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Abstract

We introduce the Realized Exponential GARCH model that can utilize multiple realized volatility

measures for the modeling of a return series. The model specifies the dynamic properties of both

returns and realized measures, and is characterized by a flexible modeling of the dependence between

returns and volatility. We apply the model to DJIA stocks and an exchange traded fund that tracks

the S&P 500 index and find that specifications with multiple realized measures dominate those that

rely on a single realized measure. The empirical analysis suggests some convenient simplifications

and highlights the advantages of the new specification.
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1 Introduction

The Realized GARCH framework by Hansen, Huang, and Shek (2012) provides a structure for the

joint modeling of returns {rt} and realized measures of volatility {xt}. In this paper, we introduce

a new variant within this framework, called the Realized Exponential GARCH model. Key features

of this model include: (1) The ability to incorporate multiple realized measures of volatility, such as

the realized variance and the daily range; (2) A flexible modeling of the dependence between returns

and volatility, which is known to be empirically important - a result that is confirmed in our empirical

analysis of the DJIA stocks and the exchange traded index fund, SPY. The present paper also contributed

to the literature with a number of empirical results. We undertake an extensive empirical analysis

that motivates several refinements and simplifications of the model. We compare a range of realized

measures and show that the log-likelihood for daily returns can be improved by the use of multiple

realized measures. This is true in-sample and out-of-sample. The empirical analysis also highlights the

advantages of the new specification, and we provide theoretical insight about the underlying reasons for

this.

GARCH models are time-series models that specify the conditional distribution of the next period’s

observation - typically a return on some financial asset. The key variable is the conditional variance

which is defined by past variables. Conventional GARCH models, such as the ARCH by Engle (1982)

and GARCH by Bollerslev (1986), rely exclusively on daily returns (typically squared returns) for the

modeling of volatility. A shortcoming of conventional GARCH models is the fact that returns are rather

weak signals about the level of volatility. This makes GARCH models poorly suited for situations where

volatility “jumps” to a new level over a short period of time. In such a situation, a GARCH model will

be slow at ‘catching up’, so that it takes several periods for the conditional variance (implied by the

GARCH model) to reach the new level, see Andersen et al. (2003) for discussion on this. Incorporating

realized measures into GARCH models can greatly alleviate this problem.

A wide range of realized measures of volatility have been proposed in the literature since Andersen

and Bollerslev (1998) showed that such measures can be very useful for the evaluation of volatility models.

Realized measures of volatility, such as the popular realized variance, are computed from high-frequency

data, see Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002).

The realized variance is sensitive to market microstructure noise, which has motivated the development

of robust realized measures, such as the two-scale and multi-scale estimator by Zhang et al. (2005)

and Zhang (2006), respectively, the realized kernel by Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008), the realized range by Christensen and Podolskij (2007), see also Andersen et al. (2008), Hansen

and Horel (2009) and references therein. Because realized measures are far more informative about the

current level of volatility than the squared return, it can be very useful to include such in the modeling of

volatility. The economic and statistical gains from incorporating realized measures in volatility models

are typically found to be large, see e.g. Christoffersen et al. (2010) and Dobrev and Szerszen (2010).
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Following the early work by Andersen and Bollerslev (1998) that had documented the value of using

realized measures in the evaluation of volatility models, Engle (2002) explored the idea of including

the realized variance as a predetermined variable in the GARCH equation, and found it to be highly

significant and greatly enhancing the empirical fit, see also Forsberg and Bollerslev (2002). The first

complete model (complete in the sense of specifying the dynamic properties of all observed time-series)

was introduced by Engle and Gallo (2006), who referred to the model as a Multiplicative Error Model

(MEM). The MEM framework operates with multiple latent volatility processes - one for returns and

one for each of the realized measures. This structure is also the basis for variant proposed by Shephard

and Sheppard (2010), who refer to their model as the HEAVY model. See also, Visser (2011) and Chen

et al. (2011).

The Realized GARCH framework takes a different approach. Instead of introducing additional latent

variables to the model, the Realized GARCH framework is based on measurement equations that tie the

realized measure to the latent conditional variance. This has the advantage for the explicit modeling of

leverage effect, and circumvents the need for additional latent volatility processes. The idea of using a

measurement equation to tie the realized measure to the latent volatility goes back to Takahashi et al.

(2009), who used it in the context of stochastic volatility models. Additional MEM specifications have

been explored and developed in Cipollini et al. (2009) and Brownless and Gallo (2010).

To illustrate the structure of a Realized EGARCH model and how it compares with conventional

models, we give a brief preview of our empirical result. Below we have estimated the GARCH(1,1)

by Bollerslev (1986), the EGARCH(1,1) by Nelson (1991), and a Realized EGARCH model with daily

returns, {rt}, on the S&P500 index over the sample period spanning January 1, 2002 to December 31,

2005. The full details will be presented in Section 4. The three models have the same return equation,

rt = µ +
√
htzt with zt ∼ iidN(0, 1), but their specifications for dynamic properties of the conditional

variance, ht = var(rt|Ft−1), differ in important ways. For the GARCH(1,1) and EGARCH(1,1) we

estimated their GARCH equations to,

ht+1 = 0.004
(0.003)

+ 0.995
(0.014)

ht + 0.051
(0.013)

(r2
t − ht),

and

log ht+1 = −0.026
(0.020)

+ 0.994
(0.002)

log ht −0.071
(0.013)

zt + 0.031
(0.02)

(z2
t − 1),

respectively, where the numbers in brackets are standard error. In comparison, a Realized EGARCH

model that utilizes two realized measures, xRK,t and xDR,t, leads to the following estimated GARCH

equation,

log ht+1 = −0.006
(0.005)

+ 0.977
(0.005)

log ht − 0.111
(0.010)

zt + 0.042
(0.001)

(z2
t − 1) + 0.165

(0.031)
uRK,t + 0.084

(0.017)
uDR,t,
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where xRK,t and xDR,t denote a realized kernel for day t and the daily (squared) range, respectively, and

where uRK and uDR are given from the two measurement equations:

log xRK,t = −0.360
(0.046)

+ log ht − 0.010
(0.011)

zt + 0.027
(0.007)

(z2
t − 1) + uRK,t,

log xDR,t = −0.440
(0.041)

+ log ht − 0.066
(0.019)

zt + 0.239
(0.017)

(z2
t − 1) + uDR,t,

with (uRK, uDR)′ specified to be iid and Gaussian distributed with mean zero and a variance-covariance

matrix, which is estimated to be

Σ̂ =

 0.133 0.627

0.627 0.429

 .

The realized measures contribute to modeling the volatility dynamics through the coefficients for uRK

and uDR in the GARCH equations. These coefficients are both significant. The structure of the estimated

covariance matrix, Σ̂, shows (not surprisingly) that the realized kernel is a far more accurate measurement

of the conditional variance than is the daily range.

In-Sample Log-Likelihood Out-of-Sample Log-Likelihood

GARCH -1330.05 -871.86

Exponential GARCH -1308.88 -876.08

Realized Exponential GARCH -1305.77 -855.88

Table 1: In-sample and out-of-sample log-likelihoods.

The real benefits of including realized measures in the GARCH modeling are revealed by compar-

ing the value of the log-likelihood function for daily returns. In Table 1 we present the value of the

log-likelihood functions for the three specifications, both in-sample (i.e. the sample period with the

parameter estimates were computed from) and for the out-of-sample period that spans January 1, 2006

to August 29, 2009. The latter is the log-likelihood computed for the out-of-sample data using the

in-sample parameter estimates. The Realized EGARCH model dominates the GARCH and EGARCH

models in terms of the in-sample log-likelihood, albeit the latter only falls three log-likelihood units

behind. Out-of-sample we observe a bigger difference, and the Realized EGARCH is 25-30 units better

than the two conventional GARCH specifications. This highlights the benefits of incorporating realized

measures in models for return volatility.

This paper is organized as follows. We introduce the Realized Exponential GARCH model in Section

2, and quasi maximum likelihood estimation (QMLE) and inference are discussed in Section 3. Our

empirical results are mainly presented in Section 4, and Section 5 compares the proposed specification

to that in Hansen, Huang, and Shek (2012) in terms of both theoretical and empirical properties. We

make some concluding remarks in Section 6.
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2 Realized EGARCH Model

In this section, we introduce the Realized Exponential GARCH model (in short, Realized EGARCH).

We use this terminology because the model shares some features with the EGARCH model by Nelson

(1991). The Realized EGARCH model is well suited for the case with multiple realized measures of

volatility, in which case we let xt denote a vector of realized measures, xt = (x1,t, . . . , xK,t)
′. Moreover,

the model permits a more flexible modeling of the joint dependence of returns and volatility. The latter

is shown to be very useful in our empirical analysis. The vector of realized measures, xt, may include

the realized variance, bipower variation, daily range, squared return, and robust measures such as the

realized kernel.

