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Abstract: We study the asymptotic properties of the Adaptive LASS@a(aASSO) in sparse,
high-dimensional, linear time-series models. We assuntie the number of covariates in the
model and candidate variables can increase with the nunfbebservations and the num-
ber of candidate variables is, possibly, larger than the bermof observations. We show
the adaLASSO consistently chooses the relevant variaBléiseanumber of observations in-
creases (model selection consistency), and has the oraiperpy, even when the errors are
non-Gaussian and conditionally heteroskedastic. A sitimulastudy shows the method per-
forms well in very general settings. Finally, we consideo applications: in the first one the
goal is to forecast quarterly US inflation one-step ahead jathe second we are interested in
the excess return of the S&P 500 index. The method used dotperthe usual benchmarks in
the literature.
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1. INTRODUCTION

We consider variable selection and parameter estimatisimgie-equation linear time-series
models in high dimension and when the errors are possiblyGaumssian and conditionally
heteroskedastic. We focus on the case of penalized leaatesgestimation.

Traditionally, one chooses the set of explanatory vargbing an information criterium or
some sequential testing procedure. Although these appesagork well in small dimensions,
the total number of models to evaluate gets exponentialiyelas the number of candidate vari-
ables increases. Moreover, if the number of covariatesgetahan the number of observations,
sequential testing fails to recover the true model strectur

A successful approach to estimate models in large dimesssoio useshrinkagemethods.
The idea is teshrink to zerathe irrelevant parameters. Therefore, under some conditio
is possible to handle more variables than observations. ignsbrinkage methods, the Least
Absolute Shrinkage and Selection Operator (LASSO), intoed by Tibshirani (1996), and the
adaptive LASSO (adaLASSO), proposed by Zou (2006), haweved particular attention. It
has been shown that the LASSO can handle more variables tiseamnations and the most par-
simonious subset of relevant variables can be selectedr(Efral. 2004, Zhao and Yu 2006,
Meinshausen and Yu 2009). As noted in Zhao and Yu (2006) and(Z006), for attaining
model selection consistency, the LASSO requires a rathengtcondition denoted “Irrepre-
sentable Condition” and does not have the oracle propetheisense of Fan and Li (2001): the
method both selects the correct subset of non-negligilslablas and the estimates of non-zero
parameters have the same asymptotic distribution as theapydeast squares (OLS) estima-
tor in a regression including only the relevant variablesu Z2006) proposes the adaLASSO
to amend these deficiencies. In their original framework, ramber of candidate variables

is smaller than the sample size, the number of relevant iadearis fixed, and the results are
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derived for a fixed design regression with independent aadtidally distributed (iid) errors.
Huang et al. (2008) extend these results to a high-dimeakitamework with iid errors.

In this paper we demonstrate that the adaLASSO can be applite-series models in a
framework more general than the one currently available. mkin contribution is to allow the
errors to be non-Gaussian, conditionally heteroskedastit possibly time-dependent. This is
of great importance when financial or macroeconomic data@mnsidered. We also allow the
number of variables (candidate and relevant ones) to iseraa a function of the sample size.
Furthermore, the number of candidate covariates can be haugpér than the number of ob-
servations. We show that the adaLASSO asymptotically atetiee most parsimonious model
and enjoys the oracle property. These findings allow the A88O to be applied in general
time-series setup, which is of interest in financial and ecogtric modeling. Our theoretical
results are illustrated in a simulation experiment as w&linatwo economic applications. In
the first one we consider quarterly US inflation forecastisgng many predictors and in the
second one we apply the adaLASSO to estimate predictivessgns for the S&P500 equity
premium. The models estimated by the adaLASSO procedurescid forecasts significantly
superior than traditional benchmarks.

Our results render a number of possible applications. Bstaty macroeconomic variables
with many predictors as in Stock and Watson (2002a,b) anédBaiNg (2008) is one of them.
The construction of predictive regressions for financigimes can be also considered (Rapach
et al. 2010). In this case, handling non-Gaussian conditibaeteroskedastic errors is of great
importance. Other applications include the selection ciiies in approximate factor models, as
in Bai and Ng (2002); variable selection in non-linear med&ech et al. 2001); forecast com-
bination of many forecasters (Issler and Lima 2009). Hnatistrumental variable estimation

in a data rich environment is also a potential applicatiee; Belloni et al. (2010).
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Most advances in the LASSO literature are valid only in thessical iid framework, often
with fixed design. Recently, a large effort has been giverlapal ASSO-based methods to the
time-series case; see, for example, Wang et al. (2007) ancet. (2008). All these authors
consider only the case where the number of candidate vasatse smaller than the sample
size (I'). Nardi and Rinaldo (2011) consider the estimation of higensional autoregressive
(AR) models. However, their work differs from ours in manyaditions. Firstly, they assume
an AR model that does not include exogenous variables. Setoey require a much stronger
set of assumptions that we do and some of them may be violatetime-series context. More-
over, they assume the error term to be independent and rigrdistiibuted. Song and Bickel
(2011) and Kock and Callot (2012) studied the estimationewiter AR (VAR) models. The
former paper considered LASSO and group-LASSO for estimgafARs where the number of
candidate variables increases with the sample size. Howtxeenumber of relevant variables
is fixed. Kock and Callot (2012) relax this assumption butiassthe errors to be independent
and normally distributed. Although, our model is nestedhi@itt VAR specification, we show
the oracle property with a more general error term. Fin&lbgk (2012) considered adaLASSO
estimation in stationary and non-stationary AR models wiftxed number of variables.

The paper is organized as follows. In Section 2 we introdbheenbtation and assumptions.
In Section 3 we present the main results. In Section 4 we ptegaulation results. In Section
5 the real applications are presented. Finally, Sectiom@lodes. The proofs are postponed to

the appendix.

2. DEFINITION, NOTATION AND ASSUMPTIONS

Consider the following linear model

Y = o + 0’z + uy, (1)
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wherex; = (z,...,7.,¢) IS @ weak-stationary high-dimensionaj-vector of covariates,
possibly containing lags af;, andu; is a zero-mean weak-stationary error term uncorrelated
with ;. We are interested in estimating the parameter vegtathenn is large, possibly
larger than the sample siZ& but only a handful of elements éf are non-zero{ is sparse).
We assume, without loss of generality, thatis zero. Model (1) encompasses many linear
specifications, such as sparse AR and AR distributed lag (3Ri@bdels, or simple predictive
regressions. Equation (1) may also be a reduced-form farsfiagie estimation in a two-stage
least squares environment. Another possibility is to aberse, as a set of individual forecasts,

in which equation (1) represents a forecast combinatiohlpro.

