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1 INTRODUCTION

Affine term structure models assume a stationary vectorautoregressive (VAR) process

for the factors that drive interest rates. Time series estimates of the VAR typically

imply that long-term expectations of future spot rates have very little variation. With

constant risk premiums long-term yields would then have very low volatility. In the data

long-term yields are, however, almost as volatile as short-term yields. To explain this

volatility in the data risk premiums need to be very volatile. This implication hinges on

the estimated persistence in the VAR model.1 To explain the volatility puzzle without

highly volatile risk premiums mean reversion in interest rates must be very slow, and

hence the VAR models need a near unit root.

The sensitivity with respect to near unit root parameters is illustrated in Cochrane

and Piazzesi (2008) and Jardet, Monfort and Pegoraro (2011). Both studies compare

the long-run forecasts of the short-term interest rate from estimated VAR models with

and without imposing cointegration among yields of different maturities. These long-

run forecasts are very different. For the stationary VAR they are close to the constant

unconditional mean of the spot rate, whereas the cointegrated model produces forecasts

that are very close to the current level of the spot rate.

Affine models are usually estimated using data with maturities up to 10 years, as this

is often the longest maturity for which long time series with accurately measured yield

data are available. For many applications, like the valuation of long-dated liabilities of

insurance companies and pension funds, or managing the risk of portfolios of mortgage

loans, one needs to extrapolate the yield curve and its volatility to maturities of thirty

years and more. Both extrapolations are very sensitive to the near unit-root parameter

in the VAR model.

How to deal with this sensitivity remains problematical, however. Estimates of the

largest autoregressive root are biased downwards due to the well-known Kendall bias,

1 See Bauer (2011) for a recent analysis of the relation between the excess volatility puzzle and

persistent interest rate shocks. The puzzle has a long history. In his seminal paper Shiller (1979)

already conjectured a link between volatility and unit roots: ‘. . . we have no real information in small

samples about possible trends or long cycles in interest rates. Indeed, [. . . ] short-term interest rates

may be unstationary’ (p. 1213).
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which is exacerbated in multivariate systems (see Abadir, Hadri and Tzavalis (1999)).

Recently various bias-adjustment procedures have been proposed.2 Instead of further

refining the estimators of (Gaussian essentially) affine models, we extend the class of

models to include fractionally integrated processes. Fractional integration, denoted I(d),

is a parsimonious and flexible means to model the long memory properties of interest

rate dynamics, as it allows a smooth transition between stationary I(0) processes and

non-stationary unit-root I(1) processes. The fractional model can generate forecasts

that are in between the stationary and cointegrated models.

We see three motivations for applying fractional integration to model the term struc-

ture of interest rates. First, many studies have estimated the fractional integration

parameter of interest rate time series and report that the order d is between 0.8 and

1, but significantly different from zero.3 For our empirical data of 58 years of monthly

observations we confirm the general result in the literature and estimate the order of

integration as d = 0.89. That means that the level of interest rates is non-stationary,

but less persistent than a random walk or I(1) process.

Second, fractional integration models are linear and therefore analytically tractable.

We show that one obtains a closed-form solution for the term structure for any Gaussian

linear process for the spot rate combined with any Gaussian linear process for the price of

risk, jointly driven by K shocks. For excess returns the solution is K-factor affine. The

solution is very similar to the Gaussian essentially affine model of Duffee (2002). Because

it leads to an affine term structure, we prefer the fractional model to other model classes

that can also generate long-memory like behavior such as regime switching models. As

Diebold and Inoue (2001) have shown, a fractionally integrated model provides a good

approximation for long-run predictions for time series that are subject to occasional

2 Bauer, Rudebusch and Wu (2011) develop a bootstrap adjustment for the VAR parameters under

the P measure. Jardet et al (2011) suggest to take a weighted average of the stationary and cointegrated

forecasts. Joslin, Priebsch and Singleton (2010) impose the condition that the largest eigenvalue under

Q is equal to the largest eigenvalue under P. De Wachter and Lyrio (2006) impose the unit root under

the P measure, whereas Christensen, Diebold and Rudebusch (2011) impose the unit root under the

Q measure. Cochrane and Piazzesi (2008) estimate persistence under the Q measure and infer the

persistence under P by constraining the specification for risk prices.
3 See, e.g., Shea (1991), Gil-Alana (2004), Sun and Phillips (2004), Iacone (2009), and Gil-Alana

and Moreno (2012).
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breaks in the mean. Connolly, Güner and Hightower (2007) further demonstrate that a

long-memory model for the short rate may describe the series more accurately than a

structural change model.

