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Abstract: We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse,
high-dimensional, linear time-series models. We assume both the number of covariates in the
model and candidate variables can increase with the number of observations and the num-
ber of candidate variables is, possibly, larger than the number of observations. We show
the adaLASSO consistently chooses the relevant variables as the number of observations in-
creases (model selection consistency), and has the oracle property, even when the errors are
non-Gaussian and conditionally heteroskedastic. A simulation study shows the method per-
forms well in very general settings. Finally, we consider two applications: in the first one the
goal is to forecast quarterly US inflation one-step ahead, and in the second we are interested in
the excess return of the S&P 500 index. The method used outperforms the usual benchmarks in
the literature.
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2 ESTIMATING HIGH-DIMENSIONAL TIME SERIES MODELS

1. INTRODUCTION

We consider variable selection and parameter estimation insingle-equation linear time-series

models in high dimension and when the errors are possibly non-Gaussian and conditionally

heteroskedastic. We focus on the case of penalized least squares estimation.

Traditionally, one chooses the set of explanatory variables using an information criterium or

some sequential testing procedure. Although these approaches work well in small dimensions,

the total number of models to evaluate gets exponentially large as the number of candidate vari-

ables increases. Moreover, if the number of covariates is larger than the number of observations,

sequential testing fails to recover the true model structure.

A successful approach to estimate models in large dimensions is to useshrinkagemethods.

The idea is toshrink to zerothe irrelevant parameters. Therefore, under some conditions, it

is possible to handle more variables than observations. Among shrinkage methods, the Least

Absolute Shrinkage and Selection Operator (LASSO), introduced by Tibshirani (1996), and the

adaptive LASSO (adaLASSO), proposed by Zou (2006), have received particular attention. It

has been shown that the LASSO can handle more variables than observations and the most par-

simonious subset of relevant variables can be selected (Efron et al. 2004, Zhao and Yu 2006,

Meinshausen and Yu 2009). As noted in Zhao and Yu (2006) and Zou (2006), for attaining

model selection consistency, the LASSO requires a rather strong condition denoted “Irrepre-

sentable Condition” and does not have the oracle property inthe sense of Fan and Li (2001): the

method both selects the correct subset of non-negligible variables and the estimates of non-zero

parameters have the same asymptotic distribution as the ordinary least squares (OLS) estima-

tor in a regression including only the relevant variables. Zou (2006) proposes the adaLASSO

to amend these deficiencies. In their original framework, the number of candidate variables

is smaller than the sample size, the number of relevant covariates is fixed, and the results are



ESTIMATING HIGH-DIMENSIONAL TIME SERIES MODELS 3

derived for a fixed design regression with independent and identically distributed (iid) errors.

Huang et al. (2008) extend these results to a high-dimensional framework with iid errors.

In this paper we demonstrate that the adaLASSO can be appliedto time-series models in a

framework more general than the one currently available. The main contribution is to allow the

errors to be non-Gaussian, conditionally heteroskedastic, and possibly time-dependent. This is

of great importance when financial or macroeconomic data areconsidered. We also allow the

number of variables (candidate and relevant ones) to increase as a function of the sample size.

Furthermore, the number of candidate covariates can be muchlarger than the number of ob-

servations. We show that the adaLASSO asymptotically chooses the most parsimonious model

and enjoys the oracle property. These findings allow the adaLASSO to be applied in general

time-series setup, which is of interest in financial and econometric modeling. Our theoretical

results are illustrated in a simulation experiment as well as in two economic applications. In

the first one we consider quarterly US inflation forecasting using many predictors and in the

second one we apply the adaLASSO to estimate predictive regressions for the S&P500 equity

premium. The models estimated by the adaLASSO procedure delivered forecasts significantly

superior than traditional benchmarks.

Our results render a number of possible applications. Forecasting macroeconomic variables

with many predictors as in Stock and Watson (2002a,b) and Baiand Ng (2008) is one of them.

The construction of predictive regressions for financial returns can be also considered (Rapach

et al. 2010). In this case, handling non-Gaussian conditional heteroskedastic errors is of great

importance. Other applications include the selection of factors in approximate factor models, as

in Bai and Ng (2002); variable selection in non-linear models (Rech et al. 2001); forecast com-

bination of many forecasters (Issler and Lima 2009). Finally, instrumental variable estimation

in a data rich environment is also a potential application; see Belloni et al. (2010).
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Most advances in the LASSO literature are valid only in the classical iid framework, often

with fixed design. Recently, a large effort has been given to adapt LASSO-based methods to the

time-series case; see, for example, Wang et al. (2007) and Hsu et al. (2008). All these authors

consider only the case where the number of candidate variables are smaller than the sample

size (T ). Nardi and Rinaldo (2011) consider the estimation of high-dimensional autoregressive

(AR) models. However, their work differs from ours in many directions. Firstly, they assume

an AR model that does not include exogenous variables. Second, they require a much stronger

set of assumptions that we do and some of them may be violated in a time-series context. More-

over, they assume the error term to be independent and normally distributed. Song and Bickel

(2011) and Kock and Callot (2012) studied the estimation of vector AR (VAR) models. The

former paper considered LASSO and group-LASSO for estimating VARs where the number of

candidate variables increases with the sample size. However, the number of relevant variables

is fixed. Kock and Callot (2012) relax this assumption but assume the errors to be independent

and normally distributed. Although, our model is nested in their VAR specification, we show

the oracle property with a more general error term. Finally,Kock (2012) considered adaLASSO

estimation in stationary and non-stationary AR models witha fixed number of variables.

The paper is organized as follows. In Section 2 we introduce the notation and assumptions.

In Section 3 we present the main results. In Section 4 we present simulation results. In Section

5 the real applications are presented. Finally, Section 6 concludes. The proofs are postponed to

the appendix.

2. DEFINITION, NOTATION AND ASSUMPTIONS

Consider the following linear model

yt = α0 + θ′xt + ut, (1)



ESTIMATING HIGH-DIMENSIONAL TIME SERIES MODELS 5

wherext = (x1t, . . . , xnT t)
′ is a weak-stationary high-dimensionalnT -vector of covariates,

possibly containing lags ofyt, andut is a zero-mean weak-stationary error term uncorrelated

with xt. We are interested in estimating the parameter vectorθ whennT is large, possibly

larger than the sample sizeT , but only a handful of elements ofθ are non-zero (θ is sparse).