The adaLASSO estimator of tier x 1) parameter vectdd is given by

p
azargm(ginHY—XOH%—i—)\z;wj\@ﬂ, (2)
=
whereY = (y,...,yr), X is the(T x nr) data matrix,w; = |§;\—T, T > 0, and?;f is an
initial parameter estimate. When = 1, V j, (2) becomes the usual LASSO.

The number of candidate covariatesiiss ny, the number of non-zero parameters ks g
and the number of zeroess = my. The omission of the dependence’Bns just aesthetic.
For anyt, z; = [x,(1), x,(2)"] and X = [X (1), X (2)], whereX (1) is the(T" x ¢) partition
with the relevant variables ani (2) is the (7" x m) partition with the irrelevant ones. Write
0 = [6(1),0(2)")] wheref(1) € R?andf@(2) € R™. 6, is thetrue parameter, wheré, =
[60(1), 07, with 64(1) # 0.

The minimization problem in (2) is equivalent to a consteairtoncave minimization prob-
lem and necessary and (almost) sufficient conditions fasterte of a solution can be derived
from the Karush-Kuhn-Tucker conditions (Zhao and Yu 200&, 2006). The necessary con-
dition for the consistency when eaaly = 1 is denoted the Irrepresentable Condition which

is known to be easily violated in the presence of highly datesl covariates (Zhao and Yu



6 ESTIMATING HIGH-DIMENSIONAL TIME SERIES MODELS
2006, Meinshausen and Yu 2009). The adaLASSO overcomesréprdsentable Condition,
by using weighted.-penalty where the weights diverge for the zero parametaisda not
diverge for the non-zero parameter. Zou (2006) suggesgubminverse of the ordinary least
squares estimator of the parameters as the weight. Howsweh, estimator is not available
when the number of candidate variables is larger than thebeuwf observations. Ridge re-
gression can be used as a initial estimator in this case. ¢gietaal. (2008) introduce the notion
of zero-consistengstimator, i.e., there exists an estimator that is arliligramall for the zero
parameters a$' increases, and converge to a non-zero constant for the eronparameters.
This assumption is weaker than the existence of the OLS aginrbut still too strong in a time
series framework. In this paper we use a weaker conditiomtee\Weighted Irrepresentable
Condition(WIC) (van der Geer and Buhlmann 2011).

We make the following assumption about the proce$ses, {v;}, and{u,}:

Assumption (DGP). Write z; = (y;, «}, u;)'.
(1) {=z:} is a zero-mean weak-stationary process.
(2) Efug|:] = 0.

(3) For some finite, positive constafitand somel > 1,

1 T
max;—i, . n K 7T Yo | < cq.

Assumptions DGP(1) and DGP(2) are classical conditionbénthe time series regression
framework. Assumption DGP(3) is satisfied by a large numlbeistinct data generating pro-
cesses. For instance, defing = w,z;, for j = 1,...,n and verify thatE[v;;] = 0. If each
{v;:} is a martingale difference sequence, one may apply the BldkhDavis-Gundy inequal-
ity (see, e.g., Davidson 1994, thm. 15.18) to derive the uppend

2d
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for some constant. A similar upper bound can be derived if every proc¢ss}, for j =
1,...,n, satisfy the conditions of a Marcinkiewicz-Zygmund typeduiality for dependent
processes (see, e.g., Dedecker et al. 2007, sec. 4.3.4)lyFAssumption DGP(3) allows for
conditional heteroskedasticity such, as for example, GAR@dels.

Next assumption controls the lower bound of the non-zerarpaters.

Assumption (PARAM). The next conditions hold jointly.

(1) The true parameter vectdl, is an element of an open sub$gt € R” that contains
the elemeno.

(2) There exists a constaét such thatmin, <<, |6y;| > 6./q.

We assume that the smallest value of a non-zero parametssgsrtional tog, such that it
can be as close tbasq — oo. This requirement is milder than the beta-min conditionhia t
literature in which, forallj =1,...,¢q, 0y; > 0. > 0 for a fixedd, independent of".

Write @ = XX @, — XUXOW) q  — XOXO) gngQ), — O, — XAXD  get

Sy = sgn(@o(l)), WhereS()j =1if Q()j > 0, S5 — 0 if H()j =0, andS()j =—1if H()j < 0. Let
W (1) = diag(wy, - .., wy).

Assumption (WIC). For everyj = ¢+ 1,...,n, and somé < ¢ < (1 A 1), there exists a

sufficiently small > 0 satisfying,
P ([Tfﬂ\ﬁmﬁlfwu)so\] Ty, — n) 51 as t— oo, (3)
J
where[]; refers to thej’" element of the vector inside brackets.

In most settings it is not straightforward to show whether WIC is satisfied. However, a

simpler set of sufficient conditions can be easily derived:
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Proposition 1. Denotes, the smallest eigenvalue of .1, o, the sample standard deviation of
xj, for j =1,...,n, andp;; the sample correlation betweern, andz;,, fori =1,...,¢ and

j=q+1,....n.If

S1. P(S* <cq ) = 0asT — oc;

S2. P(max;—y,_,w; > ¢, q") = 0asT — oo; and

7777

S3. P(maxj—qi1,..n iy |pij|0: > ¢, q7) = 0a@sT — oo, for0 <~ <1, then

7777

~ ~—1
P (|:T_§/2|921911 W(].)S()|i| ) S T_g/ij — 7])

J

T/ 2.
> P ( min Aiwj > T2 4 77*) , (4)
Jj=q+1,...,n 0j

for some constant > c,c,/cs, andn* > max;_,1_,1/0;.
Proposition 1 guarantees that unddr, S2 and.S3, the condition
P ( Ifrllln — > CT—£/2QI+7+T+77*) — 1, (5)
J=q

implies the WIC. It can be inferred from (5) that we do not naexro-consistent estimator, but
estimates for the weights that satisfy the previous comaiti Biased estimators of the redundant
parameters can satisfy this condition if the bias is smadlgih. When; increases with’, the
weights of the redundant variables may increase accosding|

Following Zhao and Yu (2006), model selection consistes@guivalent t@ign consistency

Definition (Sign Consistency)We say thad is sign consistent t@ if

P (sgn(@) = sgn(@)) — 1, element-wise a§" — oc.