Let {Ft} be a filtration so that (rt, xt) is adapted to Ft, and define the conditional mean, µt =

E(rt|Ft−1), and conditional variance, ht = var(rt|Ft−1). The Realized EGARCH model with K realized

measures is given by the following equations

rt = µt +
√
htzt,

log ht = ω + β log ht−1 + τ(zt−1) + γ′ut−1,

log xk,t = ξk + ϕk log ht + δ(k)(zt) + uk,t, k = 1, . . . ,K.

We refer to these as the return equation, the GARCH equation, and the measurement equation(s),

respectively. We discuss these three equations in greater details below. In our quasi likelihood analysis

we adopt a Gaussian specification, zt ∼ N(0, 1) and ut ∼ N(0,Σ), where zt and ut = (u1,t, . . . , uK,t)
′

are mutually and serially independent. The leverage functions, τ(z) and δ(k)(z), k = 1, . . . ,K, play

an important role in order to make the independence between zt and ut realistic in practice. In the

empirical analysis, we adopt quadratic form for the leverage functions,

τ(z) = τ1z + τ2(z2 − 1) and δ(k)(z) = δk,1z + δk,2(z2 − 1), k = 1, . . . ,K.

The leverage functions facilitate a modeling of the dependence between return shocks and volatility

shocks, which is empirically important, and the volatility shock, vt = E(log ht+1|Ft)−E(log ht+1|Ft−1),

is given by vt = τ(zt) + γ′ut in this model.

The return equation is standard in GARCH models. The conditional mean, µt, may be modeled

with a GARCH-in-mean specification or simply a constant. In fact, imposing the constraint µt = 0 can

result in better out-of-sample fit relative to a model based on an unrestricted µ. That is indeed what

we find in our empirical analysis.

The GARCH equation plays a central role in models of the conditional variance, and a key feature of

the Realized EGARCH model is the presence of a leverage function, τ(zt−1), in the GARCH equation.1

The EGARCH model is often based on τ(z) = az + b|z|. We prefer a polynomial specification for τ for
1The Realized GARCH model in Hansen et al. (2012) only includes a leverage function in the measurement equation.
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empirical reasons and because the likelihood analysis is simplified by the fact that τ(z) is differentiable

at zero. Another key feature of the Realized EGARCH model is the last term in the GARCH equation.

This term, γ′ut−1, is the main channel by which the realized measures drive expectations of future

volatility up or down. The fact that ut is K-dimensional enables us to utilize multiple realized measures

of volatility. It is worth noting that this GARCH equation specifies an ARMA(1, 1) model for the

conditional variance, with innovations given by τ(zt−1) + γ′ut−1. Hence, the parameter β summarizes

the persistence of volatility, whereas γ represents how informative the realized measures are about future

volatility.

The measurement equation defines the link between the (ex-post) realized measures of volatility and

the (ex-ante) conditional variance. An ex-post measure of volatility will differ from the conditional

variance for a number of reasons. One source for this discrepancy is due to the fact that realized

measures are not perfect measures of volatility. Empirical measures entail sampling error and even the

most accurate realized measures are known to have non-negligible sampling error in practice. Another

source for the discrepancy is due to difference between ex-post volatility and ex-ante volatility, which

we can label the volatility shock.

The three equations fully characterize the dynamic properties of returns and realized measures of

volatility. So that the model is complete in the sense that it fully specifies the dynamic properties of

both returns and the realized measures.

3 Estimation and Inference

In this section, we discuss estimation and inference within the quasi-maximum likelihood framework.

The analysis largely follows that in Hansen et al. (2012), but the fact that the present framework allows

for multiple realized measures and the introduction of a leverage function in the GARCH equation

require some modifications and extensions of the analysis in Hansen et al. (2012).

We adopt a Gaussian specification by assuming zt ∼ iidN(0, 1) and ut ∼ iidN(0,Σ), with zt and ut

independent. Express the leverage functions as τ(zt) = τ ′a(zt) and δ(k)(zt) = δ′kb(zt), k = 1, . . . ,K,

where a(zt) and b(zt) are known functions of zt. In our empirical analysis we use at = bt = (zt, z
2
t − 1)′.

The initial value of the conditional variance, h1, is treated as an unknown parameter, which is a common

approach when estimating GARCH models. So the parameters are

θ = (h̃1, µ, λ
′, ψ′1, ..., ψ

′
K)′ and Σ,

where

λ = (ω, β, τ ′, γ′)′ and ψk = (ξk, ϕk, δ
′
k)′, k = 1, . . . ,K.
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To simplify the notation we write h̃t = log ht and x̃k,t = log xk,t, and define

gt = (1, h̃t, a
′
t, u
′
t)
′, and mt = (1, h̃t, b

′
t)
′,

where at = a(zt) and bt = b(zt) . This enables us to express the GARCH and measurement equations as

h̃t = λ′gt−1 and x̃k,t = ψ′kmt + uk,t, k = 1, . . . ,K,

respectively.

The quasi log-likelihood function is given by,

`(r, x; θ,Σu) = −1

2

n∑
t=1

[log(2π) + h̃t + z2
t +K log(2π) + log(|Σ|) + u′tΣ

−1ut],

where zt = zt(θ) = (rt−µ)/
√
ht and uk,t(θ) = x̃k,t− ξk−ϕkh̃t(θ)− δ′kb(zt(θ)). We estimate the model’s

parameters by maximizing the quasi log-likelihood function, `(r, x; θ,Σ), with respect to θ and Σ. The

log-likelihood function has a convenient structure, so that (partial) maximization with respect to Σ, for

a given value of θ, has the simple solution:

Σ̂(θ) =
1

n

n∑
t=1

ut(θ)ut(θ)
′,

where we have made explicit that ut depends on θ but, importantly, does not depend on the covariance

matrix Σ. We can therefore simplify the maximization problem to arg maxθ `(r, x; θ, Σ̂(θ)), where

`(r, x; θ, Σ̂(θ)) ∝ −1

2

n∑
t=1

[
log ht(θ) + zt(θ)

2
]
− n

2
log det Σ̂(θ),

and where we use the fact that
n∑
t=1

ut(θ)
′Σ̂(θ)−1ut(θ) = tr

{
n∑
t=1

Σ̂(θ)−1ut(θ)ut(θ)
′
}

= nK, which does

not depend on θ.

In order to compute robust standard errors we need to derive the dynamic properties of the score

and hessian. A key component in this dynamics is the derivative of log ht+1 with respect to log ht ,

which is stated next.

Lemma 1. Let ϕ = (ϕ1, . . . , ϕK)′ and let D be the matrix whose k-th row is δ′k, k = 1, . . . ,K. Then

∂ log ht+1/∂ log ht = A(zt) and −2∂`t/∂ log ht = B(zt, ut), where

A(zt) = (β − γ′ϕ) + 1
2 (γ′Dḃzt − τ ′ȧzt)zt,

B(zt, ut) = (1− z2
t ) + u′tΣ

−1(Dḃztzt − 2ϕ),

with ȧzt = ∂a(zt)/∂zt and ḃzt = ∂b(zt)/∂zt.
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We obtain the following results for ḣλ,t = ∂h̃t

∂λ and ḣµ,t = ∂h̃t

∂µ , which we use to simplify our

expressions for the score function.

Lemma 2. ḣλ,t = ∂h̃t

∂λ and ḣµ,t = ∂h̃t

∂µ are given from the stochastic recursions:

ḣλ,t+1 = A(zt)ḣλ,t + gt,

ḣµ,t+1 = A(zt)ḣµ,t + (γ′Dḃzt − τ ′ȧzt)h
− 1

2
t ,

for t ≥ 1 with ḣλ,1 = ḣµ,1 = 0.

Next we turn to the score that defines the first order conditions for the quasi maximum likelihood

estimators.

Theorem 1. The scores, ∂`
∂θ =

n∑
t=1

∂`t
∂θ with θ = (h̃1, µ, λ

′, ψ′1, . . . , ψ
′
K)′ and ∂`

∂Σ−1 =
n∑
t=1

∂`t
∂Σ−1 are given

from

∂`t
∂θ

= −1

2


B(zt, ut)

∏t−1
s=1A(zs)

B(zt, ut)ḣµ,t + 2[zt − u′tΣ−1Dḃzt ]h
− 1

2
t

B(zt, ut)ḣλ,t

−2Σ−1ut ⊗mt

 and
∂`t
∂Σ−1

=
1

2
(Σ− utu′t). (1)

From Lemma 1 and Theorem 1 it follows that:

Corollary 1. The score function is a martingale difference process, provided that E(zt|Ft−1) = 0,E(z2
t |Ft−1) =

1,E(ut|zt,Ft−1) = 0 and E(utu
′
t|Ft−1) = Σ.