We assume, without loss of generality, thatα0 is zero. Model (1) encompasses many linear

specifications, such as sparse AR and AR distributed lag (ARDL) models, or simple predictive

regressions. Equation (1) may also be a reduced-form for first-stage estimation in a two-stage

least squares environment. Another possibility is to considerxt as a set of individual forecasts,

in which equation (1) represents a forecast combination problem.

The adaLASSO estimator of the(nT × 1) parameter vectorθ is given by

θ̂ = argmin
θ

‖Y −Xθ‖22 + λ

p∑

j=1

wj |θj|, (2)

whereY = (y1, . . . , yT )
′, X is the(T × nT ) data matrix,wj = |θ̂∗j |−τ , τ > 0, andθ̂∗j is an

initial parameter estimate. Whenwj = 1, ∀ j, (2) becomes the usual LASSO.

The number of candidate covariates isn ≡ nT , the number of non-zero parameters isq ≡ qT

and the number of zeroes ism ≡ mT . The omission of the dependence onT is just aesthetic.

For anyt, xt = [xt(1)
′,xt(2)

′]′ andX = [X(1),X(2)], whereX(1) is the(T × q) partition

with the relevant variables andX(2) is the(T × m) partition with the irrelevant ones. Write

θ = [θ(1)′, θ(2)′]′ whereθ(1) ∈ R
q andθ(2) ∈ R

m. θ0 is the true parameter, whereθ0 =

[θ0(1)
′, 0′]′, with θ0(1) 6= 0.

The minimization problem in (2) is equivalent to a constrained concave minimization prob-

lem and necessary and (almost) sufficient conditions for existence of a solution can be derived

from the Karush-Kuhn-Tucker conditions (Zhao and Yu 2006, Zou 2006). The necessary con-

dition for the consistency when eachwj = 1 is denoted the Irrepresentable Condition which

is known to be easily violated in the presence of highly correlated covariates (Zhao and Yu
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2006, Meinshausen and Yu 2009). The adaLASSO overcomes the Irrepresentable Condition,

by using weightedL1-penalty where the weights diverge for the zero parameters and do not

diverge for the non-zero parameter. Zou (2006) suggest using the inverse of the ordinary least

squares estimator of the parameters as the weight. However,such estimator is not available

when the number of candidate variables is larger than the number of observations. Ridge re-

gression can be used as a initial estimator in this case. Huang et al. (2008) introduce the notion

of zero-consistentestimator, i.e., there exists an estimator that is arbitrarily small for the zero

parameters asT increases, and converge to a non-zero constant for the non-zero parameters.

This assumption is weaker than the existence of the OLS estimator, but still too strong in a time

series framework. In this paper we use a weaker condition, denotedWeighted Irrepresentable

Condition(WIC) (van der Geer and Bühlmann 2011).

We make the following assumption about the processes{xt}, {yt}, and{ut}:

Assumption (DGP). Writezt = (yt,x
′
t, ut)

′.

(1) {zt} is a zero-mean weak-stationary process.

(2) E[ut|xt] = 0.

(3) For some finite, positive constantcd and somed ≥ 1,

maxj=1,...,n E

∣∣∣ 1√
T

∑T
t=1 xjtut

∣∣∣
2d

≤ cd.

Assumptions DGP(1) and DGP(2) are classical conditions in the the time series regression

framework. Assumption DGP(3) is satisfied by a large number of distinct data generating pro-

cesses. For instance, definevjt = utxjt for j = 1, . . . , n and verify thatE[vjt] = 0. If each

{vjt} is a martingale difference sequence, one may apply the Burkholder-Davis-Gundy inequal-

ity (see, e.g., Davidson 1994, thm. 15.18) to derive the upper bound

max
j=1,...,n

E

∣∣∣∣∣T
−1/2

T∑

t=1

vjt

∣∣∣∣∣

2d

≤ c max
j=1,...,n

E

∣∣∣∣∣T
−1

T∑

t=1

v2jt

∣∣∣∣∣

d

,
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for some constantc. A similar upper bound can be derived if every process{vjt}, for j =

1, . . . , n, satisfy the conditions of a Marcinkiewicz-Zygmund type inequality for dependent

processes (see, e.g., Dedecker et al. 2007, sec. 4.3.1). Finally, Assumption DGP(3) allows for

conditional heteroskedasticity such, as for example, GARCH models.

Next assumption controls the lower bound of the non-zero parameters.

Assumption (PARAM). The next conditions hold jointly.

(1) The true parameter vectorθ0 is an element of an open subsetΘn ∈ R
n that contains

the element0.

(2) There exists a constantθ∗ such thatmin1≤j≤q |θ0j | ≥ θ∗/q.

We assume that the smallest value of a non-zero parameter is proportional toq, such that it

can be as close to0 asq → ∞. This requirement is milder than the beta-min condition in the

literature in which, for allj = 1, . . . , q, θ0j ≥ θ∗ > 0 for a fixedθ∗ independent ofT .

Write Ω̂ = X
′
X

T
, Ω̂11 = X(1)′X(1)

T
, Ω̂22 = X(2)′X(2)

T
and Ω̂21 = Ω̂

′
12 = X(2)′X(1)

T
. Set

s0 = sgn(θ0(1)), wheres0j = 1 if θ0j > 0, s0j = 0 if θ0j = 0, ands0j = −1 if θ0j < 0. Let

W (1) = diag(w1, . . . , wq).

Assumption (WIC). For everyj = q + 1, . . . , n, and some0 < ξ < (1 ∧ τ), there exists a

sufficiently smallη > 0 satisfying,

P

([
T−ξ/2|Ω̂21Ω̂

−1

11 W (1)s0|
]
j
≤ T−ξ/2wj − η

)
→ 1 as t → ∞, (3)

where[·]j refers to thejth element of the vector inside brackets.