Third, fractional models have been shown to fit certain characteristics of the cross

section better than stationary models. Our approach has been motivated by Backus

and Zin (1993), who assumed a fractional ARFIMA(p,d,q) time-series process for the

spot rate together with a constant risk premium. With this model they succeed in

matching the observed mean and volatility of yields. We extend their work by relaxing

two of their assumptions. First, we relax their assumption that interest rates must be

stationary with d < 1
2 . The assumption was necessary for their tests of unconditional

moments of yield levels, but not required for our tests on the volatility of excess returns.

Indeed, most time-series estimates of the order of integration indicate that interest rate

levels are non-stationary with d > 1
2 . Second, we allow for time-varying risk premiums,

both because there is strong empirical evidence that excess returns have a predictable

component, and because these may be an important source of volatility in bond returns.4

A related approach is the shifting endpoints model of Kozicki and Tinsley (2001).

They specify long-horizon expectations of the short-term interest rate as a (nonlinear)

function of inflation and inflation expectations. The shifting endpoint serves as the

‘level’ factor for the term structure. Kozicki and Tinsley (2001) argue that this factor

is successful in tracking long-maturity yields. The long-memory properties of the factor

are due to the non-stationarity of inflation and in some specifications to regime shifts in

the monetary policy target inflation rate. As an alternative, Kozicki and Tinsley (2001)

also explicitly model the endpoint as the result of a unit root process for the short-term

interest rate. Empirically this model performs worse than the shifting endpoints model.

We therefore interpret their evidence as an indication that fractional models may provide

the right amount of persistence. As with Backus and Zin (1993), an important difference

4 See Fama (1984) and Fama and Bliss (1987) for early evidence that excess long-term bond returns

have a small but significant predictable component. Campbell and Shiller (1991) extensively document

that high spreads predict higher than average excess returns. More recently, Cochrane and Piazzesi

(2005) capture approximately 40 percent of the variation in bond returns with a return forecasting

factor, defined as a linear combination of forward premiums of different maturities.
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between our approach and Kozicki and Tinsley (2001) is that we allow for time-varying

risk premiums.

For the price of risk we also consider a fractional model. This deviates both from the

affine literature and much of the cointegration literature, which generally relates the risk

premium to yield spreads and forward premiums. In the literature it is mostly assumed

that spreads are I(0).5 Recent time series tests reach a different conclusion. Both Chen

and Hurvich (2003) and Nielsen (2010) find that spreads have a fractional order that is

significantly larger than zero, but with point estimates that are less than a half. This

means that spreads and risk premiums are still stationary, but more persistent than an

I(0) process. For our data we confirm these time-series estimates. More importantly,

we obtain the same order of integration for expected excess returns when we estimate

the persistence from the cross-sectional factor loadings of long-maturity bond returns.

Both lead to a value of d ≈ 0.4. Risk premiums are therefore stationary.

Our focus is on long-maturity bonds. At long maturities only the low-frequency

components in the ‘level’ factor matter and we can work with a single-factor model as in

Backus and Zin (1993) and Kozicki and Tinsley (2001). We use a two-stage estimation

procedure. In the first stage we estimate the fractional order of integration d of the

short-term interest rate. In the second stage we use moments related to the volatility

and predictability of excess returns on discount bonds with 5- and 10-years to maturity

to estimate the parameters of the risk-price process.

When we compare term-structure estimates for different orders of integration, we find

a strong interaction between the persistence of the ‘level’ factor and the risk premium

in long-maturity bond returns. With low persistence in the ‘level’ factor, the correlation

between risk prices and the spot rate is positive. When persistence is above the threshold

of d = 0.7, the correlation changes sign. In this case the expectations driven part of

the volatility of excess returns is larger than the total volatility. This implies that the

covariance between risk premiums and changes in expectations must be negative to

match the volatility in the data. Our estimate of the persistence of the level factor is

d = 0.89. This estimate implies the negative correlation and is consistent with stylized

5 See the large literature following Campbell and Shiller (1987).
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facts in the data like the regressions of excess returns on lagged spreads or on a prediction

factor. With lower values of fractional integration the model is not able to replicate these

regression results in the data.