ESTIMATING HIGH-DIMENSIONAL TIME SERIES MODELS 9
Next proposition (equivalent to Proposition 1 in Huang e{2008)) provides a lower bound

on the probability of the adaLASSO choosing the correct rhode

Proposition 2. Let W (1) = diag(wy,...,w,), W(2) = diag(wgy1,...,w,), and s, =
sgn(0y(1)). Then

~

P <sgn(0) = sgn(@)) > P (ArnBr),

where
Ar = { 10X (U] < VTIBo| - P WD}, (6)
1 , 1 ~ 1
By = {Q\WX(Q) M()U] < = (W(2)1m BT NY oI W(1)so\)}, (6b)

whereU =Y — X0, M(1) = Iy — X(1)(X(1)X(1))"' X (1), and the previous inequal-

ities hold element-wise.

Events A, and B follow from the Karush-Kuhn-Tucker conditions. We can ursdend the
eventAr as “including relevant variables in the model” aid as “keeping irrelevant variables
outside the model”. It is straightforward to see that the VWl&ys a role in equation (6b),
meaning that even when this condition is violated, the ada®@ can still capture the relevant
features of the model. It is also easy to see why the WIC is asseey condition: if WIC does

not hold, thenP(Br) — 0.

3. MAIN RESULTS

In this section we present the main results of the paper: hsmlection consistency and
oracle property. We first present a set of technical assemgtontrolling the order of and

m, the size of the weights,, .. ., w,, and the regularization parameter

Assumption (REG). Let\, m, ¢, andT — oo such that

R1. [TU972 (mY?v q)] /A — 0and\/VT — 0
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R2. Denote’, the smallest eigenvalue .. There exists a positive, non-increasing, sequence
d,, indexed by, such thatP(d, < 6,) — 0 asT — oo.
R3. There exists a positive, non-decreasing, sequénaedexed by, such that

P('Enax w; >lq) —0asT — oo.

Jj=1,....q

R4. (¢ v \) ¢Y2/(VT 6,) — 0asT — oo.

Assumption R1 controls the number of candidate variabldssasimilar to the one employed
in Huang et al. (2008) and Huang et al. (2009). Assumptiondrrols the size of the smallest
eigenvalue of the estimated sample covariance m&krix We allow the size of the eigenvalues
to decrease as the number of the relevant variables insieabech is weaker than thigxed
lower bound adopted in the literature. Assumption R3 defarespper bound on the weights
wy, ..., w,. Assumption R4 controls the relationship amang,, ¢ and7'. By combining the
previous restrictions, one can see that the number of nelexaiables can increase polynomi-
ally with 7', depending o in DGP3.

For instance, take = 7"/2=¢/* and, for now, assume that (i)'/? > ¢. Assumption R1
is satisfied withm = o(T9¢/?). As in proposition 1, we satisfy R2 and R3 by takifig=
¢ ' andl, = ¢". Condition R4 is satisfied if (ii)/*'/2*" < X and (iii) 7-Y/2\g"*%/? —
0. Chooser > (d + 1)/2d and note that (jii) is satisfied if/(7/?7+3¢/2) — 0. Then,
substitutingr by (d + 1)/2d, we have fort = 1/2 that the choicen = O((T/log T)%*) and
q = O((T/ log T)¥*(44+1)) satisfy REG. It follows trivially that (i) and (ii) hold forray d > 1.

Theorem 1. Under assumptions DGP, PARAM, WIC and REG

P (sgn(a) = sgn(@o)) — 1, asT — oc.
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In Theorem 2 we show that the adaLASSO estimator for times@ossess the oracle prop-

erty, in a sense that converges to the same distributionea®Htls estimator a§ — oo. The

major relevance of this result is that one can carry out érfee about the parameters as if one

had used OLS in the model with only the relevant variablekiaed.

Theorem 2(Oracle Property) Let@ols(l) denote the OLS estimator 6f(1). Then, under as-
sumptions DGP, PARAM, WIC and REG, and for sgraémensional vectoex with Euclidean

norml, we have
VTd {5(1) - 90(1)] — VT [5015(1> - 90(1)] +0,(1).

It follows from Proposition 2 that if one takés= c,,q", 4, = c¢s¢~*, and replace the WIC by

(5), the previous results hold. The following corollarytetathis result.

Corollary 1. Under (5) and Assumptions DGP, PARAM]-S53, R1, and R4, the results of
Theorems 1 and 2 hold.

3.1. Selection of A and 7. The selection of the regularization parameteand the weighting
parameterr is critical. Traditionally, one employs cross-validatiand selects the pait\, 7)
within a grid that maximizes some predictive measure. Imeetdependent framework cross-
validation is more complicated. An alternative approact thas received more attention in
recent years is to choose the p@ir 7) using information criteria, such as the Bayesian Infor-
mation Criterion (BIC). Zou et al. (2007), Wang et al. (20@All Zhang et al. (2010) study such
method. Zou et al. (2007) show that the number of effectivarmpaters is a consistent estimator
of the degrees of freedom of the model. Wang et al. (2007) ghatthis method works in the
AR-LASSO framework. Finally, Zhang et al. (2010) study a engeneral criterion (General-
ized Information Criterion) and show that the BIC is cormmstin selecting the regularization

parameter, but not asymptotically loss-efficient. Althbwge do not derive theoretical results
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for consistency of such methods, we conjecture that the gaoperties derived in Zhang et al.
(2010) should hold in our framework. Furthermore, the métperforms remarkably well in

Monte Carlo simulations presented in the next section.

4., SMULATION

Consider the following data generating process (DGP):

Yr = Sy + B 1 (1) + uy, 7)

Uy = himst, e i t*(5) (8)

hy =5 x 107* + 0.9k, 1 + 0.05u , (9)

T, = L)) fiter e R t7(5),and (10)
z;-1(2)

fo=08fi1 + v, v S t(5), (11)

where¢ = 0.7 and3 is a vector of ones. The dependepntfollows an autoregressive dis-
tributed lag (ARDL) model with non-Gaussian GARCH errarg(1) isa(q — 1) x 1 vector of
included (relevant) variables. The vectey = [z,(1)’, z,(2)") € R, hasn — ¢ irrelevant
variables and follows a factor model with a single factoreTactor itself follows a first-order
AR process. All the errors are serially uncorrelated @addstributed with 5 degrees of freedom.
Furthermoreg,, e;, v, are mutually not correlated*(5) denotes an standardizedlistribution
with 5 degrees of freedom, such that all the errors have zeanrand unit variance. The vector
of candidate variables ®; = (y;_1, x}_,)’. Note that this is a very adverse setting as the errors
are not normal and are conditionally heteroskedastic.heuamore, the candidate variables are

all highly correlated, Cofr;, z;,) = 0.83, Vi # j.
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We simulateT” = 50, 100, 300, 500 observations of DGP (7)—(11) for different combina-
tions of candidater{) and relevant() variables. We consider = 100, 300, 1000 andg =
5,10, 15, 25. The models are estimated by the adaLASSO method and theswaily andr are
selected by the BIC.

