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Abstract

Out-of-sample tests of forecast performance depend on how a given data set is split

into estimation and evaluation periods, yet no guidance exists on how to choose the

split point. Empirical forecast evaluation results can therefore be difficult to interpret,

particularly when several values of the split point might have been considered. When

the sample split is viewed as a choice variable, rather than being fixed ex ante, we

show that very large size distortions can occur for conventional tests of predictive accu-

racy. Spurious rejections are most likely to occur with a short evaluation sample, while

conversely the power of forecast evaluation tests is strongest with long out-of-sample

periods. To deal with size distortions, we propose a test statistic that is robust to the

effect of considering multiple sample split points. Empirical applications to predictabil-

ity of stock returns and inflation demonstrate that out-of-sample forecast evaluation

results can critically depend on how the sample split is determined.
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stock returns; inflation forecasting.
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1 Introduction

Statistical tests of a model’s forecast performance are commonly conducted by splitting a

given data set into an in-sample period, used for initial parameter estimation and model

selection, and an out-of-sample period, used to evaluate forecast performance. Empirical

evidence based on out-of-sample forecast performance is generally considered more trustwor-

thy than evidence based on in-sample performance which can be more sensitive to outliers

and data mining (White (2000b)). Out-of-sample forecasts also better reflect the informa-

tion available to the forecaster in “real time” (Diebold & Rudebusch (1991)). This has led

many researchers to regard out-of-sample performance as the “ultimate test of a forecasting

model” (Stock & Watson (2007, p. 571)).1

This paper focuses on a dimension of the forecast evaluation problem that has so far

received little attention. When presenting out-of-sample evidence, the sample split defin-

ing the beginning of the evaluation period is a choice variable, yet there are no broadly

accepted guidelines for how to select the sample split.2 Instead, researchers have adopted

a variety of practical approaches. One approach is to choose the initial estimation sample

to have a minimum length and use the remaining sample for forecast evaluation. For ex-

ample, Marcellino, Stock & Watson (2006) and Pesaran, Pick & Timmermann (2011) use

the first 20 years of data, when available, to estimate forecasting models for a variety of

macroeconomic variables. Another common approach is to do the reverse and reserve a cer-

tain sample length, e.g., 10 or 20 years of observations, for the out-of-sample period (Inoue

& Kilian (2008)). Alternatively, researchers such as Welch & Goyal (2008) and Rapach,

Strauss & Zhou (2010) consider multiple out-of-sample periods and report the significance

of forecasting performance for each. Ultimately, however, these approaches all depend on

ad-hoc choices of the individual split points.

The absence of guidance on how to select the split point that separates the in-sample and

out-of-sample periods, raises several questions. First, a ‘data-mining’ issue arises because

multiple split points might have been considered and the reported values could be those

1For excellent reviews of the forecast evaluation problem, see West (2006) and Clark & McCracken (2012).
2See, e.g., Welch & Goyal (2008, p.1464), “It is not clear how to choose the periods over which a regression

model is estimated and subsequently evaluated.” Stock & Watson (2007, p. 571) recommend “Pick a date

near the end of the sample, estimate your forecasting model using data up to that date, then use that

estimated model to make a forecast.”
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that most favor a given model. Even if individual researchers consider only a single split

point, the community of researchers could collectively have examined a range of split points,

thereby influencing individual researchers’ choice.3 When compared to test statistics that

assume a single (predetermined) split point, results that are optimized in this manner can

lead to size distortions and may ameliorate the tendency of out-of-sample tests of predictive

accuracy to underreject (Inoue & Kilian (2004) and Clark & West (2007)). It is therefore

important to investigate how large such size distortions are, how they depend on the split

point—whether they are largest if the split point is at the beginning, middle or end of the

sample—and how they depend on the dimension of the prediction model under study.

A second question is related to how the choice of sample split trades off the effect

of estimation error on forecast precision versus the power of the test as determined by the

number of observations in the out-of-sample period. Given the generally weak power of out-

of-sample forecast evaluation tests, it is important to choose the sample split to generate

the highest achievable power. This will help direct the power in a way that maximizes the

probability of correctly finding predictability. We find that power is maximized if the sample

split falls relatively early in the sample so as to obtain the longest available out-of-sample

evaluation period.

A third issue is how one can construct a test that is robust to sample split mining.

To address this point, we propose a minimum -value approach that accounts for search

across different split points while allowing for heteroskedasticity across the distribution

of critical values associated with different split points. The approach yields conservative

inference in the sense that it is robust to search across all possible sample split points, which

from an inferential perspective represents the ‘worst case’ scenario. Another possibility is

to construct a joint test for out-of-sample predictability at multiple split points, but this

leaves aside the issue of how best to determine these multiple split points.

The main contributions of our paper are the following. First, using a simple theoretical

setup, we show how predictive accuracy tests such as those proposed by McCracken (2007)

and Clark & McCracken (2001, 2005) are affected when researchers optimize or “mine” over

the sample split point. The rejection rate tends to be highest if the split point is chosen

at the beginning or end of the sample. We quantify the effect of such mining over the

3Rules of thumb such as using the first 10 or 20 years of data for estimation or forecast evaluation purposes

are clearly designed to reduce the arbitrariness of how the split point is selected.
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sample split on the probability of rejecting the null of no predictability. Rejection rates

are found to be far higher than the nominal critical levels. For example, tests of predictive

accuracy for a model with one additional parameter conducted at the nominal 5% level,

but conducted at all split points between 10% and 90% of the sample, reject 15% of the

time, i.e., three times as often as they should. Similar inflation in rejection rates are seen

at other critical levels, although they grow even larger as the dimension of the prediction

model increases (for a fixed benchmark). Second, we extend the results in McCracken

(2007) and Clark & McCracken (2001, 2005) in many ways. We derive results under weaker

assumptions and provide simpler expressions for the limit distributions. The latter mimic

those found in asymptotic results for quasi maximum likelihood analysis. In particular, we

show that expressions involving stochastic integrals can be reduced to simple convolutions

of chi-squared random variables. This greatly simplifies calculation of critical values for

the test statistics. Third, we propose a test statistic that is robust to mining over the

sample split point. In situations where the “optimal” sample split is used, our test shows

that in order to achieve, say, a five percent rejection rate, test statistics corresponding to a

far smaller nominal critical level, such as one percent or less, should be used. Fourth, we

derive analytical results for the asymptotic power of the tests which add insight on existing

simulation-based results in the literature. We characterize power as a function of the split

point and show how this gets maximized if the split point is chosen to fall at the beginning

of the sample. Fourth and finally, we provide empirical illustrations for US stock returns

and inflation that illustrate the importance of accounting for sample split mining when

conducting inference about predictive performance.

Our analysis is related to a large literature on the effect of data mining arising from

search over model specifications. When the best model is selected from a larger universe

of competing models, its predictive accuracy cannot be compared with conventional crit-

ical values. Rather, the effect of model specification search must be taken into account.

To this end, White (2000b) proposed a bootstrap reality check that facilitates calculation

of adjusted critical values for the single best model and Hansen (2005) proposed various

refinements to this approach; see also Politis & Romano (1995). This literature considers

mining across model specifications, but takes the sample split point as given. Instead the

forecast model is kept constant in our analysis, and any mining is confined to the sample

split. This makes a material difference and introduces some unique aspects in our analysis.
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The temporal dependence in forecast performance measured across different sample splits is

very different from the cross-sectional dependencies observed in the forecasting performance

measured across different model specifications. While the evaluation samples are identical

in the bootstrap reality check literature, they are only partially overlapping when different

sample splits are considered. Moreover, the recursive updating scheme for the parame-

ter estimates of the forecast model introduces a common source of heteroskedasticity and

persistence across different sample splits.

In a paper written independently and concurrently with our work, Rossi & Inoue (2011)

study the effect of “mining” over the length of the estimation window in out-of-sample

forecast evaluations. While the topic of their paper is closely related to ours there are

important differences, which we discuss in details in Section 4.

The outline of the paper is as follows. Section 2 introduces the theory through linear

regression models, while the power of out-of-sample tests is addressed in Section 3. A

test that is robust to mining over the split point is proposed in Section 4, and Section 5

presents empirical applications to forecasts of U.S. stock returns and U.S. inflation. Section

6 concludes.