In most settings it is not straightforward to show whether the WIC is satisfied. However, a

simpler set of sufficient conditions can be easily derived:
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Proposition 1. Denoteδ̂∗ the smallest eigenvalue of̂Ω11, σ̂j the sample standard deviation of

xjt, for j = 1, . . . , n, and ρ̂ij the sample correlation betweenxit andxjt, for i = 1, . . . , q and

j = q + 1, . . . , n. If

S1. P (δ̂∗ < cδ q
−1) → 0 asT → ∞;

S2. P (maxi=1,...,q wi > cw qτ ) → 0 asT → ∞; and

S3. P (maxj=q+1,...,n

∑q
i=1 |ρ̂ij |σ̂i > cρ q

γ) → 0 asT → ∞, for 0 ≤ γ ≤ 1, then

P

([
T−ξ/2|Ω̂21Ω̂

−1

11 W (1)s0|
]
j
≤ T−ξ/2wj − η

)

≥ P

(
min

j=q+1,...,n

T−ξ/2wj

σ̂j

≥ c T−ξ/2q1+γ+τ + η∗
)
, (4)

for some constantc ≥ cwcρ/cδ, andη∗ > maxj=q+1,...,n η/σ̂j.

Proposition 1 guarantees that underS1, S2 andS3, the condition

P

(
min

j=q+1,...,n

T−ξ/2wj

σ̂j
≥ c T−ξ/2q1+γ+τ + η∗

)
→ 1, (5)

implies the WIC. It can be inferred from (5) that we do not needa zero-consistent estimator, but

estimates for the weights that satisfy the previous conditions. Biased estimators of the redundant

parameters can satisfy this condition if the bias is small enough. Whenq increases withT , the

weights of the redundant variables may increase accordingly.

Following Zhao and Yu (2006), model selection consistency is equivalent tosign consistency.

Definition (Sign Consistency). We say that̂θ is sign consistent toθ if

P
(
sgn(θ̂) = sgn(θ)

)
→ 1, element-wise asT → ∞.
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Next proposition (equivalent to Proposition 1 in Huang et al. (2008)) provides a lower bound

on the probability of the adaLASSO choosing the correct model.

Proposition 2. Let W (1) = diag(w1, . . . , wq), W (2) = diag(wq+1, . . . , wn), and s0 =

sgn(θ0(1)). Then

P
(
sgn(θ̂) = sgn(θ)

)
≥ P (AT ∩ BT ) ,

where

AT =

{
1√
T
|Ω̂11X(1)′U | <

√
T |θ0| −

1

2
λ

1√
T
|Ω̂−1

11 W (1)s0|
}
, (6a)

BT =

{
2| 1√

T
X(2)′M (1)U | < 1√

T
λ
(
W (2)1m − |Ω̂21Ω̂

−1

11 W (1)s0|
)}

, (6b)

whereU = Y −Xθ0, M(1) = IT −X(1)(X(1)′X(1))−1X(1)′, and the previous inequal-

ities hold element-wise.

EventsAT andBT follow from the Karush-Kuhn-Tucker conditions. We can understand the

eventAT as “including relevant variables in the model” andBT as “keeping irrelevant variables

outside the model”. It is straightforward to see that the WICplays a role in equation (6b),

meaning that even when this condition is violated, the adaLASSO can still capture the relevant

features of the model. It is also easy to see why the WIC is a necessary condition: if WIC does

not hold, thenP (BT ) → 0.

3. MAIN RESULTS

In this section we present the main results of the paper: model selection consistency and

oracle property. We first present a set of technical assumptions controlling the order ofq and

m, the size of the weightsw1, . . . , wq, and the regularization parameterλ.

Assumption (REG). Letλ, m, q, andT → ∞ such that

R1.
[
T (1−ξ)/2

(
m1/d ∨ q

)]
/λ → 0 andλ/

√
T → 0
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R2. Denoteδ∗ the smallest eigenvalue of̂Ω11. There exists a positive, non-increasing, sequence

δq, indexed byq, such thatP (δ∗ < δq) → 0 asT → ∞.

R3. There exists a positive, non-decreasing, sequencelq, indexed byq, such that

P

(
max

j=1,...,q
wj > lq

)
→ 0 as T → ∞.

R4.
(
q1+1/2d ∨ λlq

)
q1/2/(

√
T δq) → 0 asT → ∞.

Assumption R1 controls the number of candidate variables and is similar to the one employed

in Huang et al. (2008) and Huang et al. (2009). Assumption R2 controls the size of the smallest

eigenvalue of the estimated sample covariance matrixΩ̂11. We allow the size of the eigenvalues

to decrease as the number of the relevant variables increases, which is weaker than thefixed

lower bound adopted in the literature. Assumption R3 definesan upper bound on the weights

w1, . . . , wq. Assumption R4 controls the relationship amonglq, δq, q andT . By combining the

previous restrictions, one can see that the number of relevant variables can increase polynomi-

ally with T , depending ond in DGP3.

For instance, takeλ = T 1/2−ξ/4 and, for now, assume that (i)m1/d > q. Assumption R1

is satisfied withm = o(T d ξ/2). As in proposition 1, we satisfy R2 and R3 by takingδq =

q−1 and lq = qτ . Condition R4 is satisfied if (ii)q1+1/2d−τ < λ and (iii) T−1/2λqτ+3/2 →

0. Chooseτ ≥ (d + 1)/2d and note that (iii) is satisfied ifq/(T 1/(2τ+3) ξ/2) → 0. Then,

substitutingτ by (d + 1)/2d, we have forξ = 1/2 that the choicem = O((T/ logT )d/4) and

q = O((T/ logT )d/4(4d+1)) satisfy REG. It follows trivially that (i) and (ii) hold for any d ≥ 1.

Theorem 1. Under assumptions DGP, PARAM, WIC and REG

P
(
sgn(θ̂) = sgn(θ0)

)
→ 1, asT → ∞.
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In Theorem 2 we show that the adaLASSO estimator for time-series possess the oracle prop-

erty, in a sense that converges to the same distribution as the OLS estimator asT → ∞. The

major relevance of this result is that one can carry out inference about the parameters as if one

had used OLS in the model with only the relevant variables included.

Theorem 2(Oracle Property). Let θ̂ols(1) denote the OLS estimator ofθ0(1). Then, under as-

sumptions DGP, PARAM, WIC and REG, and for someq-dimensional vectorα with Euclidean

norm1, we have

√
Tα′

[
θ̂(1)− θ0(1)

]
=

√
Tα′

[
θ̂ols(1)− θ0(1)

]
+ op(1).

