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Abstract

We establish the equivalence between a commonly used out-of-sample test of equal pre-
dictive accuracy and the difference between two Wald statistics. This equivalence greatly
simplifies the computational burden of calculating recursive out-of-sample tests and evalu-
ating their critical values. Our results shed new light on many aspects of the test and es-
tablishes certain weaknesses associated with using out-of-sample forecast comparison tests

to conduct inference about nested regression models.
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1 Introduction

Out-of-sample tests of predictive accuracy are used extensively throughout economics and fi-
nance and are regarded by many researchers as the “ultimate test of a forecasting model” (Stock
and Watson (2007, p. 571)). Such tests are frequently undertaken using the approach of West
(1996), McCracken (2007) and Clark and McCracken (2001, 2005) which accounts for the effect
of recursive updating in parameter estimates. This approach can be used to test the null of
equal predictive accuracy of two nested regression models evaluated at the probability limits
of the estimated parameters and gives rise to a test statistic whose limiting distribution (and,
hence, critical values) depends on integrals of Brownian motion. The test is burdensome to
compute and depends on nuisance parameters such as the relative size of the initial estimation
sample versus the out-of-sample evaluation period.

This paper shows that a recursively generated out-of-sample test of equal predictive accu-
racy is equivalent to the difference between two simple Wald tests based on the full sample and
the initial estimation sample, respectively. Our result has three important implications. First,
it greatly simplifies calculation of the critical values of the test statistic which has so far relied
on numerical approximation to integrals of Brownian motion but now reduces to simple convo-
lutions of chi-squared random variables. Second, our result simplifies computation of the test
statistic itself which no longer depends on a potentially very large set of recursively updated
parameter estimates. Third, our result provides a new interpretation of out-of-sample tests of
equal predictive accuracy which we show are equivalent to simple parametric hypotheses and

so could be tested with greater power using conventional test procedures.

2 Theory

Consider the predictive regression model for an h-period forecast horizon

Yern = B1 X1 + B5Xor + g4, t=1,...,n (1)

where X1; € RF and Xy, € RY.

To avoid “look-ahead” biases, out-of-sample forecasts generated by the regression model (1)
are commonly based on recursively estimated parameter values. This can be done by regressing
ys on (X7, 5, Xy, p)s for s =1,...,¢, resulting in the least squares estimate B = (B, 35,),

and using +h|t(Bt> = BitXt + 3§tX2t to forecast y; 5. The resulting forecast can be compared



to that of a smaller (nested) regression model, y;in = 1 X1t + £+ say, whose forecasts are
given by §pyne(Bue) = B X1, where By = (Ziq Xl,s—hXLS_h>_1 St Xs—nYs.

West (1996) proposed to judge the merits of a prediction model through its expected loss
evaluated at the population parameters. Under mean squared error (MSE) loss, this suggests
testing’

Ho : E[y: — gt|t7h</3)]2 =E[y: — gt|t7h(/31)]2- (2)

McCracken (2007) considered a test of this null based on the test statistic

B Z?:npﬂ(yt - gt|t—h)2 — (yt — Qt|t—h)2

52
0¢

T, : (3)

2

2 is a consistent estimator of 02 = var(e;1p,) and n, is the number of observations set

where &
aside for the initial estimation of 8 (taken to be a fraction p € (0,1) of the full sample, n, i.e.,
n, = [np|). Assuming homoskedastic forecast errors and h = 1, McCracken (2007) shows that
the asymptotic distribution of T, is given as a convolution of ¢ independent random variables,
each with a distribution of 2fp1 u ' B(u)dB(u) — fpl u~2B(u)?du. Results for the case with
h > 1 and heteroskedastic errors are derived in Clark and McCracken (2005).

