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Abstract

We develop aC), statistic for the selection of regression models with
stationary and nonstationary ARIMA error term. We derive #symptotic
theory of the maximum likelihood estimators and show theyamsistent
and asymptotically Gaussian. We also prove that the digtoib of the sum
of squares of one step ahead standardized prediction anioes the param-
eters are estimated, differs from the chi-squared digtabuby a term which
tends to infinity at a lower rate thayf,. We further prove that, in the predic-
tion error decomposition, the term involving the sum of theiance of one
step ahead standardized prediction errors is convergerdlly we provide
a small simulation study. Empirical comparisons of a cdasisversion of
our C,, statistic with BIC and a generalized RIC show that our diatisas
superior performance, particularly for small signal tosgoratios. A new
plot of our time serieg’), statistic is highly informative about the choice of
model.

*e-mail:sj o@mat h. ku. dk
fe-mail:nri ani @i pr.it
te-mail:a. c. at ki nson@ se. ac. uk.



On the way we introduce a new version of AIC for regression efmd
show that it estimates a Kullback-Leibler distance and idena version
for small samples that is bias corrected. We highlight theneations with
standard Mallowg’,,.

Keywords:AIC; ARMA models; bias correction; BIC, plot; generalized
RIC; Kalman filter; Kullback-Leibler distance; state-spdormulation

1 Introduction

There is a vast literature on methods for selection of nastetemodels. In AIC
(Akaike, 1974) the maximized log-likelihood is penalizeglthe number of pa-
rameters in the model. For Gaussian regression models, &¢Grbes Mallows’
C, (Mallows, 1973) when the nuisance parametéris estimated from a full
model containing sufficiently many terms to ensure that temator is unbiased.
For such regression models the distributiorCgfis a linear function of ar’ ran-
dom variable (Gilmour, 1996). There is no simple non-asytipexpression for
the distribution of AIC. Book length treatments of the prdfes and applications
of these and other procedures include McQuarrie and TsaBj18urnham and
Anderson (2002) and, more recently, Konishi and Kitagavd@@ and Claeskens
and Hjort (2008).

Tong (200159) gives references to methods solely for time series. Mere r
cent contributions include Set al. (2006) who consider the case of, possibly
lagged, exogenous variables and GARCH errors. Wrag. (2007) extend the
least absolute shrinkage and selection operator (‘lagsodgression models with
autocorrelated errors. Claeskestsal. (2007) emphasize the mean squared fore-
cast error and suggest an alternative to AIC and BIC in agtessive time series
models. Finally, Shi and Tsai (2004) obtain a residual imi@tion criterion (RIC)
for joint selection of regression variables and the ordeauibregressive errors.
However, there appears to be no extension of the standartisrés the class of
models of interest here, that of all models which containlaxgtory variables,
and have a reduced form ARIMA representation whose AR and Bl#&srlie
outside the unit circle.

The structure of the paper is as follows. §& we propose new versions of
AIC (or its consistent version BIC) and 6f, which can be applied to the choice
of regression models with independent or stationary eerons as well as to some
non-stationary error processes. We provide argumenthéasymptotic distri-
bution of our time serie¢’, statistic. We also show, for regression with indepen-
dent errors, that our new version of AIC is a consistent wsdaiaestimator of the
expected Kullback-Leibler information between the truedeland the fitted can-
didate model. We derive a small sample correction factor a&arthis new AIC



unbiased and we explore its close relationship with trad#l AIC andC,,.

We start the derivation of the asymptotic distribution of @y, statistic for
time series irg3 by proving a series of theorems in the context of linearaggr
sion with ARIMA errors. The asymptotic distribution of thea@ssian maximum
likelihood estimator of the ARMA parameter vectband the regression param-
eters/3, has been given by Hannan (1973), for stationary regressing fre-
quency domain methods. Yao and Brockwell (2006) analysertbeel without
regressors and show thais consistent and asymptotically Gaussian using time
domain methods. 1§3.2 we show how the results of Yao and Brockwell can be
applied and extended to the regression model with detestianmiegressors. Our
new results cover the strong consistency of maximum likelthestimators, and
we find expressions for the score and the information matrikuse them to find
the asymptotic distribution of the maximum likelihood esditor. In§3.3 we anal-
yse the likelihood ratio test of a linear hypothesis on tlgression parameters,
both with the same ARMA parameters, and provide a new stéichagpansion
for the likelihood ratio test of a reduced model.

In §3.4 we recall the prediction error decomposition and prowat the distri-
bution of sum of squares of one step ahead standardizeccposderrors, when
the ARMA parameters are estimated, differs from the chiased distribution by
a term which tends to infinity at a lower rate thgh We also prove that the term
involving the sum of logarithms of the variances of one stiepaa standardized
prediction errors is convergent, leading to a simplifiednagtotic form for the
likelihood ratio test. Ir§4 we sketch the extension of our results to non-stationary
models.

In §5 we address the issue of model selection for linear regnesgth ARIMA
errors. We propose our neft, for time series and use the results;8fto find its
asymptotic distribution. Theoretical arguments and satiahs indicate that the
distribution of the new statistic is well approximated by@mlistribution.

In §6 we provide a small simulation study and compare a congisgsion
of our statistic with BIC and a generalized RIC (Shi and T2aD4) extended to
ARMA models. An important feature of our new statistic istthas withC), in
regression, an error variance is estimated from a large In@iar calculations
show that, as expected, use of this estimate provides atatatith superior per-
formance, particularly for small signal to noise ratiosndily we suggest a new
plot for our time serieg’, statistic which is highly informative about the choice of
model. Theory and simulations show that the plot comes withraded structure
which easily enables us to appreciate the effect of theduoirbon of additional
explanatory variables and/or stochastic parametersioBeciconcludes and pro-
vides food for thought for further research.



2 AIC, C,and Likelihood Ratio Tests

2.1 Regression withi.i.d. Errors

It is often stated that the use of AIC in the selection of Gausmodels is equiv-
alent to the use of’, (for example, Hastiet al, 2009, p. 231) and a Taylor se-
ries justification is sometimes given: Venables and Rip80@,56.6), Davison
(2003, problem 8.16). We now establish an exact relatignfrinormal theory
regression.

We first consider regression without a time-series strectufor the linear
multiple regression model we assume thdias been generated by the unknown
modely = X8y + ¢ wheree ~ N(0 01), Xy = (210, ..., Tno)'. We estimate the
modely = X3 + ¢, whereX is ann x d full-rank matrix of known constants,
with ith row 2. The normal theory assumptions are that the erepege i.i.d.
N(0,0?%). To estimater? we may also regresson alld™ columns of the: x d*
matrix X .