The first-order conditions for Σ lead to the close-form expression

Σ̂ =
1

n

n∑
t=1

ûtû
′
t, (2)

where ûk,t = uk,t(θ̂) = x̃k,t − ξ̂k − ϕ̂kh̃t(θ̂) − δ̂′kb(zt(θ̂)), k = 1, . . . ,K. This expression reduces the

complexity of the optimization problem substantially.

The GARCH equation implies that log ht has the stationary MA(∞) representation

log ht = βj log ht−j +

j−1∑
i=0

βj [τ(zt−1−i) + γ′ut−1−i],

so that ht has a stationary representation if |β| < 1. In the likelihood analysis, however, it is the random

variable, A(zt) = (β − γ′ϕ) + 1
2 (γ′Dḃzt − τ ′ȧzt)zt, that shows up as the “autoregressive coefficient”

in various expressions. This occurs because the derivative is taken while the observables (rt, xt) are

held constant, and this phenomenon is well known from the EGARCH model. We note that the effect

that h1 has on the log-likelihood is proportional to
∑n
t=1

∏t−1
s=1A(zs), and that

∏t−1
s=1A(zs) vanishes in
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probability (exponentially fast) provided that

E log |A(zt)| < 0, (3)

because |
∏
sA(zs)| = expn

{
1
n

∑
s log |A(zs)|

}
and 1

n

∑
s log |A(zs)|

a.s.→ E log |A(zt)| by the law of large

numbers. By Jensen’s inequality we observe that E|A(zt)| < 1 is a sufficient condition for (3). In our

empirical analysis this condition is satisfied in all the models we have estimated. For instance, the

estimated model for SPY close-to-close returns with the realized kernel, xRK,t, has E|A(zt)| = 0.76,

whereas the estimated model using two realized measures, the realized kernel and the daily range,

has E|A(zt)| = 0.835. (Here the expectation is computed using parameter estimates and a Gaussian

specification for zt).

A drawback of conventional GARCH models is that the asymptotic analysis of estimators and their

properties are rather challenging. It took more than two decades to establish several elementary re-

sults for some of the simplest models, see Bollerslev and Wooldridge (1992), Lee and Hansen (1994),

Lumsdaine (1996), Jensen and Rahbek (2004), Straumann and Mikosch (2006), Kristensen and Rahbek

(2005, 2009), and references therein. The asymptotic analysis of Realized EGARCH model is similarly

complicated, so it is beyond the scope of this paper to fully establish the asymptotic theory for the

estimators. However, based on the theoretical results in this section, including the martingale difference

properties stated in Corollary 1, it seems reasonable to make the following assumption about the limit

distribution, which we use to compute standard errors in our empirical analysis.

Assumption 1. The QMLE estimators

√
n

 θ̂ − θ

vech(Σ̂− Σ)

 d→ N(I−1J I−1),

where J is the asymptotic variance of the score function and I is (minus) the limit of Hessian matrix

for the log-likelihood function.

In practice we rely on the expression (2) for estimating for Σ̂, and are mainly concerned with com-

puting standard errors for (elements of) θ̂. Fortunately, I has a block diagonal structure that simplifies

the computation of standard errors for θ.

Theorem 2. Given the martingale difference conditions stated in Corollary 1 and Assumption 1,

√
n
(
θ̂ − θ

)
d→ N(0, Î−1

θ ĴθÎ
−1
θ ),

In practice we will use this simplification and compute standard errors for θ using Î−1
θ ĴθÎ

−1
θ , where

Ĵθ will be based on the analytical scores derived in equation (1) and Îθ will be computed from the

numerical Hessian matrix of the log-likelihood function.
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3.1 Partial Log-Likelihood for Returns

In order to have a measure of fit that can be compared with conventional GARCH models, we define

`P (r; θ) = −1

2

n∑
t=1

[log(2π) + log(ht) + (rt − µ)2/ht],

which is the partial log-likelihood function (for the time series of returns). This quantity is the Kullback-

Leibler measure associated with the conditional distribution of returns. So this measure is directly

comparable to the log-likelihood obtained from conventional GARCH models, such as the GARCH

model and the EGARCH model.

4 Empirical Results

In this section we present empirical results using returns and realized measures for 28 stocks and an

exchange-traded index fund, SPY, that tracks the S&P 500 index.

The empirical results illustrate the (rather large) benefits of using realized measures in this framework.

For instance, the log-likelihood for returns increases substantially when realized measures are included

in the modeling, and γ is found to be significant for all realized measures. Models with multiple realized

measures lead to better empirical fits than those with a single realized measure. The best combination

of realized measures appears to be the realized kernel (see below) in conjunction with the daily range.

We explore a number of simplifications of the model structure and find ϕ = 1 and µ = 0 to be useful

restrictions that, on average, lead to a better out-of-sample fit. Additional results are presented in the

next section where we show that the exponential specification proposed in this paper, is superior to the

original specification by Hansen et al. (2012). Section 5 will also present theoretical insight about the

underlying reasons for this.l

4.1 Data and Realized Measures

Our full sample spans the period from January 1, 2002 to August 29, 2008. For out-of-sample analysis,

we define an in-sample period: January 1, 2002 to December 31, 2005, leaving January 1, 2006 to August

29, 2008, for out-of-sample analysis. These data were previously analyzed in Hansen, Huang, and Shek

(2012), although we include additional realized measures in the present analysis, and we will estimate

models that utilize different subsets of eight distinct realized measures. When we estimate a Realized

EGARCH model using open-to-close returns we should expect xt ≈ ht, whereas with close-to-close

returns we should expect xt to be smaller than ht on average.

To avoid outliers that would result from half trading days, we removed the days where high-frequency

data spanned less than 90% of the official 6.5 hours between 9:30am and 4:00pm. This removes about

three daily observations per year, such as the day after Thanksgiving Day and the days around Christmas.
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4.1.1 Realized Measures of Volatility

We use eight realized measures in our empirical analysis. These consist of the Realized Kernel (RK)

by Barndorff-Nielsen et al. (2008), the daily range (DR), and six Realized Variances (RV) that differ in

terms of the sampling frequency of intraday returns (ranging from fifteen seconds intraday returns to

twenty minutes intraday returns).

A relatively simple realized measure of volatility is the sum of squared intraday returns that is

known as the realized variance. By dividing some interval of time, [T0, T1] say, into n subintervals,

T0 = t0,n < t1,n < · · · < tn,n = T1, we can define the intraday returns, ri,n = pti,n − pti−1,n
. The

realized variance is now defined by RV
(n)
t =

∑n
i=1 r

2
i,n, and under ideal circumstances the realized

variance is consistent for the quadratic variation. (Note that the quadratic variation is an ex-post

measure of volatility, as oppose to ht that is an ex-ante quantity). However, it is well known that market

microstructure noise becomes increasingly important as n → ∞, which makes the RV an unreliable

measure of volatility when n is large, see Zhang et al. (2005), Bandi and Russell (2008), and Hansen

and Lunde (2006).

The Realized Kernel (RK) by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) is one of

several robust measures of volatility, and the variant derived in Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2011) is robust to general forms of noise. In this paper we adopt the latter variant, which is

given by RK =
∑H
h=−H k

(
h

H+1

)
γh, where k(x) is the Parzen kernel and γh =

∑n
i=|h|+1 ri,nri−h,n. The

exact computation of this estimator is described in Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2009).

The daily range is defined by hight − lowt with hight = maxs ps and lowt = mins ps where pt is the

logarithmic price and the maximum and minimum is taken over observed prices on the t-th trading day.

For the sake of convenience we use the squared daily range,

DRt = (hight − lowt)
2,

because this transforms the range-measure to the same scale as ht. When log-prices follow a Brownian

motion with (constant) variance ht, then logDRt ∼ N(0.85 + log h, 0.34) whereas log(hight − lowt) ∼

N(0.43 + 1
2 log h, 0.08), see Alizadeh et al. (2002, table 1).

4.2 A Comparison of Realized Measure

First, we compare the performance of Realized EGARCH models that include a single realized measure

and compare the results for the eight realized measures. Later we explore the benefits of utilized multiple

realized measures simultaneously. Results based on open-to-close returns are presented in Table 2, Panel

A, and the analogous results for close-to-close results are presented Panel B.

