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Abstract. We show that the adaptive Lasso (aLasso) and the adap-

tive group Lasso (agLasso) are oracle efficient in stationary vector au-

toregressions where the number of parameters per equation is smaller

than the number of observations. In particular, this means that the

parameters are estimated consistently at a
√
T rate, that the truly zero

parameters are classified as such asymptotically and that the non-zero

parameters are estimated as efficiently as if only the relevant variables

had been included in the model from the outset. The group adaptive

Lasso differs from the adaptive Lasso by dividing the covariates into

groups whose members are all relevant or all irrelevant. Both estimators

have the property that they perform variable selection and estimation

in one step.

We evaluate the forecasting accuracy of these estimators for a large

set of macroeconomic variables. The Lasso is found to be the most

precise procedure overall. The adaptive and the adaptive group Lasso

are less stable but mostly perform at par with the common factor models.
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1. Introduction

In recent years large data sets have become increasingly available and

as a result techniques to handle these have been the object of considerable

research. When building a model to explain the behavior of a variable it is

not uncommon that the set of potential explanatory variables can be very

large. Traditional techniques for model selection rely on a sequence of tests

or the application of information criteria. However, neither of these is very

useful when the the number of potential explanatory variables is large since

the number of tests or information criteria to be calculated increases expo-

nentially in the cardinality of the set of covariates. Hence, alternative routes

have been investigated in and in particular regularized estimators have re-

ceived a lot of attention in the statistics literature. The most prominent

member of this class is the least absolute shrinkage and selection operator

(Lasso) of Tibshirani (1996). Since its inception, the statistical properties

of Lasso-type estimators have been studied intensively with particular focus

on the oracle property. An estimator is said to possess the oracle property

if i) it selects the correct sparsity pattern with probability tending to one

(i.e leaves out all irrelevant variables and retains all relevant variables) and

ii) estimates the non-zero coefficients with the same rate and asymptotic

distribution as if only the relevant variables had been included in the model

from the outset. Put differently, the oracle property guarantees that the

estimator performs as well as if the true model had been revealed to the

researcher in advance by an oracle.

A lot of research has been carried out investigating the oracle property of

various shrinkage type estimators: bridge-type Knight and Fu (2000), SCAD

Fan and Li (2001), adaptive Lasso Zou (2006), Bridge and Marginal Bridge

Huang et al. (2008) and Sure independence screening Fan and Lv (2008).

The working assumption in the literature is that even though the set of

potential explanatory variables may be large (sometimes even considerably

larger than the sample size) only a small subset of these variables are relevant
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for the task of explaining the left hand side variable, i.e. the model is

sparse. Most focus has been on the cross sectional setting with either fixed

or independently identically distributed covariates while much less attention

has been paid to the case of dependent data. Some exceptions are Wang

et al. (2007), Kock (2012) and Kock and Callot (2012). In this paper we

further fill this gap by considering stationary vector autoregressive models

of the type

yt =

p∑
i=1

Biyt−i + et(1)

where yt is N × 1 and et is i.i.d. with mean 0 and covariance matrix Σ.

Bi, 1 ≤ i ≤ p are the N × N parameter matrices. The properties of the

model will be made precise in the next section.

It is likely that many entries in the Bi matrices are equal to zero, i.e. they

are sparse. This could be because of p being larger than the true number of

lags or that that there are gaps in the lag structure (e.g. B1 6= 0, B2 = B3 =

0 and B4 6= 0 for quarterly data). Another reason could be that lags of a

subset of the variables are irrelevant for the task of explaining another subset

of variables which manifests itself by zero restrictions on certain entries of

the Bi, 1 ≤ i ≤ p. Granger non-causality is an extreme case of this latter

example. In the first part of this paper we show that the adaptive Lasso of

Zou (2006) possesses the oracle property when applied to stationary vector

autoregressions. Hence, it selects the correct sparsity pattern asymptotically

and the non-zero parameters are estimated as precisely as if the true model

had been known in advance and only the relevant variables had been included

and estimated by least squares.

In equation (1) it is likely that zero parameters occur in groups. For

example all lags of a specific length may be irrelevant resulting in Bi = 0

for some 1 ≤ i ≤ N . Alternatively, all lags of a certain variable may be

irrelevant in explaining another variable. Utilizing this group structure may

lead to improved (finite sample) performance of the Lasso. Hence, inspired
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by Wang and Leng (2008) we combine the group Lasso of Yuan and Lin

(2006) with the adaptive Lasso to make use of this grouping structure. We

show that the adaptive group Lasso possesses a variant of the oracle property

if one correctly groups (a subset) of the potential explanatory variables.

Since vector autoregressions have been used extensively for forecasting

an obvious question is how well the VAR performs in this respect when

estimated by the Lasso, the adaptive Lasso or the adaptive group Lasso.

In particular, we investigate the performances of these estimators for fore-

casting in large macroeconomic datasets. The benchmark models for this

type of forecasting exercise are common factor models. The common factor

approach is supported by a long tradition in macroeconomic theory of as-

suming that a small set of underlying variables drives the business cycle and

are responsible for the bulk of the variation of macroeconomic time series.

Stock and Watson (2002); Ludvigson and Ng (2009) inter alia document

the strong forecasting power of these types of models for large US macroe-

conomic datasets. Motivated by this we shall compare the forecast accuracy

of the Lasso type estimators to the one of factor models. A comparison to a

simple linear autoregression of order one is also made. The potential gains in

forecast accuracy from exploiting non-linearities in the data are investigated

by also including the logistic smooth transition autoregression (LSTAR) of

Teräsvirta (1994) into the comparison. Interestingly, it is found that the

Lasso on average forecasts most precisely. The factor models show a very

stable performance, while the forecast errors from the adaptive Lasso and

the adaptive group Lasso are much more erratic.

In the next section we introduce the VAR model and some notation.

Section 3 introduces the adaptive lasso and section 4 the adaptive group

Lasso. Section 5 discusses the forecasting experiment and present the results.

All proofs are relegated to the appendix.
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2. Model and notation

As mentioned in the introduction we are concerned with stationary VARs,

meaning that all roots of |IN −
∑p

j=1Bjz
j | lie outside the unit circle.

It is convenient to write the model in (1) as a standard regression model.

To do so let Zt = (y′t−1, ..., y
′
t−p)

′ be the Np × 1 vector of explanatory

variables at time t in each equation i = 1, ..., N and Z = (ZT , ..., Z1)
′ the

T×Np matrix of covariates. Set X = IN⊗Z where ⊗ denotes the Kronecker

product. Let yi = (yT,i, ..., y1,i)
′ be the T × 1 vector of observations on the

ith variable (i = 1, ..., N) and εi the corresponding vector of error terms for

variable i. Defining y = (y′1, ..., y
′
N )′ and ε = (ε′1, ..., ε

′
N )′ we may write (1)

as

y = Xβ∗ + ε(2)

where β∗ contains N2p parameters. It is this model we will estimate

by adaptive and the adaptive group Lasso. We assume that N and p are

fixed and independent of the sample size. In particular, we assume that

the number of parameters per equation, Np, is less than the sample size

T . For the setting where these quantities are allowed to diverge with the

sample size we refer to Kock and Callot (2012) who however don’t consider

the adaptive group Lasso.

While β∗ contains N2p parameters, only a subset of those might be rele-

vant to model the dynamics of the vector y. The adaptive Lasso discussed

in section 3 is able to discard the zero parameters and estimate the non-zero

ones with an oracle efficient asymptotic distribution.

2.1. Further notation. Let A = {i : β∗ 6= 0} index the set of nonzero β∗i s

and let |A| be its cardinality. For any vector x ∈ Rn ‖x‖ =
√∑n

i=1 x
2
i

denotes its euclidean norm. Furthermore, for any A ⊆ {1, ..., n}, xA denotes

the vector consisting only of the elements indexed by A. Most often n = N2p
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in this paper. If M is a quadratic matrix, MA denotes the submatrix of M

consisting of the rows and columns indexed by A. We let→d and→p denote

convergence in distribution and probability, respectively.

Finally, C = E( 1
T Z
′Z) which is time independent by the stationarity

assumption.