Assumption 1. LetC(X) be the column space of. Null distributional results
are obtained wheg@(X,) C C(X) C C(X™).

The log-likelihood ofr observationg, a function ofs2 and of thed x 1 vector
of parameterg is L,,(3, o). If 3 is the maximum likelihood estimator ¢f AIC
is often defined, particularly in the time series context, as

AIC = =2L,(B;y) + 2(d + 1), (1)

since we have estimated as well as3. That model is selected for which AIC is
a minimum. It would be natural to ugeas the number of parameters, but this is
a paper about the analysis of time series and our notationerded to allow for
the discussion of general ARMA(q) models with regressors.
The residual sum of squares from fitting this model to the &afg, and, for
knowno?,
AIC, = nlog(2m) + nlogo® + Ry/o* + 2d. (2)

If, as is usually the case? is not known, the maximum likelihood estimator is
6% = Ry/n. 3)
With this internal estimate af? the criterion (2) is replaced by
AICT = nlog(2m) +nlog{Ry/n} +n+2(d+ 1), 4)

a form frequently used in the selection of non-nested timesenodels with
normally distributed errors (Tong, 200§9).
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In the selection of regression variables, the unbiasedasii of o> comes
from regression on all™ columns ofX ™ and can be written

s+ = Rg+/(n —d™). (5)
With this estimate the criterion (2) is
AICy = nlog(2m) +nlog{Ry+/(n—d*)} + (n—d")Ry/Rg+ +2(d+1), (6)

although (4) is the standard form for AIC. The main differefetweend’Cy+
and AIC; is in the estimate of? which is used. In the context of model choice,
bothn ands?, are fixed, the variable factors being the valué ehd the regressors
that are being considered. Then choice of the model minmgi@) is identical to
the choice of model minimizing

Cp:Rd/Sgﬁ —n+2d= (n—d+)Rd/Rd+—n+2d. (7)

One interpretation of’, (Mallows, 1973) is that its value provides an estimate
of the scaled mean squared error of prediction attldservational points from
the model of interest, provided Assumption 1 holds. Thé®RE = (n — d)o?,
E(s2,) = 0% and HC,) is approximately.

If Assumption 1 holds, an assumption we make for the resteptper, both
Rg+/(n — d™) and Ry/(n — d) provide consistent estimates of. However,
if C(Xo) ¢ C(X), Ry contains a non-centrality parameter and, becatjses
unbiased(,, (7) will be large and the model will be rejected.

As we illustrate in§6, it helps not merely to select models with small values
of C, but also to calibrate those values against their distidouti he distribution
of C,, under the null Assumption 1, is given, for example, by Mao(1973)
and by Gilmour (1996). From (7) we require the distributidrthe ratio of two
nested residual sums of squares. It is straightforward eavghat the required
distribution is

Cp ~ (d+ — d)F + 2d — d+, where F~ Fd+—d,n—d+~ (8)
In short, if * ~ F,, ,.,,E(F*) = 1»/(r, — 2) and, from (8),

dt —d

(9)
Asn — oo, E(C,) — d. Hurvich and Tsai (1989) find corrections for the bias
2(d* — d)/(n — d* — 2) for very smalln while Fujikoshi and Satoh (1997) give
modifications to AIC and’, to reduce bias when the candidate models may be
under- or over-specified and so Assumption 1 fails.
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In Appendix A we prove similar results for our new version dCAand show
that it retains the same interpretation as traditional Ai@roviding a consistent
estimator of the expected Kullback-Leibler informatiorivbeen the true model
and the fitted candidate model. We also give in the followimgotem the ex-
pression for the bias corrected version of our new AIC —4&y’} (u) — which
is
Theorem 1. The unbiased version of the new AIC suggested in equébipis
given by

n—dr

n—dr—2
(10)

AICS (u) = nlog(2m)+nlog{ R4+ /(n—d") }+(n—d*)Ry/ Rg++2(d+1)

The model minimizing AIC oiC,, has a fixed probability of being too large,
even asn — oo. Schwarz (1978) shows that replacia@ + 1) in (6) by (d +
1) logn provides consistent model selection. The alternativgiof 1) log(n —
d™) used in the RIC of Shi and Tsai (2004) is obviously also cdests Such
consistency factors can also be applied to our new AIC.

3 Advancesin linear regression with ARIMA errors

We now provide the necessary distributional results tofjuah asymptotict dis-
tribution for our time serieg’,, thus providing a natural extension of (8). Proofs
of the results are in Appendix B.

3.1 Themoded and the assumptions

We consider the regression model with stationary investkRMA errorsu; and
deterministic regressors

vy = By +u, t=1,...,n. (11)
AP<L)U¢ = Bq<L)€t, Et i.i.d. N(O, 0'2), t= 1, e, N (12)

The polynomialsarel,(z) = 1-Y "0 | ¢;2", ¢g = 1andB,(z) = > 7, ¢iz", 1o =
1, and we define the parametérs= (¢1, ..., ¢p, ¢4, ..., 1¥,). The matrices of re-
gressors are as §2.1. We use the notatidn = ,,() = 02V ar(y), and define
the autocovariance functionh) = o 2Cov(y, yirn) = Qtrvn- Note thatQ is
n x n and therefore depends arand the dynamic parametets



The Gaussian log likelihood function is
—2log Ly(8,0,0°) = nlogo® +log |Q| + 0 *(y — XB)Q7 (y — XB). (13)

In accordance with Yao and Brockwell (2006) we make the Waithg assump-
tion.

Assumption 2. Let the roots of4,(z) and B,(z) be denoted (), .. ., z,+,(6)
and letd € D be a compact subset of the set whelg~) and B,(z) have no
common factors and wheré,(z) and B,(z) are invertible, that is, there is a
p < 1 for which
min min |z(0)] = p (14)
Together with model (11) we also consider the regressioh mainstationary
error term where (12) is replaced by

Ay (L) A%, = By(L)gy, g, idd. N(0,6%), t=1,...,n,d=1,2 (15)

with Assumption 2 still satisfied.
Under Assumption 2 we apply the representation

By(L) -
- - n —n» == 1)
Uy Ap<L>€t nE:o €t Mo

see Lemma 1 in Appendix B for the properties of the coefficiemd for various
evaluations of? and its derivatives.

In what follows we give our results in terms of asymptoticeirg@nce, hypoth-
esis testing and prediction error decomposition.