2 Theory

We focus on the common case where forecasts are produced by linear models estimated

through recursive least squares and forecast accuracy is evaluated using mean squared error

(MSE) loss. Other estimation schemes such as a rolling window or a fixed window could

be considered and would embody slightly different trade-offs. However, in a stationary

environment, recursive estimation based on an expanding data window makes most efficient

use of the data.

Our analysis uses a regression setup that is first illustrated through a simple example

which then is extended to more general regression models.

2.1 A Simple Illustrative Example

Consider the simple regression model that includes only a constant:

 =  +   ∼ (0 2) (1)
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Suppose that  is estimated recursively by least squares, so that ̂ =
1


P
=1  The

prediction of +1 given information at time  is then given by

̂+1| = ̂

The least squares forecast is compared to a simple benchmark forecast

̂+1| = 0

This can be interpreted as the regression-based forecast under the assumption that  = 0

so that no regression parameters need to be estimated.

For purposes of out-of-sample forecast evaluation, the sample is divided into two parts.

A fraction,  ∈ (0 1) of the sample is reserved for initial parameter estimation while the
remaining fraction, 1− is used for evaluation. Thus, for a given sample size,  the initial
estimation period is  = 1      and the (out-of-sample) evaluation period is +1     

where  = bc is the integer part of 
Forecasts are evaluated by means of their out-of-sample MSE-values measured relative

to those of the benchmark forecasts:

() =

X
=+1

( − ̂|−1)
2 − ( − ̂|−1)

2 (2)

Given a consistent estimator of 2 such as ̂
2
 = [(1 − )]−1

P
=+1

( − ̂|−1)2, under

the null hypothesis, 0 :  = 0 it can be shown that

() =
()

̂2

→ 2

Z 1



−1()d()−
Z 1



−2()2d (3)

where () is a standard Brownian motion, see McCracken (2007). The right hand side of

(3) characterizes the limit distribution of the test statistic, and we denote the corresponding

CDF by 1(). Later we will introduce similar distributions deduced from multivariate

Brownian motions, which explains the second subscript of  For a given value of , () can

be compared to the critical values tabulated in McCracken (2007, table 4). Alternatively,

the -value can be computed directly by

() = 1− 1() where  = ()

Since ()
→ 1 and 1() is continuous, it follows that the asymptotic distribution of

() is the uniform distribution on [0 1].
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One contribution of this paper is to show that the expression in (3) can be greatly

simplified. As we shall see, the limit distribution in (3) is simply given by
√
1− (21 −

22) + log  where 1 and 2 are independent standard normal random variables.

2.1.1 Mining over the Sample Split Point: Actual Type I Error Rate

Since the choice of  is somewhat arbitrary, a researcher may have computed -values for

several values of . Such practices raise the danger of a subtle bias affecting predictive

accuracy tests which are only valid provided that  is predetermined and not selected after

observing the data. In particular, it suggests treating the sample split point as a choice

variable which could depend on the observed data.

Suppose that the sample split point, , is used as a choice parameter, and the reported

-value is in fact the smallest -value obtained over a range of sample splits, such as

min ≡ min
≤≤̄

() with 0   ≤   ̄  1

Clearly this is no longer a valid -value, because the basic requirement of a -value, Pr(min ≤
) ≤  does not hold for the smallest -value which represents a “worst case” scenario.4

Note that we bound the range of admissible values of  away from both zero and one. Ex-

cluding a proportion of the data at the beginning and end of the sample is common practice

and ensures that the distribution of the out-of-sample forecast errors is well behaved.

To illustrate this point, Figure 1 plots the limit distribution of min as a function of

the nominal critical level, . The distribution is shown over its full support along with a

close-up of the lower range of the distribution that is relevant for testing at conventional

significance levels. The extent to which the CDF is above the 45 degree line reveals the

over-rejections arising from the search over possible split points. For example, the CDF of

min is about 15% when evaluated at a 5% critical level, which tells us that there is a 15%

probability that the smallest -value, min01≤≤09{()} is less than 5% The figure clearly
shows how sensitive out-of-sample predictive inference can be to mining over the sample

split point.

It turns out that this mining is most sensitive to sample splits occurring towards the

end of the sample. For example, we find min08≤≤09 () ≤ 005 with a probability that
exceeds 10%. Even a relatively modest mining over split points towards the end of the

4For simplicity, the notation suppresses the dependence of min on  and ̄.
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sample can result is substantial over-rejection. To see this, Figure 2 shows the location of

the smallest -value, as defined by½
min : (min) = min

10%≤≤90%
()

¾


The location of the smallest -value, min is a random variable with support on the interval

[01 09]. The histograms in Figure 2 reveal that under the null hypothesis the smallest -

value is more likely to be located late in the sample (i.e., between 80% and 90% of the data).

The three other panels of Figure 2 show the location of min under the local alternatives,

 =  √

 with  = 2  = 3 and  = 4 As the value of  approaches zero, the histogram

under the local alternative approaches that of the null hypothesis. For more distant local

alternatives such as  = 5 it is very unlikely that the smallest -value is found late in the

sample.

These findings suggest, first, that conventional tests of predictive accuracy that assume

a fixed and pre-determined value of  can substantially over-reject the null of no predictive

improvement over the benchmark when in fact  is chosen to maximize predictive perfor-

mance. Second, spurious rejection of the null hypothesis is most likely to be found with a

sample split that leaves a relatively small proportion of the sample for out-of-sample eval-

uation. Conversely, true rejections of a false null hypothesis are more likely to produce a

small -value if the sample split occurs relatively early in the sample.

These are important considerations. It is quite common to use a short evaluation sample.

However, our analysis suggests that short forecast evaluation samples are associated with a

higher chance of spurious rejection.

2.2 General Case

Next, consider the general case in which the benchmark model has  regressors, 1 ∈ R

whereas the alternative forecast model is based on a larger regression with +  regressors,

 = (
0
1

0
2)
0 ∈ R+, which nests the benchmark model.5 Forecasts could be computed

multiple steps ahead. Letting  ≥ 1 denote the forecast horizon, the benchmark model’s
regression-based forecast is now given by

̂+| = ̃
0
11 (4)

5West (1996) considers the non-nested case.
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with

̃1 =

Ã
X

=1

1− 0
1−

!−1 X
=1

1−

while the alternative forecast is

̂+| = ̂
0
11 + ̂

0
22 (5)

where ̂ = (̂
0
1 ̂

0
2)

0 is the least squares estimator from regressing  on ( 0
1−

0
2−)

0

for  = 1     . For simplicity, we suppress the horizon subscript, , on the least squares

estimators.

The test statistic takes the same form as in our earlier example,

() =

P
=+1

( − ̂
|−)

2 − ( − ̂|−)2

̂2
 (6)

but its asymptotic distribution is now given from a convolution of  independent random

variables, 2
R 1

−1()d()− R 1


−2()2d as we make precise below in Theorem 1.

The asymptotic distribution is derived under assumptions that enable us to utilize the

results for near-epoch dependent (NED) processes established by De Jong & Davidson

(2000). We also formulate mixing assumptions (similar to those made in Clark &McCracken

(2005)) that enable us to utilize results in Hansen (1992). The results in Hansen (1992)

are more general than those established in De Jong & Davidson (2000) in ways that are

relevant for our analysis of the split-mining robust test in Section 4.

In the assumptions below we consider the process,  = (
0
−)

0 and let V be some
auxiliary process that defines the filtration F +

− = (V−    V+)

Assumption 1 The matrix, Σ = E(
0
 ) is positive definite and does not depend on 

and var[−12
Pbc

=1 vech(
0
 −Σ)] exists for all  ∈ [0 1]

The first part of the assumption ensures that the population predictive regression coef-

ficients do not depend on  while the second part, in conjunction with Assumption 2 stated

below, ensures that we can establish the desired limit results.