11



P
oi
nt

E
st
im

at
es

an
d
Lo

g-
Li
ke
lih

oo
ds

(S
P
Y
)

A
ve
ra
ge
s
A
cr
os
s
A
ll
A
ss
et
s

P
an

el
A
:
O
pe
n-
to
-C

lo
se

R
et
ur
ns

β
γ

ϕ
σ

2 u
`I

S P
(r

)
`O

S
P

(r
)

β
γ

ϕ
σ

2 u
`I

S P
(r

)
`O

S
P

(r
)

R
K

0.
98
7

0.
20
8

1.
09
3

0.
10
8

-1
22
1.
13

-7
54
.0
4

0.
97
9

0.
24
6

1.
07
8

0.
15
8

-1
63
0.
81

-1
03
7.
87

D
R

0.
99
7

0.
07
0

1.
02
5

0.
26
0

-1
21
9.
09

-7
57
.0
5

0.
98
7

0.
11
2

1.
02
9

0.
31
0

-1
63
3.
16

-1
04
1.
29

RV
15
s

0.
99
3

0.
25
9

1.
22
6

0.
06
3

-1
22
1.
30

-7
51
.8
4

0.
98
4

0.
29
8

1.
07
7

0.
08
5

-1
63
4.
23

-1
04
2.
14

RV
2m

0.
99
0

0.
20
4

1.
10
3

0.
09
9

-1
22
0.
02

-7
53
.3
5

0.
98
2

0.
25
7

1.
09
0

0.
12
8

-1
63
1.
21

-1
03
8.
56

RV
5m

0.
98
8

0.
17
2

1.
09
4

0.
13
4

-1
22
0.
88

-7
55
.5
0

0.
98
0

0.
22
7

1.
06
9

0.
17
1

-1
63
0.
80

-1
03
8.
32

RV
10
m

0.
99
0

0.
15
8

1.
05
0

0.
17
3

-1
21
8.
77

-7
55
.6
3

0.
98
1

0.
18
6

1.
05
8

0.
22
5

-1
63
1.
44

-1
03
8.
23

RV
15
m

0.
99
2

0.
11
4

1.
04
5

0.
20
5

-1
22
2.
49

-7
59
.7
3

0.
98
2

0.
15
7

1.
04
0

0.
27
3

-1
63
2.
11

-1
03
8.
08

RV
20
m

0.
99
3

0.
10
8

1.
01
2

0.
22
7

-1
22
0.
86

-7
56
.9
6

0.
98
3

0.
14
3

1.
03
2

0.
30
9

-1
63
2.
28

-1
03
8.
59

P
an

el
B
:
C
lo
se
-t
o-
C
lo
se

R
et
ur
ns

β
γ

ϕ
σ

2 u
`I

S P
(r

)
`O

S
P

(r
)

β
γ

ϕ
σ

2 u
`I

S P
(r

)
`O

S
P

(r
)

R
K

0.
98
4

0.
22
9

1.
02
3

0.
10
9

-1
30
1.
71

-8
54
.6
9

0.
97
9

0.
25
5

1.
04
2

0.
16
2

-1
74
4.
88

-1
13
0.
98

D
R

0.
99
4

0.
06
9

0.
96
6

0.
35
7

-1
30
3.
16

-8
56
.3
2

0.
98
7

0.
10
4

1.
00
6

0.
40
2

-1
74
5.
76

-1
13
3.
03

RV
15
s

0.
99
0

0.
28
3

1.
15
4

0.
06
4

-1
29
9.
22

-8
48
.3
3

0.
98
4

0.
30
7

1.
03
9

0.
08
6

-1
74
9.
57

-1
13
3.
30

RV
2m

0.
98
6

0.
22
1

1.
04
6

0.
10
0

-1
30
1.
11

-8
53
.7
9

0.
98
2

0.
26
6

1.
05
2

0.
13
0

-1
74
5.
79

-1
13
1.
22

RV
5m

0.
98
5

0.
18
5

1.
03
2

0.
13
7

-1
30
2.
19

-8
56
.3
3

0.
98
1

0.
23
4

1.
03
5

0.
17
5

-1
74
5.
26

-1
13
1.
72

RV
10
m

0.
98
6

0.
16
4

1.
00
7

0.
17
8

-1
30
2.
09

-8
54
.9
6

0.
98
1

0.
19
3

1.
02
5

0.
23
4

-1
74
5.
39

-1
13
1.
80

RV
15
m

0.
98
8

0.
13
5

0.
98
0

0.
21
5

-1
30
2.
90

-8
60
.9
6

0.
98
2

0.
16
2

1.
01
5

0.
28
5

-1
74
5.
95

-1
13
2.
03

RV
20
m

0.
98
8

0.
12
4

0.
95
7

0.
24
3

-1
30
3.
09

-8
56
.8
9

0.
98
3

0.
14
7

1.
00
5

0.
32
6

-1
74
5.
87

-1
13
2.
39

T
ab

le
2:

R
es
ul
ts

ba
se
d
on

op
en
-t
o-
cl
os
e
re
tu
rn
s
(P

an
el

A
)
an

d
cl
os
e-
to
-c
lo
se

re
tu
rn
s
(P

an
el

B
)
fo
r
ei
gh

t
re
al
iz
ed

m
ea
su
re
s
of

vo
la
ti
lit
y.

T
he

le
ft

pa
ne
l

pr
es
en
ts

pa
ra
m
et
er

es
ti
m
at
es

fo
r
SP

Y
re
tu
rn
s
fo
r
fo
ur

ke
y
pa

ra
m
et
er
s
al
on

g
w
it
h
th
e
va
lu
e
of

th
e
in
-s
am

pl
e
an

d
ou

t-
of
-s
am

pl
e
pa

rt
ia
ll
og
-li
ke
lih

oo
d
fu
nc
ti
on

.
E
ac
h
ro
w

ha
s
th
e
re
su
lt
s
fo
r
on

e
of

th
e
ei
gh

t
re
al
iz
ed

m
ea
su
re
s
in

ou
r
an

al
ys
is
.
T
he

ri
gh

t
pa

ne
lp

re
se
nt
s
th
e
co
rr
es
po

nd
in
g
re
su
lt
s
fo
r
th
e
in
di
vi
du

al
st
oc
ks
,

in
th
e
fo
rm

of
av
er
ag
e
po

in
t
es
ti
m
at
e
an

d
av
er
ag
e
va
lu
e
of

th
e
lo
g-
lik

el
ih
oo

d
fu
nc
ti
on

.

12



Interestingly, RV15s delivers the best out-of-sample fit for SPY returns but this is not true in general.

In fact, the RV15s tends to deliver either the best or the worst out-of-sample performance among different

RVs. This finding is likely due to the properties of the microstructure noise that vary across assets. If the

microstructure noise is substantial, RV15s tends to provide a poor signal of the underlying integrated

volatility. On the other hand for assets where microstructure noise is very small, RV15s may be the

most accurate realized measures, resulting in the best out-of-sample fit.

Not surprisingly do we find that the estimates for β are close to 1, see Table 2. This is true uniformly

across different stocks for all the different realized measures.

There is an inverse relationship between the coefficient of residual measurement error, γ, and its

variance σ2
u, (for individual realized measures we write σ2

u in place of Σ). This is logical because it

implies that the more accurate is a realized measure, the larger is its coefficient in the GARCH equation.

It makes little sense to compare the full log-likelihood `(r, x) for different realized measures, because

these are log-likelihoods for different data sets. So we will focus on the partial likelihood that is a measure

of fit for the return data. Across the 29 assets, the best average out-of-sample log-likelihood is achieved

by the realized kernel, RK. In Figure 1 we present the difference between the out-of-sample partial

log-likelihood for each of the eight realized measures relative to that of the realized kernel which has the

highest average value of the partial log-likelihood. The in-sample analysis for the partial likelihoods has

a similar pattern and is not reported to conserve space.

Figure 1: Out-of-sample partial log-likelihood (averaged over assets) for the different realized measures
relative to that with the highest average. On average the best empirical fit is achieved with the realized
kernel and the worst is that of the noise-prone realized variance based on 15-second returns.

In terms of the out-of-sample log-likelihood the realized kernel (RK) has the best average perfor-

mance, closely followed by the realized variance based on two-minute sampling. The worst statistical fit
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is that of the realized variance based on 15-second sampling followed by the daily range.

There is an inverted U-shape in the score of fit for realized variances as a function of sampling

frequency. When the sampling frequency gets higher, the score of fit improves with the peak at around

two to five minute frequency but then deteriorate as the sampling frequency increases to 15 seconds.

This result is consistent with the literature on market microstructure noise in high frequency data, which

has shown that the mean square error (MSE) of the realized variance, as a function of the sampling

frequency, has a U-shape. The U-shape arises because the distortions induced by market microstructure

noise increase with the sampling frequency. This distortion eventually dominates the statistical gain

from increasing the sample size by sampling more frequently.

