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Abstract

When the relationship between security prices and state variables in dynamic term

structure models is nonlinear, existing studies usually linearize this relationship because

nonlinear �ltering is computationally demanding. We conduct an extensive investiga-

tion of this linearization and analyze the potential of the unscented Kalman �lter to

properly capture nonlinearities. To illustrate the advantages of the unscented Kalman

�lter, we analyze the cross section of swap rates, which are relatively simple non-linear

instruments, and cap prices, which are highly nonlinear in the states. An extensive

Monte Carlo experiment demonstrates that the unscented Kalman �lter is much more

accurate than its extended counterpart in �ltering the states and forecasting swap rates

and caps. Our �ndings suggest that the unscented Kalman �lter may prove to be a

good approach for a number of other problems in �xed income pricing with nonlinear

relationships between the state vector and the observations, such as the estimation

of term structure models using coupon bonds and the estimation of quadratic term

structure models.
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1 Introduction

Multifactor a¢ ne term structure models (ATSMs) have become the standard in the literature

on the valuation of �xed income securities, such as government bonds, corporate bonds,

interest rate swaps, credit default swaps, and interest rate derivatives. Even though we have

made signi�cant progress in specifying these models, their implementation is still subject to

substantial challenges.

One of the challenges is the proper identi�cation of the parameters governing the dy-

namics of the risk premia (see Dai and Singleton (2002)). It has been recognized in the

literature that the use of contracts that are nonlinear in the state variables, such as interest

rate derivatives, can potentially help achieve such identi�cation. Nonlinear contracts can

also enhance the ability of a¢ ne models to capture time variation in excess returns and

conditional volatility (see Bikbov and Chernov (2009) and Almeida, Graveline and Joslin

(2011)).

Given the potentially valuable information content of nonlinear securities, e¢ cient im-

plementation of ATSMs for these securities is of paramount importance. One of the most

popular techniques used in the literature, the extended Kalman �lter (EKF), relies on a

linearized version of the measurement equation, which links observed security prices to the

models�state variables. Our paper is the �rst to extensively investigate the impact of this

linearization. We show that this approximation leads to signi�cant noise and biases in the

�ltered state variables as well as the forecasts of security prices. These biases are particularly

pronounced when using securities that are very nonlinear in the state variables, such as inter-

est rate derivatives. We propose the use of the unscented Kalman �lter (UKF), which avoids

this linearization, to implement a¢ ne term structure models with nonlinear securities, and

we extensively analyze the properties of this �lter. The main advantage of the unscented

Kalman �lter is that it accounts for the non-linear relationship between the observed security

prices and the underlying state variables.

We use an extensive Monte Carlo experiment that involves a cross-section of LIBOR and

swap rates, as well as interest rate caps to investigate the quality of both �lters as well as

their in- and out-of-sample forecasting ability. The unscented Kalman �lter signi�cantly

outperforms the extended Kalman �lter. First, the UKF outperforms the EKF in �ltering

the unobserved state variables. Using the root-mean-square-error (RMSE) of the �ltered

state variables as a gauge for the performance of both �lters, we �nd that the UKF robustly

outperforms the EKF across models and securities. In some cases, the median RMSE for the

EKF is up to 33 times larger than the median RMSE for the UKF. The outperformance of

the unscented Kalman �lter is particularly pronounced when interest rate caps are included
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in the �ltering exercise. We also �nd that the UKF is numerically much more stable than the

EKF, exhibiting a much lower dispersion of the RMSE across the Monte Carlo trajectories.

Second, the improved precision of the UKF in �ltering the state variables translates into

more accurate forecasts for LIBOR rates, swap rates, and cap prices. The outperformance

of the UKF is particularly pronounced for short horizons. It is also critically important that

the superior performance of the UKF comes at a reasonable computational cost. In our

applications, the time required for the unscented Kalman �lter was about twice the time

needed for the extended Kalman �lter.

Throughout this paper we keep the structural parameters �xed at their true values. How-

ever, the poor results obtained when using the EKF to �lter states suggest that parameter

estimation based on this technique would be highly unreliable, as the �lter is unable to cor-

rectly �t rates and prices even when provided with the true model parameters. The dramatic

improvements brought by the UKF suggest that it will also improve parameter estimation,

especially when derivative prices are used to estimate the parameters, which is of critical

importance in the identi�cation of the risk premium parameters.

Even though the use of the unscented Kalman �lter has become popular in the engineering

literature (see for instance Julier (2000) and Julier and Uhlmann (2004)), it has not been

used extensively in the empirical asset pricing literature.1 Our results suggest that the

unscented Kalman �lter may prove to be a good approach to tackle a number of problems

in �xed income pricing, especially when the relationship between the state vector and the

observations is highly nonlinear. This includes for example the estimation of term structure

models of credit spreads using a cross section of coupon bonds or credit derivatives, or the

estimation of quadratic term structure models.2

The paper proceeds as follows. Section 2 brie�y discusses the pricing of LIBOR, swaps,

and caps in a¢ ne term structure models. Section 3 discusses Kalman �ltering in ATSMs,

including the extended Kalman �lter and the unscented Kalman �lter. Section 4 reports

the results of our Monte Carlo experiments. Section 5 discusses implications for parameter

estimation, and Section 6 concludes.

1See Carr and Wu (2007) and Bakshi, Carr and Wu (2008) for applications to equity options. van

Binsbergen and Koijen (2012) use the unscented Kalman �lter to estimate present-value models.
2See Fontaine and Garcia (2012) for a recent application of the unscented Kalman �lter to the estimation

of term structure models for coupon bonds. See Chen, Cheng, Fabozzi, and Liu (2008) for an application of

the unscented Kalman �lter to the estimation of quadratic term structure models.
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2 A¢ ne Term Structure Models

In this section, we de�ne the risk-neutral dynamics in ATSMs, a pricing kernel and the

pricing formulas for LIBOR rates, swap rates, and cap prices. We follow the literature on

term structure models and assume that the swap and LIBOR contracts as well as the interest

rate caps are default-free. See Dai and Singleton (2000), Collin-Dufresne and Solnik (2001),

and Feldhutter and Lando (2008) for further discussion.

2.1 Risk-Neutral Dynamics

A¢ ne term structure models (ATSMs) assume that the short rate is given by rt = �0+ �
0
1xt;

and the state vector xt follows an a¢ ne di¤usion under the risk-neutral measure Q

dxt = e��e� � xt

�
dt+ �

p
StdfWt; (1)

where fWt is a N�dimensional vector of independent standard Q-Brownian motions, e� and
� are N �N matrices and St is a diagonal matrix with a ith diagonal element given by

[St]ii = �i + �0ixt: (2)

Following Du¢ e and Kan (1996), we write

 Q(u; t; �) = EQt

h
e�

R t+�
t rsdseu

0xt
i

= exp fAu(�)�B0
u(�)xtg ; (3)

where � is the time to maturity, and Au(�) and Bu(�) satisfy the following Ricatti ODEs

dAu(�)

d�
= �e�0e�Bu(�) + 1

2

NX
i=1

[�Bu(�)]
2
i �i � �0 (4)

and
dBu(�)

d�
= �e�Bu(�) + 1

2

NX
i=1

[�Bu(�)]
2
i �i + �1. (5)

Equations (4) and (5) can be solved numerically with initial conditions Au(0) = 0 and

Bu(0) = �u. The resulting zero-coupon bond price is exponentially a¢ ne in the state vector

P (t; �) =  Q(0; t; �) = exp fA0(�)�B0
0(�)xtg : (6)
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2.2 Pricing Kernel

The model is completely speci�ed once the dynamics of the state price are known. The

dynamic of the pricing kernel �t is assumed to be of the form

d�t
�t

= �rtdt� �0tdWt; (7)

where Wt is a N�dimensional vector of independent standard P�Brownian motions and �t
denotes the market price of risk. The dynamics of the state vector under the actual measure

P can be obtained by subtracting �
p
St�t from the drift of equation (1).

The market price of risk �t does not depend on the maturity of the bond and is a function

of the current value of the state vector xt. We study completely a¢ ne models which specify

the market price of risk as follows

�t =
p
St�0. (8)

See Cheridito, Filipovíc and Kimmel (2007), Du¤ee (2002), and Duarte (2004) for alternative

speci�cations of the market price of risk.

2.3 LIBOR and Swap Rates

In ATSMs, the time-t LIBOR rate on a loan maturing at t+ � is given by

L(t; �) =
1� P (t; �)

�P (t; �)
(9)

= exp(�A0(�) +B0
0(�)xt)� 1:

while the fair rate at time t on a swap contract with semi-annual payments up to maturity

t+ � can be written as

SR(t; �) =
1� P (t; �)

0:5�
P2�

j=1 P (t; 0:5j)
(10)

=
1� exp(A0(�)�B0

0(�)xt)

0:5�
P2�

j=1 exp(A0(0:5j)�B0
0(0:5j)xt)

:

As mentioned earlier, A0(�) and B0(�) can be obtained numerically from equations (4) and

(5).

2.4 Cap Prices

Computing cap prices is more computationally intensive. Given the current latent state

x0, the value of an at-the-money cap CL on the 3-month LIBOR rate L(t; 0:25) with strike
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�R = L(0; 0:25) and maturity in T years is

CL(0; T; �R) =

T=0:25X
j=2

EQ
�
e�

R Tj
0 rsds 0.25

�
L(Tj�1; 0.25)� �R

�+�
=

T=0:25X
j=2

cL
�
0; Tj; �R

�
; (11)

where Tj = 0.25j. The cap price is thus the sum of the value of caplets cL
�
0; Tj; �R

�
with

strike �R and maturity Tj.