2 LONG-MEMORY AFFINE TERM STRUCTURES

2.1 An essentially affine model for general linear time series

processes

Our model is a generalization of a discrete-time, Gaussian, essentially affine model for

the term structure of interest rates developed by Duffee (2002). Two differences are

important: (i) the dynamics for the short-term interest rate can be more general than

a VAR and (ii) the dynamic structure for the price of risk can be different from the lag

structure of the factors.

We assume that the one-period spot rate, rt, can be represented by the linear MA

specification

rt = µr +
∞
∑

j=0

c′jǫt−j , (1)

where cj and ǫt are vectors of length K and µr is a scalar constant. We assume that ǫt

is a normal, independently and identically distributed innovation, with mean zero and

covariance matrix Σ. The cj coefficients are the impulse responses of the short rate with

respect to the shocks ǫt+1. The general formulation in (1) encompasses both stationary

finite order VAR models as well as fractionally integrated processes depending on the

assumptions on the cj sequence.

The logarithmic stochastic discount factor mt+1 = lnMt+1 is specified as

mt+1 = −rt − 1
2λ

′
tΣλt + λ′

tǫt+1, (2)

where λt is a K-vector of risk prices following the linear process

Σλt = Σµλ +

∞
∑

j=0

F ′
jǫt−j , (3)

with µλ a K-vector and Fj matrices of coefficients of order (K ×K).
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Specification (1)-(3) reduces to an essentially Gaussian affine term-structure model

if both the spot rate and the risk prices are affine in K state variables, Xt, which follow

a first-order VAR with coefficient matrix A. With rt = δ0 + δ′1Xt and Σλt = Λ0 +Λ1Xt,

the MA coefficients for the spot rate will then be c′j = δ′1Aj and the risk dynamics follow

as F ′
j = Λ1Aj. The coefficients cj and Fj have the same rate of decay, determined by the

VAR coefficient matrix A. In the current model cj and Fj can be unrelated and do not

have to decline exponentially at the same rate. In particular, we will consider models in

which a shock ǫi,t has a permanent effect on the spot rate, but where the same shock has

only a temporary effect on the price of risk. We model the spot rate as a non-stationary

fractionally integrated process, whereas the price of risk remains stationary.

Prices of discount bonds of maturity n are denoted P
(n)
t . Log bond prices are p

(n)
t =

lnP
(n)
t and continuously compounded yields are y

(n)
t = −p

(n)
t /n. Given the pricing

assumptions (1)-(3) the full term structure can be derived recursively using the basic

pricing equation

P
(n+1)
t = Et

[

Mt+1P
(n)
t+1

]

, (4)

which in logarithms becomes

p
(n+1)
t = −rt + Et

[

p
(n)
t+1

]

+ 1
2Vart

[

p
(n)
t+1

]

+ Covt

[

mt+1, p
(n)
t+1

]

, (5)

with initial condition p
(0)
t = 0. The solution is summarized in theorem 1 (see appendix

for all derivations)

Theorem 1. The logarithmic price of a discount bond of maturity n is

p
(n)
t = −a(n) −

∞
∑

j=0

b
(n)′

j ǫt−j (6)

with recursively defined coefficients

b
(n+1)
j = cj + b

(n)
j+1 + Fjb

(n)
0 (7)

a(n+1) = µr + a(n) − 1
2b

(n)′

0 Σb
(n)
0 + b

(n)′

0 Σµλ. (8)

and initial conditions a(1) = µr and b
(1)
j = cj.
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Most of our analysis will be based on the excess returns

rx
(n+1)
t+1 = p

(n)
t+1 − p

(n+1)
t − rt

= p
(n)
t+1 − Et

[

p
(n)
t+1

]

− Covt

[

mt+1, p
(n)
t+1

]

− 1
2Vart,

[

p
(n)
t+1

]

(9)

where the second line in (9) is obtained through direct substitution of (5). For an explicit

solution we use (6) with the coefficients in (7). The result for rx
(n+1)
t+1 is in theorem 2.

Theorem 2. Let the spot rate be generated by the linear process (1) and risk prices

be generated by the linear process (3). Then excess returns on discount bonds have the

factor structure

rx
(n+1)
t+1 = b

(n)′

0 (−ǫt+1 + Σλt)− 1
2b

(n)′

0 Σb
(n)
0 (10)

with factor loadings obeying b
(1)
0 = c0, and

b
(n)
0 = Cn−1 +

n−1
∑

i=1

Fn−1−ib
(i)
0 , n > 1, (11)

where Cn =
∑n

i=0 ci denote cumulative impulse responses of the spot rate process.