4.3 Detailed Results for Realized Exponential GARCH with the Realized

Kernel

We shall present more detailed results for the Realized EGARCH model based on the RK. The following

are the results for SPY open-to-close returns for the full sample period:

rt = −0.022
(0.017)

+
√
htzt

log ht+1 = −0.015
(0.005)

+ 0.970
(0.005)

log ht − 0.105
(0.009)

zt + 0.051
(0.005)

(z2
t − 1) + 0.272

(0.024)
ut

log xRK,t = −0.161
(0.042)

+ 1.096
(0.046)

log ht − 0.076
(0.010)

zt + 0.073
(0.006)

(z2
t − 1) + ut,

with σ̂2
u = 0.132

(0.005)
. The numbers in parentheses are the robust standard errors for each of the point

estimates.

Estimating the same specification, for SPY close-to-close returns yields:

rt = +0.009
(0.019)

+
√
htzt

log ht+1 = −0.008
(0.004)

+ 0.970
(0.005)

log ht − 0.130
(0.010)

zt + 0.026
(0.004)

(z2
t − 1) + 0.270

(0.024)
ut

log xRK,t = −0.399
(0.039)

+ 1.066
(0.049)

log ht − 0.107
(0.010)

zt + 0.034
(0.005)

(z2
t − 1) + ut,

with σ̂2
u = 0.134

(0.005)
.

The estimates are very similar, with the exception of the intercept parameter in the measurement

equation, ξ, which is smaller for close-to-close returns than for open-to-close returns. This is to be

expected because it is the same realized kernel estimate that is used in both specification, with the

implication that xRK,t is a downwards biased measurement of ht, when the latter is the daily close-to-

close volatility. The fact that γ is significant shows that the realized measure (RK) provides valuable

information about the variation in volatility, over and above that explained by studentized returns, zt.

We also observe that the coefficients for zt are smaller (more negative) for close-to-close returns, which

suggests a higher degree of asymmetry in the leverage effect. The mean parameter, µ, is estimated to
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Stocks µ ω β γ τ1 τ2 ξ ϕ δ1 δ1 σ2
u

AA -0.126 0.040 0.960 0.287 -0.053 0.049 0.020 1.008 -0.043 0.087 0.156
AIG -0.069 0.015 0.974 0.348 -0.075 0.025 -0.070 0.985 -0.026 0.044 0.196
AXP 0.030 0.007 0.984 0.325 -0.076 0.048 -0.156 1.079 -0.012 0.092 0.173
BA -0.005 0.015 0.975 0.218 -0.043 0.031 -0.179 1.225 -0.017 0.090 0.157
BAC 0.034 0.001 0.977 0.397 -0.086 0.050 -0.016 0.972 -0.032 0.077 0.170
C -0.054 0.005 0.982 0.365 -0.080 0.050 0.083 0.974 -0.033 0.089 0.149

CAT 0.002 0.034 0.953 0.271 -0.044 0.040 -0.156 1.109 -0.022 0.088 0.142
CVX 0.015 0.018 0.944 0.272 -0.055 0.046 -0.101 1.293 -0.078 0.073 0.145
DD -0.015 0.011 0.962 0.294 -0.056 0.042 0.065 1.092 -0.043 0.079 0.161
DIS 0.042 0.011 0.979 0.306 -0.043 0.034 -0.040 1.097 -0.039 0.088 0.166
GE -0.022 0.002 0.982 0.264 -0.044 0.050 0.000 0.996 0.004 0.077 0.166
GM -0.178 0.036 0.973 0.230 -0.048 0.068 -0.321 1.050 -0.024 0.118 0.217
HD -0.012 0.017 0.975 0.280 -0.061 0.042 -0.018 1.030 -0.038 0.090 0.161
IBM 0.072 0.003 0.971 0.307 -0.065 0.044 0.022 0.960 -0.022 0.080 0.145
INTC -0.053 0.034 0.967 0.330 -0.053 0.053 -0.163 1.074 -0.022 0.075 0.134
JNJ 0.011 -0.008 0.978 0.290 -0.044 0.035 0.135 1.036 0.020 0.099 0.192
JPM 0.006 0.011 0.981 0.350 -0.072 0.052 -0.030 1.013 -0.028 0.086 0.172
KO 0.028 -0.007 0.972 0.356 -0.025 0.035 0.158 0.953 -0.012 0.076 0.151
MCD 0.103 0.012 0.974 0.264 -0.030 0.033 -0.010 0.993 -0.025 0.109 0.200
MMM -0.019 0.004 0.936 0.326 -0.058 0.027 0.036 1.062 -0.019 0.071 0.166
MRK -0.006 0.028 0.949 0.239 -0.025 0.012 -0.256 1.340 -0.009 0.070 0.230
MSFT 0.014 0.009 0.971 0.333 -0.054 0.060 0.070 0.920 -0.029 0.081 0.147
PG 0.090 -0.019 0.941 0.319 -0.049 0.041 0.185 1.070 -0.032 0.078 0.168
T -0.035 0.025 0.960 0.346 -0.070 0.073 -0.001 0.908 -0.037 0.098 0.204

UTX -0.027 0.012 0.958 0.319 -0.082 0.048 0.028 0.936 -0.015 0.099 0.154
VZ -0.043 0.008 0.980 0.279 -0.046 0.042 0.056 1.024 -0.033 0.083 0.180

WMT -0.034 0.003 0.975 0.270 -0.044 0.047 0.129 1.074 -0.016 0.091 0.152
XOM 0.047 0.015 0.953 0.248 -0.060 0.043 -0.108 1.278 -0.075 0.075 0.135
SPY -0.022 -0.015 0.969 0.272 -0.105 0.051 -0.161 1.096 -0.076 0.073 0.132

Average -0.008 0.011 0.967 0.300 -0.057 0.044 -0.028 1.057 -0.029 0.084 0.166

Table 3: Estimates for the Realized EGARCH model based on the realized kernel (RK) for open-to-close
returns.

be negative for open-to-close returns and positive for close-to-close returns for this sample period, albeit

both estimates are insignificant.

The point estimates for each of the DIJA stocks are presented in Table 3 (open-to-close returns)

and Table 4 (close-to-close returns). The last row has the average estimates across all assets, and it is

interesting to observe how similar the point estimates are across assets. Not surprisingly, do we find

volatility to be highly persistent, which is evident from the estimates of β, that are close to 1 in all

cases. Moreover, the tables show that γ is typically estimated to be about 0.30, for both open-to-close

returns and close-to-close returns. This parameter may be compared to α in a conventional GARCH

model, which measures the coefficient associated with squared returns. The fact that γ is estimated

to be several times larger than the typical value for α (about 0.05) reflects the fact that the realized

measures provide better information about future volatility than does the squared return.
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Stocks µ ω β γ τ1 τ2 ξ ϕ δ1 δ1 σ2
u

AA 0.013 0.055 0.959 0.267 -0.045 0.030 -0.507 1.130 -0.058 0.077 0.154
AIG -0.027 0.020 0.973 0.360 -0.093 0.046 -0.217 0.924 -0.052 0.066 0.188
AXP 0.016 0.012 0.984 0.310 -0.101 0.040 -0.403 1.057 -0.037 0.067 0.176
BA 0.061 0.021 0.976 0.227 -0.059 0.032 -0.432 1.114 -0.030 0.087 0.153
BAC 0.010 0.007 0.975 0.366 -0.104 0.047 -0.217 0.990 -0.060 0.068 0.170
C -0.006 0.009 0.983 0.347 -0.089 0.033 -0.135 0.969 -0.041 0.055 0.158

CAT 0.080 0.045 0.956 0.266 -0.046 0.022 -0.565 1.183 -0.042 0.068 0.144
CVX 0.068 0.030 0.946 0.256 -0.059 0.043 -0.406 1.303 -0.102 0.057 0.143
DD 0.009 0.021 0.963 0.282 -0.061 0.022 -0.243 1.130 -0.049 0.058 0.161
DIS 0.016 0.015 0.980 0.299 -0.058 0.025 -0.281 1.037 -0.050 0.062 0.169
GE 0.000 0.007 0.984 0.284 -0.060 0.039 -0.244 0.971 -0.012 0.059 0.173
GM -0.027 0.047 0.970 0.224 -0.049 0.060 -0.774 1.158 -0.035 0.110 0.219
HD -0.025 0.021 0.978 0.281 -0.060 0.036 -0.256 1.007 -0.029 0.068 0.168
IBM -0.001 0.012 0.973 0.355 -0.084 0.027 -0.246 0.871 -0.036 0.053 0.150
INTC 0.004 0.038 0.971 0.337 -0.055 0.036 -0.427 1.048 -0.025 0.046 0.140
JNJ 0.016 -0.002 0.977 0.225 -0.056 0.039 -0.118 1.158 0.008 0.083 0.194
JPM 0.012 0.014 0.983 0.317 -0.089 0.051 -0.235 0.987 -0.054 0.066 0.175
KO 0.013 0.000 0.971 0.393 -0.040 0.025 -0.086 0.888 -0.021 0.056 0.154
MCD 0.091 0.023 0.968 0.248 -0.046 0.032 -0.314 1.046 -0.068 0.101 0.196
MMM 0.011 0.023 0.942 0.288 -0.063 0.009 -0.365 1.158 -0.033 0.042 0.169
MRK 0.017 0.042 0.946 0.205 -0.033 0.018 -0.708 1.497 -0.041 0.077 0.219
MSFT 0.010 0.016 0.977 0.345 -0.051 0.030 -0.246 0.928 -0.025 0.045 0.154
PG 0.019 -0.004 0.936 0.302 -0.057 0.029 -0.093 1.161 -0.043 0.067 0.164
T 0.010 0.025 0.967 0.356 -0.065 0.053 -0.106 0.913 -0.043 0.062 0.222