We start by analyzing the properties of the estimators fergarametery in (7). Figures
1-4 illustrates the distribution of the bias for the oraald adaLASSO estimators for different
sample sizes. Several facts emerge from the plots. Filsbi) bias and variance are very
low. ForT = 50 andg = 5, the distribution of the adaLASSO estimator is very closéh®
distribution of the oracle. For the other valuegpthe adaLASSO distribution presents fat-tails
cause mainly by some outliers in the estimation. For 100, the adaLASSO distribution is
closer to the oracle one when= 5 or ¢ = 10. However, there still outliers. WheéR = 300 the
number of outliers reduces and the adaLASSO distributias geser to the oracle, specially
for ¢ = 5 0orq = 10. Forq = 15 or ¢ = 20, the bias is or orde®(10~3). The same pattern is
observed whefl” = 500.

Table 1 shows the average absolute bias and the average meaederror (MSE) for the
adaLASSO estimator over the Monte Carlo simulations anddineidate variables, i.e.,

1000 [

. 1 N n—1 R
Bias = 1500n Z ¢ — 0.7+ ; <6i — ﬁl)] and

j=1

1000

MSE = 10(1)On 2 _@_ 0'7>2 + "gj (BZ' - 5")1 ‘

J=1

It is clear that both variance and bias are very low. This [@ared, as expected, by the large
number of zero estimates. Finally, the bias and MSE decwiiséhe sample size.

Table 2 presents model selection results. Panel (a) pseentraction of replications where
the correct model has been selected, i.e., all the relewauatbles included and all the irrelevant

regressors excluded from the final model (correct sparsitiem). It is clear the performance
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of the adaLASSO improves with the sample size and gets wardbeanumber of relevant
variables increases. Furthermore, there is a slightlyribe&tion as the number of candidate
regressors increases. Panel (b) shows the fraction otatjoins where the relevant variables
are all included. Fof" = 300 and7" = 500, the true model is included almost every time. For
smaller sample sizes the performance decreases dranyatisalincreases. Panel (c) presents
the fraction of relevant variables included and Panel (dj\&the fraction of irrelevant variables
excluded. Itis clear that the fraction of included releveariables is extremely high, as well as
the fraction of excluded irrelevant regressors. Panelr@ents the average number of included
variables. Finally, Panel (f) shows the average number dtided irrelevant regressors. As
sample size increases, the performance of the adaLASS@wewr

Table 3 shows the MSE for one-step-ahead out-of-sampledsts for both the adaLASSO
and oracle models. We consider a total of 100 out-of-sampervations. As expected, for low
values ofq, the adaLASSO has a similar performance than the oracleq Foil0 or ¢ = 15,
the results are reasonable only Br= 300 or " = 500. The performance of the adaLASSO

also improves as the sample size increases.

TABLE 1. PARAMETER ESTIMATES: DESCRIPTIVE STATISTICS.

The table reports for each different sample size, the agesgolute bias, Panel (a), and the average mean square(\si6), Panel
(b), over all parameter estimates and Monte Carlo simuiatia is the number of candidate variables whergds the number of
relevant regressors.

T =50 T =100 T = 300 T =500
¢\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

Panel (a): Bias
5 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 000.00.000 0.000
10 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.0aD0O0CO -0.000 -0.000 -0.000
15 -0.004 -0.002 -0.001 -0.000 -0.000 -0.000 0.000 -0.00000®  0.000 0.000 0.000
20 -0.007 -0.003 -0.001 -0.002 -0.002 -0.001 -0.000 0.00000®. -0.000 -0.000 0.000

Panel (b): MSE
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.000
10 0.012 0.016 0.010 0.000 0.000 0.000 0.000 0.000 0.000 00.00000 0.000
15 0.100 0.060 0.025 0.002 0.006 0.008 0.000 0.000 0.000 00.00000 0.000
20 0.215 0.108 0.043 0.023 0.034 0.021 0.000 0.000 0.000 00.00.000 0.000
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Distribution of the AR coefficient estimates (bias): T=50, n=100, g=5
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TABLE 2. MODEL SELECTION: DESCRIPTIVE STATISTICS.
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The table reports for each different sample size, sevemtibits concerning model selection. Panel (a) preserts th
fraction of replications where the correct model has beéscts, i.e., all the relevant variables included and &l th
irrelevant regressors excluded from the final model. Pdnjesliows the fraction of replications where the relevant
variables are all included. Panel (c) presents the fractfaalevant variables included. Panel (d) shows the fraatio
irrelevant variables excluded. Panel (e) presents thegeatumber of included variables. Finally, Panel (f) shdves t
average number of included irrelevant regressors.

q\n

10
15
20

10
15
20

10
15
20

10
15
20

10
15
20

10
15
20

T =50 T =100 T = 300 T =500
100 300 1000 100 300 1000 100 300 1000 100 300 1000
Panel (a): Correct Sparsity Pattern

0.894 0.752 0.592 0.999 0.989 0.966 1 1 0.998 1 1 1
0.025 0.001 0 0.250 0.058 0.008 0.964 0.868 0.628 0.994 670.90.868

0 0 0 0.010 0 0 0.628 0.239 0.025 0.915 0.783 0.371

0 0 0 0 0 0 0.177  0.006 0 0.676 0.271  0.020

Panel (b): True Model Included

1 0.999 0.987 1 1 1 1 1 1 1 1 1
0.716 0.278 0.014 0.999 0.999 0.967 1 1 1 1 1 1
0.045 0 0 0.933 0.633 0.129 1 1 0.997 1 1 1

