(t)(ρdz∗1(t) +

√
1− ρ2dz∗2(t)), (9.3)

This model yields a quasi closed form option price, because just like the Heston-Nandi

GARCH model (2.3), it has an affi ne structure. It is therefore convenient to use this model

to capture the stylized facts of heteroskedasticity and negative skewness, which can be accom-

modated by a negative value of ρ, and to add other factors to address the remaining option biases.

Most of the literature combines the Heston (1993a) model with Poisson jumps in returns and

volatility.12 Bates (2012), Carr and Wu (2004), and Huang and Wu (2004) investigate infinite-

activity Lévy processes. Bates (2000) and Christoffersen, Heston, and Jacobs (2009) investigate

stochastic volatility models with multiple diffusive factors.

Several authors have investigated the relationship between GARCH models and (9.1) by

considering the limits of the GARCH models as the time interval becomes very small.13 See for

instance Duan (1997) and Heston and Nandi (2000). While this is instructive, these arguments

have to be interpreted with care, because a given GARCH model can have several continuous-

time limits, and a given continuous-time stochastic volatility model can be the limit of several

GARCH models. See for instance Corradi (2000).

It may be more instructive to focus on the more intuitive differences between the GARCH

models in (2.3) and (2.4) and their risk-neutralizations in 3 and 4 on the one hand, and the

continuous-time stochastic volatility model in (9.1) and (9.2). The Heston model (9.1) is in

principle a richer model than a GARCHmodel because it has two innovations, whereas a GARCH

model only has one. The GARCH model uses this one innovation in an ingenious way, by using

the lagged squared innovations in the variance dynamic. This makes the model easily amenable

to estimation using returns, whereas it is diffi cult to estimate (9.1) using returns. The absence

of a second innovation has distinct implications for option valuation. GARCH models do not

12See for instance Andersen, Benzoni, and Lund (2002), Bakshi, Cao and Chen (1997), Bates (1996b, 2000,
2006), Broadie, Chernov, and Johannes (2007), Chernov and Ghysels (2000), Eraker (2004), Eraker, Johannes,
and Polson (2003), Pan (2002), Broadie, Chernov, and Johannes (2007), and Eraker, Johannes, and Polson (2003).
13Garcia and Renault (1998) investigate how the GARCH and stochastic volatility models differ in terms of

hedging.
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contain a separate price for volatility risk, which may affect model fit. Christoffersen, Heston, and

Jacobs (2010) demonstrate that it is possible to incorporate a separate price for volatility risk into

the GARCH model, even while maintaining a single innovation, and that this improves option

pricing performance. We discussed another difference between GARCH models and stochastic

volatility models in Section 6.4, and we argued that the model in Ornthanalai (2009) can be seen

as a hybrid of both approaches.

Empirical work on the trade-offs between GARCH and stochastic volatility models is very

useful, because it is an important empirical question whether the additional flexibility offered by

the second innovation in the stochastic volatility model outweighs the increase in computational

complexity. Fleming and Kirby (2003) compare the forecasting performance of both classes of

models, and find that GARCH performs very well out-of-sample. Lehar, Scheicher, and Schit-

tenkopf (2002) compare the performance of GARCH and continuous-time stochastic volatility

models using models estimated over relatively short windows, and find that the GARCH model

outperforms the stochastic volatility model out-of-sample. More work along these lines is needed,

preferably using loss function containing both option data and long return samples. It may prove

interesting to compare the option pricing performance of GARCH models with that of discrete-

time stochastic volatility models with two innovations. Such models are formulated by Feunou

and Tedongap (2009) and CEFJ (2010).

10 Empirical Evidence

We now discuss empirical evidence on GARCH option pricing models. All available evidence

indicates that time variation in volatility is critically important, and that GARCH models out-

perform the Black-Scholes model.14 We therefore do not discuss this evidence in more detail,

but instead organize our discussion around four GARCH modeling features: the leverage effect,

differences in fit between affi ne and non-affi ne models, the impact of multiple components, and

the improvements in fit resulting from non-normal innovations. In some cases we attempt to

relate empirical results to the continuous-time stochastic volatility models in Section 9, but it is

important to keep in mind the inherent limitations.