3.2 Asymptotic inference

The asymptotic distribution of the Gaussian maximum liketid estimator of the
ARMA parameter vectof and the regression parametgrshas been given by
Hannan (1973) for stationary regressors using frequenoyatto methods. Yao
and Brockwell (2006) analyse the model without regressodsshow that) is
consistent and asymptotically Gaussian using time domathods. We show
here how the results of Yao and Brockwell can be applied amnenebed to the
regression model with deterministic regressors and plyssimstationary ARMA
errors.
We denote the true values of the parameterghy?2 and(), and introduce

k= (n""X'Q " X)2(8 - B), (16)

with true valuexy = 0.



Theorem 2. Under Assumption 2, the maximum likelihood estimatorg exid
are strongly consistent

a.s.

(62,0, 7) “% (02, 60,0).
It follows that if Ay (n ' X'Q5 ' X) > a > 0, then “3 3.

Now let D" f(#) denote then'th derivatives off with respect to the argu-
ments off, with then x n derivatives), = Dy. 2 and(),, = Dgsng. Further, in
the following we denote by A, B, C'} the block diagonal matrix witkl, B, C'in
the diagonal. Then we can write the following theorem abaeytrgtotic distri-
butions, see Hannan (1973) Theorem 2, and Yao and Brock®@M6E) Theorem
2.

Theorem 3. Let A = (02,0, /<;) Under Assumption 2, the score functiSp, =

n~12Dlog L(X\o) = (Sne2,S",, S.,,.) is asymptotically Gaussian with covariance
1
Ji_{lgoE(—”_lw log L(Xo)) = {500_4720700_2@}, 17)

whereX is (p + q) x (p + q) with elements
1 : .
ZOsk = lim in_ltT{Q(;lQOkQalﬂos}.
n—oo

Moreover for a sequence, — 0 we have for the information per observation
In)\)\<)\) = —n~'D? IOg L<)\)7
I — = . 1
e [ 2o (A) = Lnan(Ao) |2 = O(en) (18)
The logical implication of Theorem 3 is thﬁtis asymptotically independent
of (62,0) and therefore estimates 6funder two different models fof satisfy

0 -0, = Op(nt), 6% —062 = Op(n'). These two key facts are stated more
formally in the two following corollaries.

Corollary 4. Under Assumption 2, the maximum likelihood estimators
(n'2(6° = a5),n"*(0 = 0o), (X' " X) V(B = o))

are asymptotically Gaussian and asymptotically indepahdéth an asymptotic
variance given by

{2007 0 iy Id}
Corollary 5. For two modeIsE( ) = XpandE(y) = XA, or 3 = A, with
estimate$s?, 0, §) and(62, 4, 3, = AE,) respectively we hav@g?—42, 6—0,) =
Op(n_l).



3.3 Hypothesistesting

In the model withE(Y) = X3,9Q,, = Q,(0), 8 € R%, 0 € RPT with estimators
(62,0, 3), we want to test the hypothesi(Y') = X A¢, or equivalently3 = A¢,
€ € Rd* d, < d. Under this hypothesis the estimators &2, 6., 3, = AS,).

Letﬁ 9,62, ) denote the maximum likelihood estimators in model (11). We
want to test the hypothesis that = A¢ and denote the maximum likelihood
estimators under this restriction By = A&, , 9*, 52 Q).

The theorem below shows that under the nuII hypothésis A¢ the fact of
estimating the covariance matrix with and without thisniesbn leads to an error
which is of orderOp(n™!).

Theorem 6. For 2 and) we have

(y — XB) (' = QM) (y — XB.) = Op(n7h). (19)

The theorem below provides a similar result for the log of thiéo of the
estimates of the scale parameter of the covariance matrix.

Theorem 7. It follows from asymptotic theory of the maximum likelihaesdi-
mator that—2log LR(5 = A£) 3 x2(d — d.), but we also have the stochastic
expansion

A2

~2l0g LR(8 = A€) = nlog 5+ 0p(n”") = 67(B.=3) X' X (8.~ B)+0p(n ™).

3.4 Theprediction error decomposition

In the extension of results afi, and its distribution to time series with a Gaus-
sian structure it is convenient to use the state-spaceseptation (Anderson and
Moore, 1979; Durbin and Koopman, 2012) and the Kalman filberchlculation
of the likelihood associated with each model. In this sectie briefly recall
the prediction error decomposition and provide new resuitsinsight about the
distribution of its terms.

The best linear prediction a@f is

U= Ei1(y) = 2,8+ Er_q(w), t =2,...,n, andE(y;) = x5,

where the subscript indicates expectation conditional,on. ., y;_;. The predic-
tion errorv, is
(% :yt_lgta t:2,...,n, andyl—xaﬁ

and the variance of the prediction error, with concentrated out, defines the
factor ff = f£(0) b
Var,_1(y) = o> f£(0), t =2,...,n, andVar(y;) = o*v(0).



Decomposing the density in successive conditional dessite get the prediction
error decomposition

ylv"'vyn H yt|y17"'7yt 1) (20)

ﬁ _L (yt - gt)2)
1/ 2mot e 202 ff

and hence the identities, see (13),

n

E:@L7§Q— (y— XB)Q ' (y— XB)and > log f7 = log |-

t=1 t t=1

The log likelihood can therefore be rewritten as:

n

A~ - ) 2
t=1 t=1Jt

The expression for the log likelihood can be further simgdifio

—2log L(f3, 6, 6?) = nlog(27) + nlog 6> + Z log ff(é) +n, (21)

t=1

using the estimate
n 2
~2 —12 Y
g =n —_
= f70)

Equation (21) is known in the literature as the concentrptefile log likelihood
(see for example Franclet al. (2010), for a discussion of alternative specifica-
tions for the likelihoods). The prediction error decompiosi (Harvey, 1989, eq.
3.4.7) yields a particularly simple form for the likelihosthce the quantities;
and ff can easily be calculated putting model (11) in the so-calkatie space
form and applying the Kalman filter.

Computational remarkwheng is estimated we need to run the Kalman filter
with an additional set of recursions which are usually mef@ito in the literature
as the diffuse Kalman filter (de Jong, 1991).

The new result of this subsection refers to the behaviounetwo terms

> “log ff(0) and Z 2/ fe0 (22)
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The second term is the sum of squares of independent onefséeal prediction
errors for normal random variables, scaled by their vagandf all dynamic pa-
rameters in the model are known and the current model is dptités sum has
exactly ac?x?_, distribution, because the are linear functions of the obser-
vations and are independent with mean zero and variahfg6) (e.g. Harvey,
1989).

However, when the model also requires estimation of thenpaiersd in the
ARIMA model or, equivalently, the estimation of the variasof the disturbances
in the structural framework, the distribution, as we statéhie theorem below, is
asymptotically chi-squared, differing from the , distribution by a term that
tends to infinity at a lower rate tharf .