0 0 0 0.479 0.054 0 1 0.999 0.995 1 1 0.999

Panel (c): Fraction of Relevant Variables Included
1.000 0.999 0.996 1 1 1 1 1 1 1 1 1
0.941 0.756 0.468 0.999 0.999 0.994 1 1 1 1 1 1
0.690 0.425 0.234 0.993 0.940 0.724 1 1 0.999 1 1 1
0.529 0.306 0.157 0.935 0.740 0.447 1 0.999 0.999 1 1 0.999
Panel (d): Fraction of Irrelevant Excluded
0.998 0.998 0.999 1 1 1 1 1 1 1 1 1
0.928 0.958 0.983 0.980 0.985 0.990 0.999 0.999 0.999 90.99 1 1
0.886 0.948 0.982 0.922 0.947 0.974 0.994 0.994 0.996 90.99.999  0.999
0.872 0.945 0.981 0.873 0.926 0.971 0.974 0.979 0.986 50.99.995 0.996
Panel (e): Number of Included Variables
5.158 5.485 6.228 5.001 5.011 5.035 5.000 5.000 5.002 5.080000 5.000
15.929 19.803 21.385 11.801 14.336 19.471 10.036 10.194521 10.006 10.035 10.137
20.017 21.177 21.431 21.492 29.279 36.125 15.500 16.6D4264 15.086 15.237 15.941
20.802 21.641 21.392 28.837 35.394 37.861 22.076 25.990223 20.415 21.415 24.247
Panel (f): Fraction of Included Irrelevant Variables

0.158 0.487 1.250 0.001 0.011 0.035 0 0 0.002 0 0 0
6.522 12.245 16.710 1.802 4.337 9.536 0.036 0.144 0.457 0060. 0.035 0.137
9.671 14.800 17.915 6.593 15.182 25.272 0.500 1.614 4.2780.086 0.237 0.941
10.230 15.523 18.261 10.143 20.595 28.916 2.076  5.9912314. 0.415 1.415 4.265

5. APPLICATIONS

5.1. Inflation Forecasting. We consider quarterly inflation forecasting by many premst

The dataset was obtained from the Federal Reserve Bank ldehuhia and is part of the
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TABLE 3. FORECASTING DESCRIPTIVE STATISTICS.

The table reports for each different sample size, the oge-shead mean squared error (MSE) for the
adaLASSO, Panel(a), and the Oracle, Panel (b), estimatdssthe number of candidate variables whergas
is the number of relevant regressors.

T =50 T =100 T =300 T =500

g\n 100 300 1000 100 300 1000 100 300 1000 100 300 1000

MSE - adaLASSO
5 0.011 0.016 0.059 0.010 0.010 0.010 0.010 0.010 0.010 0.m010 0.010
10 1.458 5.720 12.413 0.014 0.015 0.167 0.011 0.010 0.011 110.@.010 0.010
15 11.831 22.072 32.054 0.216 1.957 9.318 0.013 0.015 0.326.0130 0.013 0.014
20 25.882 41.455 59.432 2.584 11937 25.761 0.028 0.050 20.200.022 0.026 1.495

MSE - Oracle
5 0.011 0.011 o0.011 0.010 0.010 ©0.010 0.010 0.010 o0.010 0.@010 0.010
10 0.012 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 00.@010 0.010
15 0.014 0.014 0.014 0.011 0.012 0.011 0.010 0.011 0.010 00.@m010 0.010
20 0.017 0.017 0.017 0.012 0.012 0.012 0.011 0.010 0.010 00.m010 0.010

database called “Real-Time Data Set for Macroeconomistsith consists of vintages of major
macroeconomic variables. For the present work, we usedtbalyintage available at the third
quarter of 2011, which contains data from the first quartet @9 and ends in the second
quarter of 2011, totalling 210 observations. The dependanable corresponds to the GDP
price index and can be expressed as a ratio of nominal outgutesal output. There are a total

of 69 variables plus one lag of inflation. The predictive esgion is then written as

i1 = Qo + o1 + By + gy,

wherer, is the quarterly inflation at timeandx; is the vector of predictors.

All variables have been pretested for unit-roots and fiffét@nced whenever necessary. We
consider three forecasting periods starting, respegtinel 970, 1985 and 2000. An expanding
window scheme is used to estimate the models recursivelycaocompute the one-step-ahead
forecasts. We compare the adaLASSO with three differentlmark alternatives: a model
with all the regressors included, a simple first-order AR slpdnd a factor model based on

the first two principal components of the predictors. Thailtssare shown in Table 4. It is
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TABLE 4. INFLATION FORECASTING RESULTS. OUT-OF-SAMPLE R? (x100).

The table reports the out-of-sampk¥ multiplied by 100. Three different
forecasting periods are considered. The first one startarinaly 1970, the
second one in January 1985, and the last one starts in Ja2Q@0y

1970 1985 2000

Benchmark Models

All Regressors 25,29 19.47 29.29
AR(1) 79.54 78.09 78.60
AR(1) + PCA (two components) 76.62 69.36  73.75

LASSO and adaLASSO
LASSO (BIC) 86.92 88.01 90.42
adalLASSO (BIC) 85.87 88.01 90.42

clear from the table that both the LASSO and the adaLASSO teate far superior than
the benchmark for all the three periods considered. Furtbe, the LASSO and adaLASSO

results are almost identical.

5.2. Equity Premium Forecasting. Excess returns prediction has attracted academics and
practitioners for many decades. In a recent paper, Goyal\sich (2008) argued that none of
the conventional predictor variables proposed in theditee seems capable of systematically
predicting stock returns out-of-sample. Their empiricadence suggests that most models
were unstable or spurious, and most models are no longefisagr even in-sample. However,
Campbell and Thompson (2008), on the other hand, showedrthay predictive regressions
outperform the historical average once weak restrictiorsimposed on the signs of coeffi-
cients and return forecasts. The out-of-sample explayaitvantage over the historical mean
is small and usually statistically not significant, but nihveéess economically meaningful for
mean-variance investors. Three recent papers corrobbiatesults in Campbell and Thomp-
son (2008). Rapach et al. (2010) consider combining indafidorecasts in order to attenuate
the effects of model uncertainty and instability. They showansistently over time, that sim-

ple model combination delivers statistically and econa@ihycsignificant out-of-sample gains
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relative to the historical average. In a similar directibeg et al. (2008) proposed bagging
estimators to reduce model instability and showed sigmficaprovements over the historical
mean. Finally, Ferreira and Santa-Clara (2011) proposet#sting separately the three com-
ponents of stock market returns: the dividend-price raaynings growth, and price-earnings
ratio growth.