3. The adaptive Lasso

As noted by Zhao and Yu (2007) the Lasso is only model selection consis-

tent under rather restrictive assumptions which rule out highly dependent

covariates as may be encountered in VAR models. Hence, we shall apply the

adaptive Lasso, which was proposed by Zou (2006) as a solution to the lack

of model selection consistency of the Lasso, to estimate the parameters in

(2). The adaptive Lasso estimates β∗ by minimizing the following objective

function.

LT (β) =‖y −Xβ‖2 + λT

N2p∑
i=1

ŵi|βi|(3)

where ŵi is a set of weights such that ŵi = |β̂I,i|−γ , γ > 0 with β̂I a
√
T -

consistent (initial) estimator of β∗. We shall use the least squares estimator1.

The most common choice of γ is γ = 1. λT is a sequence whose properties

determine the asymptotic properties of the adaptive Lasso. Note that the

standard Lasso corresponds to the case of ŵi = 1, i.e. all parameters receive

an equal penalty. In other words the difference between the Lasso and its

adaptive version is that the latter chooses its penalty terms more intelligently

(adaptively): If β∗i = 0 for some i = 1, ..., N2p the initial least squares

estimator is likely to be close to zero and so ŵi tends to be large resulting in

a large penalty of βi. Hence, the adaptive Lasso is more likely to correctly

1As already noted by Zou (2006) the initial estimator need not be
√
T -consistent. The

assumptions made below can be altered such that theorems 1 and 2 still apply in the
case where the initial estimator converges at a slower rate. However, we will not pursue
this avenue any further here since we do have access to a

√
T -consistent consistent initial

estimator.
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classify β∗i as zero. By a similar logic, the penalty on βi is relatively small

when β∗i 6= 0. As we shall see in the theorems to follow, these more intelligent

weights result in an improved asymptotic performance of the adaptive Lasso

compared to the regular Lasso.

The objective function (3) reveals the computational advantage of the

(adaptive) lasso compared to e.g. information criteria since (3) is a con-

vex optimization problem for which many efficient optimization procedures

exist. Information criteria generally penalize model complexity by an `0-

penalty instead of the `1-penalty used by lasso type estimators. It is exactly

the switch from `0 to `1-penalty which yields the computational advantage

enabling us to consider high dimensional problems which would be impos-

sible or very hard to approach by means of `0-penalization. As we will see

next, the convex program (3) is not only fast to solve but its solution, the

adaptive Lasso estimator, which we shall denote by β̂, also possesses the

oracle property.

Assumptions

1: εi,t has finite fourth moments for i = 1, ..., N and t = 1, ..., T . Re-

call as well that et = (ε1,t, ..., εN,t)
′ are mean zero iid vectors with

covariance matrix Σ.

2: C = E( 1
T Z
′Z) is positive definite.

Assumption 1 is relatively standard and used to ensure that 1√
T
X ′ε con-

verges in distribution to a gaussian random variable. But any assumption

yielding this convergence will suffice for our purpose. Assumption 2 is rea-

sonable since it simply rules out perfect collinearity because if C would not

be positive definite there would exist a nonzero Np× 1 vector v such that

0 = v′Cv =
1

T
E(v′Z ′Zv) =

1

T

T∑
t=1

E(v′Zt)
2
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implying that v′Zt = 0 almost surely for t = 1, ..., T and hence that the co-

variates are linearly dependent. No procedure can be expected to distinguish

between such variables, and assumption 2 rules out this situation.

We are now in a position to state our first theorem.

Theorem 1. Let assumptions 1 and 2 be satisfied and suppose that λT√
T
→ 0

and λT
T 1/2−γ/2 →∞. Then β̂ satisfies the following:

1.
√
T -consistency:

∥∥√T (β̂ − β∗)∥∥
`2
∈ Op(1)

2. Oracle (i): P (β̂Ac = 0)→ 1

3. Oracle (ii):
√
T (β̂A−β∗A)→d N

(
0, [(IN ⊗ C)A]−1[Σ⊗ C]A[(IN ⊗ C)A]−1

)
The assumption λT

T 1/2−γ/2 →∞ is needed for the adaptive Lasso to shrink

truly zero parameters to zero. It requires the penalty sequence λT to increase

sufficiently fast2. On the other hand, λT√
T
→ 0 prevents λT from increasing

too fast. This is needed to prevent the adaptive Lasso from classifying non-

zero parameters as zero.

Part 1 of Theorem 1 states that the adaptive Lasso converges at the usual
√
T -rate. This means that no β̂j , j ∈ A will be set equal to 0 since for all

j ∈ A, β̂j converges in probability to β∗j 6= 0. Part 2 is the first part of

the oracle property: all truly zero parameters are set exactly equal to zero

asymptotically. This is a strengthening of the consistency result in part 1

since this only ensures convergence in probability to 0 of β̂Ac . Part 1 and

2 together imply that P (Â = A) → 1. Part 3 states that the non-zero

coefficients have the same asymptotic distribution as if the system in (2)

had been estimated by least squares only including the relevant variables

– i.e. only including the variables in the active set A. In conclusion, the

adaptive Lasso performs variable selection and estimation simultaneously

and possesses the oracle property in the sense that it performs as well as if

an oracle had revealed the true model prior to estimation.

2Strictly speaking λT is only required to be increasing if 0 < γ ≤ 1 but since γ = 1 is the
most common choice we shall use the word increasing without risk of confusion.
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4. adaptive group Lasso

If certain groups of variables are either jointly zero or non-zero it may

be useful to utilize this information to get more efficient (finite sample)

estimates. For this reason Yuan and Lin (2006) introduced the group Lasso

which penalizes different groups of variables differently. Later, Wang and

Leng (2008) combined the ideas of the group Lasso and the adaptive Lasso

into the adaptive group Lasso. We shall now show that the latter possesses

a variant of the oracle property when used to estimate vector autoregressive

models. Assume that the N2p × 1 parameter vector has been partitioned

into M disjoint groups, i.e. ∪Mi=1Gi = {1, ..., N2p} and Gi ∩ Gj = ∅ for

i 6= j. A group Gi is said to be active if at least one of the entries of β∗Gi is

non-zero. Without any confusion with the previously introduced notation

we shall denote the set of active groups by A ⊆ {1, ...,M}. G = ∪i∈AGi ⊆

{1, ..., N2p} denotes the union of the active groups.

The adaptive group LASSO estimates the parameters by minimizing the

following objective function

L̃T (β) =‖y −Xβ‖2 + λT

M∑
j=1

w̃j ‖βGj‖(4)

where w̃j is a set of weights such that w̃j =
∥∥β̂I,Gj∥∥−γ , γ > 0 with β̂I,Gj

a
√
T -consistent estimator of β∗. As was the case the for the adaptive

Lasso we will use the least squares estimator as initial estimator. Denote

the group adaptive Lasso estimator by β̃. Note the difference with the

objective function of the adaptive Lasso in (3): now the penalty is applied

group-wise as opposed to being applied to each parameter individually. The

economic motivation for this is that one might conjecture that either all

variables in a specific group are relevant or none of them are. Imposing

this (correct) restriction may increase efficiency. We shall investigate the

empirical performance in terms of forecasting accuracy in the next section.

But first we state the adaptive group Lasso equivalent of Theorem 1.
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Theorem 2. Let assumptions 1 and 2 be satisfied and suppose that λT√
T
→ 0

and λT
T 1/2−γ/2 →∞. Then β̃ satisfies the following:

1.
√
T -consistency:

∥∥√T (β̂ − β∗)∥∥
`2
∈ Op(1)

2. Oracle (i): P (β̂Gc = 0)→ 1

3. Oracle (ii):
√
T (β̂G−β∗G)→d N

(
0, [(IN ⊗ C)G ]−1[Σ⊗ C]G [(IN ⊗ C)G ]−1

)

The assumptions underlying Theorem 2 are identical to the ones made to

establish Theorem 1 and the intuition on the rate of increase of λT is also the

same: it must be large enough the shrink all inactive groups of parameters

to zero while being small enough to avoid doing so for any active group of

parameters.