In what follows we use the symboto denote an estimate in which only the
regression parameters are estimated whilst usivitgen both the regression coef-
ficients and the stochastic parameters are unknown andagetim

Assumption 3. In addition to Assumptionl ¢R.1, we also require that the mod-
els havep > py andqg > qp.

Theorem 8. Let the data be generated with additive errefsuch that,, ,,, (L)u, =
boy.q0 (L)e:. We fit model (11). Under Assumptions 1 and 3 this will contaérttue
model, so thaB;zy, = 'z, for somes. Then the residual sum of squares satisfies

N

WO = (y — XB)Q Wy — XPB) = @ Q5 a{1 + Op(n )}, n — co. (23)

The result shows that the sum of squares of one step aheadtfmeerrors
divided by their scaled variances when all parameters akeavymn is equal to
the sum of squares of the residuals which we obtain when dw@yreégression
parameters are estimated, apart from a term which is of erdér That is

e Zlft Z {1+O PN =@y a{l 4+ Op(n~Y?)}. (24)

The effect of estimation of the stochastic parameters ceordimgly be sum-
marized as

(y = XB)YQ (y — XB) = X*(n — d) + Op(n'"?). (25)
For the first term in (22) we have

Theorem 9. The limits oflog |$2,,(0)| = >_;_, log ff and its derivatives
0log|€2,(0)|/00s,s =1, ..., p+ g exist as continuous functions

0 < lim log [2,(0)] < oo,
n—oo
lim D;log|€2,(6)| = D lim log |2,(0)].
n—00 n—00

11



4 Extensionsto non stationary models

For ARIMA models the error term; and hencey, is nonstationary but both can
be differenced until stationarity is obtained. The diffezed model then includes
differencedz;. In addition we cover the class of “structural” models, stiax
because they have easily interpreted parameters for nmugletonomic times se-
ries. Harvey (1989, Appendix 1 and equation (2.4.26)) sunmesathe ARIMA
form of these models by use of a multivariate error term. @sults for asymp-
totic inference require a univariate error term, in whickecthep + g parameters
f in (12) can be restricted so it becomes a nonlinear functiadheostructural pa-
rameters:) = 0(§), wheredim ¢ < dim 6. Using the methods developed in this
paper it is possible to obtain the asymptotic theory for treximum likelihood
estimator in the structural model which is just the maximikalihood estimator
in the restricted ARIMA model.

To see this more formally, we start by noticing that, for epéarford = 1,
equations (15) can be written in the equivalent form

= f'rr +up+or,t =1, (26)
Ay, = B Az, + v, t =2,....n,
wherev, = Auy, is a stationary ARMAp, q) process and, = u0+Z§:1 v; Where
ug IS an initial value independent of,, . . ., v;. The transformation of the data to
the lastn — 1 equations, that is equations fan,, ¢t = 2, ..., n means ignoring the

first equation because we can write the density,0f-, . . . , yr conditional onuy
as

p(Y1, Y2, - - -, yrluo) = p(yr, Aya, . .., Ayrlug)
- p(Ay27 ey AyT)p(y1|Ay27 ceey AyTa U())
In the Gaussian case the last factor is a Gaussian distibwith mean
E(y1|Aya, Axy . .., Ayp, ug) = 'y + ug + E(v1|Aya, . .., Ayr),

and variancé ar(v1|Ays, . . ., Ayr). This reduces the problem of inference in the
regression model with nonstationary ARIMA errors (15) te tase of regression
of Ay, on Ax; with stationary ARMA errors in (26).

If instead we consider (15) faf = 2 we definev; = A%u; and findu, =
up + tAug + Y!_, (t + 1 — i)v;. Then the equations are

v = Bz +uo + Aug + v
Yo = 819 + ug + 2Aug + 201 + vy
A%y, = 'A%z +u,t=3,...,n,

and a similar argument can be made for focussing on the las2 equations.

12



5 Model selection for linear regression with station-
ary ARIMA errors

5.1 Modd selection

In this section we extend the criteria frdi developed for i.i.d. observations to
ARMA models with explanatory variables. We continue to edasmodels of the
form (11) under Assumptions 1 and 3. Then the model definedtay, = (0
Rrte. E(y) = X, 84,6 € R% ¢% > 0) contains the data generating process
because foX, = X, A we can takes,, = AfSy.

We search over regression models definedMdy, = (0 € R E(y) =
XB,& € RY o2 > 0), for whichC(X) C C(X*). We denote the maximum
likelihood estimators by, 3,52). We also fit the modeMy, and denote the
estimators by, , 3, 52).

If 02 and@ are not estimated we get the analogue of (2)

AIC, = nlog(2r) + nlogo® + log || + o~ *(y — XB)YQ Yy — XB) + 2,

wherec = dandj = (X'Q1X) "1 X"y.
If 02 and@ are estimated we get the analogue of (4)

AIC; = nlog(2m) +n(logs? + 1) + Z log f{(6(k)) + 2c, (27)

t=1
wherec=1+d+ k,k =p+ gand

6° = (n—d)"M(y — XBYQOR)) " (y — XP). (28)

Finally the analogue ofl/C,, (6) uses an estimator of and(2 based upon the
model withd . regressors(, and unrestricted :

A]C;i = nlog(27) + nlog &i + log |Q+| + n&Z&;Z + 2¢, (29)
wherec =1+ d + k, and
' = (n—d) Ny - XBUy - XB),
&i = (n— d+)_1(y - X+5+)/Qll(y — X1 54). (30)

Our simulations show, in complete agreement with the thraerdeveloped in the
previous section, that (29) has a distribution close toohat/C}.

We now derive a statistic with an asymptotically known digttion. The
choice of the model minimizing (29) is identical to the cheoiof model mini-
mizing

Cr =1log Q| + (n — d)6%6 7% — n + 2c. (31)

13



In this criterion the terniog |2, | is Op(1), so for selection purposes we focus on

A

¥

wherec = 1 + d + k, is the number of fitted parameters, ¢2, 0) in the model
with d regressorsy and dynamic parametefsof dimensionk.

The simulation results of Tables 1 and 2 show the effect of gmission,
which is beneficial when regression is relatively weak. e full model with
¢t parameters(), has the exact valugct — d*, since we have the same sum of
squares in the numerator and denominator of (32). Distobat results about
C, rely on the asymptotig? distribution of the residual sums of squares (25) for
models satisfying our assumptions. From (32) the approvemdistribution ofC,
is given by

C, ~ (¢t —c)F +2c—d" where  F = Fo_pg+. (33)
and that

(¢t —d")(n—db) 2" -0
n—dt—2 n—dr—2

E(C,) =c+
As n — oo we obtain
E(C) = c+ (c"—=d")=c+p" +q*.