Using the same dataset as in Goyal and Welch (2008) and Rapath(2010) we apply the

adalLASSO to the following monthly predictive regression:
Tyl = Te4l — Tfep1 = Go + o171y + 0’z + upiq, (12)

wherer; represents the market returns in excess to the risk-fre¢a), =, is a set of lagged
predictors, andy; is the error term. Stock returns are measured as contingoasipounded
returns on the S&P 500 index, including dividends, and trea3ury bill rate is used to compute
the equity premium. With respect to the economic variabdesiuo predict the equity premium,
we consider, in addition tg}_,, the 14 variables from Goyal and Welch (2008): Dividend:@ri
ratio (log); dividend yield (log); earnings-price ratim); dividend-payout ratio (log); stock
variance; book-to-market ratio; net equity expansiorgdtey bill rate; long-term yield; long-
term return; term spread; default yield spread; defaultrrespread; and inflation.

We consider three different out-of-sample forecast evelogeriods: (i) a “long” out-of-
sample period covering January 1965 to December 2008; péreod covering the last thirty
years of the full sample, January 1976 to December 2008;iana (short” forecasting period
starting in January 2000. The dataset starts in January. IR4& out-of-samplé??s for one-
step-ahead forecasts are shown in Table 5. The results aressive. The LASSO and the

adaLASSO estimators are far superior that all the compstitossample periods considered.
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TABLE 5. EQUITY PREMIUM FORECASTING RESULTS. OUT-OF-SAMPLE R?
(x100).

The table reports the out-of-sample multiplied by 100. Three different
forecasting periods are considered. The first one startarinaly 1965, the
second one in January 1976, and the last one starts in Ja2Q@0y

1965 1976 2000

Unrestricted Individual Predictors

AR(1) -0.16 -0.10 0.85
All Regressors -0.07 -0.81 -1.45
Dividend Price Ratio 0.31 -0.82 3.80
Dividend Yield 0.40 -0.81 4.14
Earning Price Ratio 0.53 0.39 4.33
Dividend Payout Ratio -0.51 -1.09 -0.53
Stock Variance -0.19 0.39 4.76
Book to Market -0.82 -0.71 1.30
Net Equity Expansion -0.82 -0.66 -3.20
T-Bill Rate -0.73 -2.86 -3.03
Long Term Yield -0.76 -2.05 -0.87
Long Term Spread 0.23 -0.81  -0.93
Term Spread -0.96 -259 -3.38
Default Yield Spread -0.66 -0.66 -0.96
Default Return Spread -0.20 -0.03 1.02
Inflation 0.72 -0.09  -3.97
Forecast Combination

Mean 1.31 0.54 1.07
Median 0.92 0.11 0.24
Trimmed Mean 1.31 0.54 1.07
LASSO and AdaLASSO

LASSO 7.36 6.95 13.11
adaLASSO 7.36 6.95 13.11

6. CONCLUSION

We studied the asymptotic properties of the adaLASSO estinrasparse, high-dimensional,
linear time series model when both the number of covariatélse model and candidate vari-

ables can increase with the sample size. Furthermore, tmderuof candidate predictors is
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possibly larger than the number of observations. The resulhis paper extend the literature
by providing conditions under which the adaLASSO corres#iects the relevant features and
has the oracle property in a time-series framework with § general error term. A key in-
gredient is the WIC, which is necessary for sign consisteridiie adaLASSO. As a technical
by-product some conditions in this paper are improvementthe frequently adopted in the
shrinkage literature.

The main results presented in this paper are based on thapissa that only a few number
of candidate variables are in fact relevant to explain theadyics of the dependent variable
(sparsity). This a key difference from the factor modelsriture. The estimation of factors
relies on the key assumption that the loading matrix is deirse almost all variables are im-
portant for the factor determination. When the loading irasr sparse, the usual asymptotic
results for factor estimation do not hold anymore. Themefpenalized estimation based on the
adalLLASSO and similar methods are of extreme importance.ederwhen the structure of the

model is dense, than factor models would probably be a beteEmnative.

APPENDIX A. PROOFS

Proof of Proposition 1.The proof consists in showing th%{ﬁmﬁ;fW(l)sd < 0w gt
J
Write [‘ﬁglﬁl_llW(l)So‘] = |T*1X;X(1)§1_11W(1)50\ andQ,, = EDE', whereE is a
J
matrix of eigenvectors anfd a diagonal matrix of eigenvalues. By S1, we have

q
- A1 qo; .
T lX;X(l)Qn W(1)so| <~ Z |pijloiw;.
Cs =1
Combining the previous equation with S2 and S3, we have
qo; I Cw C
c—; Z |pijloiwi < Uj%qlﬂw-
=1

The result follows by taking > c,c,/cs. O
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Proof of Proposition 2.The proof follows as in Proposition 1 of Zhao and Yu (2006). [

Proof of Theorem 1Proposition 2 provides a lower bound on the probability déstng the

correct model:
P (sen(8) = sgn(80)) = P (Ar N Br) = 1 - P (A5) — P (B5),

where A5, and BS. are the complements oA, and B respectively. Therefore, to show sign
consistency we have to show that.A5) — 0 and P(B5) — 0 asT — oo.

Note that, under WIC,

1 An
c —1/2 3/ -
BS C {j:fﬁ??f,n T2 X M(1)U| > F(l_w}.

Denotef(1) = [X (1)’ X (1)]"" X (1)'Y the ordinary least squares estimato®gf1). We
can bound the element on the right hand side of the inequaitiyeen brackets by
TP M(D)U| < |TPXU |+ TP X P()U|
= |7 XU+ |TXX (1) [001) - 8(1)] |
< |2 xiUl| + ‘{T‘lX;X(l) —E[T'X X ()]} T [9(1) - 00(1)] ‘
+ ‘E XX ()] TV [8(1) - 60(1)] ‘

:Bl+BQ+Bg.
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Set,uij = E(ZEZ‘tht). Note that,

By = [{T7' X, X (1) ~E [T XX ()]} 72 [8(1) - 60(1)]

q T
Z (Tl ijtxit - Mij) Tl/Q(éi - 90i)

=1 t=1

)

< 0,(1) i ‘TI/Q [éz - 60i:|
i=1

where the last line follows from the law of large numbersEas;;z;;) < oo, for every pair

(i,7) (DGP2). Choos@, > max; ; ||, then

By = ‘E [T X X (1)] TY2(6; — 0

q
= Z ,UijTl/Z(éi — 0oi)

i=1

q

§M2Z

i=1

TI/Q(QNZ' — 002) .