Assumption 2 For some   2, (i) kk2 is bounded uniformly in ; (ii)
°° −(|F +

− )
°°
4
≤

() where () = (−12−) for some   0 and  is a uniformly bounded sequence

of constants; (iii) V is either -mixing of size −(−2) or -mixing of size −(2(−1))
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Assumption 2 establishes  as an 4-NED process of size −1
2
on V where the latter

sets limits on the “memory” of  The advantage of formulating our assumptions in terms

of NED processes is that the dependence properties carries over to higher moments of

the process. Specifically, vech(
0
 ) will be 2-NED of size −1

2
on V and key stochastic

integrals that show up in our limit results are derived from the properties of vech(
0
 )

It is convenient to express the block structure of Σ in the following ways

Σ =

µ
Σ •
Σ Σ

¶
with Σ =

µ
Σ11 •
Σ21 Σ22

¶


where the blocks in Σ refer to 1 and 2 respectively. Similarly, define the “error”

term from the large model

 =  −ΣΣ−1−

and the auxiliary variable

 = 2 −Σ21Σ−111 1

so that  is constructed to be the part of 2 that is orthogonal to 1

Further, define the population objects, 2 = Σ − ΣΣ−1Σ and Σ = Σ22 −
Σ21Σ

−1
11 Σ12. It follows that 

2
  0 and that Σ is positive definite, because Σ is positive

definite. Finally, define

() :=
1√


bcX
=1

− (7)

which is a CADLAG on the unit interval that maps into R. The space of such functions is

denoted D

[01]
. Two important matrices in our asymptotic analysis are

Ω := plim
→∞

1



X
=1

− 0− and Σ = 2Σ

where the former is the long-run variance of {−} From Assumption 1 it follows that

both Ω and Σ are well defined and positive definite.

We shall make use of the following mixing assumption:

Assumption 2’ For some     2,  = − is an -mixing sequence with mixing

coefficients of size ( − ) and sup E|
 |   ∞.

We then have the following theorem:

Theorem 1 Given Assumptions 1 and 2, or Assumptions 1 and 2’, we have

()⇒ () = Ω12()
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where () is a standard -dimensional Brownian motion.

This result shows that a functional central limit theorem applies to that part of the

score from the “large” prediction model that differentiates it from the nested benchmark

model. The result is needed for hypothesis tests that rely on the relative accuracy of the

two models.

The next assumption is a mild additional requirement that is easy to verify if the pre-

diction errors are unpredictable in the sense that E(+ |  −1 −1   ) = 0 for  ≥ 

Assumption 3 cov(− −) = 0 for |− | ≥ 

This assumption requires a mild form of unpredictability of the -step-ahead forecast

errors. Without it there would be an asymptotic bias term in the limit distribution given

below.

We can now present the limit distribution of the test statistic () for the general case.

Theorem 2 Suppose Assumptions 1, 2 and 3 or 1, 2’ and 3 hold and ̂2
→ 2 Under the

null hypothesis, 0 : 2 = 0 we have

()
→

X
=1



∙
2

Z 1



−1()d()−
Z 1



−2()
2d

¸


where 1      are the eigenvalues of Σ
−1Ω, and ()  = 1  , are independent stan-

dard Brownian motion processes.

The limit distribution of the test statistic in Theorem 2 can also be expressed as

2

Z 1



−10()Λd()−
Z 1



−20()Λ()d (8)

where Λ = diag(1     ), and we denote the CDF of this distribution by Λ The

standard Brownian motion,  that appears in Theorem 2 and equation (8) characterizes

the limit distribution. This Brownian motion need not be identical to that used in Theorem

1. In fact, one is a simple orthonormal rotation of the other; see the proof for details.

The expression for the limit distribution in Theorem 2 involves two types of random

variables. The first term is the stochastic integral,
R 1

−10()Λd() that arises from

the recursive estimation scheme. The second term, − R 1

−20()Λ()d is a non-positive

random variable that characterizes the prediction loss induced by the estimation error, which
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arises from the additional parameters in the larger model. Stated somewhat informally,

prediction errors map into d() and parameter estimation errors map into () In the

recursive estimation scheme, prediction errors influence parameter estimates in subsequent

predictions.

Our expression for the asymptotic distribution in Theorem 2 is simpler than that de-

rived in Clark & McCracken (2005). For instance, our expression simplifies the nuisance

parameters to a diagonal matrix, Λ as opposed to a full ×  matrix. Moreover, it is quite

intuitive that the “weights”, 1      that appear in the diagonal matrix, Λ, are given as

eigenvalues of Σ−1Ω, because the two matrices play a similar role to that of the two types

of information matrices that can be computed in quasi maximum likelihood analysis, see

White (1994).

1,...,  can be consistently estimated as the eigenvalues of Σ̂
−1Ω̂ where

Σ̂ = ̂2
1



X
=1

̂−̂ 0−, Ω̂ =
X


( 

)Γ̂

Here (·) is a kernel function, e.g., the Parzen kernel,  is a bandwidth parameter, and

Γ̂ =
1



X
=1

̂−̂ 0−− ̂̂− 

with ̂ = 2−
P

=12
0
1(
P

=11
0
1)
−11 and ̂ = −̂0−− In the absence of

autocorrelation in −, one can use the estimate Ω̂ = 1


P
=1 ̂−1̂ 0−1̂

2
 . This situation

may apply when  = 1. In the homoskedastic case, 2 = [2 |−] = [2 ], Λ = ×

we can simplify the notation Λ to . This is consistent with the notation used in our

simplified (univariate and homoskedastic) example. The homoskedastic result is well known

in the literature, see McCracken (2007).

2.3 Simplification of Stochastic Integrals

Generating critical values for the distribution of 2
R 1

−1d − R 1


−22d has so far

proven computationally burdensome because it involves both a discretization of the un-

derlying Brownian motion and drawing a large number of simulations. McCracken (2007)

presents a table with critical values based on a 5,000-point discretization of the Brownian

motion and 10,000 repetitions. This design makes the first decimal point in the critical

values somewhat accurate. The analytical result in the next Theorem provide a major

simplification of the asymptotic distribution.
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Theorem 3 Let () be a standard Brownian motion and  ∈ (0 1) Then

2

Z 1



−1()d()−
Z 1



−2()2d = 2(1)− −12() + log  (9)

The derivation of Theorem 3 can be illustrated using Ito calculus. Consider  =

1

2 − log  for   0 so that

 =
2

 2()

2 = 2

 and  = −

¡
1
2
2 +

1


¢


Then by Ito calculus we have

d =
h


+ 1

2
2
()2

i
d+ 


d = − 1

2
2 d+

2

d

so that Z 1



2

d −

Z 1



1
2
2 d =

Z 1



d = 1 −  = 21 −2+ log 

A more detailed proof of Theorem 3 is provided in the Appendix.

Theorem 3 establishes that the limit distribution is given as a very simple transformation

of two random variables. Apart from the constant, log  the distribution is simply the

difference between two (dependent) 21-distributed random variables, as we next show:

Corollary 1 Let 1 and 2 be independently distributed,  ∼ (0 1)  = 1 2 Then the

distribution in Theorem 3 is given byp
1− (21 − 22) + log 

Because the distribution is expressed in terms of two independent 2-distributed random

variables, in the homoskedastic case where 1 = · · · =  = 1 it is possible to obtain

relatively simple closed form expressions for the distribution in Theorem (2):

Corollary 2 The density of
P

=1

h
2
R 1

−1()d()−

R 1

−2()

2d
i
is given by

1() =
1

2
√
1−K0(

|−log |
2
√
1− )

for  = 1, where K0() =
R∞
0

cos()√
1+2

d is the modified Bessel function of the second kind.

For  = 2 we have

2() =
1

4
√
1− exp

³
− |−2 log |

2
√
1−

´


which is the noncentral Laplace distribution.

13



The densities for  = 3 4 5    can be obtained based on those stated in Corollary 2.

When  = 2, we obtain an analytical expression for the CDF from the Laplace distrib-

ution:

2() =

⎧⎨⎩
1
2
exp

³
2−log √

1−
´

  log 

1− 1
2
exp

³
−2+log √

1−
´

 ≥ log 


The associated critical values are therefore given from the quantile function

−12 () =

½
2[log +

√
1−  log(2)]   05

2[log −√1−  log(2(1− ))]  ≥ 05
In the present context we reject the null for large values of the test statistic, so for  ≤ 05
the critical value, 2 , is found by setting  = 1−  Hence,

2 = 2[log −
p
1−  log(2)]  ≤ 05

These results greatly simplify calculation of critical values for the limiting distribution of

the test statistics. We next make use of them to illustrate the rejection rates induced by

mining over the sample split.