Part 1 of Theorem 2 states the
√
T -consistency of the adaptive group

Lasso. Hence, no relevant variables will be excluded asymptotically since

β̃ →p β
∗ 6= 0. Part 2 yields that all inactive groups are also classified to be

inactive asymptotically. So all groups consisting only of parameters whose

true value is zero will also be set exactly equal to zero with probability

tending to one. However, note that this claim is not made about those pa-

rameters whose true value is zero but are (mistakenly) located in an active

group. Their behavior is described in part 3 of the theorem: all parame-

ters belonging to an active group are estimated with the same asymptotic

distribution as if least squares had been applied to (2) only including vari-

ables belonging to G. On the downside this means that the adaptive group

Lasso only performs better than least squares including all variables if one

is able to identify a group consisting only of zeros. On the other hand, the

asymptotic distribution is equivalent to the one of least squares including

all variables if one fails to do so and hence there is no efficiency loss. The

empirical performance of the adaptive group Lasso estimator is investigated

in the forecasting section. As we shall see there, many groups are found to

be inactive in practice.
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4.1. Some limitations. As it stands, the oracle property sounds almost

too good to be true – and in some sense it is. In a series of papers, Leeb

and Pötscher (2005, 2008); Pötscher and Leeb (2009) shed critical light

on consistent model selection procedures and shrinkage type estimators in

particular. They point out that most results, including the ones in this

paper, are for pointwise asymptotics (sometimes also referred to as fixed

parameter asymptotics). The adaptive Lasso performs well in such a setting,

but if uniform asymptotics are considered it may not be able to distinguish

certain non-zero parameters from zero ones. In particular, the problematic

regions are disks with radius proportional to 1/
√
T . Furthermore, even

though the asymptotic distribution of the truly non-zero parameters is the

same as if least squares had been applied only including the relevant variables

one may find that the finite sample distributions can be highly bimodal

– with mass at zero and in an interval around the true parameter value.

Finally, using the mean square estimation error as loss function, the uniform

(uniform over the parameter space) loss of any consistent model selection

technique of the standard linear regression model may be shown to be infinite

while the one of the least squares estimator can be shown to be finite.

5. Forecasting

In this section we investigate the empirical performance of the Lasso, the

adaptive Lasso and the adaptive group Lasso in terms of forecasting macroe-

conomic variables with a large number of predictors. Vector autoregressive

models have been used extensively for forecasting since their inception and

are still a popular tool for this purpose in macroeconometrics. Hence, it is of

interest to investigate whether novel estimation methods can lead to more

precise forecasts in data rich settings.

5.1. The data. We use the data from Ludvigson and Ng (2009), which

is itself an updated version of the data used in Stock and Watson (2002).

The data set contains 131 U.S. monthly macroeconomic indicators, from
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January 1964 to December 2007. Detailed description of the series as well

as the transformations required to make the series I(0) can be found in

appendix A of Ludvigson and Ng (2009). The series fall in 8 broad economic

categories:

(1) Output and Income (17 series)

(2) Labor market (32 series)

(3) Housing (10 series)

(4) Consumption, Orders and Inventory (14 series)

(5) Money and Credit (11 series)

(6) Bonds and Exchange rates (22 series)

(7) Prices (21 series)

(8) Stock market (4 series)

All variables are forecasted h = 1, 3, 6, and 12 months ahead. The initial

training sample uses data between 1964:33 and 1999:12 which amounts to 430

observations. We allow for a maximum of 2 lags per equation, which together

with an intercept requires the estimation of 263 parameters per equation.

All the parameters are estimated on the initial sample, then forecasts of yt

at t=1999:12+h, h = 1, 3, 6, 12 are made. Parameters for all models are

then re-estimated on data from 1964:3 to 2000:1 and forecasts computed at

horizon h. This expanding window scheme is repeated until the final out

of sample forecast is computed for 2007 : 12. At the one month horizon 96

forecasts are made and correspondingly less for the longer horizons.

The categories mentioned above serve as natural groups for the adaptive

group Lasso and we shall indeed use these as candidate groups for this

estimator. For each of the 131 series the relative mean square forecasts errors

relative to the recursive forecasts4 of an unrestricted VAR(1) estimated by

least squares are calculated5. Then the average of the relative mean square

3Two initial are lost during the transformation of the variables to I(0)
4See the next subsection for a definition and discussion of recursive/iterated forecasts vs.
direct forecasts.
5More precisely the lag length of the unrestricted VAR was chosen by BIC and it was
always found to be one.
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forecast errors is calculated within each group resulting in one measure of

forecast accuracy for each of the eight groups mentioned above.

5.2. Direct vs. recursive forecasts. The forecasts of the Lasso, adaptive

Lasso and adaptive group Lasso are carried out directly as well as recursively.

In the case of direct forecasts at horizon h, the estimated model is:

yt+h =

p∑
l=1

Bh
l yt−l+1 + εht+h

Where the superscript h highlights the fact that a separate model is esti-

mated for each horizon. The argument for direct forecasts is that they are

tailored to the specific forecast horizon of interest. Furthermore, the absence

of any sort of recursion makes direct forecasts relatively robust at the long

forecast horizons.

Recursive forecasts are constructed iterating on a 1-step ahead VAR:

yt =

p∑
l=1

Blyt−l + εt

To construct the h step ahead recursive forecasts, we first forecast yt+1 using

the model above and then use the forecasted value of yt+1 to construct a

forecast for yt+2 and iterate until a forecast for yt+h is computed.

5.3. Implementation. Irrespective of the forecasts being direct or recur-

sive the Lasso and the adaptive Lasso are estimated using the glmnet pack-

age for R 2.15, which implements the algorithm by Friedman et al. (2010).

The value of λT is selected by Bayesian Information Criterion (BIC). γ is

fixed at one and it is our experience that no gains can be achieved in terms

of more precise forecasts by also searching over a grid of γs. The risk of

overfitting in sample seems to be too high to justify such a search.

The adaptive group Lasso is estimated using the grplasso package, im-

plementing the algorithm in Meier et al. (2008). Again λT is selected by

BIC while γ is set to one. All the packages required for the computation
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of the results in this paper are publicly available at CRAN6, and the code is

available upon request.

5.4. Competing models. The forecasts of the above mentioned proce-

dures are compared to forecasts from common factor models, simple linear

autoregressions, and smooth transition models.

For the common factor model we follow Stock and Watson (2002) in con-

sidering only direct forecasts. This avoids having to construct a forecasting

model for the common factors in order to implement a recursive forecasting

strategy. The forecasting equation for a given variable yi is given by:

yt+h,i = αhi +

m∑
j=1

F̂ ′t−j+1β
h
i,j +

p∑
j=1

δhi,jyt−j+1,i + εht+h,i

The vector of common factors F̂t and the parameters are estimated using

a two step procedure. First the common factors F̂ are estimated using

principal component analysis on the training sample containing all 131 series.

The number of principal components to retain for the second step is then

selected and the parameters αhi , βhi,j , and δhi,j are estimated by least squares

on the training sample.

We report results for models including 1 to 5 common factors and no lags

of the common factors (m = 1) as well as a single lag of y. We experi-

mented using lags of the common factors, but this didn’t bring substantial

nor consistent improvement to the forecasting accuracy of the model. These

models are denoted CF1 to CF5 in the tables below. Furthermore, results

for a common factor model where the number of factors is chosen by BIC

are reported. The number of common factors searched over is one to five.

The corresponding results are denoted CF BIC in the tables.

The two univariate models considered are anAR(1) and a Logistic Smooth

Transition AutoRegressive (LSTAR) model. We consider direct forecasts for

6www.cran.r-project.org
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both models. The forecasts from the AR(1) model for yt,i are generated by

yt+h,i = αhi + βhi yt,i + εht+h,i

where the parameters are estimated by least squares. The forecasts of the

LSTAR (see Teräsvirta (1994)) are created by the following model for vari-

able yt,i

yt+h,i =
(
αh1,i + βh1,iyt,i

)(
1−G

(
yt,i, γi, τi

))
+
(
αh2,i + βh2,iyt,i

)(
G
(
yt,i, γi, τi

))
+ εht+h,i

where G is the logistic function. For the LSTAR we use yt as the threshold

variable. τi indicates the location oh the transition and γi measures the

speed of transition.