Excess returns have three components. First, the shocks ǫt+1 enter with factor loadings

b
(n)
0 . The recursion (11) for these loadings includes both the effects of the short rate

process through the cj terms as well as the risk price dynamics through the Fj terms.

The second element is the predicted excess return, which is linear in Σλt with the same

factor loading b
(n)
0 . The last term is the Jensen-inequality adjustment 1

2b
(n)′

0 Σb
(n)
0 . The

general structure (10) is the same as for the Gaussian essentially affine model class.

What is different are the coefficients b
(n)
0 .

Time-varying risk premiums have two effects on the volatility of excess returns. First,

given factor loadings b
(n)
0 they add volatility through the term Σλt within the common

factors. Since ǫt+1 is by assumption orthogonal to Σλt, this will always increase the

volatility relative to a model with constant risk premiums. Second, the time series

process of the risk prices affects the factor loadings. The second term in (11) depends

on the persistence of shocks to the price of risk. The interaction with the expectations

effect Cn−1 crucially depends on the sign and the rate of decline of the Fi matrices.

A shock ǫi,t+1 that increases both the spot interest rate (ci,0 > 0) and the price of its
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risk (Fii,0 > 0), will have a bigger impact on the factor loadings than a shock that has

opposite effects on the two processes. In the latter case, factor loadings will be smaller

than under the expectations hypothesis and the overall volatility of excess returns may

be less than in a model with a constant risk premium.6

Because of theorem 2 it is much more convenient to work with excess returns than

yield levels. With excess returns we still maintain a low-dimensional factor structure,

whereas the yields (or prices) in (6) do not allow any factor structure at all for more

general linear time series processes.

Theorem 2 is important for models where the factor dynamics follow a process that

differs from a first order VAR. Consider, for example, a VAR with longer lags like in

Ang and Piazzesi (2003),

Xt = µX +

p
∑

i=1

Ai(Xt−i − µX) + ǫt, (12)

The normal procedure is to write (12) in companion form by stacking all lags in the aug-

mented state vector Xt = (X ′
t X

′
t−1 . . . X ′

t−p+1)
′ and defining the Kp×Kp companion

matrix A with the (K ×K) matrices Ai on its first K rows. The resulting affine term

structure model then has Kp factors for the yields. Theorem 2 implies that the factor

structure for the excess returns has only K factors.

Theorem 2 holds for more general time series process than higher order VAR’s. In

the remainder of the paper we consider processes with long memory.

2.2 A fractionally integrated level factor

The dominant term in the factor loadings is the cumulative impulse response vector Cn.

Elements in the (K × 1) vector Cn will increase faster in n the stronger the persistence

of the corresponding shock. It is therefore at long maturities where we should expect

to see the largest effects of alternative estimates of persistence. For this reason we will

concentrate our analysis on long-maturity bond returns. Likewise we will focus on the

6 The interaction between the cj and Fj coefficients could be so strong that one or more elements of

b
(n)
0 become exactly zero. This is the case of a ‘hidden’ factor as in Duffee (2011). In our model this will

not happen for large n, since we assume that Σλt is stationary, whereas rt appears to be non-stationary.

The Cn term then grows faster than the convolution of b
(i)
0 and Fi−n in (11).
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most persistent term structure factor, known as the level factor. Time-series evidence

shows that long-term yields are (fractionally) cointegrated and share a single common

factor for the low-frequency behavior.7 From the results of Cochrane and Piazzesi (2005,

2008) we also know that the level factor is responsible for most of the volatility in time-

varying risk premiums. In the remainder we specialize our model to the single factor

case K = 1 with the level factor as the only factor, and test this model on discount

bond prices with maturities of 5 years and longer. This is a similar assumption as in

Kozicki and Tinsley (2001) and based on the fact that factors with low persistence have

negligible effects at the longer end of the yield curve.8

With K = 1 the short-rate process (1) has scalar coefficients cj . The variance of the

innovations ǫt is denoted by σ2. For the time series process of λt we likewise assume

that the general process (3) can be specialized to the univariate process,

σ2(λt − µλ) = ξ

∞
∑

j=0

fjǫt−j , (13)

where the fj are also scalars, normalized by f0 = 1, and where ξ is a scalar parameter

that determines both the volatility of the risk premium and the sign of the covariance

between rt and λt. If ξ = 0, the risk premium is constant.