Thus the expected value of the statistic, for langelepends on the total number
of parameters in the reduced model and on the number of sticlparameters
in the full model. This, however, is a constant when comggdifferent reduced
models, so that the penalty in comparisons isquas it isd for regression models.
In neither case does the parameter for the error variandehvugconcentrated out
in the time series application, affect tledistribution of the statistic. However, a
consequence of taking= 1+ d + k in the time series formulation is that the two
statistics differ by a constant value of 2 when the errorsradependent.

Application of the prediction error decomposition to (14)%hi and Tsai
(2004) yields the generalization

RICY = (n — ¢)logo? + Z logff +clog{n — (p+q)} — {2(p+¢q) +d}
t=d+1

4
+ )
n—2p+q)—d—2

(34)

whereo? is estimated from the current model.
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6 (), Plotsand Empirical Performance Using Simu-
lated Data

To compare the performance of our new statistic with thosténliterature we
report the results of a small simulation experiment. WeudeHd our newC,
statistic (32) andjg (31) from which it was derived in both their original and
consistent forms in whicBc is replaced by log(n — ¢). Also included are AIC,

BIC and our generalization of RIC, called RiCto general state-space models.
The seven statistics are

C,. The F-distributed statistic (32).

B,. Consistent’,; (32) with2c replaced by:log(n — ¢).

CT. C, including the sum of termeg /¢ (31).

B!'. ConsistenC; (31) with 2c replaced by:log(n — c).

AIC;. Equation (27) withs2 given by (28).

BIC;. ConsistentAICy; (27) with 2¢ replaced by:log(n — ¢).

RICC. Generalized?IC; (34).

The comparative performance of the seven statistics depamthe signal to
noise ratio. The signal comes from the matrix of explanatarnjablesX* gener-
ated, once for each table, from standard normal randomblasavith the values
of § equal to one. Following Shi and Tsai (2004), we take as theenator of
the ratio the average variance of the mean function of thedgaherating model.
Here, withk variables each with variance one, the mean equals one. \Weher
variance of the errors vag) from one to 200, so that the range of the signal to

noise ratio is 1 to 0.005. The results for an MA model are inl@dband, for an
AR model, in Table 2.

Table 1: Percentage of time true model (MA(1) + 2 explanat@sables) is
chosen. Results of 1,000 simulations with= 200. Full model ARMA(2,2) + 4
explanatory variables. Signal to noise ratio = 1/gar(

vart) C, B, CT' B BIC RIC® AIC

100 16 5 0 0 7 0 7
50 37 25 8 2 16 1 22
25 45 71 34 27 54 23 43
10 48 91 64 93 92 65 74

1 51 90 64 94 92 94 80

The results in the two tables are surprisingly similar. Wtrensignal to noise
ratio is large, vai;) = 1, the best performance in terms of automatic model
selection is forB!, BIC and RIC". If the signal to noise ratio decreases to 0.1
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Table 2: Percentage of time true model (AR(2) + 1 explanatariable) is cho-
sen. Results of 1,000 simulations with = 200. Full model ARMA(2,2) + 3
explanatory variables. Signal to noise ratio = 1/war(

var) C, B, CI BI' BIC RIC® AIC

200 18 10 0 1 1 0 1
150 24 12 0 1 1 0 2
100 31 20 2 1 3 0 4
50 45 44 10 4 17 2 10
20 56 76 36 28 a7 21 32
10 57 91 73 92 89 76 67

1 57 92 74 95 94 94 85

(var(;) = 10), while Bg and BIC still show high values, those of RiGapidly
decrease. On the other hand, when the ratio is small (sayreatey than than
0.02, that is vak) = 50), C, significantly outperforms all other statistics, even
though it is not consistent. The consistent version of oatidic, B, is good,
although not best, over the whole range. A conclusion frogrtdbles is that there
is much to be gained, over the whole range of signal to noisestgrom using
statistics based oft} (30).

We now show how ou€’, statistic can be used to provide an informative plot
for the selection of time series models keeping in mind timgur opinion, the
mechanical use df), is to be avoided.

Table 3: Notation used in the figures for ARMA models with esgors

Notation Model and Regressors

a0 AR(1)
0Oa  MA(L)
0 MAQ)

aa34  ARMA(L,1) 3 x4

We look at the structure of plots 6f, for time series in a simulated example.
We label the models with a notation of the form¢'i; i5...”, wherep andq de-
note the order of the autoregressive and moving averagelsaae the;; denote
those regression variables that are included in the modethé&r, we denote the
increasing values qgf andq as0, a, b etc. Some examples are in Table 3.

We simulated 100 observations from an MA(1), that is With 6 = 0.9, that
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Figure 1: Plot ofC, statistic for time series for simulated MA(1) process:) 0
with § = 0.9. Large modebb 1 2 34 plus a constant{ = 10). x MA and ARMA
models with explanatory variable$; AR(2) models with explanatory variables;
e AR(1) models with explanatory variabless regression models. See Table 3
for notation. Bands 1% and 99% points of (33). The importasfceelecting the
correct stochastic model is evident

included a constant, equal to 5, and four explanatory viasathat were unre-
lated to the time series. The explanatory variables weregaddently distributed
N(0,1) ando? = 1. In our calculation of”, the maximum model walsb 12 34,
all models containing a constant. So the maximum numberrainpeters:t = 9.
Figure 1 shows the resulting plot @f, for all models containing at least two
parameters.

The times serie§’, plot shows four bands of values corresponding to different
families of stochastic models. The family with smalléstvalues, marked with
crosses in the figure, falls within the band of the 1% and 99%tp®f the F’
distribution (33). The simplest model is the MA(1) withoupéanatory variables,
that is Oa, from which the data were simulated. Reading upwards, tietn®
models in this band, with three parameters,ageand 0b, with C), values around
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two lower than that of their special cas@.0 The remaining four models, with
higherC, values, are @i, i = 1,...,4; that is MA(1) models including one of the
explanatory variables. The models with more parametetssrgroup ¢ > 4) are
all at least ARMA(1,1) or MA(2) with explanatory variableBor the maximum
model withc¢™ = 9, the value ofC,, is 13, agreeing with the special case of (32).

The second series 6f, values in the plot, shown by diamonds, are for AR(2)
models including explanatory variables. The next bandrigAiR(1) models also
including such variables. The highest band of all, the gias, is for pure regres-
sion models without any time series component.