5.5. Insane forecasts. It is well known that in particular non-linear models

may sometimes provide forecasts that are clearly unreasonable. Swanson

and White (1995) suggests to weed out unreasonable forecasts by means of

an insanity filter. We shall follow this suggestion by replacing a forecast by

the most recent observation of the estimation window if it does not lie in

the interval given by the most recent observation in the estimation window

plus/minus three times the standard deviation of the data in the estimation

window. As noted in Kock and Teräsvirta (2012) the particular choice of

insanity filter is not overly important – what matters is that the insane

forecasts are weeded out. To treat all forecast procedures on an equal footing

the insanity filter is implemented for all procedures.

5.6. Results. Table 5.1 contains the relative mean square forecast errors

(MSE) for each group of variables when averaged over all horizons h = 1, 3, 6

and 12. The last column contains the average over all variable types. From

this column it is seen that the Lasso gives the most precise forecasts on

average. Whether one uses it to forecast recursively or directly is of no
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importance. The Lasso actually has a relative mean square forecast error

below one for all groups of variables indicating its stability. Note also that

except for the output and income group and the stock market group the most

precise procedure is always the Lasso in either its recursive or direct variant.

The plain Lasso actually outperforms its adaptive versions by a big margin.

However, the relatively imprecise forecasts of these is to a high extent due

to their poor performance when applied to the housing group. For this

group the initial least squares estimator often gives wild initial parameter

estimates resulting in unintelligent weights in the adaptive Lasso. However,

this problem can be alleviated by using a regularized estimator such as the

Lasso as initial estimator instead.

[Insert table 5.1 here]

In line with their strategy of finding common factors in the data set

the factor models give reasonably precise forecasts for all types of variables

resulting in mean square forecast error ratios below one for all groups. On

the other hand, no gains seem to be made from applying BIC to select the

number of factors as opposed to simply fixing the number of these.

As can be expected from a non-linear procedure like the LSTAR it per-

forms very well for some series and quite poorly for others. This is in line

with the commonly made observation that non-linear procedures are some-

what ”risky” – a fact which can make them very useful in forecast combina-

tion schemes. To highlight this riskiness note that the LSTAR outperforms

the plain AR(1) for five out of eight series while it still has a considerably

larger relative mean square forecast error than common factor models and

Lasso-type estimators due to its occasionally very imprecise forecasts.

Next, we shall further investigate the above overall findings by considering

each forecast horizon and the composition of the models chosen by the Lasso-

type estimators in more detail.

[Insert table 5.2 here]
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The one month ahead forecast are reported in Table 5.2. Notice that since

for 1-month ahead forecasts, recursive and direct forecasts are identical we

do not make the distinction. Table 5.2 shows that common factor models as

well as the Lasso and the adaptive Lasso deliver forecasts that are up to 50%

more accurate than those obtained by a VAR estimated by least squares.

The Lasso, and to a lesser extent the adaptive Lasso outperform common

factor models for most groups. The adaptive group Lasso does perform quite

poorly, faring worse than the benchmark VAR in 5 of the groups while being

the best model for the Stock Market series. The two univariate forecasting

models have very similar forecasting performances in most instances. The

LSTAR model is less stable than the AR(1), being the best model for Bonds

and Exchange Rates and the worst for Money and Credit.

[Insert table 5.3 here]

[Insert table 5.4 here]

To shed further light on these findings Table 5.3 reports the share of

variables from a given group (in columns) retained in the equations for

variables from another given group (in rows). The two leftmost entries of the

first row in Table 5.3 should be read as: in the equations where the left-hand

side variable belongs to the Output and Income group, 2.5% of the candidate

explanatory variables from the Output and Income group were retained and

4% of the candidate explanatory variables belonging to the Labor Market

group were retained. The boldfaced number is the largest share for a given

row. Some striking differences between the behavior of the adaptive Lasso

and the other two regularization estimators appear. The adaptive Lasso

selects a large shares of variables belonging to the Consumption, Orders,

Inventories series for most equations. The largest share selected by the

other two estimators is often on the diagonal. Variables belonging to the

same group as the left hand side variable are most often used as predictors.

Another feature is that most of these shares are quite small, indicating

the selected models are very sparse. This is confirmed by Table 5.4 which
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reports the average number of variables selected per group and for the whole

equation. The models are often very sparse, the Lasso selecting between 6

and 10 out of the 262 candidate variables in each equations. The adaptive

group Lasso often selects no variables at all in the housing equations, with

an average of 0.188 variables per equation. Interestingly, this is also the

group where this estimator performs worst.

[Insert table 5.5 here]

[Insert table 5.6 here]

Table 5.5 reports the results for the 3-months ahead forecasts. The re-

cursive and direct forecasts do not differ substantially, except for the VAR

including all variables where the recursive model consistently outperforms

the direct one. The Lasso consistently forecasts more precisely than every

other procedure except for the Money and Credit group where it is not far

behind CF BIC. The relative MSE are of the same order as those obtained

at the 1-month horizon. The two adaptive estimators still perform very

poorly for Housing and Bonds and Exchange rates. Similar observations

can be made for 6-month ahead forecasts reported in Table 5.6, with one

noticeable differences: the the common factor model is more often than pre-

viously the best estimator. In both tables 5.5 and 5.6, the LSTAR performs

quite well for most groups and in general better than the AR(1). However,

it fails badly for the Prices group at the 3-month horizon.

[Insert table 5.7 here]

At the one year horizon (Table 5.7) the relative mean square errors of most

procedures are even lower than at shorter horizons. The adaptive group

Lasso delivers the most accurate forecasts for the Labor Market and Stock

Market series while being close to the best procedure for most other groups.

The Lasso outperforms the common factor models in three groups albeit not

by a large margin. Common factors outperform every other procedure for

three groups as well but the Lasso is a close second.

[Insert table 5.8 here]
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Table 5.8 is similar to table 5.3 for 12 month ahead forecasts. Since

the Lasso uses the same model for each horizon only results for the direct

forecasts are reported. The Lasso displays a pattern of selection different to

that at the one month horizon (see table 5.3) selecting fewer variables on

the diagonal and often selecting series belonging to the Housing group. The

adaptive Lasso predominantly selects variables from the Money and Credit

group, while it mostly selected Consumption, Orders, and Inventories at the

one month horizon. The same finding is true for the adaptive group Lasso –

its selection pattern is now much more off-diagonal than previously. Finally,

for the housing equation it never selects any variables resulting in forecasts

that simply equal the mean of the estimation period.
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6. Conclusion

In this paper we have studied the properties of the adaptive Lasso and

the adaptive group Lasso when applied to stationary vector autoregressions

of fixed dimension. The adaptive Lasso was shown to possess the oracle

property in the sense that all truly zero parameters will be classified as such

asymptotically, while the estimators of the non-zero parameters have the

same asymptotic distribution as if least squares had been used to the model

only including the relevant variables.

Since many variables are naturally classified into groups of similar vari-

ables (like in the large macroeconomic dataset used in this paper) one may

naturally ask the question whether certain groups of variables are relevant

for the task of explaining another variable. For this reason the asymptotic

properties of the adaptive group Lasso were investigated and it was shown

that it possesses a version of the oracle property.

The performance of these two estimators in terms of forecast precision

was investigated by comparing different forecasting procedures using the

data by Ludvigson and Ng (2009). The plain Lasso was found to give the

most precise forecasts on average while its adaptive variants had problems

forecasting the housing series due to imprecise initial least squares estimates.

The forecasts from the common factor models were relatively precise for all

series while the non-linear LSTAR was much more unpredictable.