Table 1 compares the exact critical values to those provided by McCracken (2007) for

different values of  between 0.33 and 0.90 or, equivalently for  =  between 0.1 and

2, using the notation in McCracken. To save space, we only show results for  = 2 and

consider three levels of , namely  = 090 095 and 099. The two sets of critical values

are generally close and practical inference is unlikely to be overturned by the differences.

However, our approach makes it far more convenient to compute critical values outside the

cases tabulated by McCracken, particularly in cases where  is large.

2.4 Rejection Rates Induced by Mining over the Sample Split

When the sample is divided so that a predetermined fraction, , is reserved for initial

estimation of model parameters, and the remaining fraction, 1− , is left for out-of-sample

evaluation, we obtain the ()-statistic in (6). This statistic can be used to test the null

hypothesis, 2 = 0, by simply comparing it to the critical values from Λ For instance, if

() is the 1−  quantile of Λ i.e., () = −1Λ(1− ), it follows that

lim
→∞Pr(()  ()) = 

Suppose instead that the out-of-sample test statistic, , is computed over a range of split

points,  ≤  ≤ ̄, in order to find a split point where the alternative is most favored by
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the data. This corresponds to mining over the sample split, and the inference problem

becomes similar to the situation where one tests for structural change with an unknown

change point, see, e.g., Andrews (1993).

To explore the importance of such mining over the sample split for the actual rejection

rates, we compute how often the test based on the asymptotic critical values in McCracken

(2007) would reject the null of no predictability.

Table 2 presents the actual rejection rates based on the asymptotic critical values in Mc-

Cracken (2007) for  = 001 005 010 020, using  = 1  5 additional predictor variables

in the alternative model. These numbers are computed as the proportion of paths,  ∈ [ ̄]
with  = 1 − ̄ = 01 for which at least one rejection of the null occurs at the nominal

 level. The computations are based on  = 10 000 simulations (simulated paths) and a

discretization of the underlying Brownian motion, () ≈ 1√


Pbc
=1  with  = 10 000

and  ∼ iid(0 1)
The results are very strong. The inflation in the rejection rate from 5% to 15% reported

earlier with one additional regressor ( = 1) increases to nearly 22% as  rises from one

to five. Similar results hold no matter which critical level the test is conducted at. For

example, at the  = 1% nominal level, mining over the sample split point leads to rejection

rates between 3.7% and 5.5%, both far larger than the nominal critical level. When the test

is conducted at the  = 10% nominal level, the test that mines over split points actually

rejects between 25% and 38% of the time for values of  between one and five, while for

 = 20%, rejection rates above 60% are observed for the larger models.

2.5 A  -Invariant Asymptotically Pivotal Test Statistic

The limit distribution of () motivates the simple transformation,

() =
()−  log √

1− 
 (10)

which defines a test statistic that has a -invariant limit distribution in the homoskedastic

case.

Corollary 3 Suppose that the assumptions of Theorem 2 hold and that Λ =  Then the

limit distribution of () in (10) is given by

1 − 2
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where 1 2 are independent 
2-distributed with  degrees of freedom.

Note that the limit distribution of  does not depend on any nuisance parameters so

that () is asymptotically pivotal. The fact that the limit distribution does not depend

on  in this case is convenient. Unlike in the case with () it is not necessary to tabulate

critical values for different values of  However, the homoskedasticity required for Λ = 

is unrealistic in most empirical applications. The dependence on  could still be removed

asymptotically using the definition () = (()− tr{Σ̂−1Ω̂} log )
√
1−  but the limit

distribution would still depend on 1     . Consequently, in most practical situations the

effort required to make a test based on () would be identical to that using a test based

on ().

3 Power of the Test

The scope for size distortions in conventional tests of predictive accuracy is only one issue

that arises when considering the sample split for forecast evaluation purposes, with the

power of the test also mattering. Earlier we found that the risk of spuriously rejecting the

null due to sample split mining is highest when the sample split occurs towards the end of

the sample. This section shows that, in contrast, the power of the predictive accuracy test

is highest when the sample split occurs early in the sample.

Specifically, under a local alternative hypothesis we have the following result:

Theorem 4 Suppose that Assumptions 1-3 hold, and consider the local alternative 2 =

√

0 where  ∈ R with 0Σ = −2  Then

()
→ 2(1− ) + 2




0Ω120 [(1)−()]

+

X
=1


£
2 (1)− −12 () + log 

¤


where the matrix  and Λ = diag(1     ) are obtained from 0Λ = Ω12Σ−1Ω12

This Theorem establishes the analytical theory that underlies the simulation results

presented in Clark & McCracken (2001, tables 4 and 5).

For a given sample size and a particular alternative of interest, e.g., 2 = , the theorem

yields an asymptotic approximation to the finite sample distribution. To this end, simply

set  = 1

, where 2 = 2

0Σ and  = 
√
 so that 0Σ = −2 and  = √
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Insight about the power of the test and its dependence on  can be gained by considering

the asymptotically pivotal quantity () = (()−  log )
√
1−  in the homoskedastic

case Λ = . In this case its limit distribution does not depend on  under the null hypothesis,

nor does it depend on any other nuisance parameters. Under the alternative hypothesis,

the non-centrality parameter associated with (), which is key for the power of the test,

is given by 2
√
1−  Thus, the non-centrality parameter is strictly decreasing in  which

strongly suggests that the power is decreasing in  However the power of the test is is also

influenced by a random term as is evident from Theorem 4. In the univariate case this term

is proportional to  where  = ((1)−())
√
1−  ∼ (0 1). While its distribution is

-invariant, it is not independent of the Brownian motion that defines the null distribution,

so its impact on the power of the test is not entirely clear.

3.1 Local Power in the Illustrative Example

In our illustrative example from Section 2.1, 0Σ = −2 with Σ = 1 implies that  = ,

so a local alternative takes the form

 =
√



and the limit distribution is given by

()
→ 2(1)− −12() + log + 2(1− ) + 2 [(1)−()] 

How the power depends on the split point can be illustrated by the distribution of the

-value, defined by () = 1 − 1(()) under the local alternative. Figure 3 presents

the power of the test as a function of  for four local alternatives,  = 1  = 2  = 3

and  = 4 based on a test conducted at the nominal 5%-level. The power is decreasing in

 which makes it difficult to justify using a late sample split with this test.

Empirical studies tend to use a relatively large estimation period, i.e., a large . This is

precisely the range where one is most likely to find spurious rejections of the null hypothesis.

In fact, the power of the () test provides a strong argument for adopting a smaller (initial)

estimation sample, i.e., a small value of .
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4 A Split-Mining Robust Test

The results in Table 2 demonstrate that mining over the start of the out-of-sample period

can substantially raise the rejection rate when its effects are ignored. A question that

naturally arises from this finding is how to design a suitable test that is robust to sample

split mining in the sense that it will correctly reject at the stipulated rate even if such

mining took place.

To address this, suppose we want to guard ourselves against mining over the range

 ∈ [ ̄]. One possibility is to consider the maximum value of () across a range of

split points. However, max∈[̄] () is ill-suited for this purpose, because the marginal

distribution of () varies a great deal with  both in terms of scale and location. The

implication is that critical values for max-() will be disproportionately influenced by

certain ranges for , and distribute power unevenly over different values of  in an arbitrary

manner.

These observations suggest redefining the test statistic so as to make its limit distribution

less sensitive to  For instance, we could consider () = (()−  log )
√
1−  whose

limit distribution is invariant to  in the homoskedastic case as shown in Corollary 3, but

unfortunately not in the heteroskedastic case. Instead we pursue a method, well known in

the literature on multiple testing, that combines individual -values.

Specifically, we first map the test statistics for each of the sample split points into

nominal -values, () = 1− Λ(()). Next, the smallest -value is computed:

min = min
∈[̄]

()

Because each of the -values, () is asymptotically uniformly distributed on the unit inter-

val, the resulting test statistic is constructed from test statistics with similar properties, see,

e.g., Westfall & Young (1993). The limit distribution of min will clearly not be uniformly

distributed and so cannot be interpreted as a valid -value, but should instead be viewed

as a test statistic, whose distribution we seek. To this end, let  denote a -dimensional

standard Brownian motion and for  ∈ (0 1) define

() = (1)0Λ(1)− −1()0Λ() + log 

To establish the asymptotic properties of min we will need a stronger convergence result

than that used earlier to derive the distribution of () for a fixed value of . Specifically,
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we need that

()⇒ () on D[̄] (11)

The stronger result holds under mixing assumptions, see Hansen (1992), but has not been

established under near-epoch assumptions. It is worth noting that the near-epoch conditions

are the weakest set of assumptions needed for the functional central limit theorem and the

(point-wise) convergence to the stochastic integral, see De Jong & Davidson (2000), so it

may be redundant to state (11) as an additional assumption in the near-epoch setting.