We will show that the test statistic, T, amounts to taking the difference between two Wald
statistics, both testing the same null Hy : f2 = 0, but based on the full sample versus the initial

estimation sample, respectively. To prove this result, define the vector of stacked variables

Vi = (yt, X;_,)". We make the following assumption:
Assumption 1. X, = E(V}V]) is positive definite and does not depend on t. Moreover,

Lun]
sup 1 Z ViV — uXy| = 0p(1). (4)

ue(0,1] |
The first part of Assumption 1 ensures that the population predictive regression coefficients
do not depend on t. For convenience, we express the block structure of ¥, as follows
Yy @ X

Sy, = with Y, = :
Yoy Zow o1 Moo

! Another approach is to consider E[y; — g}t\t,h(ﬁt_h)]Q which typically depends on ¢, see, e.g., Giacomini and
White (2006).



where the blocks in 3., refer to X1; and X9, respectively. Similarly, define
0 =Yt — DyeXoe Xeony  Ze = Xop — S Iy Xy,

as the “error” term from the large model and the auxiliary variables, respectively, so that Z;
is constructed to be the part of Xo; that is orthogonal to Xi;. Next, define the population
objects, 02 = By — By Xl Tey, Ton = Too — o101 T1a, and (B, 85) = T %, Then

0'52 > 0 and X,, is positive definite because Y, is positive definite. Further, let ¥ = O'?EZZ and

1 n
n—o0 n s,t=1

Q := plim Zs_nesetZ;_y,, where the latter is the long-run variance of Q. We make

the following assumption about the partial sum of Z;_pe;:2

Assumption 2. Let Up(u) := ﬁ Ziﬁd Zy_net, and assume that

Un(u) = U(u) = Ql/QB(U)a on D([JO,q,

q

0,1] denotes

with det Q > 0, where B(u) is a standard q-dimensional Brownian motion and D

the space of cadlag mappings from the unit interval to RY.

Finally, we make an assumption that imposes a type of unpredictability of the forecast
errors beyond the forecasting horizon, h, and simplifies the expression for €2 because higher order
autocovariances are all zero. This assumption is easily tested by inspecting the autocorrelations

of Z;_pey.
Assumption 3. cov(Z;_pey, Zy—p—jer—j) = 0 for |j| > h.

The null hypothesis Hy in (2) is equivalent to H} : 2 = 0 which can be tested with

conventional tests. To this end, consider the Wald statistic based on the first m observations,

. S e A

Wi = mBs,, [62521] o,

where 62 and 3., are consistent estimators of 0'52 and X,,, respectively. This statistic is based

on a “homoskedastic” estimator of the asymptotic variance, which causes the eigenvalues of
z

o2x1Q, Al,...,Ag, to appear in the limit distribution. Specifically, W,, L\ > )‘iX%l)
under the null hypothesis, see e.g. White (1994).

2This assumption can be shown to hold under standard regularity conditions often used in the literature,
such as those in Hansen (1992) (mixing) or those in De Jong and Davidson (2000) (near-epoch).



With the above assumptions and Assumption A.1 from the Appendix, we can now formulate

our main result.

Theorem 1. Given Assumptions 1-3 and A.1, the out-of-sample test statistic in equation (3)

can be written as Ty, = Wy, — Wy, + klog p + 0,(1), where k = SN

It is surprising that the complex out-of-sample test statistic for equal predictive accuracy,
T, which depends on sequences of recursive estimates, is equivalent to the difference between
two Wald statistics, one using the full sample, the other using the subsample t = 1,...,n,.

For the general case with A > 1 and heteroskedastic prediction errors, the limit distribution
for T,, (under the null hypothesis) was derived in Clark and McCracken (2005).% It involves a

¢ X q matrix of nuisance parameters, but was simplified by Stock and Watson (2003) to

q

> [2 /p 1ulei(u)dBi(u)— /p 1u,*ZBZ-(u)BZ-(u)olu : (5)

i=1
where B = (By,...,By) is a standard g-dimensional Brownian motion. Theorem 1 implies

that this expression can be greatly simplified:

Corollary 1. The distribution in equation (5) is identical to that of

q

> i [BI1) = p ' Bi(p) +logp] .
i=1

Next, we show that the limit distribution can be expressed in terms of differences between

two independent x2-distributed random variables (as opposed to the dependent ones Bf( 1) and

P B (p)).