As previously mentioned, the presence of the leverage effect, such as in (2.4), is a robust

empirical finding. Recall that this finding is partly due to the fact that most of the empirical

literature on GARCH option valuation uses index options, and index returns contain substantial

negative skewness under the physical as well as risk-neutral measure. When modeling stock

options, a somewhat different approach may be warranted, as negative skewness is less prevalent

14See for example Duan (1996), Engle and Mustafa (1992), Heynen, Kemna, and Vorst (1994), and Duan and
Zhang (2001).
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for stocks under the physical measure.

The modeling of negative skewness and asymmetry in stock returns is the subject of a volu-

minous literature. See Engle and Ng (1993), Glosten, Jagannathan, and Runkle (1993), Nelson

(1991), and Campbell and Hentschel (1992) for important contributions. The modeling of the

leverage effect, or equivalently the modeling of negative skewness, is therefore a fortiori impor-

tant for option pricing, because negative skewness is even more important under the risk-neutral

measure. However, the literature on this topic is limited, perhaps because estimation of GARCH

models using options is much more time-intensive than when using returns. Christoffersen and

Jacobs (2004) investigate the modeling of the leverage effect using the framework provided by

Ding, Granger, and Engle (1993) and Hentschel (1995), which nests a lot of existing specifica-

tions. Christoffersen and Jacobs (2004) find that more complex models outperform the NGARCH

model (2.4) when estimating on return data using maximum likelihood estimation (MLE), con-

sistent with the existing literature. However, this is not the case in- and out-of-sample when

estimating the model parameters using option data. Moreover, when valuing options using the

risk-neutralized parameters estimated on returns, the simple NGARCH model (2.4) also per-

forms well. Christoffersen and Jacobs (2004) conclude that while it is critically important to

model negative skewness for the purpose of option valuation, the simple NGARCH model (2.4)

suffi ces for this task. However, Hardle and Hafner (2000) find that the threshold GARCH model

(TGARCH), which has a more flexible news impact function, outperforms the NGARCH model

when valuing options. These results are obtained using risk-neutralized MLE estimates from

returns, and estimates from option data are not considered.

Another robust finding seems to be that it is rather straightforward to improve on the fit

of the affi ne model (2.3) using non-affi ne volatility dynamics such as (2.4). Hsieh and Ritchken

(2005) compare an affi ne and a non-affi ne NGARCH(1,1) model with normal shocks. They

estimate the two models using Wednesday data for S&P500 options for 1991-1995, and they

estimate the model on each day of the sample, parameterizing the initial volatility. They find

that the non-affi ne model dominates the affi ne model. Christoffersen, Dorion, Jacobs, and Wang

(2010) compare affi ne and non-affi ne specifications for several models: models with Gaussian and

non-Gaussian innovations, and volatility processes with one or two components. They find that

non-affi ne models dominate affi ne models both in terms of return fitting and option valuation

in all cases. One caveat is that they do not conduct a full-fledged estimation exercise where

all model parameters are estimated from option data. Either parameters are estimated using

MLE on a long sample of daily returns for 1962-2001, or the MLE parameters are used with a

parameterized initial volatility calibrated from options. However, in view of the fact that the

results are robust across several models, and in view of the Hsieh and Ritchken (2005) results,
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in our opinion the superiority of the non-affi ne specification is a robust empirical finding.15

The superiority of the non-affi ne specification (2.4) over the affi ne specification (2.3) should

not come as a surprise, and in our opinion it does not mean that the affi ne specification should be

abandoned. The non-affi ne specification (2.4) was chosen because of its superiority in modeling

returns, as well as other financial time series, and its good performance in this respect has

been documented by a voluminous literature. The results on option pricing merely confirm

these findings. The affi ne model (2.3) yields a quasi closed form solution, and the convenience

offered by this solution makes it a valuable tool. The papers by Hsieh and Ritchken (2005) and

Christoffersen, Dorion, Jacobs, and Wang (2010) therefore merely document a trade-off between

the convenience offered by the closed form solution and the corresponding deterioration in fit.