Theorem 5 Given Assumptions 1-3 and (11), or Assumptions 1, 2’ and 3, min converges

in distribution, and the cdf of the limit distribution is given by

 () = Pr{ sup
≤≤̄

[()− ()] ≥ 0}  ∈ [0 1]

where () is given above and

() = −1Λ(1− )

Using this result, we can numerically compute the -value adjusted for sample split

mining by sorting the min-values for a large number of sample paths and choosing the

-quantile of this (ranked) distribution.

Table 3 shows how nominal -values map into -values adjusted for any split-mining.

For example, suppose a critical level of  = 5% is desired and that  = 1. Then the smallest

-value computed using the McCracken (2007) test statistic for all possible split points

 ∈ [0 1 09] should fall below 1.3% for the out-of-sample evidence to be significant at the

5% level. This drops further to 1.1% when  = 2 and to a value below 0.1% (the smallest -

value considered in our calculations) for values of  ≥ 3. Similarly, with a nominal rejection
level of 10%, the smallest -value (computed across all admissible sample splits) would have

to fall below 2.9% when  = 1 and below 2% when  = 5. Clearly, mining over the sample

split brings the adjusted critical values much further out in the tail of the distribution.

The robust test that we propose is related to the literature on multiple hypotheses

testing. Each sample split results in a hypothesis test, with the special circumstance that it

is the same hypothesis that gets tested at every sample split. The proposed test procedure

seeks to control the familywise error rate. Combining -values, rather than test statistics

with distinct limit distributions, creates a degree of balance across hypothesis tests.
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In a related paper, Rossi & Inoue (2011) consider methods for out-of-sample forecast

evaluation that are robust to data snooping over the length of the estimation window and

accounts for parameter instability. The first version of their paper was written concurrently

and independently of the results in the present paper. The analysis in the first version of

their paper mainly focused on the case with a rolling estimation window. However, in the

latest version of their paper they also consider encompassing tests for the comparison of

nested models. Under the recursive estimation scheme, the fraction of the sample used for

the (initial) window length is identical to the choice of sample split,  which is the focus

of our paper. Despite the similarities in this special case, their approach is substantially

different from ours.

First, their theoretical setup is based on high-level assumptions that must be verified for

the problem at hand (see Rossi & Inoue (2011, appendix A) for a wide range of situations).

These assumptions enable Rossi & Inoue (2011) to cover a lot of ground with the same

framework, at the expense of shedding little light on the exact properties of the limit

distribution, such as its intricate dependence on  In contrast, we cover less ground but

offer detailed analytical results for the limit distribution. Our results cast important light

on issues such as where the smallest -value is most likely to be found under the null and

alternative hypothesis. Second, Rossi and Inoue provide finite-sample simulation results

to illustrate the power of their test, whereas we have analytical power results. Third, they

construct robust test procedures using an approach where a range of test statistics (based on

different window sizes) are combined by either taking the supremum or the average. Instead,

we combine statistics whose location and scale is insensitive to , which makes them better

suited for comparison. In the homoskedastic case, the test statistic () is well suited for

this purpose, because its limit distribution does not depend on . An alternative, and our

preferred approach, is to combine the individual -values, which allows for the case with

heteroskedasticity. Specifically, we propose a minimum -value test which makes the test

statistics corresponding to different sample splits more comparable. The empirical findings

in Rossi & Inoue (2011) are consistent with ours, however, and confirm that data snooping

over the choice of estimation window can lead to significant size distortions.
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5 Empirical Examples

This section provides empirical illustrations of the methods and results discussed previously.

We consider two forecasting questions that have attracted considerable empirical interest in

economics and finance, namely whether stock returns are predictable and whether inflation

forecasts can be improved by using broad summary measures of the state of the economy

in the form of common factors.

5.1 Predictability of U.S. stock returns

It is a long-standing issue whether returns on a broad U.S. stock market portfolio can

be predicted using simple regression models, see, e.g., Keim & Stambaugh (1986), Camp-

bell & Shiller (1988), Fama & French (1988), and Campbell & Yogo (2006). While these

studies were concerned with in-sample predictability, papers such as Pesaran & Timmer-

mann (1995), Campbell & Thompson (2008), Welch & Goyal (2008), Johannes, Korteweg

& Polson (2009), and Rapach et al. (2010) study return predictability in an out-of-sample

context. For example, in their analysis of return predictability covering the period 1947-

2005, Rapach et al. (2010) use three different out-of-sample periods, namely 1965-2005,

1976-2005, and 2000-2005. This corresponds to using the last 70%, 50% and 10% of the

sample, respectively, for out-of-sample forecast evaluation.

Welch & Goyal (2008) find that so-called prevailing mean forecasts generated by a

constant equity premium model

+1 = 1 + +1

lead to lower out-of-sample MSE-values than univariate forecasts from a range of prediction

models of the form

+1 = 1 + 2 + +1

We focus on models where  is the default spread, measured as the difference between

the yield on BAA-rated corporate bonds versus that on AAA-rated corporate bonds or the

dividend yield, measured as dividends paid over the preceding 12-month period divided by

the current stock price. Our data consist of monthly observations on stock returns on the

S&P500 index and the corresponding default spread over the period 1926:01−2010:12, a
total of 1020 observations. Setting  = 1 − ̄ = 01, our initial estimation sample uses
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102 observations and so the beginning of the various forecast evaluation periods runs from

1934:07 through 2002:05. The end point of the out-of-sample period is always 2010:12.

The top left window in Figure 4 shows how the ()-statistic evolves over the forecast

evaluation period.6 The minimum value obtained for () is −6.77, while its maximum
is 2.01. Due to the partial overlap in both estimation and forecast evaluation windows,

the test statistic evolves relatively smoothly and is quite persistent, although the effect of

occasional return outliers is also clear from the plot.

The ()-values associated with the () statistics computed for different values of 

are plotted in the bottom left window of Figure 4. There is little evidence of return pre-

dictability when the out-of-sample period begins after the mid-seventies. However, once the

forecast evaluation period is expanded backwards to include the early seventies, evidence

of predictability grows stronger. This is consistent with the finding by Pesaran & Tim-

mermann (1995) and Welch & Goyal (2008) that return predictability was particularly high

after the first oil shock in the seventies. For out-of-sample start dates running from the early

fifties to the early seventies, -values below 5-10% are consistently found. In contrast, had

the start date for the out-of-sample period been chosen either before or after this period,

then forecast evaluation tests, conducted at conventional critical levels, would have failed

to reject the null of no return predictability.

Such sensitivity of the empirical results to the choice of  highlights the need to have

a test that is robust to how the start of the out-of-sample period is determined. In fact,

the smallest -value, selected across the entire out-of-sample period  ∈ [01 09] is 0.034.
Table 3 suggests that this corresponds to a split-mining adjusted -value that exceeds 10%.

Hence, the evidence of time-varying return predictability from the default spread is not

statistically significant at conventional levels. We therefore cannot conclude that the lagged

default spread model generates more precise out-of-sample forecasts of stock returns than a

constant equity premium model, at least not in a way that is robust to how the beginning

of the out-of-sample period is chosen.

We next consider a return forecasting model that uses the lagged dividend yield as the

predictor variable. Using the same sample as above, for this model the maximum value of

(), plotted in the top right window in Figure 4, is 3.57 while the smallest -value falls

6We use a Newey-West HAC estimator with four lags to estimate the variance of the residuals from the

forecast model, ̂2.

22



below 0.001 which, according to Table 3, means that out-of-sample predictability from this

model is robust to mining over the sample split. Interestingly, for this model, predictability

is strongest when  lies either at the beginning or at the end of the sample, with the -value

reaching a value of 0.01 when the evaluation sample starts in the mid-thirties, then reaching

even lower levels when the split point occurs in the late 1990s or subsequently.