UTX 0.018 0.024 0.958 0.340 -0.102 0.050 -0.188 0.885 -0.033 0.090 0.155
VZ -0.002 0.013 0.980 0.267 -0.061 0.039 -0.171 1.006 -0.048 0.064 0.185

WMT -0.020 0.012 0.974 0.265 -0.043 0.037 -0.273 1.121 -0.012 0.067 0.158
XOM 0.055 0.025 0.956 0.239 -0.071 0.039 -0.401 1.256 -0.102 0.058 0.133
SPY 0.009 -0.008 0.970 0.270 -0.130 0.026 -0.399 1.066 -0.107 0.034 0.134

Average 0.016 0.019 0.968 0.294 -0.067 0.035 -0.312 1.068 -0.044 0.066 0.168

Table 4: Estimates for the Realized EGARCH model based on the realized kernel (RK) for close-to-close
returns.
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4.4 Simplifying the Structure Through Parameter Restrictions

We seek ways to simplify the model by imposing parameter restrictions that are not at odds with the

data. There are several advantages of imposing restrictions. For instance, it can ease the interpretation

of the model and can make the estimation of the remaining parameters more efficient. In this section

we will explore the validity of the following two restrictions: µ = 0 and ϕ = 1.

4.4.1 Imposing the Restriction: µ = 0

We first check whether the restriction µ = 0 in the mean equation is justified by the empirical results.

Table 5 presents the estimated µ and the differenced log-likelihoods between Realized EGARCH model

with and without µ. We can see that leaving µ unrestricted will, on average, not improve the in-sample

fit significantly and, in fact, imposing µ = 0 leads to a better average out-of-sample fit. For this reason

we shall impose µ = 0 in the remaining empirical analysis. These results are based on estimates where

the realized kernel was used as the realized measure. The (unreported) results for the other realized

measures are very similar.

17



Stocks µ `(r, x)IS `(r)ISP `(r, x)OS `(r)OSP
AA -0.14 -4.76 -4.30 -0.72 -0.47
AIG -0.04 -0.44 -0.28 -2.00 -1.93
AXP 0.03 -0.45 -0.53 -0.36 0.07
BA 0.04 -0.52 -0.72 1.56 1.95
BAC 0.05 -1.92 -1.42 0.76 2.29
C -0.06 -1.69 -2.24 -0.65 -1.37

CAT 0.00 0.00 0.00 0.00 0.00
CVX 0.01 -0.09 -0.19 -0.07 -0.11
DD -0.04 -0.61 -0.66 0.83 0.70
DIS -0.01 -0.02 -0.05 0.54 0.44
GE -0.03 -0.50 -0.60 0.14 0.19
GM -0.20 -9.69 -10.27 1.86 0.16
HD -0.04 -0.39 -0.52 0.62 0.42
IBM 0.00 0.00 0.00 0.04 0.04
INTC -0.09 -1.55 -1.76 1.02 1.13
JNJ 0.00 0.00 -0.01 0.06 0.08
JPM -0.04 -0.55 -0.34 1.80 1.30
KO 0.03 -0.49 -0.56 -0.61 -0.30
MCD 0.11 -3.25 -2.78 -3.11 -2.34
MMM -0.03 -0.37 -0.40 0.12 -0.06
MRK -0.05 -0.60 -0.65 0.96 1.06
MSFT -0.04 -0.83 -0.57 3.09 2.56
PG 0.07 -3.43 -3.70 -5.94 -5.75
T -0.05 -0.64 -0.76 0.03 -0.24

UTX -0.02 -0.11 -0.03 -0.32 -0.34
VZ -0.09 -3.15 -3.68 3.19 2.86

WMT -0.07 -2.51 -2.45 2.39 2.47
XOM 0.05 -1.00 -0.98 -0.56 -0.92
SPY -0.04 -1.21 -1.05 1.07 0.44

Average -0.02 -1.41 -1.43 0.20 0.15

Table 5: Unrestricted point estimates for µ, and the impact on the the joint and partial log-likelihoods
from imposing µ = 0.

4.4.2 Imposing the Restriction: ϕ = 1

There are theoretical reasons to expect that the realized measures are proportional to ht. Since we

operate with logarithmically transformed quantities it is therefore reasonable to expect that ϕ = 1.

Imposing this constraint makes it easier to interpret certain features of the model, so we examine the

validity of this restriction. We estimate the Realized EGARCH model with each of the eight realized

measures and evaluate the effects on the joint and partial log-likelihood functions by imposing the

constraint ϕ = 1. The results are presented in Figure 2 where the left panel displays the in-sample

and out-of-sample effects on the joint log-likelihood, and the results for the partial log-likelihood are

presented in the right panel. The numbers reported in the left panel are `(r, x; θ̃, Σ̃)−`(r, x, θ̂, Σ̂) (average

over the 29 assets) where θ̃ and Σ̃ are the point estimates from the restricted model (where ϕ = 1 is

imposed), while θ̂ and Σ̂ are the point estimates from the unrestricted model. The right panel presents

the equivalent statistics for the partial log-likelihood function.
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Because the parameters are estimated by maximizing the joint likelihood (in-sample), it is no surprise

that the in-sample log-likelihood decreases in value when ϕ = 1 is imposed. This is not necessarily the

case for the partial log-likelihood and, in fact, the daily range provides an example where the in-sample

partial log-likelihood increases by imposing ϕ = 1. (The implication is that the marginal in-sample

log-likelihood for the realized measures decreases more than the joint log-likelihood). The interesting

result in the left panel is that the restriction improves the out-of-sample fit on average. We note that

out-of-sample improvement is about 2, for both joint and partial likelihoods. This implies that the

gains from imposing ϕ = 1 are primarily driven by improved out-of-sample fit of returns, and less so by

out-of-sample fit of the marginal model for the realized measure. This is obviously desirable if the key

objective is a better out-of-sample model for returns. We conclude that ϕ = 1 is a reasonable restriction

to impose in this framework.

Figure 2: Gains in the joint and partial log-likelihoods by imposing ϕ = 1. While restrictions will reduce
the value of the in-sample likelihood we note that imposing ϕ = 1 leads to improvements in the out-
of-sample log-likelihood. Improvements are observed for both the joint and the partial log-likelihoods
out-of-sample. The reported values are the average gains across all assets.

4.5 Realized Exponential GARCH with Multiple Realized Measures

In this section, we present empirical results for Realized EGARCH models using multiple realized mea-

sures. Models using different combinations of realized measures have been estimated for M = 2, 3, 4.

Seven Realized EGARCH models are estimated with different pairs realized measures. We estimate

two models with three realized measures, where the labels RK&DR&RV15s and RK&DR&RV5m, iden-

tify which realized measures are included in the model. We estimate two models with four realized

measures: RK&RV2m&RV5m&RV20m and RK&DR&RV5m&RV20m.