In other words, the interesting question is not whether the non-affi ne model fits the data better,

but how much better it fits. Moreover, this improvement in fit has to be balanced against the

computational cost and the precision of the Monte-Carlo pricing needed for the non-affi ne model.

In our experience, Monte-Carlo pricing using the numerical techniques described in Section 7.1

is very precise and reasonably fast. We therefore believe that the trade-off between affi ne and

non-affi ne models deserves serious consideration, and needs to be explored further in additional

research.

Available research on heteroskedastic non-normal innovations is very limited. In fact, the

models presented in Section 5 constitute all available empirical evidence. Christoffersen, Heston,

and Jacobs (2006) find that the inverse Gaussian model in Section 5.1 improves upon the Heston-

Nandi model in-sample but not out-of-sample for valuing options. Christoffersen, Dorion, Jacobs,

and Wang (2010) document that option pricing models with GED innovations as in Section 5.2

also do not fit options better than models with Gaussian innovations, although the models with

GED innovations outperform Gaussian models when fitting returns. Lehnert (2003) finds that

an EGARCH dynamic with GED innovations outperforms the Heston-Nandi model in- and out-

of-sample. This outperformance may of course not be due to the non-normal innovation, but

also to the difference in functional form of the volatility dynamic.

In the continuous-time stochastic volatility model, the use of Poisson jumps is the preferred

approach to address the shortcomings of the standard affi ne model. Christoffersen, Jacobs and

Ornthanalai (2009) estimate the Poisson-normal model in Section 5.3, as well as a number of

special cases. They estimate the models using MLE on daily S&P500 returns for 1985-2004, and

find that the Poisson-normal models significantly improve on the fit of the benchmark Heston-

Nandi (2000) model. Using the risk-neutralized MLE estimates, they find that models with time-

varying jump intensities significantly improve on the Heston-Nandi (2000) benchmark. They

15See also Jones (2003), Ait-Sahalia and Kimmel (2007), and Christoffersen, Jacobs, and Mimouni (2010) for
evidence questioning the affi ne assumption in continuous-time stochastic volatility models.
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also confirm the good performance of jump models when estimating parameters using a joint

objective function consisting of returns and options, although the relative ranking of the jump

models changes. Duan, Ritchken, and Sun (2005) estimate the parameters of their model in

Section 5.3 using daily S&P500 returns for 1991-1995. They subsequently risk-neutralize these

parameters and value options over the same sample period. They find that the jump model

outperforms the NGARCH model (2.4). Ornthanalai (2009) also confirms the importance of

jump processes when estimating the model in Section 6.4 and finds that infinite-activity jump

processes outperform finite-activity jump processes.

Overall, results for non-normal specifications are mixed. It is important to keep in mind that it

is diffi cult to compare results when the benchmarks are different. For example, in Christoffersen,

Jacobs and Ornthanalai (2009) the benchmark is the affi ne Heston-Nandi (2000) model, whereas

in Duan, Ritchken, and Sun (2005) the benchmark is the non-affi ne model in Duan (1995). Given

that the non-affi ne model significantly outperforms the affi ne model, the choice of benchmark will

influence the conclusion regarding the importance of the jump models. Moreover, different data

and objective functions are used in estimation, and in our experience, risk-neutralized parameter

estimates obtained from returns sometimes yield surprising results. Estimation using option

data, while filtering using returns, may seem preferable, but a potential problem is that one

often overfits the benchmark GARCH models such as (2.4) and (2.3). In our opinion models

are therefore best compared using an objective function that combines returns and options data.

This is the only way to address Bates’(1996) observation that the mapping between the physical

and risk-neutral distribution is the most problematic aspect of option pricing models. Not much

of this type of evidence is available, even when using normal innovations or continuous-time

models.16 Given the importance of risk premia, as emphasized for example by Pan (2002),

Broadie, Chernov, and Johannes (2007), Christoffersen, Ornthanalai, and Jacobs (2009), and

Ornthanalai (2009), it is likely that models with non-normal innovations will yield very different

results in this type of empirical exercise, because implied risk premia will be very different from

the normal case. GARCH models can play an important role here, because of the computational

complexity resulting from objective functions including returns and options. The GARCH filter

is extremely simple, which makes the resulting optimization problem computationally feasible

in many cases. There is a lot of potentially interesting work to be done here, given that many

different innovations can be used. See Ornthanalai (2009) for an overview of candidate processes

within the Lévy class.