Therefore, by combining these bounds,

q

By + By < [pia + 0p(1)] Y

i=1

Tl/Q(éi — 001)

< [p2 + 0p(1)] sup T/

a’a=q

o {9(1) - 90(1)]

Y

which does not depend gn= g + 1, ..., n. Thus,

max }T’l/QX;-M(l)U} < max By + [pg + 0,(1)] sup T2
J J

a’a=q

o {9(1) - 90(1)] ) .
Define the set

C= {(m +0,(1)) sup T2 ‘a’ [9(1) - 00(1)} ) > AnT—<1—E>/2/4} .

a’'a=q
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Then,
B°NCe = { max |T7'2X5U| > T~ 5/2/4}

Jj=q+1,...,n
Now, Pr(B¢) < Pr(B°NC°) + Pr(C). We shall bound both terms on the right hand side using
Markov’s inequality (M), Cauchy-Schwarz inequality (C&hd the union bound (U).

o [9(1) - 90(1)] ) = T(lé)/24?/172 + Op(l)])

L o o0 (e )

S 16[M2+0

TV20/ [9(1) - 90(1)]
22T (-9

(©9) 16 [p2 + 0(1)] 1/2
< By 0zsgpqoz "o x Zlvar [TY2(6; — 0y)]

16 [115 + 0(1)] 1/2
< —)\QUQT*(PE) 7 lrgzagzvar [T (6 — «902)}

T'-¢4% 16 1 ~
_ )\2q [,UQ ;; 0( )] 1rr<1a<x var |:T1/2(92 o 901)]
S1q

— 0,
asq andT — oo if g\/T(1~9/2 — 0 (R1). For the first term on the right hand side we have

Pr(B°NC°) < Pr (mjax \T_1/2X9U| > )\nT—(l—E)/Q/4)

) &
< 3 Pr(|TVAXNU| > T 92)4)
Jj=q+1
E|T2 XU
4 Z N\dpd—d(1-€)/2
Jj=q+1

(DGP3) gd¢, T d1-€)/2
T A\

— 0,
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asm andT — oo if mY4T1-9/2 /X — 0 (R1).

Combining these limits we haver(5¢) — 0.

DenoteE D E' the eigen-decomposition 6f,,. Denotex agx 1 non-negative vector. Under

Conditions R2 and R3 we have

2 P
] < sup (O‘IQHIW(USO)?

J oa’'a<ll

©5) 162 / 2
< sup &'Qy; ax sgW(l)%s

a’a<l

(R3)
< sup &’ ED?FE'a x qli

oa’'a<ll
2l
— 2
6‘]

7777

~—1
0, W(1)so|| <25k
J

Applying the same reasoning and by using the Jensen’s itigg{d we have

Q. X(1)'U

e (e, [T ) <, 1 (@i xoyo)

a’a<l
(©9) 12 —1/2 v TT\2
< E| sup &'Qy; a x ¢ max (T /XjU)
o’ a<l J=1,.., q

(R2)
< 9, °qE [.I_nax (T2X /-U)Q]

Jj=1,....q

(J) 1/d
< 5;2q1+1/d max <E ‘T_1/2X;U‘2d)
J= q

- L.,

1/d

(Dip;g) q1+1/dcd/
— 2
5‘1



ESTIMATING HIGH-DIMENSIONAL TIME SERIES MODELS 27

Note that under DGP, PARAM, R2, R3, and R4, we have

VTO. /3 zq}

ATQ{»mﬁxq[T‘m)ﬁl—f"“)"f”> ¢ VTS,

VT, }

2q

C{ max |T7'/? ﬁilX(l)’U >
jmax 1

It then follows from the Markov’s inequality and R4 that

P(Ar) <P <'max [Tﬁl/Q

Jj=1,...q

ﬁ&)

2q

) ()

ﬁij(n’UH >

Q,, X(1)U

(M)
< E('max [Tﬁl/Q
J

Proof of Theorem 2Write Q(0) = —2X'(Y — X6) + A\W sy, where
sg = (sgn(6y),...,sgn(6,))

andW = diag(wy,...,w,). By replacingf by the adaLASSO estimator and writilg =
(Y — X (1)6(1)) we have that

VIB(1) = 00(1) = Z= 8, XU + =00/ 920(2) +

The first term on the right hand size is, by definiti@fil’ (6,,,(1) — 8,(1)). It follows from
the inequalitySupa,aSl(o/ﬁ{fW(l)so)2 < q1? /57 derived in the proof of Theorem 1 that the
third term on the right hand side can be bounded\ipy/’? lq/2\/T6q, which converges to by
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R4. Under R4 and the results in Theorem 1, an application@fCthuchy-Schwarz inequal-
ity shows that the second term on the right hand side, (i$), i.e., (\/Ta/ﬁl_llﬁlgb\(2))2 <
T (o', o) (6(2)020(2)) = 0,(1). O

REFERENCES

Bai, J. and Ng, S.: 2002, Determine the number of factorspm@pmate factor model&cono-
metrica70, 191-221.

Bai, J. and Ng, S.: 2008, Forecasting economic time seriag targeted predictordpurnal of
Econometric446 304-317.

Belloni, A., Chen, D., Chernozhukov, V. and Hansen, C.: 2@arse models and methods for
instrumental regression, with an application to eminembaio, Working Paper - MIT.

Campbell, J. and Thompson, S.: 2008, Predicting the equéynjum out of sample: Can
anything beat the historical averag&&view of Financial Studiesforthcoming.

Davidson, J.: 19945tochastic Limit TheoryOxford University Press, Oxford.

Dedecker, J., Doukhan, P., Lang, G., Léon, J., Louhichar@. Prieur, C.: 200A\Veak depen-
dence with examples and applicatiopringer.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R.: £Q@ast angle regressiohhe Annals
of Statistics32(2), 407—499.

Fan, J. and Li, R.: 2001, Variable selection via nonconcarefized likelihood and its oracle
properties,Journal of the American Statistical Associati®d 1348—-1360.

Ferreira, M. and Santa-Clara, P.: 2011, Forecasting starkehreturns: The sum of the parts
is more than the whol&dournal of Financial Economic$00, 514-537.