5.2 Inflation Forecasts

Simple autoregressive prediction models have been found to perform well for many macro-

economic variables capturing wages, prices and inflation (Marcellino et al. (2006) and Pe-

saran et al. (2011)). However, as illustrated by the many studies using factor-augmented

vector autoregressions and other factor-based forecasting models, it is also of interest to see

whether the information contained in common factors, extracted from large-dimensional

data, can help improve forecasting performance.

To address this issue, we consider out-of-sample predictability of U.S. inflation measured

by the monthly log first-difference in the consumer price index (CPI) captured by the

CPIAUSCL series. Our benchmark is a simple autoregressive specification with two lags:

+1 = 0 +

2X
=1

+1− + +1 (12)

where +1 = log(+1) is the monthly growth rate in the consumer price index.

The alternative forecasting model adds four common factors to the AR(2) specification

in (12):7

+1 = 0 +

2X
=1

+1− +
4X

=1

̂ + +1 (13)

Here ̂ is the -th principal component (factor) extracted from a set of 131 economic

variables. Data on these 131 variables is taken from Ludvigson & Ng (2009) and run from

1960 through 2007. We extract factors recursively from this data, initially using the first ten

years of the data so the first point of factor construction is 1969:12. Setting  = 1− ̄ = 01,
the start of the out-of-sample evaluation period runs from mid-1973 through early 2004.

The top left window in Figure 5 shows the ()-statistic for different values of . This

rises throughout most of the sample from -23 to a terminal value just above zero. The

7The empirical results are not sensitive to the number of autoregressive lags in the benchmark model or

to the number of factors included in the extended model.
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associated ()-values are shown in the bottom left window of Figure 5. These start close

to one but drop significantly after the change in the Federal Reserve monetary policy in

1979. Between 1980 and 1982, the () plot declines sharply to values below 0.10, before

oscillating for much of the rest of the sample, with an overall minimum -value of 0.023.

Hence, in this example a researcher starting the forecast evaluation period after 1979 and

ignoring mining over the sample split might well conclude that the additional information

from the four factors helped improve on the autoregressive model’s forecasting performance.

Unless the researcher had reasons, ex ante, for considering only specific values of , this

conclusion could be misleading since the split-mining adjusted test statistic is not significant.

In fact, the global minimum -value of 0.018 is not significant at the 5% level when compared

against the split-mining adjusted -values in Table 3.

Given the significant changes in monetary policy from 1979-1982, a structural break in

the data generating process is a natural concern when interpreting these results. To address

this issue, we therefore undertake an analysis that discards data prior to 1983. The results

from this analysis are shown in the right windows of Figure 5. For this sample the minimum

-value occurs early in the sample and is 0.035. This is insignificant at the 10% critical level

when compared against the adjusted -values in Table 3.

6 Conclusion

Choice of the sample split used to divide data into in-sample estimation and out-of-sample

evaluation periods affects out-of-sample forecast evaluation tests in fundamental ways, yet

has received little attention in the forecasting literature. As a consequence, this choice

variable is often selected without regard to the properties of the predictive accuracy test or

the possible size distortions that result when the sample split is chosen to most favor the

forecast model under consideration.

When multiple split points are considered and, in particular, when researchers−individually
or collectively−may have mined over the sample split point, forecast evaluation tests can
be grossly over-sized, leading to spurious evidence of predictability. In fact, the nominal

rejection rates can be grossly inflated as a result of such mining over the split point, and the

danger of spurious rejection induced by search over the split point tends to be associated

with short evaluation windows, corresponding to starting the out-of-sample period late in
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the sample. Conversely, power is highest when the forecast evaluation window begins early,

corresponding to a long out-of-sample period.
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Appendix of Proofs

A.1 Derivations related to the simple example in Section 2.1

Suppose that  = 
√
. Then, from (1)-(2), we have
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Now define

() =
1√


bcP
=1

  ∈ [0 1]

By Donsker’s Theorem

()⇒ ()

where () is a standard Brownian motion. Hence,
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A.2 Proof of Theorem 1

By Assumption 1 it follows that E(−) = 0 and that Ω is well defined. Under the

mixing assumptions (Assumptions 1 and 2’) the result follows from Wooldridge & White

(1988, corollary 4.2), see also Hansen (1992).

Under the near-epoch dependence assumptions (Assumptions 1 and 2), we can adapt

results in De Jong & Davidson (2000) to our framework. These assumptions are the weakest

known; see also White (2000a, theorems 7.30 and 7.45) who adapt their results to a setting

with global covariance stationary mixing processes.

Define U = vech(
0
 − Σ) and consider  = 0U

√
 for some arbitrary vector

 so that 0Ψ = 1 where Ψ = var[−12
P

=1 vech(
0
 − Σ)], which is well defined

under Assumption 1. We verify the conditions in De Jong & Davidson (2000, Assumption

1) for  Their assumption has four parts, (a)-(d). Since  is 4-NED of size −12 on V,
it follows that  is 2-NED of the same size on V where we can set  = 

√
 This

proves the first part of (c) and part (a) follows directly from E(U) = 0 and 0Ψ = 1 Part
(b) follows with  = −12 and the last part of (c) follows because  =  is assumed

to be uniformly bounded. The last condition, part (d), is trivial when  = −12
As a corollary to De Jong & Davidson (2000, Theorem 4.1) we have that W() =

−12
Pbc

=1 U ⇒ W() where W() is a Brownian motion with covariance matrix Ψ
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From this it also follows that

sup
∈(01]

¯̄̄̄
¯̄ 1

bcX
=1


0
 − Σ

¯̄̄̄
¯̄ = (1) (A.1)

which we will use in the proofs below. Moreover, De Jong & Davidson (2000, Theorem 4.1)

establishes the joint convergenceÃ
W()

X
=1

W(
−1

)[W(



)−W(

−1

)]−

!
⇒
µ
W()

Z 1

0

W()dW()0)
¶


where  =
1


P
=1

P−1
=1 EUU 0

Define the matrices

 = (0×1−Σ21Σ−111  ×) and  = (1−Σ−1Σ)
Then it is easy to verify that Σ

0 = 0 and

− = 
0


0 = (
0
 −Σ)0

so that the convergence results involving {−} follow from those for 
0
 − Σ Thus

we only need to express the asymptotic bias term and the variance of the Brownian motion.

Let  = −
√
 () =

Pbc
=1  and write

R 
0
d 0 as short for

R 
0
 ()d ()0

Theorem 1 now follows as a special case of the following theorem:

Theorem A.1 Given Assumptions 1-2 we have  ⇒  , and if in addition Assumption

3 holds, we have Ã


X
=1

−X
=1


0


!
⇒
µ


Z 1

0

d 0
¶


Proof. From De Jong & Davidson (2000, Theorem 4.1) it follows thatÃ


X
=1

−1X
=1


0
 −

!
⇒
µ


Z 1

0

d 0
¶


where  =
P

=1

P−1
=1 E

0
 Moreover,

P
=1

P−1
=1 

0
 −

P
=1

P−
=1 

0
 =P

=1

P−1
=1 − 0, where

X
=1

−1X
=1

(− 0 − E− 0) = (1)

By Assumption 3 it follows that E
0
 = 0 for |−| ≥  so that =

P
=1

P−1
=1 E− 0

and the result follows.

For -step-ahead forecasts, we expect non-zero autocorrelations up to order −1 These
autocorrelations do not, however, affect the asymptotic distribution due to the construction

of the empirical stochastic integral,
P

=1

P−
=1 

0
 =

R
(

−

)d(



)0, where the

first term is evaluated at −

rather than −1
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A.3 Proof of Theorem 2

The proof of Theorem 2 follows from the proof of Theorem 4 by imposing the null hypothesis,

i.e., by setting  = 0.

A.4 Proof of Theorem 3

Theorem 3 can be proved using the following simple result:

Lemma A.1 If  = −1 +  then 2−1 = 2 − 2−1 − 2 

Proof.

−1 = ( − ) = ( − −1)− 2 = 2 − −1 − 2

= 2 − (−1 + )−1 − 2 = 2 − 2−1 − −1 − 2 

Rearranging the terms, we get the result.