The payo¤ �Tj�1 of caplet cL
�
0; Tj; �R

�
is known at time Tj�1 but paid at Tj. It is given

by

�Tj�1 = 0.25
�
L(Tj�1; 0.25)� �R

�+
= 0.25

�
1� P (Tj�1; 0.25)

0.25P (Tj�1; 0.25)
� �R

�+
=

1 + 0.25 �R

P (Tj�1; 0.25)

�
1

1 + 0.25 �R
� P (Tj�1; 0.25)

�+
. (12)

Since the discounted value of the caplet is a martingale under the risk-neutral measure, we

have for K = 1
1+0:25 �R

cL
�
0; Tj; �R

�
= EQ

h
e�

R Tj
0 rsds�Tj�1

i
=

1

K
EQ

�
e�

R Tj�1
0 rsds

�
K � P (Tj�1; 0.25)

�+�
=

1

K
P(0; Tj�1; Tj; K) (13)

Equation (13) represents the time-0 value of 1=K puts with maturity Tj�1 and strike K on

a zero-coupon bond maturing in Tj years. Du¢ e, Pan, and Singleton (2000) show that the

price of such a put option is given by

P(0; Tj�1; Tj; K) = EQ
�
e�

R Tj�1
0 rsds

�
K � exp

�
A0(0:25)�B0

0(0:25)xTj�1
	�+�

= eA0(0:25)EQ
�
e�

R Tj�1
0 rsds

�
e�A0(0:25)K � exp

�
�B0

0(0:25)xTj�1
	�+�

= eA0(0:25)
h
cG0;d(log c; 0; Tj�1)�Gd;d(log c; 0; Tj�1)

i
, (14)

where c = e�A0(0:25)K, d = �B0(0:25), and

Ga;b(y; 0; Tj�1) =
1

2
 Q(a; 0; Tj�1)�

1

�

Z 1

0

1

{
Im
�
 Q(a+ i{b; 0; Tj�1)e�i{y

�
d{ (15)

In general, the integral in (15) can only be solved numerically. Note that this requires solving

the Ricatti ODEs for Au(�) and Bu(�) in (4) and (5) at each point u = a+ i{b.
Empirical studies of cap pricing and hedging can be found in Li and Zhao (2006) and

Jarrow, Li and Zhao (2007).
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3 Kalman Filtering the State Vector

Consider the following general nonlinear state-space system

xt+1 = F (xt; �t+1) ; (16)

and

yt = G(xt) + ut (17)

where yt is a D-dimensional vector of observables, �t+1 is the state noise and ut is the

observation noise that has zero mean and a covariance matrix denoted by R. In term

structure applications, the transition function F is speci�ed by the dynamic of the state

vector and the measurement function G is speci�ed by the pricing function of the �xed

income securities being studied. In our application, the transition function F follows from

the a¢ ne state vector dynamic in (1), yt are the LIBOR, swap rates, and cap prices observed

weekly for di¤erent maturities, and the function G is given by the pricing functions in (9),

(10), and (11).

The transition equation (16) re�ects the discrete time evolution of the state variables,

whereas the measurement equation provides the mapping between the unobserved state

vector and the observed variables. If fxt; t � Tg is an a¢ ne di¤usion process, a discrete
expression of its dynamics is unavailable except for Gaussian processes. When the state

vector is not Gaussian, one can obtain an approximate transition equation by exploiting the

existence of the two �rst conditional moments in closed-form and replacing the original state

vector with a new Gaussian state vector with identical two �rst conditional moments. While

this approximation results in inconsistent estimates, Monte Carlo evidence shows that its

impact is negligible in practice (see Duan and Simonato (1999) and de Jong (2000)).

For the models we are interested in, the conditional expectation of the state vector is an

a¢ ne function of the state (see Appendix A for explicit expressions of the two �rst conditional

moments). Using (1) and an Euler discretization, the transition equation (16) can therefore

be rewritten as follows

xt+1 = F (xt; �t+1) = a+ bxt + �t+1; (18)

where �t+1jt � N (0; v (xt)) and v (xt) is the conditional covariance matrix of the state vector.
Given that yt is observed and assuming that it is a Gaussian random variable, the Kalman

�lter recursively provides the optimal minimum MSE estimate of the state vector. The

prediction step consists of

xtjt�1 = a+ bxt�1jt�1; (19)

Pxx(tjt�1) = bPxx(t�1jt�1)b
0 + v

�
xt�1jt�1

�
(20)
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Kt = Pxy(tjt�1)P
�1
yy(tjt�1); (21)

and

ytjt�1 = Et�1 [G(xt)] : (22)

The updating is done using

xtjt = xtjt�1 +Kt

�
yt � ytjt�1

�
; (23)

and

Pxx(tjt) = Pxx(tjt�1) �KtPyy(tjt�1)K
0
t; (24)

When G in (22) is a linear function, e.g. if the observations are zero-coupon yields, then

the covariance matrices Pxy(tjt�1) and Pyy(tjt�1) can be computed exactly and the only ap-

proximation is therefore induced by the Gaussian transformation of the state vector used in

(18). When the relationship between the state vector and the observation is nonlinear, as is

the case when swap contracts, coupon bonds, or interest rate options are used, then G(xt)

needs to be well approximated in order to obtain good estimates of the covariance matrices

Pxy(tjt�1) and Pyy(tjt�1): The approximation of G is di¤erent for di¤erent implementations of

the �lter, which is the topic to which we now turn.

3.1 The Extended Kalman Filter

To deal with nonlinearity in the measurement equation, one can apply the extended Kalman

�lter (EKF), which relies on a �rst order Taylor expansion of the measurement equation

around the predicted state xtjt�1.3 The measurement equation is therefore rewritten as

follows

yt = G(xtjt�1) + Jt
�
xt � xtjt�1

�
+ ut; (25)

where

Jt =
@G

@xt

����
xt=xtjt�1

denotes the Jacobian matrix of the nonlinear function G(xtjt�1) computed at xtjt�1:

The covariance matrices Pxy(tjt�1) and Pyy(tjt�1) are then computed as

Pxy(tjt�1) = Pxx(tjt�1)Jt; (26)

and

Pyy(tjt�1) = JtPxx(tjt�1)J
0
t +R: (27)

3For applications of the extended Kalman �lter see Chen and Scott (1995), Duan and Simonato (1999),

and Du¤ee (1999).
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The estimate of the state vector is then updated using (23), (24), and

Kt = Pxx(tjt�1)JtP
�1
yy(tjt�1). (28)

3.2 The Unscented Kalman Filter

Unlike the extended Kalman �lter, the unscented Kalman �lter uses the exact nonlinear

functionG(xt) and does not linearize the measurement equation. Rather than approximating

G(xt); the unscented Kalman �lter approximates the conditional distribution of the xt using

the scaled unscented transformation (see Julier (2000) for more details), which can be de�ned

as a method for computing the statistics of a nonlinear transformation of a random variable.

Julier and Uhlmann (2004) prove that such an approximation is accurate to the third order

for Gaussian states and to the second order for non-Gaussian states. It must also be noted

that the approximation does not require computation of the Jacobian or Hessian matrices and

that the computational burden associated with the unscented Kalman �lter is not prohibitive

compared to that of the extended Kalman �lter. In our application below, the computation

time for the unscented Kalman �lter was on average twice that of the extended Kalman

�lter.

Consider the random variable x with mean �x and covariance matrix Pxx, and the non-

linear transformation y = G (x). The basic idea behind the scaled unscented transformation

is to generate a set of points, called sigma points, with the �rst two sample moments equal

to �x and Pxx. The nonlinear transformation is then applied at each sigma point. In par-

ticular, the nx-dimensional random variable is approximated by a set of 2nx + 1 weighted

points given by

X0 = �x, (29)

Xi = �x +
�p

(nx + �)Pxx

�
i
; for i = 1; � � � ; nx (30)

Xi = �x �
�p

(nx + �)Pxx

�
i
; for i = nx; � � � ; 2nx (31)

with weights

Wm
0 =

�

(nx + �)
; W c

0 =
�

(nx + �)
+
�
1� �2 + 


�
(32)

Wm
i = W c

i =
1

2 (nx + �)
; for i = 1; � � � ; 2nx; (33)

where � = �2 (nx + �) � nx; and where
�p

(nx + �)Pxx

�
i
is the ith column of the matrix

square root of (nx + �)Pxx: The scaling parameter �>0 is intended to minimize higher order

e¤ects and can be made arbitrary small. The restriction �> 0 guarantees the positivity of

the covariance matrix. The parameter 
�0 can capture higher order moments of the state
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distribution; it is equal to two for the Gaussian distribution. The nonlinear transformation

is applied to the sigma points (29)-(31)

Yi = G (Xi) ; for i = 0; � � � ; 2nx:

The unscented Kalman �lter relies on the unscented transformation to approximate the

covariance matrices Pxy(tjt�1) and Pyy(tjt�1). The state vector is augmented with the state

noise �t and the measurement noise ut. With N state variables and D observables this results

in the na = (2N +D) dimensional vector

xat = [x
0
t �

0
t u

0
t]
0
: (34)

The unscented transformation is applied to this augmented vector in order to compute the

sigma points.

As shown by equations (30) and (31), the implementation of the unscented Kalman �l-

ter requires the computation of the square root of the variance-covariance matrix of the

augmented state. There is no guarantee that the variance-covariance matrix will be posi-

tive de�nite. Positive de�niteness of the variance-covariance matrix is also not guaranteed

with the extended Kalman �lter which in turn can a¤ect its numerical stability. In the un-

scented case, a more stable algorithm is provided by the square-root unscented Kalman �lter

proposed by van der Merwe and Wan (2002). The basic intuition behind the square-root

implementation of the unscented Kalman �lter is to propagate and update the square-root

of the variance-covariance matrix rather than the variance-covariance matrix itself.4

If we denote the square-root matrix of P by S, the square-root implementation of the

unscented Kalman �lter can be summarized by the following algorithm:

0. Initialize the algorithm with unconditional moments

xa0j0 =
�
E [xt]

0 0 0
�0

Sxx(0j0) = S��(0j0) =
p
var [xt] Suu(0j0) =

p
R

1. Compute the 2na + 1 sigma points:

X a
t�1jt�1 =

h
xat�1jt�1 xat�1jt�1 �

p
(na + �)Sat�1jt�1

i
;

where Sat�1jt�1 is the block diagonal matrix with Sxx(t�1jt�1), S��(t�1jt�1), and Suu(t�1jt�1)
on its diagonal

4While the square-root implementation of the unscented Kalman �lter is more stable numerically, its

computational complexity is similar to that of the original unscented Kalman.
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2. Prediction step:

X x
tjt�1 = a+ bX x

t�1jt�1 + X �
t�1jt�1 ; xtjt�1 =

2na+1X
i=1

Wm
i X x

i;tjt�1 ;

Sxx(tjt�1) = cholupdate

�
qr

�p
W c
1

�
X x
2:2na+1;tjt�1 � xtjt�1

� q
v
�
xtjt�1

��
;X x

1;tjt�1 � xtjt�1;W
c
0

�
;

Ytjt�1 = G
�
X x
tjt�1

�
+ X u

tjt�1 ; and ytjt�1 =

2na+1X
i=1

Wm
i Yi;tjt�1;

where (i) qrfAg returns the Q matrix from the �QR�orthogonal-triangular decompo-

sition of A, and (ii) Scu = cholupdate fS; z;��g is a rank-1 update (or downdate)
to Cholesky factorization: assuming that S is the Cholesky factor of P , then Scu is the

Cholesky factor of P � �zz0. If z is a matrix, the update (or downdate) is performed

using the columns of z sequentially.