It follows from Proposition 2 that if one takeslq = cwq
τ , δq = cδq

−1, and replace the WIC by

(5), the previous results hold. The following corollary states this result.

Corollary 1. Under (5) and Assumptions DGP, PARAM,S1-S3, R1, andR4, the results of

Theorems 1 and 2 hold.

3.1. Selection ofλ and τ . The selection of the regularization parameterλ and the weighting

parameterτ is critical. Traditionally, one employs cross-validationand selects the pair(λ, τ)

within a grid that maximizes some predictive measure. In a time-dependent framework cross-

validation is more complicated. An alternative approach that has received more attention in

recent years is to choose the pair(λ, τ) using information criteria, such as the Bayesian Infor-

mation Criterion (BIC). Zou et al. (2007), Wang et al. (2007)and Zhang et al. (2010) study such

method. Zou et al. (2007) show that the number of effective parameters is a consistent estimator

of the degrees of freedom of the model. Wang et al. (2007) showthat this method works in the

AR-LASSO framework. Finally, Zhang et al. (2010) study a more general criterion (General-

ized Information Criterion) and show that the BIC is consistent in selecting the regularization

parameter, but not asymptotically loss-efficient. Although we do not derive theoretical results
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for consistency of such methods, we conjecture that the sameproperties derived in Zhang et al.

(2010) should hold in our framework. Furthermore, the method performs remarkably well in

Monte Carlo simulations presented in the next section.

4. SIMULATION

Consider the following data generating process (DGP):

yt = φyt−1 + β′xt−1(1) + ut, (7)

ut = h
1/2
t εt, εt

iid∼ t
∗(5) (8)

ht = 5× 10−4 + 0.9ht−1 + 0.05u2
t−1 (9)

xt =


xt−1(1)

xt−1(2)


 = ft + et, et

iid∼ t
∗(5), and (10)

ft = 0.8ft−1 + vt, vt
iid∼ t

∗(5), (11)

whereφ = 0.7 andβ is a vector of ones. The dependentyt follows an autoregressive dis-

tributed lag (ARDL) model with non-Gaussian GARCH errors.xt(1) is a(q− 1)× 1 vector of

included (relevant) variables. The vectorxt = [xt(1)
′,xt(2)

′]′ ∈ R
(n−1), hasn − q irrelevant

variables and follows a factor model with a single factor. The factor itself follows a first-order

AR process. All the errors are serially uncorrelated andt-distributed with 5 degrees of freedom.

Furthermore,εt, et, vt are mutually not correlated.t∗(5) denotes an standardizedt-distribution

with 5 degrees of freedom, such that all the errors have zero mean and unit variance. The vector

of candidate variables iswt = (yt−1,x
′
t−1)

′. Note that this is a very adverse setting as the errors

are not normal and are conditionally heteroskedastic. Furthermore, the candidate variables are

all highly correlated, Corr(xit, xj,t) = 0.83, ∀i 6= j.
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We simulateT = 50, 100, 300, 500 observations of DGP (7)–(11) for different combina-

tions of candidate (n) and relevant (q) variables. We considern = 100, 300, 1000 and q =

5, 10, 15, 25. The models are estimated by the adaLASSO method and the values ofλ andτ are

selected by the BIC.

We start by analyzing the properties of the estimators for the parameterα in (7). Figures

1–4 illustrates the distribution of the bias for the oracle and adaLASSO estimators for different

sample sizes. Several facts emerge from the plots. Firstly,both bias and variance are very

low. ForT = 50 andq = 5, the distribution of the adaLASSO estimator is very close tothe

distribution of the oracle. For the other values ofq, the adaLASSO distribution presents fat-tails

cause mainly by some outliers in the estimation. ForT = 100, the adaLASSO distribution is

closer to the oracle one whenq = 5 or q = 10. However, there still outliers. WhenT = 300 the

number of outliers reduces and the adaLASSO distribution gets closer to the oracle, specially

for q = 5 or q = 10. For q = 15 or q = 20, the bias is or orderO(10−3). The same pattern is

observed whenT = 500.

Table 1 shows the average absolute bias and the average mean squared error (MSE) for the

adaLASSO estimator over the Monte Carlo simulations and thecandidate variables, i.e.,

Bias =
1

1000n

1000∑

j=1

[
φ̂− 0.7 +

n−1∑

i=1

(
β̂i − βi

)]
and

MSE =
1

1000n

1000∑

j=1

[(
φ̂− 0.7

)2
+

n−1∑

i=1

(
β̂i − βi

)2
]
.

It is clear that both variance and bias are very low. This is explained, as expected, by the large

number of zero estimates. Finally, the bias and MSE decreasewith the sample size.

Table 2 presents model selection results. Panel (a) presents the fraction of replications where

the correct model has been selected, i.e., all the relevant variables included and all the irrelevant

regressors excluded from the final model (correct sparsity pattern). It is clear the performance
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of the adaLASSO improves with the sample size and gets worse as the number of relevant

variables increases. Furthermore, there is a slightly deterioration as the number of candidate

regressors increases. Panel (b) shows the fraction of replications where the relevant variables

are all included. ForT = 300 andT = 500, the true model is included almost every time. For

smaller sample sizes the performance decreases dramatically asq increases. Panel (c) presents

the fraction of relevant variables included and Panel (d) shows the fraction of irrelevant variables

excluded. It is clear that the fraction of included relevantvariables is extremely high, as well as

the fraction of excluded irrelevant regressors. Panel (e) presents the average number of included

variables. Finally, Panel (f) shows the average number of included irrelevant regressors. As

sample size increases, the performance of the adaLASSO improves.

Table 3 shows the MSE for one-step-ahead out-of-sample forecasts for both the adaLASSO

and oracle models. We consider a total of 100 out-of-sample observations. As expected, for low

values ofq, the adaLASSO has a similar performance than the oracle. Forq = 10 or q = 15,

the results are reasonable only forT = 300 or T = 500. The performance of the adaLASSO

also improves as the sample size increases.

TABLE 1. PARAMETER ESTIMATES: DESCRIPTIVE STATISTICS.