To allow for long memory we assume that both rt and λt can be fractionally inte-

grated. A fractionally integrated series xt is generated by

(1− L)dxt = ut, (14)

where L denotes the usual lag operator and d is the fractional integration parameter,

for which we will assume 0 ≤ d ≤ 1. The process ut is assumed to be stationary I(0)

with zero mean and bounded spectral density at the zero frequency. The fractional filter

(1− L)d is defined as the infinite sum (1− L)d =
∑∞

i=0Θ(d)iL
i, with coefficients

Θ(d)i = (−1)i
(

d

i

)

=

i−1
∏

j=0

j − d

j + 1
, i > 0, (15)

7 See Engsted and Tanggaard (1994) for tests on regular cointegration concluding that there is a

single I(1) trend in yields of different maturities. Likewise Nielsen (2010) finds a single stochastic trend

in yields, but with cointegrating residuals (spreads) that are still fractionally integrated.
8 Multiple factors, with less persistence than the level factor, create substantial transitory interest

rate dynamics and flexible yield curve shapes at short and intermediate maturities. Ignoring these

factors of course entails a misspecification of short and intermediate maturities.
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and Θ(d)0 = 1. For the MA representation, which we need for the term structure

solutions, the fractional difference operator in (14) can be inverted as

xt = (1− L)−dut =
∞
∑

i=0

Θ(−d)iut−i (16)

with coefficients Θ(−d)i =
∏i−1

j=0
j+d
j+1

≥ 0 following directly from (15). The coefficients

Θ(−d)i decline hyperbolically at rate id−1.

For a pure fractional process, i.e. when ut are uncorrelated, with 0 ≤ d < 1
2 the

variance Sx(0) and autocovariances Sx(i) are given by (see, e.g., Lo (1991)):

Sx(0) = σ2
u

Γ(1− 2d)

(Γ(1− d))2
(17)

Sx(i) = Sx(0)

i−1
∏

j=0

j + d

j + 1− d
, i > 0, (18)

with Γ(�) the Gamma function.

If d > 1
2 , the solution of (14) for the process xt is not well defined in mean-square

sense. Yet, following Marinucci and Robinson (1999) one can define xt as a Type II I(d)

process,

xt =

∞
∑

i=0

Θ(−d)iut−i1{(t−i)>0}, (19)

where 1{(t−i)>0} is the indicator function which is equal to zero for i ≥ t. It truncates

the process at some initial condition x0 = 0. This modification has no effect on the term

structure relations once we assume that the process has started far enough before the

actual sample.

For both the spot rate and the price of risk we will make specific parametric assump-

tions to obtain the impulse response sequences cj and fj . We will study parametric

ARFIMA(p,d,0) specifications. For the spot rate we have the general model

(

1−
p
∑

i=1

νiL
i

)

(1− L)dr (rt − µr) = ǫt (20)

The fractional differencing parameter dr and the AR parameters νi are estimated from

time series data on the spot rate. Even though the long-run properties of the spot rate

depend only on the fractional differencing parameter dr, we still include the transitory

10



AR dynamics to facilitate a comparison between stationary autoregressive I(0) and

fractional models. It allows us to fit time series models that provide almost identical

short-term predictions. The fractional and autoregressive models that we consider only

differ in their long-run implications based on evidence about low-frequency dynamics.

For the price of risk we need a more parsimonious model, since the parameters must

be estimated from the cross section of long-maturity bond returns. We therefore consider

either the pure fractional I(dλ) model or an I(0) AR(1) specification, both special cases

of the ARFIMA(1,dλ,0) model

(1− φL) (1− L)dλσ2(λt − µλ) = ξǫt, (21)

The price of risk is thus determined by either (φ, dλ = 0, ξ) or (φ = 0, dλ, ξ). To

impose stationarity and positive autocorrelations we restrict the fractional differencing

parameter to dλ ∈ [0, 1
2) and the AR parameter to φ ∈ [0, 1).

3 IMPLICATIONS AND TESTABLE RESTRICTIONS

3.1 Illustration and stylized facts

The autoregressive and fractional models have widely different implications for long-

maturity bond prices. To illustrate we confront the main implications of the model with

a few stylized facts. The first stylized fact is the autocorrelation function of the spot

rate. As spot rate we take the nominal 3-month US Treasury Bill for the period January

1954 to February 2012. Autocorrelations, shown in figure 1, decrease very slowly: the

first order autocorrelation is 0.984, while the 84th order autocorrelation is still 0.396.