7. Proof (appendix)

Proof of Theorem 1: The proof is inspired by the proof of Theorem 2 in Zou

(2006) and the proof of Theorem 2 in Kock (2012). Letting β = β∗ + u√
T

the objective function (3) may also be written as

LT (u) =

∥∥∥∥y −X (β∗ +
u√
T

)∥∥∥∥2 + λT

N2p∑
i=1

ŵi

∣∣∣∣β∗i +
ui√
T

∣∣∣∣(5)

Let û = arg minLT (u). It follows that β̂ = β∗+ û√
T

and so û =
√
T
(
β̂ − β∗

)
.
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Next, define

VT (u) = LT (u)− LT (0)

=

∥∥∥∥y −X (β∗ +
u√
T

)∥∥∥∥2 −∥∥y −Xβ∗∥∥2 + λT

N2p∑
i=1

ŵi

(∣∣∣∣β∗i +
ui√
T

∣∣∣∣− |β∗i |)

= u′
X ′X

T
u− 2

u′X ′ε√
T

+ λT

N2p∑
i=1

ŵi

(∣∣∣∣β∗i +
ui√
T

∣∣∣∣− |β∗i |)
(6)

By Theorem 11.2.1 in Brockwell and Davis (2009) it follows that u′X′Xu
T →

u′(IN ⊗ C)u in probability for any u ∈ RN2p. Furthermore, it follows from

Proposition 7.9 in Hamilton (1994) (see also expression 11.A.3 page 341 in

Hamilton (1994)) that X′ε√
T
→d W ∼ N (0,Σ⊗ C). Hence,

u′
X ′X

T
u− 2

u′X ′ε√
T
→d u

′(IN ⊗ C)u− 2u′W(7)

In addition, if β∗i 6= 0

λT ŵi

(∣∣∣∣β∗i +
ui√
T

∣∣∣∣−∣∣β∗i ∣∣) = λT

∣∣∣∣ 1

β̂I,i

∣∣∣∣γ ui√
T

(∣∣∣∣β∗i +
ui√
T

∣∣∣∣−∣∣β∗i ∣∣) /( uj√T
)

=
λT

T 1/2

∣∣∣∣ 1

β̂I,i

∣∣∣∣γ ui(∣∣∣∣β∗i +
ui√
T

∣∣∣∣−∣∣β∗i ∣∣) /( ui√
T

)
→ 0 in probability(8)

for every ui ∈ R since (i): λT /T
1/2 → 0, (ii):

∣∣1/β̂I,i∣∣γ → ∣∣1/β∗i ∣∣γ <∞ in

probability and

(iii): ui

(∣∣∣β∗i + ui√
T

∣∣∣−∣∣β∗i ∣∣) /( ui√
T

)
→ uisign(β∗i ).

If, on the other hand, β∗i = 0
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λT ŵi

(∣∣∣∣β∗i +
ui√
T

∣∣∣∣−∣∣β∗i ∣∣) =
λT
T 1/2

∣∣∣∣ 1

β̂I,i

∣∣∣∣γ |ui| = λT
T 1/2−γ/2

∣∣∣∣∣ 1√
T β̂I,i

∣∣∣∣∣
γ

|ui|

→


∞ in probability if ui 6= 0

0 in probability if ui = 0

(9)

since (i): λT
T 1/2−γ/2 →∞ and (ii):

√
T β̂i is tight.

Using the convergence results (7)-(9) in (6) yields

VT (u)→d V (u) =


u′(IN ⊗ C)u− 2u′W if ui = 0 for all i ∈ Ac

∞ if ui 6= 0 for some i ∈ Ac

Since VT (u) is convex and V (u) has a unique minimum it follows from Knight

(1999) (or alternatively Knight and Fu (2000)) that arg minVT (u)→d arg minV (u).

Hence,

ûAc →d δ
|Ac|
0(10)

ûA →d N
(
0, [(IN ⊗ C)A]−1[Σ⊗ C]A[(IN ⊗ C)A]−1

)
(11)

where δ0 is the Dirac measure at 0 and |Ac| is the cardinality of Ac (hence,

δ
|Ac|
0 is the |Ac|-dimensional Dirac measure at 0). Notice that (10) implies

that ûAc → 0 in probability. An equivalent formulation of (10)-(11) is

√
T (β̂Ac − β∗Ac)→d δ

|Ac|
0(12)

√
T (β̂A − β∗A)→d N

(
0, [(IN ⊗ C)A]−1[Σ⊗ C]A[(IN ⊗ C)A]−1

)
(13)

(12)-(13) yield the consistency part of the theorem at the rate of
√
T

for β̂. (13) also yields the oracle efficient asymptotic distribution for β̂A,
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i.e. part (3) of the theorem. It remains to show part (2) of the theorem;

P (β̂Ac = 0)→ 1.

Assume β̂j 6= 0 for j ∈ Ac. Then, letting xj denote the jth column of X,

it follows from the first order conditions

2x′j(y −Xβ̂) + λT ŵjsign(β̂j) = 0

or equivalently,

2x′j
(
y −Xβ̂

)
T 1/2

+
λT ŵjsign(β̂j)

T 1/2
= 0(14)

First, consider the second term in (14)

∣∣∣∣∣λT ŵjsign(β̂j)

T 1/2

∣∣∣∣∣ =
λT ŵj

T 1/2
=

λT

T 1/2−γ/2 |T 1/2β̂I,j |
γ →∞

since
√
T β̂I,j is tight. Regarding the first term in (14),

2x′j
(
y −Xβ̂

)
T 1/2

=
2x′j

(
ε−X[β̂ − β∗]

)
T 1/2

=
2x′jε

T 1/2
−

2x′jX

T

√
T [β̂ − β∗]

Assuming βj is the coefficient to the kth variable in the ith equation

(so the jth column of X is the kth variable in the ith equation) it follows

from the same arguments as those preceding (6) that
x′jε

T 1/2 →d N(0,ΣiiCkk).

x′jX

T →p (IN ⊗C)j where (IN ⊗C)j is the jth row of (IN ⊗C). Hence,
x′jε

T 1/2

and
x′jX

T are tight. The same is the case for
√
T [β̂ − β∗] since it converges

weakly by (12)-(13). Taken together,
2x′j

(
y−Xβ̂

)
T 1/2 is tight and so

P (β̂j 6= 0) ≤ P

(
2x′j

(
y −Xβ̂

)
T 1/2

+
λT ŵjsign(β̂j)

T 1/2
= 0

)
→ 0
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�

Proof of Theorem 2. The idea of the proof is similar to the one of Theorem

1. Letting β = β∗ + u√
T

the objective function (4) may also be written as

L̃T (u) =

∥∥∥∥y −X (β∗ +
u√
T

)∥∥∥∥2 + λT

M∑
i=1

w̃i

∥∥∥∥β∗Gi +
uGi√
T

∥∥∥∥(15)

Let ũ = arg minLT (u). It follows that β̃ = β∗+ ũ√
T

and so ũ =
√
T
(
β̃ − β∗

)
.

Next, define

ṼT (u) = L̃T (u)− L̃T (0)

=

∥∥∥∥y −X (β∗ +
u√
T

)∥∥∥∥2 −∥∥y −Xβ∗∥∥2 + λT

M∑
i=1

w̃i

(∥∥∥∥β∗Gi +
uGi√
T

∥∥∥∥−∥∥∥β∗Gi∥∥∥)

= u′
X ′X

T
u− 2

u′X ′ε√
T

+ λT

M∑
i=1

w̃i

(∥∥∥∥β∗Gi +
uGi√
T

∥∥∥∥−∥∥∥β∗Gi∥∥∥)
(16)

By Theorem 11.2.1 in Brockwell and Davis (2009) it follows that u′X′Xu
T →p

u′(IN ⊗ C)u in probability for any u ∈ RN2p. Furthermore, it follows from

Proposition 7.9 in Hamilton (1994) (see also expression 11.A.3 page 341 in

Hamilton (1994)) that X′ε√
T
→d W where W ∼ N (0,Σ⊗ C). Hence,

u′
X ′X

T
u− 2

u′X ′ε√
T
→d u

′(IN ⊗ C)u− 2u′W(17)

In addition, if β∗Gi 6= 0, it follows by continuity of the norm that

∣∣∣∣∣λT w̃i
(∥∥∥∥β∗Gi +

uGi√
T

∥∥∥∥−∥∥∥β∗Gi∥∥∥)
∣∣∣∣∣ ≤ λT w̃i

∥∥∥∥uGi√T
∥∥∥∥ =

λT√
T

∥∥uGi∥∥∥∥∥β̂I,Gi∥∥∥γ(18)

→ 0 in probability

since (i): λT /T
1/2 → 0 and (ii): 1∥∥∥β̂I,Gi∥∥∥γ → 1∥∥∥β∗Gi∥∥∥γ <∞ in probability. If,

on the other hand, β∗Gi = 0
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λT w̃i

(∥∥∥∥β∗Gi +
uGi√
T

∥∥∥∥−∥∥∥β∗Gi∥∥∥) = λT w̃i

∥∥∥∥uGi√T
∥∥∥∥ =

λT
T 1/2−γ/2

∥∥uGi∥∥∥∥∥√T β̂I,Gi∥∥∥γ

→


∞ in probability if uGi 6= 0

0 in probability if uGi = 0

(19)

since (i): λT
T 1/2−γ/2 →∞ and (ii):

√
T β̂I,Gi is tight.