16Chernov and Ghysels (2000) and Pan (2002) use method of moment estimators to combine return data and
a time series of option contracts. Jones (2003) and Eraker (2004) use Bayesian methods, and their posteriors
are based on both types of data. Christoffersen, Jacobs, and Ornthanalai (2009), Ornthanalai (2009), and
Christoffersen, Heston, and Jacobs (2010) present results based on MLE using a likelihood consisting of returns
and broad cross-sections of options.
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Available empirical evidence on multifactor GARCHmodels is also rather limited.17 Christof-

fersen, Jacobs, Ornthanalai, and Wang (2008) document that the model with long-run and short-

run components in (3.12) significantly outperforms the Heston-Nandi (2000) model. Christof-

fersen, Dorion, Jacobs, and Wang (2010) find that when considering the non-affi ne versions of

these models, the evidence in favor of the model with short-run and long-run components is much

less clear-cut.

The limited evidence on multifactor models is perhaps somewhat surprising. In the yield

curve literature, which uses models with a mathematical structure similar to those in the option

valuation literature, the use of multifactor models of the short rate is widespread. In fact, it

is widely accepted in the term structure literature that one factor is not suffi cient to capture

the time variation and cross-sectional variation in the term structure, and the consensus seems

to be that a minimum of three factors are needed. See for instance Litterman and Scheinkman

(1991) and Dai and Singleton (2000). Option valuation and term structure modeling have a lot

in common: in both cases one faces the demanding task of providing a good empirical fit to the

time-series as well as the cross-sectional dimension using tractable, parsimonious models. We

therefore believe that the use of multifactor models is as critical for the equity option valuation

literature as it is for the term structure literature, and that in the future multifactor models may

become as widespread in the option valuation literature as they now are in the term structure

literature.18

We have even less evidence on the valuation of American options using GARCH processes.

Stentoft (2005) compares the performance of several GARCH models with the constant volatility

model, using a sample of five individual stocks. He finds that the GARCH models dramatically

improve upon the constant volatility model. He documents the importance of the leverage

effect, and finds that the EGARCH model performs especially well. Using option data for three

underlying stocks, Stentoft (2008) finds that normal inverse Gaussian innovations improve on

Gaussian innovations, especially for pricing out-of-the-money options.

We therefore conclude that much work remains to be done. An extensive specification search

is needed that involves different types of non-normal innovations and multiple volatility com-

ponents. The trade-off between affi ne and non-affi ne processes in terms of computation time

and precision requires special attention. Most importantly, this specification search ought to be

implemented using objective functions that combine returns data and options data, in order to

address Bates’(1996) observation that the physical and risk-neutral parameters needed to match

returns and options data respectively are very different.

17The Poisson-normal models in Duan, Ritchken, and Sun (2005) and Christoffersen, Jacobs, and Ornthanalai
(2009) can of course also be considered multifactor models.
18See Bates (2000) and Christoffersen, Heston, and Jacobs (2009) for studies of multifactor continuous-time

stochastic volatility models.
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11 Conclusion

The literature on option valuation has expanded considerably over the last three decades. An

increasing number of studies investigate option pricing in models that capture the time-varying

volatility in returns. It is important to emphasize once more that this development is driven by

the stylized facts in the data, as evidenced by the rich literature that estimates GARCH models

on return data, following the seminal work of Engle (1982) and Bollerslev (1986), and the existing

evidence on option pricing, as articulated forcefully by Bakshi, Cao and Chen (1997).

Even though improvements in computing power make the analysis of data-rich and complex

optimization problems ever more feasible, option valuation studies continue to be confronted by

computational constraints, due to the size of the data and the complexity of the processes required

by the structure of the data. In our opinion, GARCH models therefore have an important role

to play in the development of this literature, because of their (relative) ease of implementation.

While the literature has expanded significantly, it seems to us that much remains unknown.