Proof. Define  = ( 

) and  = − −1 Our stochastic integrals are given as the

probability limits of

2

X
=



−1 − 1



X
=

¡



¢2
2

Throughout we assume that  is an integer to simplify notation. From Lemma A.1 we

have

2

X
=



−1 =

X
=



(2 − 2−1)−

X
=



2

and one can verify that
X

=



2

→ − log 

using that E
³P

=


2

´
=
P

=


E
¡
2
¢
=
P

=


1

and

1



X
=




→
Z 1



1


d = log 1− log 

Next, consider

X
=+1



(2 − 2−1) = 2 + 

−1X
=+1

³
1

− 1

+1

´
2 − 


2

= 2 +
1



−1X
=+1

2

2+
2 − (+(−1))−12

where the first and last terms equal (1)2 and −−12(), respectively. Since
1



−1X
=+1

2

2+
2 −

1



X
=+1

¡



¢2
2 = (1)

the result follows.
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A.5 Proof of Corollary 1

Proof. Let  =
(1)−()√

1− and  =
()√


so that (1) =

√
1−  +

√
 , and note that 

and  are independent standard Gaussian random variables.

The distribution we seek is that of  =
¡√
1−  +

√

¢2− 2+log , where   ∼

iid(0 1) which can be expressed in the quadratic from:

 =

µ




¶0µ
1− 

p
(1− )p

(1− ) − 1
¶µ





¶
+ log 

Since a real symmetric matrix,  can be decomposed into  = 0Λ where 0 =  and

Λ is a diagonal matrix with the eigenvalues of  in the diagonal, we find that

 =  0
µ √

1−  0

0 −√1− 

¶
 + log 

where  ∼ 2(0 ) Here  is a simply rotation of ( )0, given by  = (  )0, where

 =
1√
2

Ã p
1 +
√
1− 

p
1−√1− 

−
p
1−√1− 

p
1 +
√
1− 

!


It follows that  =
√
1− (21 − 22) + log  which proves the result.

A.6 Proof of Corollary 2

Proof. Let 12  = 1      be i.i.d. (0 1) so that  =
P

=1 
2
1 and  =

P
=1 

2
2

are both 2-distributed and independent. The distribution we seek is given by the convo-

lution,
X

=1

hp
1− (21 − 22) + log 

i
=
p
1− ( −  ) +  log 

so we seek the distribution of  =  −  where  and  are independent 2-distributed

random variables. The density of a 2 is

() = 1{≥0}
1

22Γ( 
2
)
2−1−2

and we seek the convolution of  and −Z
1{≥0}()1{−≥0}(− )d =

Z ∞

0∨
()(− )d

=

Z ∞

0∨

1

22Γ( 
2
)
2−1−2

1

22Γ( 
2
)
(− )2−1−(−)2d

=
1

2Γ( 
2
)Γ( 

2
)
2

Z ∞

0∨
((− ))2−1 −d
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For   0 the density is 2−Γ( 
2
)−22

R∞
0
((− ))2−1 −d and by taking advantage

of the symmetry about zero, we obtain the expression

1

2Γ( 
2
)Γ( 

2
)
−||2

Z ∞

0

((+ ||))2−1 −d

When  = 1 this simplifies to 1() =
1
2
B0(

||
2
) where B() denotes the modified Bessel

function of the second kind. For  = 2 we have the simpler expression 2() =
1
4
−

||
2 which

is the Laplace distribution with scale parameter 2

A.7 Proof of Theorem 4

To prove Theorem 4, we first establish two lemmas.

Lemma A.2 The loss differential ( − ̂
|−)

2 − ( − ̂|−)2 equals

02− 0−2 + 2
0
2− − 202− 0

1−(̃1− − )

+2(̂2− − 2)
0− − (̂2− − 2)

0− 0−(̂2− − 2)

−2(̂2− − 2)
0− 0

1−(̃1− − )

−2− + 2−
h
 − 0

1−(̃1− − )−  0−(̂2− − 2)
i


where  = ̂
0
2(Σ21Σ

−1
11 −21

−1
11)1 with  =

P
=1

0
 for   = 1 2

Proof. For the benchmark forecast in (4) we have

̃
0
11 = 1 + 02 + (̃1 − )01 − 02

where the true model assumes that + = 01 + 02 + +. Hence the forecast error

from the benchmark model takes the form

+ − ̃
0
11 = + − (̃1 − )01 + 02

Similarly, for the alternative forecast in (5) we have

̂
0
 = ̂

0
11 + ̂

0
22

= (̂
0
1 + ̂

0
221

−1
11)1 + ̂

0
2(2 −21

−1
111)

= ̃
0
11 + ̂

0
2(2 −21

−1
111)

= ̃
0
11 + ̂

0
2(2 −Σ21Σ−111 1) + ̂

0
2(Σ21Σ

−1
11 −21

−1
11)1

= 01 + 02 + (̃1 − )01 + (̂2 − 2)
0 + 

so that

+ − ̂
0
 = + − (̃1 − )01 − (̂2 − 2)

0 + 
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Next, consider the loss differential, which from equations (4) to (5) is given by

( − ̂|−)
2 − ( − ̂|−)

2

= ( − ̃
0
1−1−)2 − ( − ̂

0
−−)2

= ( − (̃1− − )01− + 02−)2

−
³
 − (̃1− − )01− − (̂2− − 2)

0− + −
´2



The result now follows by multiplying out.

Lemma A.3 With 2 =
√

 for some  ∈ R and given Assumptions 1-3 we have,

X
bc+1

02− 0−2
→ (1− )20Σ (A.2)

X
bc+1

02−
→ 0 [ (1)− ()] (A.3)

X
bc+1

(̂2− − 2)
0−

→
Z 1



1


 ()0Σ−1 d () (A.4)

X
bc+1

(̂2− − 2)
0− 0−(̂2− − 2)

→
Z 1



1

2
 ()0Σ−1  ()d (A.5)

X
bc+1

02− 0
1−(̃1− − )

→ 0 (A.6)

X
bc+1

(̂2− − 2)
0− 0

1−(̃1− − )
→ 0 (A.7)

X
bc+1

2−
→ 0 (A.8)

X
bc+1

−
→ 0 (A.9)

X
bc+1

−
0
1−(̃1− − )

→ 0 (A.10)

X
bc+1

−
0
−(̂2− − 2)

→ 0 (A.11)

Proof. To simplify notation, introduce

Σ() =
1



bcX
=1

− 0−
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so that − 0− = 
£
Σ(



)−Σ( −1 )

¤
and

̂2 − 2 =
1√

Σ−1 (



)(



)

The result for the first term, (A.2),

X
bc+1

02− 0−2 = 20 [Σ(1)−Σ()] 

follows from (A.1). Similarly, (A.3) follows by,

02
X

bc+1
− = 0 [(1)−()] 

and Theorem A.1. Next,

X
bc+1

(̂2− − 2)
0− =

X
=bc+1

(
−

)0Σ−1 (



)
£
(



)−(

−1

)
¤

=

X
=bc+1

(
−

)0
1


Σ−1

£
(



)−(

−1

)
¤
+ (1)

where again we used (A.1). From Theorem A.1,
R 1

()d()

0 → R 1

 ()d ()0, soZ 1



()
0Σ−1 d() =

Z 1



tr
©
d()

0Σ−1 ()
ª

= tr

½
Σ−1

Z 1



()d()
0
¾

→ tr

½
Σ−1

Z 1



d 0
¾
=

Z 1



 0Σ−1 d

Since   0, it follows that
R 1



bc()

0Σ−1 d()
→ R 1


1

 0Σ−1 d , proving (A.4)

The last non-vanishing term in (A.5) is given by:

1



X
=bc+1

(
−

)0Σ−1 (



)− 0−Σ

−1
 (



)(

−

)

=
1



X
=bc+1

(
−

)0Σ−1 (



)ΣΣ

−1
 (



)(

−

)

+
1



X
=bc+1

(
−

)0Σ−1 (



)
¡
− 0− −Σ

¢
Σ−1 (



)(

−

)
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The final term in this expression is(
−12) because with V() = 1√



Pbc
=1 vec(− 0−−

Σ) and continuous  we have

(V
Z

()dV)⇒ (V
Z

( )dV)

so that

X
=bc+1

(
−

)0Σ−1 (



)
−0−−Σ√


Σ−1 (



)(

−

)

→
Z 1



1
2
vec(Σ−1 )