From the models with two realized measures it is interesting to note that including the realized

range tends to improve the out-of-sample likelihood. This suggests that the daily range, DR, contains

supplementary information to that provided by the realized kernel and the realized variances.
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Partial log-likelihood: ¯̀
r Change in ¯̀

r relative to
(average over assets) best specification

Specification IS OS IS OS
EGARCH -1637.67 -1055.17 -6.84 -19.75

RK -1632.13 -1035.64 -1.31 -0.27
DR -1632.98 -1038.59 -2.16 -3.22

RV15s -1638.46 -1039.86 -7.64 -4.49
RV2m -1633.65 -1036.07 -2.82 -0.70
RV5m -1632.31 -1036.05 -1.49 -0.68
RV10m -1632.56 -1036.25 -1.74 -0.88
RV15m -1633.05 -1036.52 -2.23 -1.15
RV20m -1633.09 -1036.88 -2.27 -1.51
RK&DR -1631.58 -1035.37 -0.76 0

RK&RV15s -1640.10 -1040.58 -9.28 -5.21
RK&RV5m -1631.71 -1035.50 -0.89 -0.13

RV15s&RV5m -1639.27 -1040.08 -8.44 -4.71
RV5m&RV20m -1632.03 -1035.84 -1.21 -0.47
DR&RV5m -1631.49 -1035.71 -0.67 -0.34
DR&RV20m -1631.88 -1036.62 -1.06 -1.25

RK&DR&RV15s -1638.96 -1040.28 -8.13 -4.91
RK&DR&RV5m -1631.12 -1035.38 -0.30 -0.01

RK&RV2m&RV5m&RV20m -1633.13 -1040.20 -2.31 -0.54
RK&DR&RV5m&RV20m -1630.82 -1035.38 0 -0.01

Table 6: In-sample and out-of-sample partial log-likelihoods for various specifications measures.

Models that include RV15s typically yield a worse out-of-sample fit whereas most other specifications

produce similar log-likelihood values. Comparing the out-of-sample partial log-likelihoods with those

of the univariate model, we find incorporating multiple realized measures does improve the value of

the likelihood. The results with M = 3 realized measures are similar to the case of M = 2, with the

exception being the case where we include the noise-sensitive realized variance, RV15s.

In Table 6 we report the average value of the partial log-likelihood function for various specifications,

where the average is taken over assets. The first and second columns report the in-sample and out-

of-sample results respectively. The last two columns report the values of the log likelihood relative to

that obtained for the specification with the highest average value. In-sample, the largest average partial

log-likelihood is (not surprisingly) achieved by a specification with four realized measures. (RK, DR,

RV5m, and RV20m) whereas the simpler specification with two realized measures, RK & DR, has the

best out-of-sample fit on average. This suggests the daily range contributes additional information about

volatility, even after including the realized kernel or realized variance. Several specifications produce

very similar in-sample and out-of-sample log-likelihoods. Specifications that include both the realized

kernel and the daily range deliver good overall performance, unless these are used in conjunction with the

noise-prone realized variance, RV15s. Incorporating a realized variance sampled at frequencies 5-minute

(or slower) does not hurt the empirical fit, whereas the realized variance based on 15-second sampling

results in the worst performance across the Realized EGARCH specifications.
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5 Relation to Earlier Specification in Hansen, Huang and Shek

(2012)

In this section we compare the Realized Exponential GARCH specification (introduced in this paper)

with the original specification in Hansen et al. (2012). The latter was formulated for a single realized

measure, so we focus on this special case in our comparison. The logarithmic specification in Hansen

et al. (2012) takes the form:

log ht = ω̃ + β̃ log ht−1 + γ log xt−1,

log xt = ξ + ϕ log ht + δ(zt) + ut.

Compared to the Realized EGARCH specification we note that the GARCH equation has the realized

measure, xt−1, instead of ut−1, and lacks a leverage function, τ(zt−1). By substitution we have

log ht = ω + βht−1 + γδ(zt−1) + γut−1, (4)

where ω = ω̃+γξ and β = β̃+γϕ. It is now evident that this model is nested in the Realized EGARCH

model, as the original specification arises by imposing two restrictions: 1) Proportionality of the two

leverage functions, τ(z) = γδ(z), and 2) that their relative magnitude is exactly γ (the coefficient for

ut−1). Our empirical analysis will highlight the benefits of relaxing these constraints, and we shall

provide some theoretical insight about this below.

5.1 Interpreting the Generalized Structure

Before we present the empirical comparison of the two specifications, we will motivate the need for the

more flexible structure of the Realized EGARCH specification.

The realized measures, xt, are estimates of the quadratic variation, which we can denote by yt. For

instance, the realized kernel is consistent for yt as the number of intraday returns, n, increases. In fact,

the variant of the realized kernel used in this paper is such that xt − yt = Op(n
−1/5) under suitable

conditions, see Barndorff-Nielsen et al. (2011). More generally, we can view each of the realized measures

as noisy measure of yt with varying degrees of accuracy. This translates into log xt being a noisy measure

of log yt, with a bias that is influenced by the sampling error of the realized measure. So we introduce

ηt = log xt − log yt and ζt = log yt − log ht and label these as estimation error and volatility shock

respectively. While it is plausible that the volatility shock influences the dynamics of volatility, there is

little reason to expect that the estimation error has any impact on future volatility. This follows from

the fact that ηt is specific to the realized measure and simply reflects our inability to perfectly estimate

yt from a finite number of observations.
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From the measurement equation, where we have imposed ϕ = 1, we have

ξ + δ(zt) + ut = ηt + ζt.

This enables us to interpret ξ and relate δ(zt) and ut to the estimation error and the volatility shock.

First we note that ξ is tied to the sampling error of the realized measure. For a realized measure that is

unbiased for yt, it follows by Jensen’s inequality that a larger sampling error decreases Eηt. Thus if we

compare two unbiased realized measures we should expect the more accurate one to have the larger (less

negative) value of ξ. Second, since ηt is tied to sampling error that (in the limit for some of the realized

measures) is independent of the observed processes, it follows that the leverage function, τ(zt), is linked

to the volatility shock ζt, albeit there will be residual randomness in ζt that cannot be explained by the

studentized return, zt, alone. Consequently, the residual measurement shock ut will be a mixture of the

estimation error, ηt, and the residual randomness ζt − δ(zt). For this reason we should expect δ(zt) to

be more important in describing the dynamic variation in volatility than ut. A limitation of the original

Realized GARCH specification is that it implicitly imposes δ(zt) and ut to have the same coefficient in

the GARCH equation, see (4).

Figure 3: Averaged estimates for γ and κ

5.2 Empirical Comparisons to Realized GARCH

Before comparing the Realized GARCH and Realized EGARCH models we estimate a hybrid model

where we relax the constraint that δ(zt) and ut have the same coefficient in the GARCH equation. This

is achieved by imposing τ(z) = κδ(z) in the GARCH equation of the EGARCH model, where κ is a

free parameter. The Realized GARCH model corresponds to the case κ = γ. Figure 3 presents average

estimates of γ and κ for the various realized measures, where the averages were taken across assets.

22



Across stocks we typically find the value of γ to be much smaller than κ (γ is typically estimated to be

about 60% smaller than κ, which is consistent with our interpretations of δ(zt) and ut and their relations

to estimation error and volatility shocks. Detailed results for the individual stocks are presented in the

appendix.

Figure 4: Average impact on the joint and partial log-likelihoods from Realized GARCH to Realized
EGARCH

Naturally, the Realized EGARCH model is more flexible than merely allowing γ 6= κ and Figure 4

presents likelihood ratio statistics (averaged across assets) from the comparison of the Realized EGARCH

model and the nested Realized GARCH model. In-sample and out-of-sample statistics are presented

for the joint likelihood in the left panel and the corresponding results for the partial log-likelihood are

presented in the right panel.

We see both positive in-sample and out-of-sample gains in both joint and partial log-likelihoods. A

more flexible specification will always result in a better log-likelihood (the quantity being maximized).

What is impressive, is the fact that the out-of sample log-likelihood is also improved in all cases. This

strongly suggests that the new specification is superior to that in Hansen et al. (2012). The improvements

are also seen in terms of the partial log-likelihoods.

6 Conclusion

We have introduced a new variant of the Realized GARCH model, that is characterized by two innova-

tions. We included an explicit leverage term in the GARCH equation and we allowed for the inclusion

of multiple realized measures in the model. The advantages of the new structure were documented

in the form of better empirical fit in the time series we have analyzed. In our empirical analysis we

also explored two simplifications (µ = 0 and ϕ = 1) that simplify the interpretation of the model and

facilitate a simpler and more accurate estimation of the model.

We included and compared eight realized measures of volatility in the analysis, a realized kernel (RK),

the daily range (DR), and six realized variances, that were computed for various sampling frequencies of

intraday returns, ranging from 15 second returns to 20 minute returns. Any of these realized measures
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contain useful information for the modeling of volatility. The daily range adds the least in terms of

empirical fit, and the realized kernel adding the most. For the realized variances we find, not surprisingly,

that the performance improves as the sampling frequency increases, except for the highest sampling

frequency where market microstructure noise becomes a dominating factor. The realized variance based

on 15 second intraday returns, RV15s, was (in some regards) found to be the best single measure of

volatility in our analysis of the SPY returns, albeit the effects of market microstructure noise were

evident from the point estimates. However, serious problems arose for RV15s when this measure was

used in our analysis of the individual returns series. The core of the problems is that the dynamic

properties of RV15s are influenced by the noise, causing the RV15s to “highjack” the latent volatility

variable, ht, to (partly) track these noise features instead of the intended purpose, which is to track the

conditional volatility of returns.