An informative feature of this plot is that the bands sortitihedels into clear
groups with differing stochastic structure. It is cleamfrdhe figure that we need
at least an MA(1) model and that the improvements from inolgiéxplanatory
variables are negligible. In the provision of this informatthe time serie§’, plot
is very different from the”,, plot for regression, for example Figure 1 of Atkinson
and Riani (2008), in which the form is that of the series otlreal for one of the
sets of models with the same stochastic structure in Figure 1

We have found the banded structure of Figure 1 to be typicahi® analysis
of time series. An example for data on one-day-ahead etégtgrices is in Riani
and Atkinson (2010b). We trust that this extension of the pitl be as useful as
the customary’, plot in regression.

7 Discussion

In our calculations we used the latest version of the lib@BFPACK (Koopman
et al,, 2008) in conjunction with the Ox programming language obbik (2001).
The procedure we have developed applies to a wide class adlsiddlowever,
it has not escaped our attention tligtis an aggregate statistic, based on all the
data. For regression, Atkinson and Riani (2008) and RiadiAtkinson (2010a)
use the forward search (Hadi, 1992; Atkinson and Riani, 2@@Kinson et al,,
2004) to determine how the choice of a regression model usjrig affected by
groups of observations. Although the numerical procedsiraare complicated,
related methods can be applied to olyrstatistics for time series to illuminate the
dependence of model choice on individual observationgksrén structure and
on anomalous patches of observations in the time series.

Appendix A: propertiesof new AIC

We show thatA/C,., the new version of AIC, is a consistent estimator of the
Kullback-Leibler (KL) information for the fitted model. Wesdve the small sam-
ple correction factor to make our new AIC unbiased.
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Let f(y,0) be the model for the data andy) the true density. In the KL
distance

A — oo W) o B
KL(g. f(,0)) = / o) o 4 Ly / 9(y) log g(y)dy — S,

Given that [ ¢(y) log g(y)dy is constant across models, the AIC strategy is in
essence to estimafg,,

Q. = E,5, = E, / o(y) log £ (. B)dy, (35)

for each candidate model and then to select the model withigteest estimated
Q.; this is equivalent to searching for the model with the sesdlestimated KL
distance.

Let the regression modél(Y) = X satisfy Assumption 1. Then, in the
standard AIC, we use the mle gfando (see, for example Hurvich and Tsali,
1989) and obtain

. d+1 n
EfQu=5) = ———. (36)
Thus AIC is an asymptotically unbiased estimatoSpf The bias-corrected AIC
can be written as

AIC. = —2L(B;6%y) +2(d+ 1)n/(n — d — 2).

When we estimate? by s2, from the full model (5) we obtain

B,(Qu-8) = — - E(Cyn-24) L, {“— {(6-2rxx(5 - By/norty 1}

Taking the various expectations under Assumption 1 on battiats yields

A 1 dt —d n—d"
E — =2 - - — d)p.
o(Qn = 5n) 2n{ s R s L )}
After boring calculations we find

£, 5~ B2 00D

Our newAIC is also an asymptotically unbiased estimatortpf = E(S,). In
addition, if we want a more precise penalty for the loglikelbd we obtain

AICH (u) = —2L(B; s%y) + 2(d + 1) (n — d*) /(n — d* — 2),
which leads to (10).
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8 Appendix B: proofs

For anyn x m matrix B,, ., we define the norm§B||, and||B||, by

[1Bll: = max Z|B”| and||B||? = tr(B'B) ZZB (37)

=1 j=1

and note that

1AB| < [[AILIIBIL - and  ||IB|l < [|Bll2 < n'?||B|, (38)
IC"ADI[y < [[C]L[IDIL[|All < (ICl D] |2 All1, (39)
tr{A} < n[|Al, (40)

and if A is symmetric then
[14][1 < max |xi(A)]. (41)

We collect some technical results about the coefficients. cileann x n
matrix A exponentially decreasing fifi;;| < cp!~7! for somep < 1

Lemma 1. Under Assumption 2 it holds that

A L )e, - Znnet n 0 = (42)
A (L
& = L) Zgnut n 50 =L (43)

ThenVar(u;) > o2 and equality holds only for; = ;. Moreover
max(D™¢,(0),D"n,(0)) < cp”,m = 0,1, 2. (44)

It follows thatQ and itsn x n derivatives), = D, Q and (), = D3, Q are
exponentially decreasing and therefore have bounded irpand furthermore

[1€2(6) — €2(60) ]2 < ¢]6 — ol (45)
[12,(8) — Q5 (B0)||1 < clf — 6o, (46)
[12,1(8) = Q(60) |1 < cl6 — bol. (47)

The eigenvalues 6i(0) andQ(0)~! are bounded away from zero and infinity
uniformly in6 € D andn, so that

1974(0) — 7 (Bo)llx < clf — 6o, (48)
01Q0 S Q S CQQQ. (49)
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Proof of Lemma 1. Proof of (42), (43), and (44):
Condition (14) shows that uniformly f@r € D, the power series

Z D¢>s¢k77n

(2) =
Z D gnz —9 (Z Zs-l—k Z D2 gnzn _ 1 s+k Z D
hs i Bp(z)?’ ) e stk (Z ®s ¢k

are convergent fofz| < p~!, and hence the coefficients are bounded:pyfor
somep < 1, see Yao and Brockwell (2006, page 867). Therefore the septa-
tions (42) and (43) hold and it follows th&tar (u;) = 02 o2 n2 > o?ni = o?
where equality holds only if,, = 0,n > 1, thatis,u; = ;.

Proof of (45), (46), and (47)\Ve then fininj(Q) =072 (0 Nnti—j(0)
is bounded by) "> | cp"pti=il < ¢pli=il so that( is bounded in 1-norm:

= g li—3|
||Q||1_miaXZ|Q2j| Sm?XZCp <ec.
J J

> >>ba
—
N/—\
\—/mf}/
N
)
+
“?r
)
Ehl\D
<=
kol
3
3
N
3
:>
b
© p—
\_/
CIJ
+
“?r
O
[\")
<
ol
3
3
N
3
“O

The same result holds for the derivatives, so they are abhreamptially decreasing
and therefore bounded in 1-norm. Moreover by a Taylor's agjmn

p+q

Qi (0) — Qij(0o) =Y (05 — 005)2s55(6.).

s=1

which is bounded by

CZ |Hs - 903|p|l_J| S C‘@ - 00|p|Z_J|7
s=1
so that
p+q o
12(6) = Q(6o)l[1 < cmax Y [ D16, — bos|p"™! < clf — 6ol.
i s=1
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This shows (45), and the same argument works for the derésin (46) and
(47).