Even within the class of models discussed in this survey, our knowledge is limited, and many

outstanding questions have not been addressed. For instance, do non-normal innovations or

multiple volatility components offer the best chances of improving empirical fit? How many

volatility components are needed? Even more importantly, what is the nature of the trade-off

between the convenience offered by the affi ne structure and the resulting deterioration in fit? Can

this be addressed by additional volatility components or does the resulting increase in parameters

come at too high a price?

While some of these questions have been addressed, most existing work, including our own,

suffer in our opinion from two important weaknesses. First, we believe that the Bates (1996)

critique has to be taken very seriously, and that consequently the value added of studies that

fit models using returns or options separately is limited. Instead, a loss function that combines

returns and option data, as in Section 8.3, is indispensable, and clearly the existing evidence

using such frameworks is limited. There is a real danger that many existing empirical results are

simply caused by overfitting. Second, and somewhat related, a more explicit out-of-sample focus

is needed when evaluating option pricing models.

Much additional work is thus needed. Moreover, the question of the economics underlying

many of these models has hardly been addressed. The risk-neutralizations used in this sur-

vey are analytically convenient, and have the benefit of clarifying the relationship between the

risk-neutral and physical measure, but the deeper question of the preferences underlying the

construction, as addressed in Brennan (1979), Rubinstein (1976), Duan (1995), and Naik and

Lee (1990), are somewhat obscured. Finally, most of the empirical evidence discussed in Section

10 uses index options. More work on stock options is needed. See Elkamhi and Ornthanalai
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(2009) for a recent example.

12 Appendix A: Matlab Code for Monte Carlo Simula-

tion of European Option Prices

% Monte Carlo computation of European option prices for Heston-Nandi (2000) model

% Use Black-Scholes based importance sampling, as well as Duan and Simonato (1998) EMS

% Parameter Values mostly from Heston and Nandi Table 1(a)

r=0; % risk free rate per day continuously compounded

T=90; % days (periods) to maturity

a=1.32e-6; % GARCH MA parameter

b=0.589; % GARCH AR parameter

gam=421.39; % GARCH Asymmetry parameter

om=5.02e-6; % GARCH constant

lam=.205; % risk premium

ht1=(0.15^2)/252; % realistic value for daily unconditional variance

K=100; % strike price

S=100; % stock price

nsim=10000;

xitt=random(’norm’,0,1,nsim,T);

xt = ones(nsim,1);

xthomo=xt;

ht = ht1*ones(nsim,1);

sigma=sqrt(365*ht1);

bsprice=blsprice(S,K,r*365,T/365,sigma);

for i = 1:T

xit=xitt(1:nsim,i);

xt = xt.*exp(-0.5*ht+sqrt(ht).*xit);

xthomo = xthomo.*exp(-0.5*sigma^2/365+sigma/sqrt(365).*xit);

mxt=mean(xt);

mxthomo=mean(xthomo);

if mxt < 0.5

chgar=-99;

break;

else;
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xt = xt/mxt;

xthomo = xthomo/mxthomo;

ht=om*ones(nsim,1)+b*ht+a*(xit-sqrt(ht)*gamstar).^2;

end;

end;

xta=S*exp(r*T).*xt;

xtahomo=S*exp(r*T).*xthomo;

maxpay=xta-K*ones(nsim,1);

maxpay=max(maxpay,zeros(nsim,1));

maxpayhomo=xtahomo-K*ones(nsim,1);

maxpayhomo=max(maxpayhomo,zeros(nsim,1));

chgarsumhomo=exp(-r*T)*sum(maxpayhomo);

chgarhomo=chgarsumhomo/nsim;

chgarsum=exp(-r*T)*sum(maxpay);

op_price=chgarsum/nsim + bsprice - chgarhomo;

13 Appendix B: Matlab Code for Heston-Nandi GARCH(1,1)

Option Prices

% Matlab code for computation of closed-form GARCH(1,1) option price in Heston and Nandi

(2000)

% The first part of the code is called GetHesnanPrice.m

% It sets parameters and computes the integral. It calls the function hnintres.m which does

the recursion

%– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

% GetHesnanPrice.m

% function [cHN]=GetHesnanPrice(S,T,K,r,a,b,om,gamstar,ht1,resc);