3. Measurement update:

Pxy(tjt�1) =
2na+1X
i=1

W c
i

�
X x
i;tjt�1 � xtjt�1

� �
Yi;tjt�1 � ytjt�1

�0
Syy(tjt�1) = cholupdate

n
qr
np

W c
1

�
Y2:2na+1;tjt�1 � ytjt�1

� p
R
o
;Y1;tjt�1 � ytjt�1;W

c
0

o
where R is the variance of the measurement error. Then

Kt =
�
Pxy(tjt�1)=S

0
yy(tjt�1)

�
=Syy(tjt�1); xtjt = xtjt�1 +Kt

�
yt � ytjt�1

�
;

Sxx(tjt) = cholupdate
�
Sxx(tjt�1); KtSyy(tjt�1);�1

	
and S��(tjt) =

q
v(xtjt) ;

where �=� denotes the e¢ cient least-squares solution to the problem Ax = b: The

estimate of the state vector is then updated using equations (23) and (24) :

4 Monte Carlo Analysis

The objective of this Monte Carlo study is to evaluate the performance of the UKF and

EKF for �ltering states as well as for �tting and forecasting �xed income security rates

and prices. We want to focus on the numerical stability of each �ltering algorithm and the

potential biases caused by a linear approximation of LIBOR, the swap rates, and especially

the cap prices, which are very nonlinear in the states. By design, the comparison below is

not a¤ected by the issue of parameter estimation as we keep the parameters �xed at their

true values throughout.
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4.1 Monte Carlo Design

Table 1 summarizes the parameter values used in the Monte Carlo experiment. Empty entries

represent parameters that have to be set to zero for the purpose of model identi�cation. The

grey-shaded entries represent parameters that are set to zero to obtain closed-form solutions

for the Ricatti ODEs. Our application involves pricing the cap contracts a large number of

times for each model, and pricing each caplet requires solving the Ricatti ODEs at every

integration point in (15). Numerically solving the Ricatti ODEs in this setup is therefore

prohibitively expensive computationally. We reduce the computational burden by following

Ait-Sahalia and Kimmel (2010) and restrict some of the model parameters in order to obtain

closed-form solutions for the Ricatti ODEs. These restrictions are such that the models are

speci�ed withN�M correlated Gaussian processes that are uncorrelated withM square-root

processes, which are uncorrelated among themselves.5

With some exceptions, the parameters in Table 1 are from Table 8 in Ait-Sahalia and

Kimmel (2010). The exceptions, all motivated by numerical considerations, are as follows.

The �0 parameter is set to 3% for all models. Ait-Sahalia and Kimmel (2010) �nd zero values

for the �11 parameter in the A1 (3) and A2 (3) models. To enhance numerical stability in the

matrix inversions we have shifted these parameter values by one standard error. Ait-Sahalia

and Kimmel (2010) also have zero values for the mean �j of some of the volatility factors. We

set these parameters equal to 5%, which enhances the stability of the simulations. Note that

these changes result in parameters estimates that are well inside the estimated con�dence

intervals in Ait-Sahalia and Kimmel (2010) at conventional signi�cance levels.

Our choice of parameters does not materially a¤ect our �ndings below. In each case, we

have chosen conservative parameterizations that reduce the nonlinearities of bond and cap

prices as a function of the state variables vis-a-vis other parameterizations. As a result, for

most realistic parameterizations, the bene�ts of the proposed method will generally be more

substantial than what we document.

For each canonical model, we simulate 500 samples of LIBOR rates with maturities of

3 and 6 months, swap rates with maturities of 1, 2, 5, 7, and 10 years, and interest rate

caps on 3-month LIBOR with maturities of 1 and 5 years. Each sample contains 260 weekly

observations. We use an Euler discretization of the stochastic di¤erential equation of the

state vector and divide the week into 100 time steps. Weekly observations are then extracted

by taking the 100th observation within each week. We constrain the volatility factors to be

above 0:1%, and we constrain the factors to ensure that spot rates do not fall below 25 bps.

5Restrictions on the parameters in ATSMs are also imposed in Balduzzi, Das, Foresi and Sundaram

(1996), Chen (1996), and Dai and Singleton (2000).
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For each simulated sample, the �ltered values of the unobserved state variables and

the rate or price implied by each �lter are compared to the simulated data under various

scenarios. The unscented Kalman �lter is implemented with the rescaling parameters � = 1,

� = 0, and 
 = 2.6

Figure 1 shows the unconditional term structure of interest rates implied by the parame-

ters in Table 1 for each of the four models. Note that the parameters generate quite di¤erent

term structures across models, and note in particular that the implied term structure for the

A3(3) model is fairly �at.

4.2 State Vector Extraction

We begin by assessing the ability of each �lter to accurately extract the unobserved path of

the state variables. For each simulated time series, we compare the �ltered state variables

implied by each method to the actual state observations. As a gauge for the goodness of

�t, we calculate the root mean squared error (RMSE) over 260 weeks for each Monte Carlo

sample as follows

RMSEFk (i) =

vuut 1

260

260X
t=1

�
xi;k;t � xFi;k;t

�2
where xi;k;t denotes the true but unobserved state variable i in sample k at time t. The

�ltered state variable is denoted by xFi;k;t where F is either EKF or UKF. For each model we

compute the RMSE for each state variable and on each of 500 Monte Carlo samples.7

Tables 2 and 3 provide the mean, median, and standard deviation of the RMSE for each

state variable across the 500 simulated time series. For example, for the mean RMSE we

compute

Mean(RMSEFk (i)) =
1

500

500X
k=1

RMSEFk (i) :

Panel A presents results for the A0 (3) model, Panel B for the A1 (3) model, Panel C

for the A2 (3) model, and Panel D for the A3 (3) model. Table 2 provides results for the

case where state �ltering is done without caps, while Table 3 uses cap prices to extract the

state variables. Our prior is that because the cap prices are more nonlinear in the states, the

relative performance of the UKF versus the EKF should further improve in Table 3 compared

6We choose 
 = 2 because it implies a Gaussian state. This assumption therefore induces a bias in our

implementation of the UKF which is identical to the EKF bias. This ensures that our comparison is focused

on the implications of nonlinearities in the measurement equation.
7To investigate if sample length a¤ects our conclusions, we also conducted two smaller experiments using

520 and 1300 weeks instead of 260. If anything, the UKF outperforms the EKF by an even wider margin.
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with Table 2. Tables 2 and 3 include estimates of the interquartile range (IQR) for the true

but unobserved state variable. This measure is intended to help gauge the magnitudes of

the RMSEs, which of course are a function of the magnitude of the state variables.

Table 2 clearly shows that the UKF is more successful than the EKF in �ltering the state

variables no matter which metric is used. The ratio of the median RMSE from the UKF

to that from the EKF is substantially lower than one in most cases, and is below 10% in

several instances. Comparing the RMSEs to the state IQR shows that the di¤erences in

RMSE across �lters are large in relation to the magnitude of the state variables as well.

The UKF does not outperform the EKF for the �rst and second factor of the A3 (3)

model. This may be due to the fact that the term structure for the A3 (3) model is �at, as

seen in Figure 1, or perhaps to the fact that in this model the loading on the second factor is

very small, as indicated in Table 1. These features may make the unobserved states harder

to identify.

Table 3 provides results for the case where caps are included in �ltering. As expected,

the superior performance of the UKF compared with EKF is even stronger. Excluding the

second factor in the A3 (3) model, the ratio of the median RMSE implied by the UKF to

that implied by the EKF now ranges between 3% and 23%. In other words, the median

RMSE for the EKF is in some cases 33 times higher than that implied by the UKF.

Looking across Tables 2 and 3, it is also noteworthy that for both cases the standard

deviation of the RMSE is an order of magnitude larger for the EKF compared to the

UKF. This is a clear indication that the UKF is numerically more stable. Note that the

Mean(RMSE) and Median(RMSE) values in Tables 2 and 3 are quite close showing that

while the EKF is less stable than the UKF the Mean(RMSE) results are not driven by a

few outliers: The Median(RMSE) ratios across the two �lters favor the UKF just as much

as the Mean(RMSE) ratios do.

Figures 2 to 5 provide further insight in these results by showing scatter plots of �ltered

state variables xFi;k;t versus actual state variables xi;k;t, using all 130; 000 observations across

260 weeks and 500 samples. Each row of panels shows results for a di¤erent state variable.

The two left-most columns of panels in each �gure show the case where caps are excluded

from the �ltering algorithm, while the two right-side columns are obtained by also including

caps in the cross-section of observed securities. The left-side panels clearly indicate the

outperformance of the UKF over the EKF. The EKF delivers much less reliable estimates of

the state variables; importantly it is also numerically much less stable, as evidenced by the

high number of outliers in the scatter plots. The right-side panels of Figures 2-5 also con�rm

the superiority of the UKF in dealing with securities that are highly nonlinear in the state

variables. The EKF is even more unstable compared to the left-side panels where caps are
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not included in the analysis.

Comparing Tables 2 and 3, it is clear that for the EKF, the state RMSEs are dramati-

cally larger when caps are used in �ltering; mean and median RMSEs associated with the

EKF in Table 3 are systematically larger than in Table 2. As discussed earlier, the EKF

performs a �rst order Taylor expansion around the predicted state variables. The quality

of the EKF �ltering thus crucially depend on the numerical gradient used in this �rst order

approximation. The increased RMSEs demonstrate that when the highly nonlinear caps are

used, the gradient o¤ers a very poor approximation of the impact that variations in states

have on the measurement equation. The UKF does not linearize the measurement equation.

As a consequence, the UKF�s mean and median RMSEs are systematically smaller in Table

3 than in Table 2.

The results in Tables 2 and 3 are quite striking. The UKF is able to incorporate the

additional information contained in caps to extract the underlying states more precisely.

The EKF, however, actually su¤ers from the additional information in caps because of the

linearization required.

This initial Monte Carlo exercise leaves little doubt that the UKF is much superior

in �ltering the state variables than the EKF. The UKF�s relative performance versus the

EKF further improves when the securities used in the analysis are more nonlinear in the

state variables. The UKF�s outperformance is of course model-dependent, for the obvious

reason that di¤erent models and di¤erent model parameterizations imply di¤erent degrees of

nonlinearity. Most notably in our analysis, the chosen parameterization for the A3 (3) model

is not very nonlinear, and as a result the UKF does not o¤er many advantages in this case.

We have experimented with other parameterizations of the models, and the results indeed

depend on the degree on nonlinearity in the parameterizations chosen.

Based on Tables 2-3 and Figures 2-5 our �rst main conclusion is that for realistic para-

meterizations implying sensible amounts of nonlinearity in the state variables and realistic

term structures of LIBOR and swap rates, the UKF will improve drastically on the EKF in

terms of capturing the dynamics of the state vector.

4.3 Implications for Rates and Prices

In order to assess the economic implications of the two �ltering methods we now investigate

the �lters� ability to match observed LIBOR and swap rates as well as cap prices. We

compare the �tted LIBOR, swap rates, and cap prices implied by states from each �lter to

the actual rates and prices computed from the true states.