Goyal, A. and Welch, I.: 2008, A comprehensive look at the ielcgd performance of equity
premium predictionReview of Financial Studiesforthcoming.

Hsu, N., Hung, H. and Chang, Y.: 2008, Subset selection fotoveautoregressive processes

using lassoComputational Statistics & Data Analy$s&(7), 3645-3657.



ESTIMATING HIGH-DIMENSIONAL TIME SERIES MODELS 29

Huang, J., Horowitz, J. and Ma, S.: 2009, Asymptotic prapsrof bridge estimators in sparse
high-dimensional regression modetg)nals of Statistic86(2), 587—613.

Huang, J., Ma, S. and Shang, C.-H.: 2008, Adaptive lassopfarse high-dimensional regres-
sion modelsStatistica Sinica 8, 1603—-1618.

Issler, J. and Lima, L.: 2009, A panel-data approach to emwndorecasting: The bias-
corrected average forecadgurnal of Econometric$52, 153-164.

Kock, A.: 2012, Consistent and conservative model selecticstationary and non-stationary
autoregressionfesearch Paper Q&CREATES, Aarhus University.

Kock, A. and Callot, L.: 2012, Oracle inequalities for higingnsional vector autoregressions,
Research Paper 1ZREATES, Aarhus University.

Lee, T.-H., Hillebrand, E. and Medeiros, M.: 2008, Let’s tlagain: Bagging equity premium
predictors Discussion paperPontifical Catholic University of Rio de Janeiro.

Meinshausen, N. and Yu, B.: 2009, Lasso-type recovery ofsgpeepresentations for high
dimensional datalhe Annals of Statistic®7, 246—270.

Nardi, Y. and Rinaldo, A.: 2011, Autoregressive process @ing via the lasso procedure,
Journal of Multivariate Analysid02, 528-549.

Rapach, D., Strauss, J. and Zhou, G.: 2010, Out-of-sampl&/garemium prediction: Consis-
tently beating the historical averageeview of Financial Studie&3, 821-862.

Rech, G., Terasvirta, T. and Tschernig, R.: 2001, A simpleable selection technique for
nonlinear modelsSCommunications in Statistics, Theory and Meth8ds

Song, S. and Bickel, P. J.: 2011, Large vector autoregnesgoXiv e-prints.

Stock, J. and Watson, M.: 2002a, Forecasting using prihcgraponents from a large number
of predictors Journal of the American Statistical Associati®n 1167-1179.

Stock, J. and Watson, M.: 2002b, Macroeconomic forecastangg diffusion indexeslournal

of Business and Economic Statisti3 147-162.



30 ESTIMATING HIGH-DIMENSIONAL TIME SERIES MODELS

Tibshirani, R.: 1996, Regression shrinkage and selectiarthe Lasso,Journal of the Royal
Statistical Society. Series B (Methodologica®f1), 267—288.

van der Geer, S. and Buhlmann, P.: 208iatistics for High-Dimensional Data: Methods,
Theory and ApplicationsSpring Series in Statistics, Springer.

Wang, H., Li, G. and Tsai, C.. 2007, Regression coefficiewt amoregressive order shrink-
age and selection via the lassilournal of the Royal Statistical Society: Series B(Staast
Methodologyp9(1), 63—78.

Zhang, Y., Li, R. and Tsai, C.-L.: 2010, Regularization paeser selections via generalized
information criterion Journal of the American Statistical Associatibds, 312—-323.

Zhao, P. and Yu, B.: 2006, On model consistency of lagsarnal of Machine Learning Re-
search7, 2541-2563.

Zou, H.: 2006, The adaptive lasso and its oracle propei@msgnal of the American Statistical
Associationl01, 1418-1429.

Zou, H., Hastie, T. and Tibshirani, R.: 2007, On the degrédéeedom of the lassd\nnals of
Statistics35, 2173-2192.



2012

2012-21:

2012-22:

2012-23:

2012-24:

2012-25:

2012-26:

2012-27:

2012-28:

2012-29:

2012-30:

2012-31:

2012-32:

2012-33:
2012-34:

2012-35:

2012-36:

2012-37:

Research Papers mc REATES

Center for Research in Econometric Analysis of Time Series

Andrey Launov, Olaf Posch and Klaus Walde: On the estimation of the
volatility-growth link

Peter O. Christensen and Zhenjiang Qin: Information and
Heterogeneous Beliefs: Cost of Capital, Trading Volume, and Investor
Welfare

Zhenjiang Qin: Heterogeneous Beliefs, Public Information, and
Option Markets

Zhenjiang Qin: Continuous Trading Dynamically Effectively Complete
Market with Heterogeneous Beliefs

Heejoon Han and Dennis Kristensen: Asymptotic Theory for the QMLE
in GARCH-X Models with Stationary and Non-Stationary Covariates

Lei Pan, Olaf Posch and Michel van der Wel: Measuring Convergence
using Dynamic Equilibrium Models: Evidence from Chinese Provinces

Lasse Bork and Stig V. Mgller: Housing price forecastability: A factor
analysis

Johannes Tang Kristensen: Factor-Based Forecasting in the Presence
of Outliers: Are Factors Better Selected and Estimated by the Median
than by The Mean?

Anders Rahbek and Heino Bohn Nielsen: Unit Root Vector Auto-
regression with volatility Induced Stationarity

Eric Hillebrand and Marcelo C. Medeiros: Nonlinearity, Breaks, and
Long-Range Dependence in Time-Series Models

Eric Hillebrand, Marcelo C. Medeiros and Junyue Xu: Asymptotic
Theory for Regressions with Smoothly Changing Parameters

Olaf Posch and Andreas Schrimpf: Risk of Rare Disasters, Euler
Equation Errors and the Performance of the C-CAPM

Charlotte Christiansen: Integration of European Bond Markets

Nektarios Aslanidis and Charlotte Christiansen: Quantiles of the
Realized Stock-Bond Correlation and Links to the Macroeconomy

Daniela Osterrieder and Peter C. Schotman: The Volatility of Long-
term Bond Returns: Persistent Interest Shocks and Time-varying Risk
Premiums

Giuseppe Cavaliere, Anders Rahbek and A.M.Robert Taylor:
Bootstrap Determination of the Co-integration Rank in
Heteroskedastic VAR Models

Marcelo C. Medeiros and Eduardo F. Mendes: Estimating High-
Dimensional Time Series Models