% Parameter Values mostly from Heston and Nandi (2000) Table 1(a)

r=0; % risk free rate per day continuously compounded

T=90; % days (periods) to maturity

a=1.32e-6; % GARCH MA parameter

b=0.589; % GARCH AR parameter

gam=421.39; % GARCH Asymmetry parameter

om=5.02e-6; % GARCH intercept

lam=.205; % risk premium
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ht1=(0.15^2)/252; % realistic value for daily unconditional variance

K=100; % strike price

S=100; % stock price

integr=quad8(’hnintres’,.0001,1000,[1e-6 1e-6],[],a,b,om,ht1,-.5,gamstar,T,r,K,S);

% Calculate Heston’s European call price

op_price=.5*(S-K*exp(-r*T)) + K/pi*integr

% hnintres.m

% calculates the Heston-Nandi integrand

% note that we are also finding f(i*fi+1) here and not just f(fi)

function fval=hnint(fi,a,b,om,ht1,lam,gam,T,r,K,S);

fip = [i*fi+1; i*fi];

A=fip*r;

B=lam*fip + .5*fip.^2;

% recurse backwards until time t=0

for t=T-1:-1:1;

Ap=A;

Bp=B;

A = Ap + fip*r + Bp*om - .5*log(1-2*a*Bp);

B = fip*(lam+gam)-.5*gam^2 + b*Bp + (.5*(fip-gam).^2)./(1-2*a*Bp);

end;

f1=S.^fip(1,:).*exp(A(1,:)+B(1,:)*ht1);

f2=S.^fip(2,:).*exp(A(2,:)+B(2,:)*ht1);

% first integrand

f1val=real((K.^(-i*fi)).*f1./(i*fi));

% second integrand

f2val=real((K.^(-i*fi)).*f2./(i*fi));

% combined integrand

fval = (f1val/K - f2val)*exp(-r*T);

14 Appendix C: The Affi ne GARCH(p,q) Case

This appendix presents the moment generating function (MGF) for the GARCH(p,q) process

used in this paper and in Heston and Nandi (2000). We first derive the MGF of a GARCH(2,2)

ht+1 = w + b1ht + b2ht−1 + a1

(
zt − c1

√
ht

)2

+ a2

(
zt−1 − c2

√
ht−1

)2
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as an example and then generalize it to the case of the GARCH(p,q). Let xt = log(St). For con-

venience we will denote the conditional generating function of St (or equivalently the conditional

moment generating function (MGF) of xT ) by ft instead of the more cumbersome f(t;T, φ)

ft = Et[exp(φxT )] (C1)

We shall guess that the MGF takes the log-linear form. We again use the more parsimonious

notation At to indicate A(t;T, φ).

ft = exp
(
φxt + At +B1tht+1 +B2tht + Ct(zt − c2

√
ht)

2
)

(C2)

We have

ft = Et [ft+1] = Et

[
exp

(
φxt+1 + At+1 +B1t+1ht+2 +B2t+1ht+1 + Ct+1(zt+1 − c2

√
ht+1)2

)]
(C3)

Since xT is known at time T, equations (C2) and (C3) require the terminal condition

AT = BiT = CT = 0

Substituting the dynamics of xt into (C3) and rewriting we get

ft = Et exp


φ(xt + r) + (B1t+1a1 + Ct+1)

(
zt+1 − (ct+1 − φ

2(B1t+1a1+Ct+1)
)
√
ht+1

)2

+

At+1 +B1t+1w +B1t+1b2ht +B1t+1a2(zt − c2

√
ht)

2+(
φλ+B1t+1b1 +B2t+1 + (φct+1 − φ2

4(B1t+1a1+C1t+1)
)+

(B1t+1a1c
2
1 + Ct+1c

2
2)− ct+1 (B1t+1a1c1 + Ct+1c2)

)
ht+1

 (C4)

where

ct+1 =
B1t+1a1c1 + Ct+1c2

B1t+1a1 + Ct+1

and we have used

(B1t+1a1 + Ct+1)