Using the convergence results (17)-(19) in (16)

ṼT (u)→d Ṽ (u) =


u′(IN ⊗ C)u− 2u′W if uGi = 0 for all i ∈ Ac

∞ if uGi 6= 0 for some i ∈ Ac

Since ṼT (u) is convex and Ṽ (u) has a unique minimum it follows from Knight

(1999) (or alternatively Knight and Fu (2000)) that arg min ṼT (u)→d arg min Ṽ (u).

Hence,

ũGc →d δ
|Gc|
0(20)

ũG →d N
(
0, [(IN ⊗ C)G ]−1[Σ⊗ C]G [(IN ⊗ C)G ]−1

)
(21)

where δ0 is the Dirac measure at 0 and |Gc| is the cardinality of Gc. Notice

that (20) implies that ũGc → 0 in probability. An equivalent formulation of

(20)-(21) is

√
T (β̃Gc − β∗Gc)→d δ

|Gc|
0(22)

√
T (β̃G − β∗G)→d N

(
0, [(IN ⊗ C)G ]−1[Σ⊗ C]G [(IN ⊗ C)G ]−1

)
(23)

(22)-(23) yield the consistency part of the theorem at the rate of
√
T for

β̃. (23) also yields the asymptotic distribution for β̃G , i.e. part 3 of the

theorem. It remains to show part 2 of the theorem; P (β̃Gc = 0)→ 1.
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Assume β̃Gi 6= 0 for i ∈ Ac. Then all entries β̃Gi,j , 1 ≤ j ≤ |Gi| satisfy

the first order condition

2x′j(y −Xβ̃) + λT w̃i
∥∥β̃Gi∥∥−1 β̃Gi,j = 0

or equivalently,

2x′j(y −Xβ̃)

T 1/2
+
λT w̃i

∥∥β̃Gi∥∥−1 β̃Gi,j
T 1/2

= 0

This also implies

max
1≤j≤|Gi|

∣∣∣∣∣2x′j(y −Xβ̃)

T 1/2

∣∣∣∣∣ = max
1≤j≤|Gi|

∣∣∣∣∣∣λT w̃i
∥∥β̃Gi∥∥−1 β̃Gi,j
T 1/2

∣∣∣∣∣∣(24)

First, consider the right hand side of (24). To this end note that

max1≤j≤|Gi| |β̃Gi,j |∥∥β̃Gi∥∥ ≥
max1≤j≤|Gi| |β̃Gi,j |∑|Gi|

j=1

∣∣β̃Gi,j∣∣ ≥
max1≤j≤|Gi| |β̃Gi,j |
|Gi|max1≤j≤|Gi| |β̃Gi,j |

=
1

|Gi|

This implies

max
1≤j≤|Gi|

∣∣∣∣∣∣λT w̃i
∥∥β̃Gi∥∥−1 β̃Gi,j
T 1/2

∣∣∣∣∣∣ =
λT w̃i

T 1/2

max1≤j≤|Gi| |β̃Gi,j |∥∥β̃Gj∥∥
≥ λT
T 1/2−γ/2

1∥∥T 1/2β̂I,Gi
∥∥γ 1

|Gi|
→p ∞

since
√
T β̂I,Gi is tight.

Regarding the left hand side in (24),

2x′j
(
y −Xβ̃

)
T 1/2

=
2x′j

(
ε−X[β̃ − β∗]

)
T 1/2

=
2x′jε

T 1/2
−

2x′jX

T

√
T [β̃ − β∗]
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Assuming βj is a coefficient to the kth variable in the ith equation it

follows from the same arguments as those preceding (16) that
x′jε

T 1/2 →d

N(0,Σ2
iiCkk).

x′jX

T →p (IN ⊗C)j where (IN ⊗C)j is the ith row of (IN ⊗C).

Hence,
x′jε

T 1/2 and
x′jX

T are tight. The same is the case for
√
T [β̃ − β∗] since

it converges weakly by (22)-(23). Taken together,
2x′j

(
y−Xβ̃

)
T 1/2 is tight for all

j = 1, ..., N2p. Furthermore,

P

(
max

1≤j≤|Gi|

∣∣∣∣2x′j
(
y −Xβ̃

)
T 1/2

∣∣∣∣ > K

)
≤ |Gi| max

1≤j≤|Gi|
P

(∣∣∣∣2x′j
(
y −Xβ̃

)
T 1/2

∣∣∣∣ > K

)

≤ |Gi| max
1≤j≤|Gi|

sup
T≥1

P

(∣∣∣∣2x′j
(
y −Xβ̃

)
T 1/2

∣∣∣∣ > K

)

implies

sup
T≥1

P

(
max

1≤j≤|Gi|

∣∣∣∣2x′j
(
y −Xβ̃

)
T 1/2

∣∣∣∣ > K

)
≤ |Gi| max

1≤j≤|Gi|
sup
T≥1

P

(∣∣∣∣2x′j
(
y −Xβ̃

)
T 1/2

∣∣∣∣ > K

)

And so, for any δ > 0 by choosing K sufficiently large it follows from the

tightness of
2x′j

(
y−Xβ̃

)
T 1/2 , j ∈ Gi that

inf
T≥1

P

(
max

1≤j≤|Gi|

∣∣∣∣2x′j
(
y −Xβ̃

)
T 1/2

∣∣∣∣ ≤ K
)
≥ 1− δ

Since the right hand side in (24) will be larger than K from a certain step

and onwards it follows that P (β̃Gi = 0)→ 1. �



ADAPTIVE LASSO AND ADAPTIVE GROUP LASSO IN VARS 28

References

Brockwell, P. and R. Davis (2009): Time series: theory and methods,

Springer Verlag.

Fan, J. and R. Li (2001): “Variable selection via nonconcave penalized

likelihood and its oracle properties,” Journal of the American Statistical

Association, 96, 1348–1360.

Fan, J. and J. Lv (2008): “Sure independence screening for ultrahigh

dimensional feature space,” Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 70, 849–911.

Friedman, J., T. Hastie, and R. Tibshirani (2010): “Regularization

paths for generalized linear models via coordinate descent,” Journal of

statistical software, 33, 1.

Hamilton, J. (1994): Time series analysis, vol. 2, Cambridge Univ Press.

Huang, J., J. Horowitz, and S. Ma (2008): “Asymptotic properties

of bridge estimators in sparse high-dimensional regression models,” The

Annals of Statistics, 36, 587–613.

Knight, K. (1999): “Epi-convergence in distribution and stochastic equi-

semicontinuity,” Unpublished manuscript.

Knight, K. and W. Fu (2000): “Asymptotics for lasso-type estimators,”

Annals of Statistics, 1356–1378.