Tables 4 and 5 compare the security prices implied by the �ltered states to the simulated
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ones. We provide the RMSEs as well as the Bias based on the true rates and prices and the

�ltered ones. For each security the RMSE for �lter F is computed as

RMSEF =
1

500

500X
k=1

RMSEFk =
1

500

500X
k=1

vuut 1

260

260X
t=1

�
yk;t � yFk;t

�2
where yk;t is the true price or rate in sample k at week t, yFk;t is the value obtained using a

�ltered state vector and F is either UKF or EKF. Bias is de�ned by

BiasF =
1

130; 000

500X
k=1

260X
t=1

�
yk;t � yFk;t

�
In order to judge the magnitudes Tables 4 and 5 also report the interquartile range of the

observed rates and prices. All estimates are in basis points. Table 4 provides results when

cap prices are not used in the �ltering step, while Table 5 provides results for the case when

cap prices are used to �lter the states.

Table 4 indicates that the UKF typically results in a dramatically lower RMSE compared

to the EKF. The degree of outperformance is model-dependent and security-dependent. It is

generally modest for swap rates, more substantial for LIBOR, and in several cases spectacular

in the case of caps. For example, the RMSE on the �ve-year cap is roughly ten times higher

for the EKF compared to the UKF. We conclude that the bene�ts of the UKF become even

more pronounced when pricing nonlinear securities that are not used in state vector �ltering.

As in Table 2 the improvement of UKF is less dramatic in the A3(3) model in Table 4 where

the nonlinearities are less pronounced.

A large RMSE can arise from either variance or from bias in the �lter. Table 4 therefore

reports the rate and price bias in addition to the RMSE. Note that bias is generally small

for both �lters for the LIBOR and swap rates. However, for the cap prices the EKF in

many cases contains a strong positive bias meaning that the use of the EKF results in an

underpricing of caps.

Table 5 indicates that the superior performance of the UKF versus the EKF remains intact

when caps are also included in state �ltering. Compared to Table 4, the RMSE implied by

the UKF is substantially smaller for cap prices, and slightly larger overall for LIBOR and

swap rates. This result is not surprising because the states �ltered on all securities represent

a compromise between �tting rates and cap prices. Interestingly, the performance of the

EKF relative to Table 4 deteriorates for all securities.

In terms of bias, the EKF again tends to underprice caps in Table 5, as was the case in

Table 4. But note further that when caps are used in �ltering, the underpricing of securities
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is more widespread. The EKF has a positive bias (underprices) for all securities in the A0(3),

A1(3), and A2(3) models. In the much less nonlinear A3(3) model the bias is less apparent.

Our second main conclusion is that the UKF�s improvement over the EKF in extracting

states carries over to improvements in securities pricing. Furthermore, while adding nonlinear

securities generally improves the performance of the nonlinear UKF �lter in state vector

extraction, the economic bene�ts are not evenly distributed across securities. However, the

bene�ts are clear for the pricing of highly nonlinear securities. In contrast, the linearized

EKF �lter actually performs worse in pricing securities when states have been extracted

using nonlinear instruments such as caps.

4.4 Dynamic Implications: Rate and Price Forecasts

Dynamic term structure models are used not only for the valuation of securities at present

but also to forecast future rates and prices (see for example Backus, Foresi, Mozumdar and

Wu (2001) and Egorov, Hong and Li (2006)). However, the usefulness of the model depends

crucially on the accuracy of the state vector �lter.

Tables 6-9 summarize the performance of the UKF and EKF for predicting LIBOR, swap

rates, and cap prices for various forecasting horizons in each of our four models. For each

security we compute the forecast RMSE for each horizon, h, de�ned by

RMSEFk (h) =

vuut 1

260� h

260�hX
t=1

�
yk;t+h � yFk;t+hjt

�2
where yFk;t+hjt is the price or rate of the security computed using the �lter-dependent h-week

ahead state vector forecast, xFk;t+hjt. In Tables 6-9, Panel A reports Mean
�
RMSEFk (h)

�
,

Panel B reports Median
�
RMSEFk (h)

�
, and Panel C reports Stdev

�
RMSEFk (h)

�
. The mo-

ments are computed for h = 1; 4 and 12 week horizons across the 500 samples denoted by k.

The left-side and right-side panels respectively show results obtained without and with the

use of caps in �ltering.

Tables 6-9 con�rm the conclusions from the contemporaneous �t in Tables 4-5: the UKF

signi�cantly outperforms the EKF. The improvement is largest at shorter horizons (1 and 4

weeks). When considering the right-side panels where the states are �ltered using LIBOR,

swap rates and caps, the relative performance of the EKF deteriorates compared to the

left-side panels; this con�rms the EKF�s problems in dealing with securities that are highly

nonlinear in the states. The magnitude of the improvement is smallest in the case of the

A3 (3) model. As previously discussed, this is not due to the nature of the A3 (3) model, but

rather to the parameterization in Table 1, which determines the extent of nonlinearity in the
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states for each model.

Figures 6-9 provides more perspective by scatter plotting the 500 individualRMSEUKFk (h)

on the y-axis against the corresponding RMSEEKFk (h) on the x-axis for the one-week fore-

cast horizon (h = 1). The UKF outperforms the EKF when the plots fall below the 45-degree

line. Figures 6-9 are quite striking. Note that there are virtually no observations above the

45-degree line. These �gures provide a more visual and intuitive assessment of the per-

formance of both �ltering methods. The �gures con�rm that the UKF-implied forecasts

substantially outperform the EKF-implied forecasts.

Our third main conclusion is that the UKF generally delivers forecast RMSEs that are

much lower than those obtained using the EKF.

4.5 Implications for Long-Maturity Caps

So far we have run two versions of each Monte Carlo experiment for each �lter: One where

only LIBOR and swap rates are used in �ltering, and another one where in addition 1-yr

and 5-yr caps are used. In Tables 4-9 we used the models to price the same securities used

in �ltering.

We now instead consider an application of the term structure models in which 7-yr caps

must be priced. These contracts have not been used in any of the �lters when extracting

states. We restrict attention to contemporaneous pricing just as in Tables 4-5.

Table 10 contains the results. We again compute pricing RMSE and Bias computed from

the true rates and prices as well as the extracted rates and prices obtained from each �lter.

In Panel A we report the results for the EKF and UKF when states are �ltered on only

LIBOR and swap rates. Note the dramatically lower RMSE for the UKF compared to the

EKF for the �rst three models, even when caps are not used in �ltering. For the much less

nonlinear A3(3) model the RMSEs are similar. As in Table 4, the EKF underprices all caps.

The bias is dramatic in the case of the A2(3) model.

In Panel B of Table 10 we report on 7-yr cap pricing when states are �ltering using 1-yr

and 5-yr caps as well as the LIBOR and swap rates. Not surprisingly, the UKF outperforms

the EKF in this case. What is perhaps surprising is the magnitude of the outperformance.

The RMSE for the EKF is more than 3 times higher than UKF for the A3(3) model, 17

times higher for the A0(3) model, 24 times higher for the A1(3) model, and 25 times higher

for the A2(3) model. As in Table 5, the EKF systematically underprices caps and the biases

can be large.

Our fourth main conclusion is that the UKF outperforms the EKF for the pricing of

nonlinear securities even when these have not been used in �ltering the underlying state
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vectors.

5 Discussion: Parameter Estimation

Our Monte Carlo analysis has deliberately kept the structural parameters �xed at their

true values. Our analysis of caps makes our Monte Carlo investigation extremely intensive

numerically, and we therefore leave the details of parameter estimation for future research,

but our analysis does raise important questions on the potential e¤ect of the choice of �lter

on parameter estimation, and we now provide some general remarks.

The literature contains a large number of empirical methods that can be used to estimate

multifactor a¢ ne models, including indirect inference, simulated method of moments (SML),

and the e¢ cient method of moments (EMM). Most papers use either quasi maximum likeli-

hood or the Kalman �lter with a likelihood based criterion.8 These techniques are popular

because they are easier to implement and because Du¤ee and Stanton (2004) demonstrate

in an extensive Monte Carlo experiment that these two methods outperform more complex

estimation techniques (EMM and SML).

The QML estimator has the drawback that an ad hoc choice has to be made that the

pricing relationship holds without error for certain bonds, which complicates the comparison

with the model �t implied by the unscented Kalman �lter. Another drawback of QML is

that it does not o¤er any guidance as to how to forecast nonlinear instruments once the state

variables are obtained through inversion. Monte Carlo simulation can be used to compute

the forecast, but the ensuing computational cost can be signi�cant, especially for multifactor

models. See Ait-Sahalia and Kimmel (2010) for a more recent MLE approach.

A nonlinear least squares technique can be used to minimize the following loss function

with respect to the parameters of the term structure model

MSE =
1

T

TX
t=1

�
yt � yFt

�0 �
yt � yFt

�
:

where yFt is obtained using either the UKF or the EKF as described above. We have found

the UKF to be vastly superior to the EKF for �ltering purposes and expect the same to be

true for estimation purposes.

Following Almeida (2005), principal component analysis can be used to provide intuition

for the impact of the EKF on parameter estimation. Denoting the principal components of

8See for example Babbs and Nowman (1999), Chen and Scott (1995), Dai and Singleton (2000), Duan and

Simonato (1999), Du¤ee (1999), Du¢ e and Singleton (1997), and Pearson and Sun (1994). See Thompson

(2008) for an alternative approach using Bayesian �ltering.
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yt by pct, the relationship between the principal components and the state variables xt is as

follows:

	pct = G(xt) + u;

where 	 is the matrix of eigenvectors of the covariance matrix of yt, and u is the sample

average of yt �G(xt).

Clearly the state variables are related to the principal components via the function G:

When this function is linearized as with the EKF, the state vector becomes a linear transfor-

mation of the principal components, and therefore the rotation imposed on the state variables

changes their statistical properties. Consider for instance the case where the �rst principal

component of the non-linear instrument used in the estimation is very persistent. A lin-

earization of the measurement equation forces the corresponding state variable to inherit the

persistence even if the true unobserved state variable is not persistent. This simple analysis

also highlights an important di¤erence between linear and non-linear securities. In a linear

set-up, the state variables inherit the time series properties from the principal components,

hence the labeling of the state variables as level, slope and curvature when zero-coupon yields

are used. This is not the case with non-linear securities.

Hence, a potential danger in using the extended Kalman �lter is that it can create a

signi�cant bias in the parameters that govern the dynamics of the state variables. For

instruments that are highly nonlinear in the states variables, like interest rate caps, this

problem may be aggravated by poor identi�cation of the latent state variables. Indeed, as

highlighted by our results, for highly nonlinear functions G, the Jacobian matrix will provide

a poor approximation of the impact of the state variables on the evolution of the observables.

Poor estimates of the current state together with biased parameters may therefore cause poor

performance of the extended Kalman �lter (Julier and Uhlmann (2004)).

While several studies have shown that the approximation of the transition equation for

non-Gaussian state variables does not imply large biases, the literature does not contain an

assessment of the bias resulting from the use of the extended Kalman �lter for nonlinear

securities such as swap contracts and interest rate derivatives. To the best of our knowledge,

the only paper that addresses the nonlinear mapping between the state variables and the

observations in a¢ ne term structure models is Lund (1997), who uses the iterative extended

Kalman �lter (see also Mohinder and Angus, 2001). However, the analysis is limited to

the single factor Vasicek (1977) model and no comparison is provided with the traditional

extended Kalman �lter.