Theorem 2. The distribution of 2 fpl IFIJB(iB—fp1 u~2B2du is identical to that of \/T — p(Z% —
Z2) +log p, where Z; ~ iidN(0,1).

Because the distribution is expressed in terms of two independent y2-distributed random
variables, in the homoskedastic case where A\ = --- = A\, = 1, it is possible to obtain relatively

simple closed form expressions for the limit distribution of T};:

Theorem 3. The density of > i_, {2 fpl u ! B;(u)dB;(u) — fpl u™2Bj(u)?du| is given by

Fi(o) = srdKol 5702

3The standard Brownian motion, B, that appears in (5) need not be identical to that used in Assumption 2.




for ¢ =1, where Ko(z) = fo‘x’ i;%dt is the modified Bessel function of the second kind. For

q = 2 we have

fol) = g exp (~ 152l )

which is the non-central Laplace distribution.

The densities for ¢ = 3,4,5,... can be obtained by convolution of those stated in the

Corollary. Fortunately, Ko(z) is implemented in standard software and is easy to compute.

3 Conclusion

We show that a test statistic, which is widely used for out-of-sample forecast comparisons of
nested regression models, is equal in probability to the difference between two Wald statistics of
the same null - one using the full sample and one using a subsample. This equivalence greatly
simplifies both the computation of the test statistic and the expression for its limit distribution.

Our result raises serious questions about testing the stated null hypothesis out-of-sample
in this manner. Subtracting a subsample Wald statistic from the full sample Wald statistic
dilutes the power of the test, and does not lead to any obvious advantages, such as robustness
to outliers, etc. Moreover, the conventional full sample Wald test can easily be adapted to the
heteroskedastic case by using a robust estimator for the asymptotic variance of (s.

On a more constructive note, one could use the simplified expressions derived here to develop
a test that is robust to potential mining over the sample split. By strengthening the convergence
results in Assumption A.1 to be uniform in p over the range p € [p, p|, with 0 < p < p < 1, one
achieves T),(u) A G(u) = B(1YAB(1) — u 'B(u)AB(u) + rlogu with A = diag(\y,..., ),
which can be used to derive a test whose test statistic is constructed from a range of sample

splits; see Rossi and Inoue (2012) and Hansen and Timmermann (2012).
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Appendix of Proofs

Assumption A.1. Let v; = E(e1Z] X7 Zi—h—jer—j). We assume that as n — oo

n

Z (BQJ*h —B2)'(%.. — ththLh)(Bthh — B2) LS 0, (A1)
t=n,+1
LY MaZW S e —) B0 (A.2)
t=n,+1

Convergence in probability holds under suitable regularity conditions and is, in fact, uniform in p
for p € (a,b) where 0 < a < b < 1, under suitable mixing conditions by applying Hansen (1992, theorem
3.3), see Hansen and Timmermann (2012). (A.2) implies that —% Z:’ZWH %&ZLhEZZth—h—jEt—j =

1o
Vi [, wtdu+0,(1) = y;log p + 0,(1).

Lemma A.1. Suppose Uy = U;_1 +u; € R? and let M be a symmetric g X ¢ matriz. Then 2U]_; Mu; =
U/MU, — U[_{MU;_1 — uyMuy.

Proof. Ul_1Muy; = (Uy — uy) Muy = UM (Uy — Uy—1) — u,Mu, equals

Ut/MUt — (Ut—l + ut)’MUt_l - u;Mut = Ut/MUt - Ut/_1MUt—1 — u;MUt_l — uiMut

/

Rearranging terms and using u;MU,_; = U/_; Mu, yields the result. O

Proof of Theorem 1. Without loss of generality we consider the case where k = 0, so that Z; = Xo;.
The general case with k& > 0 results in additional terms (involving cross products of X; ¢ Z;_,) that all

vanish in probability in this analysis, see Hansen and Timmermann (2012, Lemma A.2). We decompose



the loss differential Z?=np+1(yt — Guge—n)® = (Y — Gujen)? as follows:

A+B+C+D Z@Zt v/ hﬁﬁ%ZZt hst+22 Bai—n — Ba2) Zi—ner

—Z ot — B2) Ze-nZi_(Bai—n — B2).