The table reports for each different sample size, the average absolute bias, Panel (a), and the average mean squared error (MSE), Panel
(b), over all parameter estimates and Monte Carlo simulations. n is the number of candidate variables whereasq is the number of
relevant regressors.

T = 50 T = 100 T = 300 T = 500

q\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

Panel (a): Bias
5 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
15 -0.004 -0.002 -0.001 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 0.000
20 -0.007 -0.003 -0.001 -0.002 -0.002 -0.001 -0.000 0.000 0.000 -0.000 -0.000 0.000

Panel (b): MSE
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000
10 0.012 0.016 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
15 0.100 0.060 0.025 0.002 0.006 0.008 0.000 0.000 0.000 0.000 0.000 0.000
20 0.215 0.108 0.043 0.023 0.034 0.021 0.000 0.000 0.000 0.000 0.000 0.000
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FIGURE 1. Distribution of the bias of the adaLASSO and Oracle estimators for
the parameterφ over 1000 Monte Carlo replications. Different combinations of
candidate and relevant variables. The sample size equals 50observations.
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FIGURE 2. Distribution of the bias of the adaLASSO and Oracle estimators for
the parameterφ over 1000 Monte Carlo replications. Different combinations of
candidate and relevant variables. The sample size equals 100 observations.
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FIGURE 3. Distribution of the bias of the adaLASSO and Oracle estimators for
the parameterφ over 1000 Monte Carlo replications. Different combinations of
candidate and relevant variables. The sample size equals 300 observations.
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FIGURE 4. Distribution of the bias of the adaLASSO and Oracle estimators for
the parameterφ over 1000 Monte Carlo replications. Different combinations of
candidate and relevant variables. The sample size equals 500 observations.
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TABLE 2. MODEL SELECTION: DESCRIPTIVE STATISTICS.

The table reports for each different sample size, several statistics concerning model selection. Panel (a) presents the
fraction of replications where the correct model has been selected, i.e., all the relevant variables included and all the
irrelevant regressors excluded from the final model. Panel (b) shows the fraction of replications where the relevant
variables are all included. Panel (c) presents the fractionof relevant variables included. Panel (d) shows the fraction of
irrelevant variables excluded. Panel (e) presents the average number of included variables. Finally, Panel (f) shows the
average number of included irrelevant regressors.

T = 50 T = 100 T = 300 T = 500

q\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

Panel (a): Correct Sparsity Pattern
5 0.894 0.752 0.592 0.999 0.989 0.966 1 1 0.998 1 1 1
10 0.025 0.001 0 0.250 0.058 0.008 0.964 0.868 0.628 0.994 0.967 0.868
15 0 0 0 0.010 0 0 0.628 0.239 0.025 0.915 0.783 0.371
20 0 0 0 0 0 0 0.177 0.006 0 0.676 0.271 0.020

Panel (b): True Model Included
5 1 0.999 0.987 1 1 1 1 1 1 1 1 1
10 0.716 0.278 0.014 0.999 0.999 0.967 1 1 1 1 1 1
15 0.045 0 0 0.933 0.633 0.129 1 1 0.997 1 1 1
20 0 0 0 0.479 0.054 0 1 0.999 0.995 1 1 0.999

Panel (c): Fraction of Relevant Variables Included
5 1.000 0.999 0.996 1 1 1 1 1 1 1 1 1
10 0.941 0.756 0.468 0.999 0.999 0.994 1 1 1 1 1 1
15 0.690 0.425 0.234 0.993 0.940 0.724 1 1 0.999 1 1 1
20 0.529 0.306 0.157 0.935 0.740 0.447 1 0.999 0.999 1 1 0.999

Panel (d): Fraction of Irrelevant Excluded
5 0.998 0.998 0.999 1 1 1 1 1 1 1 1 1
10 0.928 0.958 0.983 0.980 0.985 0.990 0.999 0.999 0.999 0.999 1 1
15 0.886 0.948 0.982 0.922 0.947 0.974 0.994 0.994 0.996 0.999 0.999 0.999
20 0.872 0.945 0.981 0.873 0.926 0.971 0.974 0.979 0.986 0.995 0.995 0.996

Panel (e): Number of Included Variables
5 5.158 5.485 6.228 5.001 5.011 5.035 5.000 5.000 5.002 5.0005.000 5.000
10 15.929 19.803 21.385 11.801 14.336 19.471 10.036 10.144 10.457 10.006 10.035 10.137
15 20.017 21.177 21.431 21.492 29.279 36.125 15.500 16.614 19.264 15.086 15.237 15.941
20 20.802 21.641 21.392 28.837 35.394 37.861 22.076 25.990 34.220 20.415 21.415 24.247

Panel (f): Fraction of Included Irrelevant Variables
5 0.158 0.487 1.250 0.001 0.011 0.035 0 0 0.002 0 0 0
10 6.522 12.245 16.710 1.802 4.337 9.536 0.036 0.144 0.457 0.006 0.035 0.137
15 9.671 14.800 17.915 6.593 15.182 25.272 0.500 1.614 4.2780.086 0.237 0.941
20 10.230 15.523 18.261 10.143 20.595 28.916 2.076 5.991 14.231 0.415 1.415 4.265

5. APPLICATIONS

5.1. Inflation Forecasting. We consider quarterly inflation forecasting by many predictors.

The dataset was obtained from the Federal Reserve Bank of Philadelphia and is part of the
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TABLE 3. FORECASTING: DESCRIPTIVE STATISTICS.

The table reports for each different sample size, the one-step-ahead mean squared error (MSE) for the
adaLASSO, Panel(a), and the Oracle, Panel (b), estimators.n is the number of candidate variables whereasq
is the number of relevant regressors.