Our Monte Carlo experiments show that the extended Kalman �lter is ill-suited to op-

timally exploit the rich information content of securities that are nonlinear in the state

variables. We propose the unscented Kalman �lter as an alternative to address the nonlin-
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earity in the measurement equation. Our �ndings on �ltering strongly suggest that the UKF

will be superior for the purpose of parameter estimation as well.

6 Conclusion

The extended Kalman �lter has become the standard tool to analyze a number of important

problems in �nancial economics, and in term structure modeling in particular. While there

is no need to look beyond the extended Kalman �lter for some term structure applications,

it is not clear how well the method performs for many situations of interest, when the

measurement equation is nonlinear in the state variables. Examples include the pricing

of �xed income derivatives such as caps, �oors and swaptions, as well as modeling the

cross section of swap yields. The unscented Kalman �lter is moderately more costly from a

computational perspective, but better suited to handling these nonlinear securities.

We use an extensive Monte Carlo experiment to investigate the relative performance of the

extended and unscented Kalman �lter. We study three-factor a¢ ne term structure models

for LIBOR and swap rates, which are mildly nonlinear in the underlying state variables,

and cap prices, which are highly nonlinear. We �nd that the �ltering performance of the

unscented Kalman �lter is much superior to that of the extended Kalman �lter. It �lters

the states more accurately, which leads to improved security prices and forecasts. These

results obtain for cap prices as well as for swap rates, regardless of whether caps are used in

estimation.

Our results demonstrate the usefulness of the unscented Kalman �lter for problems where

the relationship between the state vector and the observations is either mildly nonlinear

or highly nonlinear. The results therefore suggest that the UKF may prove to be a good

approach for implementing term structure models in a wide variety of applications, including

the estimation of term structure models using interest rate derivatives, the estimation of

nonlinear term structure models such as quadratic models, and the estimation of models of

default risk, such as coupon bonds or credit default swaps. The unscented Kalman �lter may

also prove useful to estimate other types of term structure models, such as the unspanned

stochastic volatility models of Collin-Dufresne and Goldstein (2002), and Collin-Dufresne,

Goldstein and Jones (2009).
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Appendix: Conditional Moments of the State Vector

We compute explicit expressions for the two �rst conditional moments following Fackler

(2000) who extends the formula provided by Fisher and Gilles (1996).

A.1 Conditional Expectation

The integral form of the stochastic di¤erential equation (1) under the actual probability

measure P is
xt+� = xt +

Z t+�

t

� (� � xu) du+

Z t+�

t

�
p
SudWu: (A.1)

Applying the Fubini theorem, we get

Et [xt+� ] = xt +

Z t+�

t

� (� � Et [xu]) du:

Di¤erentiating with respect to � implies the following ODE

dEt [xt+� ]

d�
= �� � �Et [xt+� ] ; (A.2)

with the initial condition Et [xt] = xt:

The solution to this ODE has the following form

Et [xt+� ] = a (t; �) + b (t; �)xt: (A.3)

Using (A.1) for identi�cation yields the following ODEs

@a (t; �)

@�
= �� � �a (t; �) (A.4)

and
@b (t; �)

@�
= ��b (t; �) ; (A.5)

with the initial conditions a (t; �) = 0 and b (t; �) = IN :

If the matrix � is non-singular, the solution of equations (A.4) and (A.5) are

a (t; �) = (IN � exp (���)) � and b (t; �) = exp (���) ;

where exp (�� (� � t)) is given by the power series

exp (���) = I � ��+
� 2

2!
�2 + � � � :

Combining these expressions with (A.3), we get

Et [xt+� ] = (IN � exp (���)) � + exp (���)xt: (A.6)

Notice that if the eigenvalues of the matrix � are strictly positive, then

lim
�!1

exp (���) = 0;

and the unconditional expectation of xt+� is given by E [xt] = �:
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A.2 Conditional Variance

Applying Itô�s lemma to (A.6) yields

dEt [xt+� ] = b (t; �) �
p
StdWt;

or equivalently

xt+� = Et [xt+� ] +

Z t+�

t

b (u; t+ � � u) �
p
SudWu:

Under some technical conditions (see Neftci (1996))

vart [xt+� ] = vart

�Z t+�

t

b (u; t+ � � u) �
p
SudWu

�
= Et

�Z t+�

t

b (u; t+ � � u) �Su�b (u; t+ � � u)> du

�
=

Z t+�

t

b (u; t+ � � u) �diag (�+ BEt [xu]) �b (u; t+ � � u)> du: (A.7)

Following Fackler (2000), the vectorized version of (A.7) is

vec (vart [xt+� ]) =

Z t+�

t

(b (u; t+ � � u)
 b (u; t+ � � u)) (�
 �)D (�+ BEt [xu]) du;
(A.8)

where 
 denotes the Kronecker product operator and D is a n2 � n matrix such that

Dij =
(
1 if i = (j � 1)n+ j;

0 otherwise.
(A.9)

In the case of a 3-factor model, D is

D =

2641 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

375
0

: (A.10)

Using (A.6), expression (A.8) can be rearranged as follows

vec (vart [xt+� ]) = v0(t; �) + v1(t; �)xt; (A.11)

where

v0(t; �) =

Z t+�

t

(b (u; t+ � � u)
 b (u; t+ � � u)) (�
 �)D (�+ Ba (t; u� t)) du (A.12)

and

v1(t; �) =

Z t+�

t

(b (u; t+ � � u)
 b (u; t+ � � u)) (�
 �)DBb (t; u� t) du: (A.13)
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Di¤erentiating (A.12) and (A.13) with respect to � yields the following ODE�s

@v0(t; �)

@�
= (�
 �)D (�+ Ba (t; �))� (�
 IN + IN 
 �) v0(t; �); (A.14)

and
@v1(t; �)

@�
= (�
 �)DBb (t; �)� (�
 IN + IN 
 �) v1(t; �) (A.15)

Combining these ODEs with equations (A.4) and (A.5), we get the following two systems of

ODE�s "
@a(t;�)
@�

@v0(t;�)
@�

#
= �� �

"
a (t; �)

v0(t; �)

#
; (A.16)

and "
@b(t;�)
@�

@v1(t;�)
@�

#
= ��

"
b (t; �)

v1(t; �)

#
; (A.17)

where

� =

"
��

(�
 �)D�

#
(A.18)

and

� =

"
� 0

� (�
 �)DB (�
 IN + IN 
 �)

#
: (A.19)

The initial conditions are a (t; �) = 0, b (t; �) = IN ; v0(t; 0) = 0 and v1(t; 0): Provided that �

is nonsingular, the solution to these two systems is given by"
a (t; �)

v0(t; �)

#
=
�
IN(N+1) � exp (���)

�
��1�; (A.20)

and "
b (t; �)

v1(t; �)

#
= exp (���)

"
IN

0

#
; (A.21)

where exp (���) is given by the power series

exp (���) = I � ��+
� 2

2!
�2 + � � � : (A.22)

Since ��1 can be written as"
��1 0

(�
 IN + IN 
 �)�1 (�
 �)DB��1 (�
 IN + IN 
 �)�1

#
: (A.23)

If we assume that the eigenvalues of � are strictly positive, then lim�!1 exp (���) = 0 and
the unconditional vectorized variance is

vec (var [xt]) = lim
�!1

v0(t; �)

= (�
 IN + IN 
 �)�1 (�
 �)D (B� + �) : (A.24)
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Computing the �rst two conditional moments involves evaluating the power series (A.22).

Several methods for evaluating the exponential of a matrix are provided in the literature,

see for example Moler and Van Loan (1978). As pointed out by Fackler (2000), the eigen-

values decomposition, suggested by Fisher and Gilles (1996) and used by Du¤ee (2002),

and the Padé approximation yield good results in this particular context. We use the Padé

approximation to compute the conditional expectation and variance.
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Figure 1: Unconditional Term Structures of Interest Rates. AM(3) Models 
 
 

 
 
Notes: We display the unconditional term structure of interest rates implied by the four AM(3) models we 
consider, using the parameter values in Table 1. 
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Figure 2: Filtered States versus Actual States. A0(3) Model 
 
 
 

 
Notes: We scatter plot the filtered states against the actual states for the A0(3) model. Each row of panels 
depicts a different state variable. The two left-side columns show states filtered using LIBOR and swap 
rates only; the two right-side columns show filtered states obtained using the rates as well as the cap 
prices. Each panel includes the diagonal line (dashes) which would be attained by a perfect filter. The 
vertical dotted lines denote the 10th, 25th, 50th, 75th, and 90th percentiles of the distribution of the state 
realizations. 



Figure 3: Filtered States versus Actual States. A1(3) Model 
 
 
 

Notes: We scatter plot the filtered states against the actual states for the A1(3) model. Each row of panels 
depicts a different state variable. The two left-side columns show states filtered using LIBOR and swap 
rates only; the two right-side columns show filtered states obtained using the rates as well as the cap 
prices. Each panel includes the diagonal line (dashes) which would be attained by a perfect filter. The 
vertical dotted lines denote the 10th, 25th, 50th, 75th, and 90th percentiles of the distribution of the state 
realizations. 



Figure 4: Filtered States versus Actual States. A2(3) Model 
 

 
 

 
Notes: We scatter plot the filtered states against the actual states for the A2(3) model. Each row of panels 
depicts a different state variable. The two left-side columns show states filtered using LIBOR and swap 
rates only; the two right-side columns show filtered states obtained using the rates as well as the cap 
prices. Each panel includes the diagonal line (dashes) which would be attained by a perfect filter. The 
vertical dotted lines denote the 10th, 25th, 50th, 75th, and 90th percentiles of the distribution of the state 
realizations. 



Figure 5: Filtered States versus Actual States. A3(3) Model 
 

 

 
Notes: We scatter plot the filtered states against the actual states for the A3(3) model. Each row of panels 
depicts a different state variable. The two left-side columns show states filtered using LIBOR and swap 
rates only; the two right-side columns show filtered states obtained using the rates as well as the cap 
prices. Each panel includes the diagonal line (dashes) which would be attained by a perfect filter. The 
vertical dotted lines denote the 10th, 25th, 50th, 75th, and 90th percentiles of the distribution of the state 
realizations. 