Let Up, = n-1/2 22:1 Zi_per and up = n 27 e, By (A1) D=1 Zt n +1( )2 Ut S UL+
op(1) and
C o= > 22U,y 5 g+ 0p(1)
t=n,+1
= Z 22U, . 12, Yy — 2 Z Zunmz Yt + 0p(1)
t= np+1 t=n,+1 1=1

Z 2 tlzzzunt+§+op()

t=n,+1

where € = 2(y1 + -+ +v,_1) log p, using (A.2). Now apply Lemma A.1

¢ = Z %(Ulz,tzz_lemt - U:L,t—lzz_le’ﬂ,t—l - U’{n,tZz_zlunyt) + g + 017(1)7
t=n,+1
n
= U;zn zlenﬂ - 7U1{L np U’ﬂ np Z (%)QUJL,tZz_lemt +0’§K’10gp+01)(1)a (A3)
t ny,+1

where we used that o2k = tr{¥_'Q} = Z],_hﬂ tr{S E[Zi_n_jer—jecZ)_,)} = Z;’,ihﬂ ~; under

Assumption 3. The penultimate term in (A.3) offsets the contributions from D, whereas A + B equals

ﬁ2 Z Zt th h/82 - 62 Z Zt th hﬁ2 + 27”'1/262 n n 2711/262 n Mp e
t=n,+1

With W,,, = 55235,771 >y Zi—nZy—p)] Bom = 622 (Bam — Ba + Ba) > oy Zi—nZy—p)] (Bom — B2 + Ba),

we have
&E(Wn - Wnp) = leL nzz Un n U’:L np Un n, T Op(l)

+5é Z Zt—th—hBQ + in/QBé(Un,n - Un,np)-
t=1

and the result now follows.OO

B(1)-B B
Proof of Corollary 2. Let U = %_p(p) and V = pr), so that B(1) = /1 — pU + /pV, and note
that U and V are independent standard Gaussian random variables. Expressing the distribution we



seek as a quadratic form

!
2 U 1-—- 1- U
(\/1*PU+\/ﬁv) v P p(1—p) |
|4 p(l=p)  p—1 |4
and decomposing the 2x2 symmetric matrix into Q’AQ, where Q'Q = I and A = diag(v/I — p, —/1—p)
(the eigenvalues) the expression simplifies to /T — p(Z? — Z3) where Z = Q(U, V)" ~ N3(0,1). O

Proof of Corollary 3. Let Zy; Zo;, i = 1,...,q be i.i.d. N(0,1), so that X = >7 | Zii and YV =

!, Z3 ; are both x2-distributed and independent. The distribution we seek is given by the convolution,

> {\/1 —p(Z8; = Z3;) + logp} =V1-p(X =Y) +qlogp,

i=1
so we seek the distribution of S = X — Y where X and Y are independent Xg—distributed random
variables. The density of a x7 is

1
_ q/2—1_—u/2
Y(u) = >0} 72'1/2F(%)u e 2,

and we are interested in the convolution of X and —Y

/ Liuz0y ¥ (u)l{u—s>0pt(u — s)du = Y(u)y(u — s)du,

0Vs

< 1
_ q/2—1,—w/2 - (. \g/2-1 7(u75)/2d
/ e R TV e !

1 _
5/2/ o q/2-1 —uq
= ————— <€ ulu S e Uu.
21T'(4)T(4) O\/s( ( )

For s < 0 the density is 279T(%)2e%/2 I~ (u(u — s))q/%1 e~ “du. By taking advantage of the symmetry

about zero, we obtain the expression

1 °
R — _‘S|/2/ q/2-1 —u
e u(u + |s e “du.
21T0(3)I'(3) 0 (ul 1)

When ¢ = 1 this simplifies to fi(s) = %BO(%) where By (z) denotes the modified Bessel function of

the second kind. For ¢ = 2 we have the simpler expression fa(x) = ie_%. O
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