Kock, A. and L. Callot (2012): “Oracle Inequalities for High Dimen-

sional Vector Autoregressions,” CREATES working paper 2012-05.
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Output Labor Housing Consumption Money Bonds and Prices Stock Total
and Market Orders and Exchange Market

Income Inventories Credit Rates

Recursive Forecasts
Lasso 0.537 0.593 0.575 0.540 0.503 0.450 0.549 0.754 0.563
aLasso 0.579 0.696 5.000 0.601 0.503 1.143 0.583 0.762 1.234
agLasso 0.615 0.791 6.174 0.831 0.520 1.468 0.650 0.749 1.475

Direct Forecasts
OLS-VAR 1.281 1.346 1.063 1.154 0.922 1.382 0.948 1.862 1.245
Lasso 0.556 0.582 0.511 0.575 0.499 0.480 0.553 0.750 0.563
aLasso 0.616 0.740 5.138 0.676 0.512 1.096 0.602 0.771 1.269
agLasso 0.614 0.790 6.152 0.830 0.521 1.469 0.650 0.749 1.472

Factor model forecasts
CF 1 0.545 0.610 0.819 0.654 0.520 0.516 0.610 0.803 0.635
CF 2 0.539 0.605 0.859 0.635 0.520 0.497 0.595 0.845 0.637
CF 3 0.531 0.621 0.859 0.603 0.521 0.494 0.589 0.847 0.633
CF 4 0.528 0.618 0.827 0.591 0.522 0.494 0.587 0.839 0.626
CF 5 0.536 0.619 0.824 0.603 0.522 0.496 0.592 0.844 0.629
CF BIC 0.541 0.610 0.853 0.651 0.544 0.569 0.609 0.830 0.651

Univariate forecasts
LSTAR 0.632 0.592 0.812 0.613 1.854 0.477 4.590 0.886 1.307
AR(1) 0.915 0.801 0.771 0.842 0.916 0.710 1.129 1.357 0.930

Table 5.1. MSE relative to the recursive VAR MSE, av-
erage across all forecast horizons. Lowest relative MSE in
bold.

Output Labor Housing Consumption Money Bonds and Prices Stock
and Market Orders and Exchange Market

Income Inventories Credit Rates

Lasso 0.6391 0.5566 0.5909 0.5669 0.6675 0.3620 0.7071 0.5206
aLasso 0.7143 0.7787 8.2574 0.6486 0.7059 1.8806 0.8473 0.5499
agLasso 0.8537 1.0761 10.6095 1.3140 0.7324 2.8551 1.0303 0.5172

Factor model forecasts
CF 1 0.6001 0.6833 0.8246 0.7527 0.8166 0.5432 0.8743 0.5851
CF 2 0.5740 0.6734 0.8302 0.7182 0.8177 0.5263 0.8518 0.5813
CF 3 0.5550 0.7175 0.8252 0.6486 0.8173 0.5185 0.8243 0.5887
CF 4 0.5709 0.7361 0.8294 0.6380 0.8165 0.5320 0.8144 0.5774
CF 5 0.5691 0.7328 0.8315 0.6737 0.8183 0.5393 0.8263 0.5848
CF BIC 0.6007 0.6834 0.8244 0.7529 0.8164 0.5432 0.8744 0.5852

Univariate forecasts
LSTAR 0.8742 0.6624 0.7779 0.7035 4.3938 0.3597 1.2135 0.6285
AR(1) 0.9615 0.6772 0.7726 0.7351 1.3980 0.3701 1.5042 0.6431

Table 5.2. MSE relative to the recursive VAR MSE. 1 step
ahead forecasts, 96 forecasts
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Output Labor Housing Consumption Money Bonds and Prices Stock
and Market Orders and Exchange Market

Income Inventories Credit Rates

Lasso
Output 0.025 0.040 0.012 0.059 0.016 0.021 0.001 0.004
Labor 0.024 0.094 0.025 0.048 0.010 0.018 0.007 0.030
Housing 0.009 0.024 0.218 0.008 0.052 0.051 0.002 0.064
Consumption 0.022 0.030 0.045 0.107 0.017 0.018 0.006 0.019
Money 0.012 0.018 0.009 0.020 0.137 0.037 0.016 0.026
Bonds 0.007 0.028 0.021 0.035 0.007 0.079 0.023 0.081
Prices 0.016 0.003 0.002 0.033 0.033 0.012 0.077 0.000
Stock 0.000 0.007 0.000 0.039 0.024 0.073 0.010 0.138

Adaptive Lasso
Output 0.011 0.013 0.000 0.104 0.065 0.002 0.020 0.001
Labor 0.012 0.025 0.002 0.100 0.070 0.002 0.020 0.001
Housing 0.036 0.051 0.059 0.233 0.095 0.014 0.039 0.006
Consumption 0.009 0.012 0.001 0.078 0.048 0.002 0.017 0.001
Money 0.001 0.002 0.001 0.009 0.022 0.001 0.003 0.000
Bonds 0.018 0.019 0.001 0.108 0.059 0.007 0.023 0.004
Prices 0.001 0.001 0.000 0.012 0.010 0.000 0.005 0.000
Stock 0.000 0.003 0.000 0.024 0.083 0.000 0.021 0.000

Adaptive Group Lasso
Output 0.043 0.000 0.002 0.175 0.014 0.000 0.000 0.005
Labor 0.001 0.056 0.070 0.103 0.000 0.000 0.000 0.023
Housing 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000
Consumption 0.000 0.000 0.000 0.210 0.000 0.000 0.000 0.014
Money 0.000 0.000 0.006 0.000 0.267 0.000 0.000 0.006
Bonds 0.000 0.000 0.038 0.011 0.000 0.115 0.000 0.090
Prices 0.000 0.000 0.000 0.000 0.020 0.000 0.273 0.000
Stock 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.206

Table 5.3. Selection frequency, average over 96 forecasts at
horizon 1. Largest share of selected variables in bold.
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Output Labor Housing Consumption Money Bonds and Prices Stock Total
and Market Orders and Exchange Market

Income Inventories Credit Rates

Lasso
Output 0.833 2.591 0.238 1.664 0.354 0.919 0.037 0.030 6.665
Labor 0.804 6.034 0.506 1.340 0.223 0.779 0.275 0.236 10.196
Housing 0.301 1.557 4.356 0.227 1.151 2.227 0.086 0.512 10.419
Consumption 0.754 1.911 0.900 3.006 0.369 0.790 0.256 0.155 8.141
Money 0.403 1.149 0.176 0.565 3.023 1.606 0.655 0.209 7.787
Bonds 0.244 1.773 0.419 0.974 0.145 3.473 0.973 0.647 8.647
Prices 0.542 0.211 0.036 0.936 0.728 0.537 3.224 0.001 6.216
Stock 0.003 0.427 0.000 1.081 0.526 3.208 0.419 1.107 6.771

Adaptive Lasso
Output 0.385 0.857 0.009 2.920 1.420 0.072 0.857 0.011 6.531
Labor 0.422 1.586 0.033 2.807 1.546 0.093 0.860 0.007 7.353
Housing 1.207 3.275 1.172 6.511 2.092 0.636 1.641 0.050 16.584
Consumption 0.295 0.768 0.018 2.187 1.066 0.068 0.708 0.009 5.119
Money 0.023 0.100 0.027 0.243 0.486 0.038 0.117 0.004 1.039
Bonds 0.597 1.230 0.029 3.031 1.298 0.330 0.950 0.031 7.497
Prices 0.018 0.056 0.000 0.333 0.230 0.003 0.189 0.001 0.831
Stock 0.010 0.174 0.000 0.682 1.826 0.005 0.865 0.000 3.562

Adaptive Group Lasso
Output 1.478 0.000 0.037 4.904 0.310 0.000 0.000 0.039 6.768
Labor 0.044 3.556 1.405 2.873 0.007 0.000 0.000 0.186 8.072
Housing 0.000 0.000 0.188 0.000 0.000 0.000 0.000 0.000 0.188
Consumption 0.000 0.000 0.000 5.874 0.000 0.000 0.000 0.112 5.986
Money 0.000 0.000 0.114 0.000 5.884 0.000 0.000 0.045 6.043
Bonds 0.000 0.000 0.758 0.318 0.000 5.057 0.000 0.717 6.850
Prices 0.000 0.000 0.000 0.000 0.436 0.000 11.476 0.004 11.916
Stock 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.646 1.646

Table 5.4. Average number of variables per equation, aver-
age over 96 forecasts at horizon 1. Largest number of selected
variables in bold.
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Output Labor Housing Consumption Money Bonds and Prices Stock
and Market Orders and Exchange Market

Income Inventories Credit Rates

Recursive Forecasts
Lasso 0.6606 0.7688 0.6632 0.7184 0.6197 0.5155 0.7497 0.7970
aLasso 0.7070 0.8781 6.5737 0.7826 0.5902 1.2767 0.7368 0.8048
agLasso 0.7397 0.9911 8.1884 1.0178 0.6170 1.5313 0.7956 0.7871