Proof of (48) and (49):We next need the result, see Hannan and Kavalieris
(1984, p. 539), that any eigenvalug((), of the n x n matrix €2 is bounded
between two constants< ¢(0) < A(2,(0)) < C(0) < oo independently of,
and Assumption 2 shows that< ¢ < A(£2,(0)) < C < oo, so the bound is
uniform iné € D. Finally this holds for2~! because\(Q2') = 1/\(Q), and (48)
follows from

19(6) ™" — () {1 = [192(6) ™ (6) — Q(60)(00) [
< 19200)~H111192(60) — (00) 11 11€2(60) "]

Finally the uniform bound on the eigenvalues implies (49). 0

Proof of Theorem 2. The normalized log likelihood, using = €2,,(0), is
la(0?,0,8) =logo®* +ntlog|Q + o *n Hy — XB)Q Hy — XB)
Minimizing over § gives = (X’Q~1X)~!X’Q~y, and the profile loglikelihood

=loga®+n tlog|Q + o 2 W/ Q u — o AT W QTIX(X'QTI X)X
=0,(0%0) — o2 QI X(X'QTIX)TIX'Q = £,(02,0) — 0721 Au,

where/,, (02, 0) is the loglikelihood function analysed by Yao and Brockwell
(2006) in the model without regressors. They prove that enrttodel without
regressors the maximum likelihood estimators&findd, obtained by minimiz-
ing £, (02, 0) are consistent. The maximum likelihood estimatorgbaindé in
the model with regressors are found by minimizihgo?, 6, 3()), but the same
result holds in this case because the difference tends dcab@iost surely, that is,
n~lu'Au 3 0. To see this, we apply the inequality (49), and find that unifigr
for0 € D:

A= Q7 X(X'Q X)X < e X (X5 X)) X'Q; = Ay, (50)

Thenu' Au < ' Ayu, which is distributed as x*(d) so that—n""v'Au =% 0 and
therefore(0, 5%) “% (6, 02).
We thus obtain

B=n"2(X00 X)VAX'QOTX) T XO
and find from (49) that
Wi =0 OTIX (XQTIX) X X)) (XQTX) X0 < el Agu 23 0.
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Finally

Rk = (8= Bo)'n ' X'Q5" X (B = Bo) = Ain(n ™ X0 X)(8 = Bo) (B — Bo)
which shows that if\,;, (n ' X'Q5 ' X) > ¢ > 0 theng =3 . O
Proof of Theorem 3. We find the normalized scores

1
Spo? = §n_1/200_4(u/§20_1u —nog),

1 .
Sno, = §n_1/2tr{§251§205§251(00_2uu' —Qo)},
S = 09 20/ QX (X'Q5 1 X)) 712,

The observed information per observation is found from thgative second
derivative of the loglikelihood function; =Y — X33,

1 . .
InGSGk = §n_1t7’{Q_leQ_IQS} (51)
+ %n_ltr{(Q_l(st — 20071007 HQ — o 2u)},
1 —4 -1 _—6,/0—1
Io2p2 = —50 +n o U, (52)
Lo = %n_10_4u'Q_1QSQ_1u, (53)
Inm@ - U_Zlda (54)
Lgr = n Y2020/ Q1Q,Q7 X (X'Q5 1 X)7V2, (55)
Loz, = n~ V20 2/ Q7 X (X'Q5 X)) 7Y2, (56)

The expected information per observation foe \q is

In0'202 Incr2€k Ino%@

E IHBSO'Q InGSGk Inﬁsn = (57)
Inna2 Innﬂk [nmf
%00_4 ' %00_2157’:{(251(20?} 0
Log2tr{ "} = tr{Q Qo Qos} 0 : (58)
0 0 0y 1y

and it follows from the formula

Cov(oy*u' Au, oy *u' Bu) = tr(BQyA'Qy) + tr(BQyAQp) for u ~ N, (0, Q)
(59)
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that the variance of the scof,, is (58). This expression has the same limit as
the block diagonal matrix

1
{2 0 7( tT{Q 1QOkQ 1908})54];q170,02[d}

because Theorem 9 shows that
1 1
5,90 JAr{Q5 ) = 002D9 log |6p)] = O(n™1).
Proof of (17): We need to show that the main term
1 : .
%t’f’{QalQOkQalﬂos}

converges to a limit which we cally,,. We notice that the score and expected
information for (6, o%) are the same as for the model without regressors analysed
by Yao and Brockwell (2006). They prove asymptotic nornyaditthe maximum
likelihood estimator in this model, and find a nice repreagon of the limiting
variance in terms of two AR Gaussian processes generatell(dy) andB,(L),
see Yao and Brockwell (2006), Theorem 2 and Hannan (1973)réhe2. It was
part of their proof to show that the expected informationvesges, so the result
follows.

Proof of (18): Next we analyse the terms of the information matffjx, (),
see (51-56). Itis seen that all components,gf.(\) — L. (\o), €xcept for some
trivial factors, have one of the forms

n~ttr(A — Ag) for A = Q710710 or Q1O — 20,0710,
Qg (A — Ag)y Pufor A = Q20N (Qy — 20,0710, 0710
or 20710 or Y2010, 07102,
n 2P AQL P X (X0 X) T for A = QPQT00710)? or 20102,
where
u=Y - XB=Y - XB— X(B—Bo) = uo +n?X(X'Q 1 X)1 2.
For all such matriced! it follows from Lemma 1 that, fofA — A\o| < ¢,
|[A = Agllr < ] — | < czy,
and we can evaluate
W5 = n up + 2 X (X'Q5 X)) V26 Q5 Hug + n P X (X'Q5 1 X)TV2E)
<2(n '/Q5tu + K EK).
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Moreover we have from inequality (40)

n~Htr(A = Ag)| < [|A — Aol = O(en),

and from inequality (39) witlC' = D = Q;"/*u

n w0 (A = A0)Q Pu < nT Q5 || A = Aglly = Op(e,)

and finally from (39) withC’ = /)y "/* and D = Q"2 X(X'Q5' X)~V/2, for
which D'D = I, we find

2wy (A = Ag) PX (X0 X) TV, =
< (07" Q5 w) 2 Il |2]| A = Aoy = Op(en).
O

Proof of Corollary 4. Note that!/2i = (X'Q5' X)"/2(5—,); we continue with
the parametex. Again\ = (02, 0, k) denotes then = 1 + p + ¢ + d parameters.
In order to find the asymptotic distribution, we consider Tlaglor expansion of
the score function arountl= \q

n2(X = X\o) = (=n"'D%log L(A\)) "'n 2D log L(X), (60)

where the notation, indicates that row is evaluated at an intermediate pohﬁst)
which satisfies},)\f) — Xos| < |A = Xg|. The result now follows from Theorem 3

becauser™ /2D log L(A) 2 Nipsqra(0, {i05*, %0, 04°14}) and from (18) get
that )
—n~'D?*log L(\,) KA {500_4, Yo, 05214}

Proof of Corollary 5. We letr = (02 — o2,6' — ;)" and find the equation
L ANONY27 + L (M)0Y25 = Sy,

which shows that whe#,.(\,) = Op(n~/?) we have
n'%% = E(Lirr) " Spr + Op(n™?).