T = 50 T = 100 T = 300 T = 500

q\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

MSE - adaLASSO
5 0.011 0.016 0.059 0.010 0.010 0.010 0.010 0.010 0.010 0.0100.010 0.010
10 1.458 5.720 12.413 0.014 0.015 0.167 0.011 0.010 0.011 0.011 0.010 0.010
15 11.831 22.072 32.054 0.216 1.957 9.318 0.013 0.015 0.326 0.013 0.013 0.014
20 25.882 41.455 59.432 2.584 11.937 25.761 0.028 0.050 0.202 0.022 0.026 1.495

MSE - Oracle
5 0.011 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.0100.010 0.010
10 0.012 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010
15 0.014 0.014 0.014 0.011 0.012 0.011 0.010 0.011 0.010 0.010 0.010 0.010
20 0.017 0.017 0.017 0.012 0.012 0.012 0.011 0.010 0.010 0.010 0.010 0.010

database called “Real-Time Data Set for Macroeconomists”,which consists of vintages of major

macroeconomic variables. For the present work, we used onlythe vintage available at the third

quarter of 2011, which contains data from the first quarter of1959 and ends in the second

quarter of 2011, totalling 210 observations. The dependentvariable corresponds to the GDP

price index and can be expressed as a ratio of nominal output and real output. There are a total

of 69 variables plus one lag of inflation. The predictive regression is then written as

πt+1 = φ0 + φ1πt + βxt + ut+1,

whereπt is the quarterly inflation at timet andxt is the vector of predictors.

All variables have been pretested for unit-roots and first-differenced whenever necessary. We

consider three forecasting periods starting, respectively in 1970, 1985 and 2000. An expanding

window scheme is used to estimate the models recursively andto compute the one-step-ahead

forecasts. We compare the adaLASSO with three different benchmark alternatives: a model

with all the regressors included, a simple first-order AR model, and a factor model based on

the first two principal components of the predictors. The results are shown in Table 4. It is
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TABLE 4. INFLATION FORECASTING RESULTS: OUT-OF-SAMPLE R2 (×100).

The table reports the out-of-sampleR2 multiplied by 100. Three different

forecasting periods are considered. The first one starts in January 1970, the

second one in January 1985, and the last one starts in January2000.

1970 1985 2000
Benchmark Models:
All Regressors 25.29 19.47 29.29
AR(1) 79.54 78.09 78.60
AR(1) + PCA (two components) 76.62 69.36 73.75

LASSO and adaLASSO:
LASSO (BIC) 86.92 88.01 90.42
adaLASSO (BIC) 85.87 88.01 90.42

clear from the table that both the LASSO and the adaLASSO models are far superior than

the benchmark for all the three periods considered. Furthermore, the LASSO and adaLASSO

results are almost identical.

5.2. Equity Premium Forecasting. Excess returns prediction has attracted academics and

practitioners for many decades. In a recent paper, Goyal andWelch (2008) argued that none of

the conventional predictor variables proposed in the literature seems capable of systematically

predicting stock returns out-of-sample. Their empirical evidence suggests that most models

were unstable or spurious, and most models are no longer significant even in-sample. However,

Campbell and Thompson (2008), on the other hand, showed thatmany predictive regressions

outperform the historical average once weak restrictions are imposed on the signs of coeffi-

cients and return forecasts. The out-of-sample explanatory advantage over the historical mean

is small and usually statistically not significant, but nonetheless economically meaningful for

mean-variance investors. Three recent papers corroboratethe results in Campbell and Thomp-

son (2008). Rapach et al. (2010) consider combining individual forecasts in order to attenuate

the effects of model uncertainty and instability. They show, consistently over time, that sim-

ple model combination delivers statistically and economically significant out-of-sample gains
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relative to the historical average. In a similar direction,Lee et al. (2008) proposed bagging

estimators to reduce model instability and showed significant improvements over the historical

mean. Finally, Ferreira and Santa-Clara (2011) proposed forecasting separately the three com-

ponents of stock market returns: the dividend-price ratio,earnings growth, and price-earnings

ratio growth.

Using the same dataset as in Goyal and Welch (2008) and Rapachet al. (2010) we apply the

adaLASSO to the following monthly predictive regression:

r∗t+1 = rt+1 − rf,t+1 = φ0 + φ1r
∗
t + θ′xt + ut+1, (12)

wherer∗t represents the market returns in excess to the risk-free rate (rf,t),xt−1 is a set of lagged

predictors, andut is the error term. Stock returns are measured as continuously compounded

returns on the S&P 500 index, including dividends, and the Treasury bill rate is used to compute

the equity premium. With respect to the economic variables used to predict the equity premium,

we consider, in addition tor∗t−1, the 14 variables from Goyal and Welch (2008): Dividend-price

ratio (log); dividend yield (log); earnings-price ratio (log); dividend-payout ratio (log); stock

variance; book-to-market ratio; net equity expansion; treasury bill rate; long-term yield; long-

term return; term spread; default yield spread; default return spread; and inflation.

We consider three different out-of-sample forecast evaluation periods: (i) a “long” out-of-

sample period covering January 1965 to December 2008; (ii) aperiod covering the last thirty

years of the full sample, January 1976 to December 2008; and (iii) a “short” forecasting period

starting in January 2000. The dataset starts in January 1947. The out-of-sampleR2s for one-

step-ahead forecasts are shown in Table 5. The results are impressive. The LASSO and the

adaLASSO estimators are far superior that all the competitors in sample periods considered.
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TABLE 5. EQUITY PREMIUM FORECASTINGRESULTS: OUT-OF-SAMPLE R2

(×100).

The table reports the out-of-sampleR2 multiplied by 100. Three different

forecasting periods are considered. The first one starts in January 1965, the

second one in January 1976, and the last one starts in January2000.