Direct Forecasts
OLS-VAR 2.2095 1.8309 1.2194 1.4316 1.3817 1.5667 1.2341 2.0118
Lasso 0.6830 0.7115 0.5980 0.7175 0.6019 0.5593 0.7364 0.7846
aLasso 0.7277 0.9519 6.5100 0.8264 0.6080 1.2070 0.7446 0.8041
agLasso 0.7395 0.9901 8.1591 1.0169 0.6171 1.5317 0.7957 0.7873

Factor model forecasts
CF 1 0.6945 0.7585 0.9643 0.8606 0.5852 0.5875 0.7680 0.8184
CF 2 0.6868 0.7396 1.0159 0.8293 0.5872 0.5739 0.7429 0.8775
CF 3 0.6818 0.7496 1.0141 0.7902 0.5892 0.5708 0.7440 0.8810
CF 4 0.6737 0.7514 0.9959 0.7784 0.5896 0.5663 0.7448 0.8678
CF 5 0.7024 0.7562 1.0058 0.7823 0.5886 0.5655 0.7532 0.8709
CF BIC 0.6667 0.7438 0.9726 0.8422 0.5822 0.6388 0.7626 0.8363

Univariate forecasts
LSTAR 0.7334 0.7178 0.8210 0.7918 1.1548 0.5436 16.2912 1.0083
AR(1) 1.1481 1.0042 0.8365 1.1427 0.9493 0.8433 1.4706 1.5428

Table 5.5. MSE relative to the recursive VAR MSE 3 step
ahead forecasts, 94 forecasts

Output Labor Housing Consumption Money Bonds and Prices Stock
and Market Orders and Exchange Market

Income Inventories Credit Rates

Recursive Forecasts
Lasso 0.5832 0.7370 0.6447 0.6178 0.4571 0.5671 0.5597 0.9042
aLasso 0.6231 0.8004 3.8090 0.6812 0.4479 0.9428 0.5651 0.9007
agLasso 0.6010 0.7900 4.4731 0.7246 0.4630 1.0267 0.5862 0.8985

Direct Forecasts
OLS-VAR 1.1667 1.4914 1.1594 1.3400 0.7106 1.5516 0.9754 1.6656
Lasso 0.6258 0.7393 0.5105 0.6802 0.4519 0.5880 0.5694 0.9033
aLasso 0.6846 0.8297 4.2371 0.7826 0.4612 0.8562 0.5854 0.9122
agLasso 0.6002 0.7871 4.4401 0.7225 0.4632 1.0279 0.5862 0.8985

Factor model forecasts
CF 1 0.6225 0.6947 0.9298 0.7093 0.4204 0.5831 0.6052 0.9555
CF 2 0.6260 0.6943 1.0067 0.6953 0.4200 0.5555 0.5946 1.0185
CF 3 0.6128 0.6989 1.0064 0.6653 0.4217 0.5577 0.5946 1.0140
CF 4 0.5999 0.6784 0.9522 0.6550 0.4213 0.5548 0.5951 0.9990
CF 5 0.6015 0.6818 0.9427 0.6588 0.4214 0.5594 0.5951 1.0065
CF BIC 0.6083 0.6742 0.9449 0.6827 0.4522 0.6854 0.5975 1.0131

Univariate forecasts
LSTAR 0.6442 0.6782 0.9285 0.6719 0.5898 0.6109 0.6481 1.0313
AR(1) 1.0351 0.9905 0.8884 0.9904 0.7726 0.9432 1.1250 1.6410

Table 5.6. MSE relative to the recursive VAR MSE, 6 step
ahead forecasts, 91 forecasts
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Output Labor Housing Consumption Money Bonds and Prices Stock
and Market Orders and Exchange Market

Income Inventories Credit Rates

Recursive Forecasts
Lasso 0.2652 0.3111 0.4014 0.2562 0.2693 0.3544 0.1788 0.7923
aLasso 0.2713 0.3279 1.3618 0.2918 0.2665 0.4715 0.1841 0.7946
agLasso 0.2654 0.3074 1.4246 0.2686 0.2695 0.4605 0.1879 0.7916

Direct Forecasts
OLS-VAR 0.7486 1.0626 0.8729 0.8459 0.5968 1.4079 0.5838 2.7719
Lasso 0.2769 0.3193 0.3449 0.3371 0.2746 0.4097 0.2000 0.7907
aLasso 0.3374 0.4007 1.5484 0.4447 0.2736 0.4407 0.2287 0.8172
agLasso 0.2644 0.3052 1.3988 0.2660 0.2697 0.4617 0.1879 0.7917

Factor model forecasts
CF 1 0.2619 0.3052 0.5581 0.2915 0.2572 0.3512 0.1938 0.8532
CF 2 0.2704 0.3137 0.5844 0.2963 0.2566 0.3320 0.1926 0.9023
CF 3 0.2735 0.3165 0.5911 0.3073 0.2578 0.3291 0.1924 0.9054
CF 4 0.2673 0.3054 0.5305 0.2945 0.2589 0.3219 0.1918 0.9125
CF 5 0.2690 0.3059 0.5174 0.2953 0.2581 0.3214 0.1940 0.9134
CF BIC 0.2864 0.3384 0.6699 0.3245 0.3264 0.4079 0.1995 0.8848

Univariate forecasts
LSTAR 0.2769 0.3088 0.7204 0.2867 1.2769 0.3920 0.2086 0.8764
AR(1) 0.5152 0.5325 0.5862 0.5007 0.5440 0.6828 0.4152 1.6023

Table 5.7. MSE relative to the recursive VAR MSE, 12 step
ahead forecasts, 85 forecasts
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Output Labor Housing Consumption Money Bonds and Prices Stock
and Market Orders and Exchange Market

Income Investment Credit Rates

Direct Lasso
Output 0.004 0.003 0.006 0.023 0.017 0.027 0.008 0.000
Labor 0.001 0.016 0.022 0.018 0.022 0.042 0.005 0.007
Housing 0.008 0.083 0.216 0.082 0.092 0.131 0.002 0.003
Consumption 0.006 0.012 0.059 0.011 0.043 0.030 0.004 0.005
Money 0.001 0.007 0.003 0.015 0.017 0.006 0.005 0.016
Bonds 0.012 0.015 0.070 0.016 0.017 0.035 0.018 0.056
Prices 0.001 0.005 0.011 0.000 0.007 0.001 0.005 0.003
Stock 0.002 0.000 0.000 0.003 0.000 0.000 0.000 0.000

Direct Adaptive Lasso
Output 0.001 0.001 0.000 0.010 0.040 0.000 0.011 0.000
Labor 0.006 0.007 0.000 0.022 0.045 0.000 0.012 0.000
Housing 0.016 0.022 0.016 0.078 0.072 0.002 0.027 0.000
Consumption 0.006 0.007 0.000 0.019 0.036 0.000 0.013 0.000
Money 0.001 0.000 0.000 0.001 0.018 0.000 0.001 0.000
Bonds 0.001 0.004 0.002 0.011 0.032 0.000 0.012 0.000
Prices 0.001 0.001 0.000 0.002 0.010 0.000 0.002 0.000
Stock 0.002 0.001 0.000 0.001 0.014 0.000 0.000 0.000

Direct Adaptive Group Lasso
Output 0.034 0.000 0.004 0.094 0.037 0.033 0.000 0.006
Labor 0.000 0.025 0.086 0.042 0.008 0.009 0.020 0.005
Housing 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Consumption 0.001 0.000 0.059 0.046 0.034 0.009 0.017 0.004
Money 0.000 0.001 0.026 0.034 0.034 0.006 0.032 0.018
Bonds 0.000 0.001 0.091 0.021 0.020 0.109 0.000 0.004
Prices 0.016 0.000 0.007 0.013 0.041 0.000 0.080 0.004
Stock 0.000 0.000 0.000 0.012 0.029 0.065 0.000 0.015

Table 5.8. Selection frequency, average over 85 forecasts at
horizon 12. Most selected group in bold.
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