Figure 6: Rate and Price Forecast RMSEs. UKF versus EKF. A0(3) Model 
 

 
Notes: For each of the nine rates and prices, we scatter the 500 simulated one-week-ahead forecast 
RMSEs of the UKF model against the corresponding RMSEs for the EKF.  The UKF outperforms the 
EKF when marks fall below the dashed 45-degree line.  
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Figure 7: Rate and Price Forecast RMSEs. UKF versus EKF. A1(3) Model  
 

 
Notes: For each of the nine rates and prices, we scatter the 500 simulated one-week-ahead forecast 
RMSEs of the UKF model against the corresponding RMSEs for the EKF.  The UKF outperforms the 
EKF when marks fall below the dashed 45-degree line.  
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Figure 8: Rate and Price Forecast RMSEs. UKF versus EKF. A2(3) Model  

 

 
Notes: For each of the nine rates and prices, we scatter the 500 simulated RMSEs of the UKF model 
against the corresponding RMSEs for the EKF.  The UKF outperforms the EKF when marks fall below 
the dashed 45-degree line.  
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Figure 9: Rate and Price Forecast RMSEs. UKF versus EKF. A3(3) Model  
 

 
Notes: For each of the nine rates and prices, we scatter the 500 simulated one-week-ahead forecast 
RMSEs of the UKF model against the corresponding RMSEs for the EKF.  The UKF outperforms the 
EKF when marks fall below the dashed 45-degree line.  
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Table 1: Parameters for the AM(3) Models 
 
 

 
 

 
Notes: We report the parameter values used in the Monte Carlo simulations for the four AM(3) models. Empty entries indicate zero 
parameter values that are implicit to the normalized form of the models or imposed for identification. Grey-shaded 0 entries indicate 
restrictions placed on the parameters in order to obtain closed-form solutions to the Ricatti equations. With some exceptions, the 
parameters are from Table 8 in Aït-Sahalia and Kimmel (2010). The exceptions are motivated by numerical considerations in the 
simulations and filtering. The Monte-Carlo simulations also impose constraints on the volatility factors so that they are at least 0.1%, and 
on the vector of factors to ensure that spot rates do not fall below 25 bps.

A0(3) A1(3) A2(3) A3(3)
Parameter Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

δ0 0.030 - - 0.030 - - 0.030 - - 0.030 - -
δ1j 0.0048 -0.0130 0.0241 0.0028 0.0052 0.0281 0.0194 0.0028 0.0391 0.0028 0.0002 0.0145
κ1j 0.0168 0.0390 0.1600 0 0.0370 0 0
κ2j 0.4000 2.9600 0 0.8800 0 0.0380 0 5.7100 0
κ3j -0.6400 -2.5600 0.8410 0 -2.3200 2.6900 0 0 5.6500 0 0 0.8100
θj 0.05 0.05 0.05 0.05 0.05 1.00
λ0j -0.190 0.610 -0.970 0.001 -0.120 -0.970 0.680 -0.035 -1.100 -0.034 -0.010 -0.100
αj 1 1 1 1 1 1
β1 1 0 0 1 0 1
β2 1 0 1
β3 1



Table 2: State RMSEs from States Filtered without Caps 
 
 

 
 
 

 
Notes: For each model, we report the mean, median, and standard deviation of the state RMSEs from the 
extended and the unscented Kalman filters using 500 simulated paths. For each statistic, the ratio of the 
UKF to EKF RMSE is reported in the third column (UKF/EKF). The IQR reports the interquartile range 
of the distribution of the underlying states (defined as the 75th percentile minus the 25th percentile of the 
state’s distribution). In each of the 500 simulations, 260 weekly LIBOR and swap rates are generated 
using the parameters from Table 1. States are filtered using LIBOR and swap rates only. 

EKF UKF UKF/EKF EKF UKF UKF/EKF EKF UKF UKF/EKF
Mean(RMSE) 0.0473 0.0334 0.71 0.5000 0.0615 0.12 0.2367 0.0204 0.09

Median(RMSE) 0.0471 0.0334 0.71 0.4925 0.0615 0.12 0.2346 0.0203 0.09
Stdev(RMSE) 0.0037 0.0015 0.42 0.0631 0.0027 0.04 0.0331 0.0010 0.03

IQR(States)

EKF UKF UKF/EKF EKF UKF UKF/EKF EKF UKF UKF/EKF
Mean(RMSE) 0.1223 0.1062 0.87 0.2157 0.0422 0.20 0.4247 0.0329 0.08

Median(RMSE) 0.1123 0.1017 0.91 0.2145 0.0417 0.19 0.4239 0.0329 0.08
Stdev(RMSE) 0.0421 0.0189 0.45 0.0268 0.0033 0.12 0.0525 0.0014 0.03

IQR(States)

EKF UKF UKF/EKF EKF UKF UKF/EKF EKF UKF UKF/EKF
Mean(RMSE) 0.1821 0.0398 0.22 0.0746 0.0746 1.00 0.6088 0.0410 0.07

Median(RMSE) 0.1633 0.0400 0.25 0.0693 0.0716 1.03 0.5426 0.0410 0.08
Stdev(RMSE) 0.0752 0.0078 0.10 0.0272 0.0195 0.72 0.2340 0.0051 0.02

IQR(States)

EKF UKF UKF/EKF EKF UKF UKF/EKF EKF UKF UKF/EKF
Mean(RMSE) 0.0726 0.0750 1.03 0.0640 0.0714 1.12 0.0545 0.0297 0.54

Median(RMSE) 0.0660 0.0712 1.08 0.0582 0.0659 1.13 0.0530 0.0292 0.55
Stdev(RMSE) 0.0257 0.0154 0.60 0.0228 0.0160 0.70 0.0115 0.0033 0.28

IQR(States)

Panel A: A0(3) Model

Panel B: A1(3) Model

Panel C: A2(3) Model

Panel D: A3(3) Model

1.7750 0.5910 1.1409

Factor 1 Factor 2 Factor 3

0.1577 0.9346 0.8070

Factor 1 Factor 2 Factor 3

0.1451 0.1636 0.3958

Factor 1 Factor 2 Factor 3

0.1579 0.0628 0.8767

Factor 1 Factor 2 Factor 3



Table 3: State RMSEs from States Filtered with Caps 
 
 

 
 

 
 
Notes: For each model, we report the mean, median, and standard deviation of the state RMSEs from the 
extended and the unscented Kalman filters using 500 simulated paths. For each statistic, the ratio of the 
UKF to EKF RMSE is reported in the third column (UKF/EKF). The IQR reports the interquartile range 
of the distribution of the underlying states (defined as the 75th percentile minus the 25th percentile of the 
state’s distribution). In each of the 500 simulations, 260 weekly LIBOR and swap rates are generated 
using the parameters from Table 1. States are filtered using LIBOR, swap rates, and caps. 

EKF UKF UKF/EKF EKF UKF UKF/EKF EKF UKF UKF/EKF
Mean(RMSE) 0.1805 0.0319 0.18 0.6814 0.0543 0.08 0.2543 0.0168 0.07

Median(RMSE) 0.1735 0.0313 0.18 0.6567 0.0509 0.08 0.2490 0.0153 0.06
Stdev(RMSE) 0.0458 0.0031 0.07 0.1304 0.0128 0.10 0.0395 0.0036 0.09

IQR(States)

EKF UKF UKF/EKF EKF UKF UKF/EKF EKF UKF UKF/EKF
Mean(RMSE) 0.4530 0.0986 0.22 0.3440 0.0358 0.10 0.4766 0.0191 0.04

Median(RMSE) 0.4128 0.0941 0.23 0.3275 0.0347 0.11 0.4645 0.0183 0.04
Stdev(RMSE) 0.1909 0.0189 0.10 0.0832 0.0052 0.06 0.0774 0.0054 0.07

IQR(States)

EKF UKF UKF/EKF EKF UKF UKF/EKF EKF UKF UKF/EKF
Mean(RMSE) 0.5309 0.0361 0.07 0.9187 0.0714 0.08 1.0532 0.0339 0.03

Median(RMSE) 0.5097 0.0359 0.07 0.8409 0.0691 0.08 1.0371 0.0330 0.03
Stdev(RMSE) 0.1949 0.0078 0.04 0.4726 0.0181 0.04 0.2907 0.0070 0.02

IQR(States)

EKF UKF UKF/EKF EKF UKF UKF/EKF EKF UKF UKF/EKF
Mean(RMSE) 0.2406 0.0577 0.24 0.0646 0.0709 1.10 0.0970 0.0223 0.23

Median(RMSE) 0.2317 0.0541 0.23 0.0593 0.0652 1.10 0.0944 0.0216 0.23
Stdev(RMSE) 0.0973 0.0173 0.18 0.0226 0.0163 0.72 0.0213 0.0054 0.25

IQR(States)

Panel A: A0(3) Model

Factor 1 Factor 2 Factor 3

1.7750 0.5910 1.1409

Panel B: A1(3) Model

Factor 1 Factor 2 Factor 3

0.1577 0.9346 0.8070

Panel C: A2(3) Model

Factor 1 Factor 2 Factor 3

0.1451 0.1636 0.3958

Panel D: A3(3) Model

Factor 1 Factor 2 Factor 3

0.1579 0.0628 0.8767



Table 4: Rate and Price Fit of AM(3) Models. States Filtered without Caps. 
 
 

 
 

 
Notes: RMSE and Bias estimates are obtained from 300,000 simulated rates and prices (500 trajectories, 
260 weeks), and the corresponding fitted values using the EKF or the UKF. IQR refers to the interquartile 
range of the true rates and prices. Caps are not used when filtering the states in this table, only LIBOR 
and swap rates are used for filtering. 

EKF UKF EKF UKF EKF UKF EKF UKF

Bias 1.374 0.011 1.191 0.239 1.014 -0.054 -0.033 -0.258
RMSE 71.230 2.706 66.481 2.793 102.390 2.693 7.476 4.147
IQR

6-mo LIBOR
Bias 1.252 -0.016 0.851 -0.192 3.195 0.230 -0.030 -0.195

RMSE 41.145 4.145 39.677 4.186 57.610 4.451 6.590 4.268
IQR

1-yr Swap
Bias 1.083 0.021 0.571 -0.394 4.161 0.486 0.042 -0.004

RMSE 13.379 3.853 13.105 4.116 25.645 4.672 5.229 4.493
IQR

2-yr Swap
Bias 0.765 0.002 0.416 -0.202 3.532 0.550 0.056 0.188

RMSE 6.725 4.035 5.160 4.053 12.010 4.762 5.104 4.725
IQR

5-yr Swap
Bias 0.364 -0.006 0.453 0.436 1.866 0.537 0.079 0.459

RMSE 5.430 4.328 5.722 4.690 6.787 4.901 4.885 4.877
IQR

7-yr Swap
Bias 0.284 0.013 0.485 0.614 1.414 0.545 0.105 0.548

RMSE 4.564 4.142 5.285 4.828 5.982 4.941 4.824 4.909
IQR

10-yr Swap
Bias 0.198 0.002 0.468 0.691 1.036 0.517 0.098 0.581

RMSE 4.131 3.926 5.014 4.902 5.494 4.953 4.788 4.921
IQR

1-yr Cap
Bias 5.286 -0.111 4.742 -0.457 16.517 0.341 0.014 0.029

RMSE 38.511 7.417 34.745 6.249 53.847 6.117 5.536 5.508
IQR

5-yr Cap
Bias 17.012 -0.126 20.483 0.712 86.311 1.923 1.220 1.871

RMSE 207.900 20.252 200.050 17.935 291.550 17.966 13.316 10.860
IQR

46.56 43.69 36.17 7.85

517.86 543.91

256.30 80.85 18.00 41.15

239.95 157.79

250.06 61.44 15.57 32.38

244.21 46.53 13.60 25.65

297.66 203.91 44.08 95.33

278.73 154.64 29.10 72.64

311.69 247.57 100.00 119.38

308.80 233.33 68.99 111.03

A0(3) A1(3) A2(3) A3(3)

3-mo LIBOR



Table 5: Rate and Price Fit of AM(3) Models. States Filtered using Caps. 
 