0(Σ−1 ⊗ () ()0)dV()

where we used tr{} = vec(0)0( 0 ⊗)vec() The first term in (A.5) is given by

1



X
=bc+1

(
−

)0Σ−1 (



)ΣΣ

−1
 (



)(

−

)

=

Z 1



()
0Σ−1 ()ΣΣ

−1
 ()()d

=

Z 1



−2()
0Σ−1 ()d+ (1)

→
Z 1



−2 ()0Σ−1  ()d

Next consider the terms involving  and/or − 0
1− First, note that for   0, as

 → ∞, sup≤
¯̄̄
̃1− − 

¯̄̄
= (

−12) and sup≤
¯̄̄
̂2− − 2

¯̄̄
= (

−12) so
that¯̄̄̄
¯̄ X
bc+1

0
−0

1−


12(̃1− − )

¯̄̄̄
¯̄ ≤

¯̄̄̄
¯̄ 10

X
bc+1

− 0
1−

¯̄̄̄
¯̄12 sup

≤

¯̄̄
̃1− − 

¯̄̄
= (1)

Similarly,
P
bc+1 

12(̂2− − 2)
0−0

1−


12(̃1− − ) = (1) from which (A.6)

and (A.7) follow. Next recall that  = ̂
0
2(Σ21Σ

−1
11 −21

−1
11)1− and for any fixed

  0 we have by (A.1) that sup≥
¯̄̄
21

−1
11 −Σ21Σ−111

¯̄̄
= (1) For 2 = (−12),

we have sup≤
¯̄̄
̂2− − 2

¯̄̄
= (

−12) so that¯̄̄̄
¯X



2−

¯̄̄̄
¯ ≤ 12 sup |̂02| sup



¯̄̄
Σ21Σ

−1
11 −21

−1
11

¯̄̄ ¯̄̄̄¯ 1X


1
0
1

¯̄̄̄
¯

× sup


¯̄̄
Σ21Σ

−1
11 −21

−1
11

¯̄̄0
12 sup


|̂2| = (1)¯̄̄̄

¯X


−

¯̄̄̄
¯ ≤ 12 sup


|̂2|0 sup



¯̄̄
Σ21Σ

−1
11 −21

−1
11

¯̄̄ ¯̄̄̄¯−12X


1−

¯̄̄̄
¯ = (1)
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This proves (A.8) and (A.9). Finally, the absolute value of the last two terms, (A.10) and

(A.11), are bounded by

12 sup

|̂2|0 sup



¯̄̄
Σ21Σ

−1
11 −21

−1
11

¯̄̄ ¯̄̄̄¯X


1
0
1



¯̄̄̄
¯12 sup

¯̄̄
̃1 − 

¯̄̄
= (1)

12 sup

|̂2|0 sup



¯̄̄
Σ21Σ

−1
11 −21

−1
11

¯̄̄ ¯̄̄̄¯X


1
0




¯̄̄̄
¯12 sup

¯̄̄
̂2 − 2

¯̄̄
= (1)

which completes the proof.

From the decomposition in Lemma A.2 and the limit results in Lemma A.3 we are now

ready to derive the asymptotic properties of () and () From Lemmas A.2 and A.3

it follows that

() =
()

̂2

→ 2(1− )
0Σ
2

+ 2
2
0Ω12 [(1)−()]

+2

Z 1



−1()0Ω12Σ−1Ω12d()

−
Z 1



−2()0Ω12Σ−1Ω12()d

where we have used the fact that Σ = 2Σ so that Σ
−1
 

2
 = Σ

−1 Now decompose

Ω12Σ−1Ω12 = 0Λ, where Λ = diag(1     ) is a diagonal matrix with eigenvalues

of Ω12Σ−1Ω12 that coincide with the eigenvalues of ΩΣ−1 and 0 =  It follows that

̃() = () is a standard (-dimensional) Brownian motion when () is. Hence,

() =
()

̂2

→ 2(1− )
0Σ
2

+ 2
2
0Ω120

h
̃(1)− ̃()

i
+2

Z 1



−1̃()0Λd̃()−
Z 1



−2̃()0Λ̃()d

from which Theorem 4 follows. ¤

A.8 Proof of Theorem 5

Proof. It follows from the definition of () that the path of critical values, () is

continuous in  because Λ() is continuous in ( ) on [ ̄]×R. So () ∈ D[̄] Hence,
by the continuous mapping theorem and (8) (which is implied by the mixing assumptions,

and assumed under the near-epoch assumptions), the smallest -value over the range of

split points, [ ̄] converges in distribution and the CDF of the limit distribution is given

by

Pr{[̄] ≤ } = Pr{() ≥ () for some  ∈ [ ̄]}
= Pr{ sup

≤≤̄
[()− ()] ≥ 0}
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McCracken Critical values versus exact critical values

 0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 0.909 0.833 0.714 0.625 0.556 0.500 0.455 0.417 0.385 0.357 0.333

 = 0.99 1.996 2.691 3.426 3.907 4.129 4.200 4.362 4.304 4.309 4.278 4.250

2.168 2.830 3.509 3.851 4.040 4.146 4.202 4.225 4.227 4.214 4.191

 = 0.95 1.184 1.453 1.733 1.891 1.820 1.802 1.819 1.752 1.734 1.692 1.706

1.198 1.515 1.789 1.880 1.895 1.870 1.824 1.766 1.702 1.633 1.563

 = 0.90 0.794 0.912 1.029 1.077 1.008 0.880 0.785 0.697 0.666 0.587 0.506

0.780 0.949 1.048 1.031 0.970 0.890 0.800 0.708 0.614 0.522 0.431

Table 1: This table compares the critical values in McCracken (2007), which uses Monte

Carlo simulation to evaluate stochastic integrals, to the exact critical values obtained from

the CDF of the non-central Laplace distribution. For each critical value () the first row

shows the McCracken critical values, while the second line shows the exact critical values.

All calculations assume q = 2 additional predictor variables.
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Type I error rate induced by split point mining

Nominal level

  = 020  = 010  = 005  = 001

1 0.4475 0.2582 0.1482 0.0373

2 0.5252 0.3118 0.1723 0.0448

3 0.5701 0.3382 0.1979 0.0546

4 0.6032 0.3611 0.211 0.0528

5 0.6157 0.3795 0.2195 0.0549

Table 2: This table shows the actual rejection rate for different nominal critical levels,

() and different values of the dimension () by which the alternative model exceeds the

benchmark. Simulations are conducted under the null model with  = 1− ̄ = 01 and use

a discretization with  = 10 000 and  = 10 000 simulations.

Split-adjusted Critical values for the minimum -value

critical values:

  = 20%  = 10%  = 5%  = 1%

1 0.073 0.029 0.013 0.001

2 0.059 0.024 0.011 0.001

3 0.05 0.021 0.001 0.001

4 0.046 0.02 0.001 0.001

5 0.044 0.02 0.001 0.001

Table 3: This table shows the split-mining adjusted critical values at which the minimum

-value, [̄], is significant when  = 1 − ̄ = 01 The critical values for the minimum

-value are given for  = 1     5 and four significance levels,  = 020 010, 005, and 001

and use a discretization with  = 10 000 and  = 10 000 simulated series.
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Figure 1: Plot of the CDF for the minimum -value (min) as a function of the nomi-

nal critical level () with one predictor added to the benchmark model (univariate and

homoskedastic case).
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Figure 2: Histograms of the location of the smallest -value (min) under the null hypothesis

( = 0) and three local alternatives. Under the null hypothesis, the smallest -value,

min≤≤̄  is most likely to be located towards the end of the sample, while under the

alternative (  0) the smallest -value is more likely to be located early in the sample if 

is large or late in the sample if  is small.
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Figure 3: Power of the test under four local alternatives,  = 1  = 2  = 3 and  = 4 as

a function of the sample split point, , assuming that  = 1 Λ = 1 and  = 1
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Figure 4: Values of the () statistic and ()-values for different choices of the sample

split point, . Values are based on the U.S. stock return prediction model that uses the

default spread (left windows) or the dividend yield (right windows) as a predictor variable.
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Figure 5: Values of the () statistic and ()-values for different choices of the sample

split point, . The plots are based on the U.S. inflation prediction model that uses four

common factors as additional predictor variables on top of two autoregressive lags.
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