The extension to multiple realized measures of volatility was found to be beneficial. Not only does

multiple realized measure lead to substantial improvements of the empirical fit in-sample, it also improves

the out-of-sample fit. The latter implies that the population benefits from adding multiple measures

outweighs the drawback from having to estimate additional parameters in these models. In terms of the

average out-of-sample fit of the log-likelihood for returns, the best combination of realized measures was

one with two realized measures – the realized kernel paired with the daily range. While the daily range, in

isolation, yields the smallest empirical gains of all realized measures, it does contain valuable information

that is orthogonal to that of other realized measures. Given the construction of the realized measures,

it is perhaps, not surprising that the daily range, albeit relatively noisy, does capture information that

is distinct from that contained in the other realized measures.

Realized measures have proven to be very valuable in GARCH modeling. When estimating a stan-

dard GARCH model, the lagged squared returns is typically estimated to have a coefficient around 5%

which causes GARCH models to be slow at adjusting the level of volatility. Put simply, it takes many

consecutive large squared returns for a GARCH model to realize that volatility has jumped to a new

higher level. Including a realized measure in the GARCH equation will typically lead to its estimated

coefficient to be estimated to about 30%-60%, and the inclusion of the realized measures will often

cause the squared return to be insignificant. The larger coefficient associated with the realized measure,

makes the model far more adaptive to sudden changes in volatility, which has obvious benefits. For

instance, a realized GARCH model fares far better during the financial crises than does a conventional

GARCH model. Despite these benefits it is important to be aware of a potential drawback of the coef-

ficient, γ, being relatively large. The larger coefficient in the GARCH equation implies that an outlier

in the realized measure will cause more havoc to ht. This problem is less pronounced in conventional

GARCH models because α is small. (Naturally, α is small because squared returns are noisy measures

of volatility). The key message we want to make is the following: A larger coefficient in the GARCH

equation requires a higher degree of responsibility in terms of including well behaved realized measures

of volatility. In our empirical analysis we found that additional data monitoring is required once realized
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measures are included in the model. For instance, we chose to exclude “half” trading days (mostly days

around Christmas and Thanksgiving) from the analysis, because the realized measures from such days

are outliers. Not only because the period with high-frequency data is shorter, but also because such

days tend to be quiet day with relatively low levels of volatility. Conventional GARCH models do not

require the same degree of careful monitoring, because an outlier in returns, has a smaller impact on

the model-implied volatility.

Finally, the model proposed in this paper included a single lag of ht and ut in the GARCH equation.

This framework is easy to extend to include multiple lags of ht and ut, say p and q lags, respectively.

It would be natural to label this model as the RealEGARCH(p,q) model, and the likelihood analysis in

Section 3 can be adapted to cover this case an the expense of a more complex exposition.
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Appendix of Proofs

Proof of Lemma 1. From zt = (rt − µ)e−h̃t/2 we have that

żt = ∂zt/∂h̃t = − 1
2zt. (A.1)

Similarly for uk,t = x̃t − ϕkh̃t − δ′kb(zt) we find that u̇k,t = ∂uk,t/∂h̃t = −ϕk − δ′k ḃtżt = 1
2δ
′
k ḃtzt − ϕk,

so that u̇t = ∂ut/∂h̃t (the column vector whose k-th element is u̇k,t) can be expressed as

u̇t = 1
2Dḃtzt − ϕ. (A.2)

Now recall, h̃t+1 = g′tλ, where g′t = (1, h̃t, a
′
t, u
′
t). Thus the object we seek is given by

(∂g′t/∂h̃t)λ = (0, 1, żtȧ
′
t, u̇
′
t)λ = β + żtȧ

′
tτ + ( 1

2Dḃtzt − ϕ)′γ = A(zt),

For the second result, −2 log `t/∂h̃t = [h̃t + z2
t + K log(2π) + log |Σ| + u′tΣ

−1ut]/∂h̃t, we note that
∂z2
t /∂h̃t = −z2

t using (A.1), and the result now follows by combining ∂u′tΣ−1ut/∂u
′
t = 2u′tΣ

−1 and
(A.2). �

Proof of Lemma 2. First we note that

zt = (rt − µ)e−h̃t/2 and uk,t = x̃t − ϕkh̃t − δ′kb(zt),

only depend on λ through h̃t, (the latter directly and indirectly via zt). Consequently g′t = (1, h̃t, a
′
t, u
′
t)

only depends on λ through h̃t so that ∂h̃t+1/∂λ =

∂h̃t+1

∂λ
= λ′

∂gt

∂h̃t

∂h̃t
∂λ

+ gt = A(zt)ḣλ,t + gt.

The second result is derived similarly, albeit with some additional terms because zt (and hence ut)
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depends on µ though another channel than h̃t. Specifically,

żµ,t =
∂zt
∂µ

= − 1
2ztḣµ,t − h

− 1
2

t ,

which has implications for u̇µ,t = ∂ut/∂µ so that

u̇µ,t = −ϕḣµ,t −Dḃtżµ,t = (−ϕ+ 1
2Dḃtzt)ḣµ,t +Dḃth

− 1
2

t

so that

ḣµ,t+1 = βḣµ,t + γ′u̇µ,t + τ ′ȧtżµ,t

= [β − γ′ϕ+ 1
2 (γ′Dḃt − τ ′ȧt)zt]ḣµ,t + (γ′Dḃt − τ ′ȧt)h

− 1
2

t

and the result follows. �

Proof of Theorem 1. From Lemma 1 we have ∂h̃t+j

∂h̃t
=
∏j−1
i=0 A(zt+i), and the first result follows by

the chain rule. For µ we note that µ influences `t through h̃t and through its direct impact on zt which

is the second term of żµ,t = ∂zt/∂µ = − 1
2ztḣµ,t − h

− 1
2

t so that

−2
∂`t
∂µ

= B(zt, ut)ḣµ,t + (−2∂`t/∂zt)(−h
− 1

2
t )

= B(zt, ut)ḣµ,t + (2zt + 2u′tΣ
−1∂ut/∂zt)(−h

− 1
2

t )

= B(zt, ut)ḣµ,t + 2[zt + u′tΣ
−1(−Dḃzt)]h

− 1
2

t ,

which establishes the second element of ∂`t
∂θ . Next, λ only impacts `t through h̃t so the third element

of ∂`t∂θ follows by combining the results in Lemmas 1 and 2. Next consider the derivatives with respect

to ψk, which only affects `t through uk,t. Recall −2∂`t/∂ut = ∂(u′tΣ
−1ut)/∂ut = 2Σ−1ut so that

∂(u′tΣ
−1ut)/∂uk,t = 2e′kΣ−1ut where ek is the k-th unit vector. Since ∂uk,t/∂ψk = −mt we have

−2∂`t/∂ψk = 2e′kΣ−1ut(−mt)] = −2(e′kΣ−1ut)mt,

By using the fact that for vectors a ∈ Rn and b ∈ Rm we have that



e′1ab

...

e′kab

...

e′nab


=



a1b

...

akb

...

anb


= a⊗ b,

It follows that −2∂`t/∂(ψ′1, . . . , ψ
′
K)′ = (Σ−1ut)⊗mt. �
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Proof of Theorem 2. We first show the information matrix I is block diagonal. For each i, j , k =

1, ...,K,we have

∂2`t
∂(Σ−1)ij∂λ

= −1

2
(ui,tu̇j,t + uj,tu̇i,t)ḣt

∂2`t
∂(Σ−1)ij∂ψk

= −1

2
(ui,tmk,j,t + uj,tmk,i,t)

where mk,i,t=
∂ui,t

∂ψk
=mk,t when k = i and 0 otherwise. Hence, we have

E[
∂2`(r, x; θ,Σ−1)

∂(Σ−1)ij∂λ
] = E[

n∑
t=1

−1

2
(ui,tu̇j,t + uj,tu̇i,t)ḣt] = 0,

E[
∂2`(r, x; θ,Σ−1)

∂(Σ−1)ij∂ψk
] = E[

n∑
t=1

−1

2
(ui,tmk,j,t + uj,tmk,i,t)] = 0.

Since all cross terms are zero the information matrix I is block triangular, so that

avar(θ̂, vechΣ̂) =

 I−1
θ 0

0 I−1
Σ

 Jθ JθΣ

JΣθ JΣ

 I−1
θ 0

0 I−1
Σ

 =

 I−1
θ JθI

−1
θ I−1

θ JθΣI
−1
Σ

I−1
Σ JΣθI−1

θ I−1
Σ JΣI−1

Σ

 .

We can see the asymptotic covariance matrix for θ̂ is just I−1
θ JθI

−1
θ . �
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