 

 
 

 
Notes: RMSE and Bias estimates are obtained from 300,000 simulated rates and prices (500 trajectories, 
260 weeks), and the corresponding fitted values using the EKF or the UKF. IQR refers to the interquartile 
range of the true rates and prices. Caps as well as LIBOR and swap rates are used when filtering the states 
in this table. 

EKF UKF EKF UKF EKF UKF EKF UKF

Bias 1.747 0.002 2.283 0.307 8.524 -0.032 -0.254 0.019
RMSE 77.094 4.515 70.651 4.041 178.250 3.571 9.692 4.417
IQR

6-mo LIBOR
Bias 1.838 -0.007 2.158 -0.099 15.410 0.183 -0.143 0.035

RMSE 43.127 4.492 41.614 4.379 110.160 4.521 8.664 4.485
IQR

1-yr Swap
Bias 1.800 0.044 2.148 -0.300 18.375 0.406 0.111 0.142

RMSE 21.955 4.070 21.306 4.188 67.892 4.724 7.053 4.633
IQR

2-yr Swap
Bias 1.392 0.020 2.251 -0.158 16.585 0.484 0.386 0.214

RMSE 18.655 4.343 19.288 4.251 48.854 4.833 6.309 4.792
IQR

5-yr Swap
Bias 0.658 -0.011 2.455 0.384 11.575 0.515 0.761 0.320

RMSE 10.750 4.508 12.231 4.764 34.162 4.929 6.499 4.895
IQR

7-yr Swap
Bias 0.467 0.003 2.462 0.540 10.112 0.536 0.874 0.366

RMSE 11.811 4.345 10.349 4.868 31.049 4.958 6.775 4.924
IQR

10-yr Swap
Bias 0.291 -0.013 2.363 0.604 8.869 0.517 0.921 0.371

RMSE 13.741 4.161 9.241 4.924 28.667 4.964 6.940 4.936
IQR

1-yr Cap
Bias 7.160 -0.054 6.165 -0.391 30.238 0.234 0.152 0.007

RMSE 46.718 5.730 41.462 5.465 87.167 5.467 5.609 5.618
IQR

5-yr Cap
Bias 20.303 0.006 26.033 0.353 147.660 1.553 4.460 0.693

RMSE 228.350 9.093 222.360 8.943 433.820 12.288 24.986 7.760
IQR

46.56 43.69 36.17 7.85

517.86 543.91

256.30 80.85 18.00 41.15

239.95 157.79

250.06 61.44 15.57 32.38

244.21 46.53 13.60 25.65

297.66 203.91 44.08 95.33

278.73 154.64 29.10 72.64

311.69 247.57 100.00 119.38

308.80 233.33 68.99 111.03

A0(3) A1(3) A2(3) A3(3)

3-mo LIBOR



Table 6: Rate and Price Forecasting Performance. A0(3) Model 
 
 

 
 
 
Notes: We forecast rates and cap prices using the EKF and UKF filters. For each of 500 simulations, we 
compute the forecast RMSE. The mean, median, and standard deviation of these RMSEs is reported for 
the EKF and the UKF. On the left-hand side, the results were obtained from states filtered without using 
cap prices. On the right-hand side, caps were used when filtering the states.  

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
72.11 32.64 79.02 63.31 107.85 105.81 76.28 32.55 80.31 63.28 109.61 105.79
47.49 30.75 65.31 60.50 104.19 103.07 49.06 30.73 66.90 60.49 107.56 103.06
30.89 29.03 57.63 57.11 99.05 97.49 36.32 29.03 62.05 57.10 103.25 97.48
26.84 25.94 51.66 50.69 87.80 86.18 32.53 25.92 55.38 50.68 90.42 86.17
21.92 21.58 42.14 41.82 71.87 71.41 23.93 21.56 43.30 41.80 72.67 71.39
20.85 20.74 40.19 40.06 68.74 68.53 23.64 20.70 41.78 40.04 69.79 68.51
20.13 20.09 38.67 38.63 66.24 66.16 24.15 20.05 41.00 38.61 67.73 66.15
37.25 12.30 34.41 19.33 30.27 25.98 44.46 12.11 38.90 19.29 31.14 26.00

203.95 76.89 200.74 140.68 224.71 217.26 220.25 76.26 208.57 140.54 234.34 217.24

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
71.07 32.28 77.58 61.55 103.31 102.07 74.85 32.15 78.70 61.56 104.77 102.14
46.93 30.50 63.89 59.12 100.75 100.40 48.18 30.45 65.57 59.18 103.95 100.23
30.73 28.95 56.34 56.18 96.64 95.74 35.28 28.93 60.71 56.12 100.80 95.86
26.71 25.99 51.39 50.54 86.72 85.21 31.61 25.96 54.66 50.64 88.83 85.13
21.96 21.61 42.04 41.70 71.45 70.95 23.75 21.56 43.15 41.70 72.29 70.95
20.85 20.70 40.21 40.13 68.52 68.17 23.44 20.68 41.72 40.01 69.44 68.18
20.14 20.08 38.71 38.66 66.01 65.99 23.83 20.05 40.98 38.59 67.09 65.94
37.58 11.76 34.49 19.07 30.20 25.57 43.43 11.57 37.82 19.12 30.85 25.62

204.04 76.95 200.95 140.00 223.32 215.64 215.62 76.14 206.56 140.00 232.43 215.65

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
9.94 3.07 11.82 11.39 30.18 27.90 11.66 3.06 12.07 11.36 30.04 27.88
6.01 2.64 10.57 9.88 27.13 24.77 6.47 2.64 10.76 9.87 26.97 24.76
2.53 1.98 8.43 7.36 21.29 19.34 5.39 1.98 9.39 7.36 21.32 19.34
1.72 1.39 5.57 4.77 14.45 13.34 5.21 1.39 6.82 4.77 14.66 13.35
1.00 1.06 3.12 3.12 9.02 8.97 1.81 1.06 3.26 3.12 9.02 8.98
0.98 1.02 3.02 3.06 8.67 8.69 1.96 1.02 3.16 3.05 8.62 8.69
0.95 0.97 2.89 2.92 8.46 8.47 2.38 0.98 3.19 2.92 8.39 8.47
6.07 2.65 5.09 3.07 4.45 4.39 10.22 2.75 7.75 3.06 4.86 4.39

34.96 11.06 28.19 21.30 37.45 38.06 44.57 11.11 33.56 21.23 39.57 38.09

7-yr Swap
10-yr Swap

1-yr Cap
5-yr Cap

Panel B:  Median Forecast RMSE (bps)

12 weeks

7-yr Swap

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap

1 week 4 weeks 12 weeks 1 week 4 weeks

5-yr Cap

10-yr Swap
1-yr Cap

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap
7-yr Swap

10-yr Swap
1-yr Cap
5-yr Cap

Panel C:  Forecast RMSE Standard Deviation (bps)

1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap

States Filtered without Caps States Filtered with Caps

Panel A:  Average Forecast RMSE (bps)

1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks



Table 7: Rate and Price Forecasting Performance. A1(3) Model 
 
 

 
 

 
Notes: We forecast rates and cap prices using the EKF and UKF filters. For each of 500 simulations, we 
compute the forecast RMSE. The mean, median, and standard deviation of these RMSEs is reported for 
the EKF and the UKF. On the left-hand side, the results were obtained from states filtered without using 
cap prices. On the right-hand side, caps were used when filtering the states.  
 

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
68.57 32.19 75.80 60.73 99.05 97.72 71.59 32.07 76.89 60.71 100.41 97.71
45.77 29.09 60.83 55.79 92.26 92.15 47.35 29.07 62.28 55.79 95.05 92.14
27.55 25.63 49.65 49.50 83.24 82.72 33.02 25.61 53.94 49.48 87.44 82.69
20.79 20.30 39.47 38.82 65.77 64.58 28.55 20.26 44.68 38.79 69.67 64.55
12.24 11.60 21.58 20.99 35.04 34.34 16.57 11.56 24.52 20.97 37.12 34.33
9.81 9.45 16.67 16.30 26.74 26.27 13.39 9.42 19.15 16.28 28.47 26.25
8.11 7.94 12.95 12.75 20.39 20.10 11.30 7.91 15.26 12.72 22.02 20.09

34.07 11.72 32.55 19.05 29.99 25.82 39.99 11.50 36.51 18.85 31.13 25.80
199.29 78.37 202.34 143.26 227.87 218.23 217.31 77.57 210.84 143.02 230.46 218.13

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
68.46 32.26 75.85 60.70 98.70 97.41 70.57 32.13 76.25 60.76 99.98 97.44
45.78 29.14 60.78 55.67 91.84 91.69 46.57 29.13 62.15 55.68 95.01 91.71
27.54 25.63 49.66 49.48 82.90 82.28 32.03 25.61 53.49 49.44 87.50 82.19
20.76 20.35 39.32 38.67 65.58 64.37 27.25 20.29 44.00 38.63 69.05 64.43
12.24 11.59 21.47 20.87 34.87 34.21 15.73 11.54 24.20 20.83 36.77 34.23
9.78 9.41 16.60 16.21 26.60 26.17 12.80 9.38 18.71 16.21 28.23 26.19
8.08 7.90 12.87 12.66 20.17 19.89 10.76 7.87 14.79 12.62 21.66 19.86
33.88 11.48 32.34 18.75 30.00 25.38 39.29 11.27 35.99 18.67 31.00 25.38

199.89 80.02 205.73 145.84 231.63 221.70 219.41 79.22 214.87 145.74 235.37 221.48

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
8.53 1.59 5.59 4.91 12.58 12.95 10.26 1.59 6.26 4.90 12.31 12.95
5.08 1.43 4.27 4.41 11.95 12.00 5.86 1.43 4.48 4.40 11.76 11.99
1.61 1.20 3.68 3.71 10.51 10.42 4.86 1.19 5.27 3.71 10.68 10.41
0.96 0.94 2.92 2.84 8.11 8.06 5.71 0.93 5.39 2.83 8.54 8.05
0.59 0.58 1.59 1.56 4.35 4.33 3.35 0.58 3.10 1.55 4.60 4.33
0.52 0.53 1.28 1.27 3.41 3.40 2.55 0.52 2.45 1.27 3.62 3.41
0.47 0.48 1.08 1.08 2.71 2.70 2.18 0.48 2.10 1.08 2.92 2.71
4.30 2.19 3.58 2.89 3.93 4.19 7.93 2.21 6.20 2.70 4.49 4.18
32.16 13.46 30.38 25.93 43.65 43.65 41.40 13.26 34.56 25.82 43.37 43.61

3-mo LIBOR

5-yr Cap

10-yr Swap
1-yr Cap

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap
7-yr Swap

10-yr Swap
1-yr Cap
5-yr Cap

Panel C:  Forecast RMSE Standard Deviation (bps)

1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks

7-yr Swap

10-yr Swap
1-yr Cap
5-yr Cap

Panel B:  Median Forecast RMSE (bps)

1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap

6-mo LIBOR
1-yr Swap
2-yr Swap
5-yr Swap
7-yr Swap

States Filtered without Caps States Filtered with Caps

Panel A:  Average Forecast RMSE (bps)

1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks



Table 8: Rate and Price Forecasting Performance. A2(3) Model 
 
 

 
 

 
Notes: We forecast rates and cap prices using the EKF and UKF filters. For each of 500 simulations, we 
compute the forecast RMSE. The mean, median, and standard deviation of these RMSEs is reported for 
the EKF and the UKF. On the left-hand side, the results were obtained from states filtered without using 
cap prices. On the right-hand side, caps were used when filtering the states.  