(
zt+1 − (ct+1 −

φ

2(B1t+1a1 + Ct+1)
)
√
ht+1

)2

= B1t+1a1(zt+1 − c1

√
ht+1)2 + Ct+1(zt+1 − c2

√
ht+1)2

+zt+1φ
√
ht+1 +

(
−φct+1 +

φ2

4(B1t+1a1 + Ct+1)

)
ht+1

−
(
B1t+1a1c

2
1 + Ct+1c

2
2 − ct+1 (B1t+1a1c1 + Ct+1c2)

)
ht+1
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Using the result

E
[
exp(x(z + y)2)

]
= exp(−1

2
ln(1− 2x) + xy2/(1− 2x)) (C5)

in (C4) we get

ft = exp


φ(xt + r) + At+1 +B1t+1w − 1

2
ln(1− 2B1t+1a1 − 2Ct+1)+

B1t+1b2ht +B1t+1a2(zt − c2

√
ht)

2 +
(B1t+1a1+Ct+1)(ct+1− φ

2(B1t+1a1+Ct+1)
)2

1−2B1t+1a1−2Ct+1
ht+1+(

φλ+B1t+1b1 +B2t+1 + (φct+1 − φ2

4(B1t+1a1+Ct+1)
) + ...

(B1t+1a1c
2
1 + Ct+1c

2
2)− ct+1 (B1t+1a1c1 + Ct+1c2)

)
ht+1

 (C6)

Matching terms on both sides of (C6) and (C2) gives

At = At+1 + φr +B1t+1w −
1

2
ln(1− 2B1t+1a1 − 2Ct+1)

B1t = φλ+B1t+1b1 +B2t+1 +
(
B1t+1a1c

2
1 + Ct+1c

2
2

)
+

1/2φ2 + 2 (B1t+1a1c1 + Ct+1c2) (B1t+1a1c1 + Ct+1c2 − φ)

1− 2B1t+1a1 − 2Ct+1

B2t = B1t+1b2

Ct = B1t+1a2

where we have used the fact that

φct+1 −
φ2

4(B1t+1a1 + Ct+1)
− ct+1 (B1t+1a1c1 + Ct+1c2)

+
(B1t+1a1 + Ct+1)(ct+1 − φ

2(B1t+1a1+Ct+1)
)2

1− 2B1t+1a1 − 2Ct+1

=
1/2φ2 + 2 (B1t+1a1c1 + Ct+1c2) (B1t+1a1c1 + Ct+1c2 − φ)

1− 2B1t+1a1 − 2Ct+1

The case of GARCH(p,q) follows the same logic but is more notation-intensive. Define two
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k × k upper-triangle matrices Zt = {Zij,t} and Ct = {Cij,t}, where

Zij,t =
(
zt−i+1 − cj+i

√
ht−i+1

)2

for j + i ≤ q

= 0 for j + i > q

The moment generating function ft is assumed to be of the log-linear form

ft = exp

(
φxt + At +

p∑
i=1

Bitht+2−i + I ′(Ct · ×Zt)I
)

where I is a k× 1 vector of ones and k = q− 1. ·× represents element by element multiplication.
After algebra similar to (C1)-(C6), we derive the following results:

At = At+1 + φr +B1t+1w −
1

2
ln(1− 2B1t+1a1 − 2

q−1∑
j=1

C1j,t+1)

B1t = φλ+B1t+1b1 +B2t+1 +

(
B1t+1a1c

2
1 +

q−1∑
j=1

C1j,t+1c
2
j+1

)
+

1/2φ2 + 2
(
B1t+1a1c1 +

∑q−1
j=1 C1j,t+1cj+1

)(
B1t+1a1c1 +

∑q−1
j=1 C1j,t+1cj+1 − φ

)
1− 2B1t+1a1 − 2

∑q−1
j=1 C1j,t+1

Bit = B1t+1bi +Bi+1t+1, for i = 2...p− 1

Bpt = B1t+1bp

for i = 1...k

Cij,t = B1t+1ai+1 for j = 1 and j + i ≤ q

= Ci+1j−1,t+1 for j 6= 1 and j + i ≤ q

= 0 for j + i > q

and

AT = BiT = CijT = 0, for all i and j.
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