1965 1976 2000

Unrestricted Individual Predictors
AR(1) -0.16 -0.10 0.85
All Regressors -0.07 -0.81 -1.45
Dividend Price Ratio 0.31 -0.82 3.80
Dividend Yield 0.40 -0.81 4.14
Earning Price Ratio 0.53 0.39 4.33
Dividend Payout Ratio -0.51 -1.09 -0.53
Stock Variance -0.19 0.39 4.76
Book to Market -0.82 -0.71 1.30
Net Equity Expansion -0.82 -0.66 -3.20
T-Bill Rate -0.73 -2.86 -3.03
Long Term Yield -0.76 -2.05 -0.87
Long Term Spread 0.23 -0.81 -0.93
Term Spread -0.96 -2.59 -3.38
Default Yield Spread -0.66 -0.66 -0.96
Default Return Spread -0.20 -0.03 1.02
Inflation 0.72 -0.09 -3.97

Forecast Combination
Mean 1.31 0.54 1.07
Median 0.92 0.11 0.24
Trimmed Mean 1.31 0.54 1.07

LASSO and AdaLASSO
LASSO 7.36 6.95 13.11
adaLASSO 7.36 6.95 13.11

6. CONCLUSION

We studied the asymptotic properties of the adaLASSO estimator in sparse, high-dimensional,

linear time series model when both the number of covariates in the model and candidate vari-

ables can increase with the sample size. Furthermore, the number of candidate predictors is
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possibly larger than the number of observations. The results in this paper extend the literature

by providing conditions under which the adaLASSO correctlyselects the relevant features and

has the oracle property in a time-series framework with a very general error term. A key in-

gredient is the WIC, which is necessary for sign consistencyof the adaLASSO. As a technical

by-product some conditions in this paper are improvements on the frequently adopted in the

shrinkage literature.

The main results presented in this paper are based on the assumption that only a few number

of candidate variables are in fact relevant to explain the dynamics of the dependent variable

(sparsity). This a key difference from the factor models literature. The estimation of factors

relies on the key assumption that the loading matrix is dense, i.e., almost all variables are im-

portant for the factor determination. When the loading matrix is sparse, the usual asymptotic

results for factor estimation do not hold anymore. Therefore, penalized estimation based on the

adaLASSO and similar methods are of extreme importance. However, when the structure of the

model is dense, than factor models would probably be a betteralternative.

APPENDIX A. PROOFS

Proof of Proposition 1.The proof consists in showing that
[
|Ω̂21Ω̂

−1

11 W (1)s0|
]
j
≤ σj cw q1+γ+τ .

Write
[
|Ω̂21Ω̂

−1

11 W (1)s0|
]
j
= |T−1X ′

jX(1)Ω̂
−1

11 W (1)s0| andΩ̂11 = EDE′, whereE is a

matrix of eigenvectors andD a diagonal matrix of eigenvalues. By S1, we have

|T−1X ′
jX(1)Ω̂

−1

11 W (1)s0| ≤
qσj

cδ

q∑

i=1

|ρ̂ij |σiwi.

Combining the previous equation with S2 and S3, we have

qσj

cδ

q∑

i=1

|ρ̂ij |σi wi ≤ σj
cw cρ
cδ

q1+γ+τ .

The result follows by takingc ≥ cwcρ/cδ. �
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Proof of Proposition 2.The proof follows as in Proposition 1 of Zhao and Yu (2006). �

Proof of Theorem 1.Proposition 2 provides a lower bound on the probability of selecting the

correct model:

P
(
sgn(θ̂) = sgn(θ0)

)
≥ P (AT ∩ BT ) ≥ 1− P (Ac

T )− P (Bc
T ) ,

whereAc
T andBc

T are the complements ofAT andBT respectively. Therefore, to show sign

consistency we have to show thatP (Ac
T ) → 0 andP (Bc

T ) → 0 asT → ∞.

Note that, under WIC,

Bc
T ⊆

{
max

j=q+1,...,n

∣∣T−1/2X ′
jM(1)U

∣∣ > 1

2

λ η

T (1−ξ)/2

}
.

Denoteθ̃(1) = [X(1)′X(1)]−1
X(1)′Y the ordinary least squares estimator ofθ0(1). We

can bound the element on the right hand side of the inequalitybetween brackets by

|T−1/2X ′
jM(1)U | ≤

∣∣T−1/2X ′
jU
∣∣ +
∣∣T−1/2X ′

jP (1)U
∣∣

=
∣∣T−1/2X ′

jU
∣∣+
∣∣∣T 1/2X ′

jX(1)
[
θ̃(1)− θ0(1)

]∣∣∣

≤
∣∣T−1/2X ′

jU
∣∣ +
∣∣∣
{
T−1X ′

jX(1)− E
[
T−1X ′

jX(1)
]}

T 1/2
[
θ̃(1)− θ0(1)

]∣∣∣

+
∣∣∣E
[
T−1X ′

jX(1)
]
T 1/2

[
θ̃(1)− θ0(1)

]∣∣∣

= B1 +B2 +B3.
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Setµij = E(xitxjt). Note that,

B2 =
∣∣∣
{
T−1X ′

jX(1)− E
[
T−1X ′

jX(1)
]}

T 1/2
[
θ̃(1)− θ0(1)

]∣∣∣

=

∣∣∣∣∣

q∑

i=1

(
T−1

T∑

t=1

xjtxit − µij

)
T 1/2(θ̃i − θ0i)

∣∣∣∣∣

≤ op(1)

q∑

i=1

∣∣∣T 1/2
[
θ̃i − θ0i

]∣∣∣ ,

where the last line follows from the law of large numbers, asE(xitxjt) < ∞, for every pair

(i, j) (DGP2). Chooseµ2 ≥ maxi,j |µij|, then

B3 =
∣∣∣E
[
T−1X ′

jX(1)
]
T 1/2(θ̃i − θ0i)

∣∣∣

=

∣∣∣∣∣

q∑

i=1

µijT
1/2(θ̃i − θ0i)

∣∣∣∣∣

≤ µ2

q∑

i=1

∣∣∣T 1/2(θ̃i − θ0i)
∣∣∣ .

Therefore, by combining these bounds,

B2 +B3 ≤ [µ2 + op(1)]

q∑

i=1

∣∣∣T 1/2(θ̃i − θ0i)
∣∣∣

≤ [µ2 + op(1)] sup
α′α=q

T 1/2
∣∣∣α′
[
θ̃(1)− θ0(1)

]∣∣∣ ,

which does not depend onj = q + 1, . . . , n. Thus,

max
j

∣∣T−1/2X ′
jM(1)U

∣∣ ≤ max
j

B1 + [µ2 + op(1)] sup
α′α=q

T 1/2
∣∣∣α′
[
θ̃(1)− θ0(1)

]∣∣∣ .

Define the set

C =

{
(µ2 + op(1)) sup

α′α=q
T 1/2

∣∣∣α′
[
θ̃(1)− θ0(1)

]∣∣∣ > ληT−(1−ξ)/2/4

}
.
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Then,

Bc ∩ Cc ⇒
{

max
j=q+1,...,n

|T−1/2X ′
jU | > ληT−(1−ξ)/2/4

}
.