The same result holds in the model= A¢ with estimatorr, and, as a conse-

quence,
n1/2(7° —Ty) = Op(n_l/z),

which proves the result. O
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Proof of Theorem 6. We write @, = y — X3, and expandi,Q(d) i, as a
function of 6 aroundd, and find, using/ for an intermediate point for which
|9 - 9*| S |9 - 9*|a that

pta ~
W7 = Qi = =) (0 — 0,) 80700 0 + Ry, (61)
s=1
where
1 p+q ptd ~ ~ ~ ~ ~ w ~ ~ o~ Vo~
Rn - 5 (98 _98*)(9k‘ - ek*)'&; [Q—l@st—l - Q_1QSQ_1QkQ_1]ﬁ*‘ (62)
s=1 k=1

Heregzs = Dy.Q(0) and?lsk = D3, Q(f). The main term of (61) can be simpli-
fied using the first order condition é,l, that is,0¢,,/0s|y_g. =0 :

W70, Q7 = 62Dy, 1og [QUO)|,s=1,....p+q.

This implies that

p+q ) ) ) ~ p+q R R o
> (0. = 0.) 801 i =) (6 — 0,.)7Dy, log [Q(6.)].
s=1 s=1

It follows from Theorem 9 thab,_ log |Q2(4,)] R Do, Ff(60o), so that the main
termisOp(0 — 0,) = Op(n™").
The remainder term (62) is al$dp(n~') because it is bounded by

el — . P[0 | + |80 Q.0 00 i |
<l - 9\@1 (1071 2+ 107207 00 )
The first factor isOp(n=2) and||Q~ 1stQ Uiy 4 119 1Q Q- 1Qk 1|1 < ¢ be-
cause of Lemma 1. Finally. @, = Op(n). O
Proof of Theorem 7. The likelihood ratio test is
—2log LR(S = A¢) = n(log 62 — log 6%) + log |, (6,)] — log |2, (0)]

wheres? = n~ Yy — X5,)Q;(y — XB,) andé? = n (y — XB)YQ ' (y — X )
both converge to? and(a — ag, 62 — o) = Op(n~1/?), but it follows from (5)
thato? — 62 = O(n1). A Taylor expansion gives

n(log 62 —log 6%) = nlog(626~2) (63)
=n(62672 - 1)+ n0p((62 — 6%)?) = (62672 — 1) + Op(n~
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Similarly, 6, — 8 = Op(n~') and F£(6) = S°0°, log f¢(8), see Theorem 9, so
that

log [2,(0.)| = log |2(0)] = Fy(0.) = F(0) + Op(p™™") = Op(n™").  (64)
Thus from (63) and (64) we find
—2log LR(B = A¢) = n6~%(62 — 6) + Op(n™1).
The first order condition foB is (y — X )1 X = 0 so that
y—XB.=(y—XB)+(XB-XB.)

is an orthogonal decomposition with respecftd, that s, (y — X 3)'Q 1 (X3 —
Xp5,) =0,and

(y= X y—XPB.) = (y=XB)Q (y—XP) +(B.—B) X'Q ' X (B.— ).
Therefore
n(6? —6%) = (y — XAy — XB.) — (y — XB)YQ ' (y — XB)
=(y - B )y — XB.)—
(y— XB)Q ' (y— XB) + (y — XB.) (4 = Q) (y — XB.)
= (B = BYX'Q'X(B. — B) + (y — XB) (T =7 (y — XB).

The first term measures the deviation between the estimasong the variance
estimate from the larger of the two models, and the secomd tends to zero
because

Ry = (y—XB.) Q" =)y — XB.) = Op(n"),
see Lemma 6. This proves (7). O
Proof of Theorem 8. For3 = (X’Q~1X)~1X’Q~'y we find
(y=XB) QU (y—XB) = ¢ X (X[ QX)) "' Xy = /' X (X QX)) X utR,
where .
R, =u'X,[(X| QX )" — (X QX)X u.
The first term is distributed as*x?(n — d) becauseX’ | u ~ N,,(0, X QX ).
For the remainder term we find, using inequality (39),G6r= v/ X | (X Qo X, )™ X Q,
D = 02X (X[ 0X,) 7 X u, andA = Q2 (Q — Q) /? that
| Rn| = |C"AD
< (/XXX 1) T X L) (/X (XX )T X u) 2105 (Q = 20) 0y
< (WX (X! QX 1) X u)|0 — 6| = Op(n'/?).

1/2

O
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Proof of Theorem 9. The process; = > - n.c:—n is alinear invertible process
with exponentially decreasing coefficients, so that

Ay(L) - -
- - nUt_n, OF = - nUt—n
€t B,(L) Uy ngzog Uyt Uy ;:1 Enlli—n + €4

where|,| < ¢p™. It follows that the prediction variance for Gaussian vaeab
satisfies

Vari_1(y) = Vart—l(z Enth—n|Fi—1) + o <o’ + E(Z fnut—n)2

n=t n=t
Then
EQ) &u—n)? =02 > Luibmery(n—m) < cp™ > Y p" |y (n—m)| < cp™.
n=t n=0 m=0 n=0 m=0

Thus0 < log f£(0) < f£(0) — 1 = o7 2(Var,_1(y;) — o) < ¢p?*, and therefore
log f£(#) is summable uniformly i and hence the limit is continuous

0 < log [2,(0)] = Zlogft ) = Zlogft
It follows from Brockwell and Davis (1991, p 394-395) thasal

F(0)] < e,

for § € D. Becauseff(f) > 1 the same argument shows tladbg f(6)/00; is
uniformly dominated by:p’ and hence the sufn_;°, dlog f£(6)/00, exists as a
continuous function. This shows that

Olog (0) _ 5~ Dlog it - 25510
50, _y ZleeJill) th

t=1 0

is finite and the uniform convergence shows continuity. 0
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