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
94.66 30.40 79.82 52.22 71.73 69.41 160.84 30.32 125.03 52.21 102.93 69.43
54.05 20.71 48.32 35.61 50.75 48.85 101.84 20.67 87.61 35.60 87.37 48.86
25.77 13.47 27.13 22.65 35.19 32.30 66.38 13.42 65.72 22.63 72.92 32.31
13.75 9.30 17.08 14.71 24.29 21.34 49.34 9.25 51.24 14.68 56.66 21.34
7.93 6.59 9.96 8.94 13.82 12.46 34.47 6.56 35.39 8.93 37.47 12.45
7.00 6.17 8.54 7.90 11.55 10.66 31.27 6.14 31.86 7.88 33.19 10.65
6.38 5.91 7.53 7.17 9.89 9.36 28.82 5.88 29.16 7.15 29.98 9.35
48.92 13.43 38.79 21.18 28.76 26.10 76.97 13.39 53.94 21.16 30.37 26.09

262.74 77.90 208.11 130.31 171.30 163.31 374.82 77.54 255.21 130.12 180.92 163.21

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
83.56 29.76 74.42 51.13 69.25 66.65 156.64 29.66 120.72 51.10 99.22 66.77
47.32 19.79 45.90 33.61 46.87 44.47 98.85 19.73 84.34 33.65 83.07 44.43
22.86 12.50 25.62 20.43 31.04 27.61 65.04 12.41 61.95 20.37 69.63 27.69
12.50 8.53 15.78 12.97 21.23 17.77 47.38 8.48 48.18 12.98 52.95 17.82
7.48 6.28 9.36 8.14 12.48 10.87 32.13 6.25 33.13 8.12 35.19 10.85
6.69 5.95 8.08 7.27 10.51 9.31 28.96 5.93 29.18 7.28 30.72 9.26
6.20 5.75 7.15 6.61 8.86 8.21 26.48 5.73 26.63 6.59 27.41 8.21
42.68 13.40 35.22 21.19 28.80 25.81 76.32 13.32 53.82 21.18 30.58 25.81

232.98 79.19 198.61 132.09 172.26 164.09 377.82 78.75 259.64 132.01 182.54 164.01

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
34.69 3.14 18.64 7.05 15.11 15.75 48.13 3.15 32.59 7.05 23.14 15.74
19.42 3.42 10.25 7.40 15.72 15.96 32.68 3.43 24.88 7.40 24.73 15.95
8.60 3.29 6.78 7.08 14.49 14.60 23.59 3.30 21.69 7.07 23.47 14.59
4.00 2.43 5.36 5.45 10.97 11.04 19.18 2.44 18.58 5.44 19.17 11.03
1.62 1.10 2.75 2.71 5.71 5.71 15.07 1.10 14.59 2.71 14.06 5.71
1.14 0.81 2.12 2.10 4.51 4.51 14.26 0.81 13.87 2.10 13.27 4.51
0.83 0.68 1.72 1.73 3.72 3.73 13.62 0.67 13.33 1.72 12.75 3.73
19.17 1.93 11.49 3.35 5.07 5.11 20.79 2.15 12.68 3.36 5.02 5.11

105.13 13.27 57.91 25.88 39.14 38.14 97.86 13.30 55.34 25.81 40.70 38.02

3-mo LIBOR

5-yr Cap

10-yr Swap
1-yr Cap

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap
7-yr Swap

10-yr Swap
1-yr Cap
5-yr Cap

Panel C:  Forecast RMSE Standard Deviation (bps)

1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks

7-yr Swap

10-yr Swap
1-yr Cap
5-yr Cap

Panel B:  Median Forecast RMSE (bps)

1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap

6-mo LIBOR
1-yr Swap
2-yr Swap
5-yr Swap
7-yr Swap

States Filtered without Caps States Filtered with Caps

Panel A:  Average Forecast RMSE (bps)

1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks



Table 9: Rate and Price Forecasting Performance. A3(3) Model 
 
 

 
 

 
Notes: We forecast rates and cap prices using the EKF and UKF filters. For each of 500 simulations, we 
compute the forecast RMSE. The mean, median, and standard deviation of these RMSEs is reported for 
the EKF and the UKF. On the left-hand side, the results were obtained from states filtered without using 
cap prices. On the right-hand side, caps were used when filtering the states.  

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
19.79 19.01 36.04 35.63 57.15 56.93 20.67 18.96 36.42 35.61 57.31 56.92
18.47 17.78 33.56 33.18 53.22 53.02 19.22 17.74 33.89 33.17 53.36 53.01
15.97 15.41 28.77 28.47 45.51 45.36 16.53 15.39 29.02 28.46 45.65 45.36
12.47 12.12 21.96 21.77 34.52 34.43 12.97 12.11 22.23 21.77 34.71 34.43
8.05 7.97 12.83 12.79 19.61 19.59 9.10 7.94 13.55 12.77 20.14 19.58
7.10 7.08 10.58 10.57 15.75 15.74 8.49 7.03 11.61 10.54 16.51 15.73
6.45 6.46 8.91 8.92 12.80 12.81 8.10 6.40 10.22 8.88 13.80 12.79
5.61 5.46 5.71 5.53 5.88 5.74 5.64 5.45 5.67 5.60 5.95 5.79
24.66 23.26 42.26 41.34 66.35 65.41 32.29 22.71 46.41 41.17 68.00 65.40

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
19.11 18.43 35.06 34.58 54.67 54.47 20.11 18.35 35.43 34.53 54.80 54.43
17.99 17.25 32.65 32.28 50.96 50.65 18.66 17.20 32.87 32.27 51.09 50.63
15.54 15.02 28.07 27.77 43.65 43.39 16.10 15.00 28.24 27.76 43.74 43.41
12.17 11.88 21.35 21.16 33.03 32.84 12.60 11.84 21.53 21.16 33.15 32.82
7.87 7.81 12.51 12.44 18.68 18.60 9.02 7.78 13.21 12.44 19.15 18.64
6.99 6.97 10.22 10.21 14.95 14.93 8.34 6.94 11.25 10.18 15.61 14.90
6.32 6.34 8.54 8.54 12.01 11.96 7.85 6.26 9.99 8.49 13.15 11.99
5.14 5.09 5.22 5.19 5.45 5.40 5.21 5.10 5.26 5.21 5.45 5.42
24.80 23.37 42.97 42.13 67.26 66.17 31.78 22.80 46.58 41.76 69.16 66.09

Forecast horizon
EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF
3.99 3.75 7.94 7.92 14.89 14.98 3.82 3.76 7.86 7.91 14.91 14.96
3.72 3.49 7.40 7.39 13.90 13.97 3.57 3.50 7.33 7.38 13.90 13.96
3.10 2.90 6.27 6.25 11.82 11.85 2.99 2.91 6.21 6.24 11.80 11.85
2.26 2.12 4.66 4.63 8.86 8.85 2.12 2.13 4.58 4.63 8.80 8.86
1.11 1.04 2.48 2.43 4.92 4.85 1.12 1.06 2.30 2.45 4.75 4.88
0.86 0.81 2.01 1.95 4.02 3.95 1.20 0.83 1.94 1.97 3.86 3.98
0.72 0.68 1.64 1.59 3.40 3.32 1.36 0.70 1.77 1.61 3.30 3.35
1.68 1.58 1.77 1.53 1.65 1.49 1.65 1.53 1.64 1.59 1.77 1.58
3.21 3.01 5.15 5.07 9.68 9.27 7.55 2.95 7.52 5.05 10.33 9.35

1 week 4 weeks

Panel A:  Average Forecast RMSE (bps)

States Filtered without Caps States Filtered with Caps

1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks

5-yr Cap

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap
7-yr Swap

7-yr Swap

3-mo LIBOR
6-mo LIBOR

10-yr Swap
1-yr Cap

1-yr Swap
2-yr Swap
5-yr Swap

5-yr Cap

Panel C:  Forecast RMSE Standard Deviation (bps)

10-yr Swap
1-yr Cap

12 weeks1 week 4 weeks 12 weeks

7-yr Swap

10-yr Swap
1-yr Cap
5-yr Cap

Panel B:  Median Forecast RMSE (bps)

1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap



Table 10: Fit of 7-Year Cap Prices. AM(3) Models. 
 

 

 
 

 
Notes: Estimates of RMSE and Bias are obtained from 130,000 simulated 7-year cap prices (500 
trajectories, 260 weeks), and the corresponding fitted prices using the EKF or the UKF. In Panel A only 
LIBOR and swap rates are used when filtering the underlying states. In Panel B 1-year and 5-year caps 
are used in addition when filtering the state. 7-year caps are never used in the filtering step. 

 

7-yr Cap EKF UKF EKF UKF EKF UKF EKF UKF
Bias 19.078 -0.148 25.377 1.563 114.710 2.497 1.840 2.865

RMSE 271.750 26.803 264.120 21.785 391.090 22.898 18.200 13.986
IQR

7-yr Cap EKF UKF EKF UKF EKF UKF EKF UKF
Bias 22.024 -0.022 31.852 0.955 193.740 2.094 6.690 1.026

RMSE 295.340 17.346 290.700 11.955 573.900 16.179 36.670 10.581
IQR 757.24 804.06 333.20 246.73

A0(3) A1(3) A2(3) A3(3)

Panel A: States Filtered without 1-yr and 5-yr Caps

Panel B: States Filtered with 1-yr and 5-yr Caps

A0(3) A1(3) A2(3) A3(3)

757.24 804.06 333.20 246.73
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