Now,Pr(Bc) ≤ Pr(Bc∩Cc)+Pr(C). We shall bound both terms on the right hand side using

Markov’s inequality (M), Cauchy-Schwarz inequality (CS),and the union bound (U).

Pr(C) = Pr

(
sup

α′α=q
T 1/2

∣∣∣α′
[
θ̃(1)− θ0(1)

]∣∣∣ > λη

T (1−ξ)/24 [µ2 + op(1)]

)

(M)

≤ 16 [µ2 + o(1)]2
E

{
sup

α′α=q

∣∣∣T 1/2α′
[
θ̃(1)− θ0(1)

]∣∣∣
2
}

λ2η2T−(1−ξ)

(CS)

≤ 16 [µ2 + o(1)]2

λ2η2T−(1−ξ)
sup

α′α=q
α′α×

q∑

i=1

var[T 1/2(θ̃i − θ0i)]

≤ 16 [µ2 + o(1)]2

λ2η2T−(1−ξ)
q2 max

1≤i≤q
var
[
T 1/2(θ̃i − θ0i)

]

=
T 1−ξq2

λ2

16 [µ2 + o(1)]2

η2
max
1≤i≤q

var
[
T 1/2(θ̃i − θ0i)

]

→ 0,

asq andT → ∞ if qλ/T (1−ξ)/2 → 0 (R1). For the first term on the right hand side we have

Pr(Bc ∩ Cc) ≤ Pr

(
max

j
|T−1/2X ′

jU | > ληT−(1−ξ)/2/4

)

(U)

≤
n∑

j=q+1

Pr
(
|T−1/2X ′

jU | > ληT−(1−ξ)/2/4
)

(M)

≤ 4d
n∑

j=q+1

E
∣∣T−1/2X ′

jU
∣∣d

λdηdT−d(1−ξ)/2

(DGP3)

≤ 4dcd
ηd

mT d(1−ξ)/2

λd

→ 0,
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asm andT → ∞ if m1/dT (1−ξ)/2/λ → 0 (R1).

Combining these limits we havePr(Bc) → 0.

DenoteEDE ′ the eigen-decomposition of̂Ω11. Denoteα aq×1 non-negative vector. Under

Conditions R2 and R3 we have

max
j=1,...,q

[∣∣∣Ω̂
−1

11 W (1)s0

∣∣∣
]2
j
≤ sup

α′α≤1
(α′

Ω̂
−1

11 W (1)s0)
2

(CS)

≤ sup
α′α≤1

α′
Ω̂

−2

11 α× s′0W (1)2s0

(R3)

≤ sup
α′α≤1

α′ED−2E′α× q l2q

(R2)

≤
q l2q
δ2q

Therefore,maxj=1,...,q

[∣∣∣Ω̂
−1

11 W (1)s0

∣∣∣
]
j
≤ q1/2 lq

δq
.

Applying the same reasoning and by using the Jensen’s inequality (J) we have

E

(
max

j=1,...,q

[
T−1/2

∣∣∣Ω̂
−1

11 X(1)′U
∣∣∣
]
j

)2

≤ E sup
α′α≤1

T−1
(
α′
Ω̂

−1

11 X(1)′U
)2

(CS)

≤ E

[
sup

α′α≤1
α′
Ω̂

−2

11 α× q max
j=1,...,q

(T−1/2X ′
jU)2

]

(R2)

≤ δ−2
q q E

[
max

j=1,...,q
(T−1/2X ′

jU)2
]

(J)

≤ δ−2
q q1+1/d max

j=1,...,q

(
E
∣∣T−1/2X ′

jU
∣∣2d
)1/d

(DGP3)

≤ q1+1/dc
1/d
d

δ2q
.
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Note that under DGP, PARAM, R2, R3, and R4, we have

AT ⊆
{

max
j=1,...,q

[
T−1/2

∣∣∣Ω̂
−1

11 X(1)′U
∣∣∣
]
>

√
Tθ∗
q

−
√
qλ lq√
Tδq

}

⊂
{

max
j=1,...,q

[
T−1/2

∣∣∣Ω̂
−1

11 X(1)′U
∣∣∣
]
>

√
Tθ∗
2q

}
.

It then follows from the Markov’s inequality and R4 that

P (AT ) ≤ P

(
max

j=1,...,q

[
T−1/2

∣∣∣Ω̂
−1

11 X(1)′U
∣∣∣
]
>

√
Tθ∗
2q

)

(M)

≤ E

(
max

j=1,...,q

[
T−1/2

∣∣∣Ω̂
−1

11 X(1)′U
∣∣∣
]
j

)2
(√

Tθ∗
q

)−2

≤ 4c
1/d
d

θ2∗

q3+1/q

Tδ2d
→ 0, as T → ∞.

�

Proof of Theorem 2.Write Q̇T (θ) = −2X ′(Y −Xθ) + λWsθ, where

sθ = (sgn(θ1), . . . , sgn(θn))
′

andW = diag(w1, . . . , wn). By replacingθ by the adaLASSO estimator and writingU =

(Y −X(1)θ(1)) we have that

√
T (θ̂(1)− θ0(1)) =

1√
T
Ω̂

−1

11 X(1)′U +
1√
T
Ω̂

−1

11 Ω̂12θ̂(2) +
λ

2
√
T
Ω̂

−1

11 W (1) s0

The first term on the right hand size is, by definition,
√
T (θ̂ols(1) − θ0(1)). It follows from

the inequalitysup
α′α≤1(α

′
Ω̂

−1

11 W (1)s0)
2 ≤ q l2q/δ

2
q derived in the proof of Theorem 1 that the

third term on the right hand side can be bounded byλ q1/2 lq/2
√
Tδq, which converges to0 by
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R4. Under R4 and the results in Theorem 1, an application of the Cauchy-Schwarz inequal-

ity shows that the second term on the right hand side isop(1), i.e., (
√
Tα′

Ω̂
−1

11 Ω̂12θ̂(2))
2 ≤

T−1(α′
Ω̂

−1

11 α) (θ̂(2)′Ω̂22θ̂(2)) = op(1). �
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