This slow decay motivates the long memory time series model. Our estimate for the

fractional parameter is dr = 0.89, consistent with estimates in the literature.9

For this illustration we compare the pure fractional model with an AR(1) model

with OLS parameter estimate ν1 = 0.988. Figure 2 shows the impulse responses of both

models. Initially the fractional impulse responses decline faster, but since they have

slower rate of decay they are larger than the AR(1) impulses responses beyond a horizon

9 See section 4 for estimation details.
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of about 40 months. Cumulative impulse responses for the fractional model are larger

than for the AR(1) model beyond lag 75.

With the impulse responses we can evaluate the implied volatility of long-term bonds

under the assumption of a constant risk premium (ξ = 0), exactly as in Backus and

Zin (1993). To confront these implied volatilities with actual volatilities we use data on

excess returns on five- and ten-year discount bonds for the same sample period as the spot

rate.10 Table 1 shows summary statistics. The volatility of the ten-year excess returns

is substantially larger than the volatility of the five-year bond, but less than twice this

volatility, the benchmark value implied by a pure random-walk level factor. Both excess

returns also exhibit small but significant autocorrelations, indicating time-variation in

the price of risk. The yield levels all have about the same standard deviation. These

numbers may be meaningless, however, for a fractional process, since these unconditional

moments do not exist if d > 1
2 .

In figure 3 we plot the implied volatility of excess bond returns

V (n+1)
rx = σb

(n)
0 (22)

against the maturity n for both models under the assumption that the price of risk is

constant. For both specifications we calibrate the volatility parameter σ such that the

volatility of the excess returns on 5-year (n = 60) bonds is the same. The starting

point for the two curves (ν = 0.988 and dr = 0.89) is thus the same by construction.

For longer maturities the AR model clearly implies much lower return volatility than

the fractional model. For a 10-year bond the fractional model already implies 25%

more volatility, while for a 20-year bond the volatility is almost twice the AR volatility.

This divergence was the motivation for Backus and Zin (1993) to propose the fractional

model. They noted that the fractional model provided a close fit to the observed yield

volatilities. They restricted dr to the stationary interval dr ≤ 1
2 , which is much smaller

than unrestricted time series estimates in the literature. With our higher value of dr the

10 Up to September 1997 we use the replication data from Campbell and Viceira (2001), avail-

able at http://hdl.handle.net/1902.1/FZLJAXFHBW UNF:3:S/WHW96SHNHXv0jyZv+vMA==. From Oc-

tober 1997 onwards these are supplemented by the Gürkaynak, Sack and Wright (2007) data from

www.federalreserve.gov/econresdata/researchdata.htm.
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fractional model overestimates the volatility of long-maturity bond returns. The actual

volatility of the 10-year bond return is approximately halfway between the AR(1) model

and the fractional model in figure 3.

For a cross-sectional fit of both the 5-year and 10-year volatilities we determine the

implied ν1 and dr together with the baseline volatility σ that matches the volatility

V
(n+1)
rx in (22) for n = (60, 120) simultaneously. The resulting cross-sectional parameters

are ν̃1 = 0.993 and d̃r = 0.71. The persistence of the fractional model has gone down,

while the cross-sectional AR parameter is above its time series estimate. This leads to

the other two lines in figures 2 and 3. Since both models now fit two points on the

volatility curve, they are much closer to each other. Even so, the two models continue

to generate different volatilities for longer maturities beyond the ten years horizon.

For the AR model it has generally been noted that the time series estimate of ν1 is

lower than the cross-sectional estimate ν̃1, see e.g. De Jong (2000). With the develop-

ment of the essentially affine model of Duffee (2002) the difference between ν1 and ν̃1

is explained by a time-varying risk premium of the form σ2λt = Λ0 + Λ1rt, from which

ν̃1 follows as ν̃1 = ν1 + Λ1. In our notation this corresponds to the setting φ = ν1 and

ξ = Λ1 > 0 for the risk parameters in (21).

A positive ξ has implications for the predictability of excess returns. From the factor

structure in (10) we see that a positive shock ǫt has a negative impact on the excess

returns, but a positive impact on λt due to the positive ξ. As a result the response to

the shock in the next periods will be positive. A bad shock is partially compensated

by higher expected excess returns in the future. The level factor in the model therefore

implies mean reversion dynamics for excess bond returns.

Implications for the fractional model are more complicated. Figure 3 shows a volatil-

ity curve for d̃r = 0.71, but there is no clear interpretation for this curve in models

with time-varying risk premiums. Unlike in the autoregressive model, adding a pure

fractional risk process to a pure fractional spot rate process does not result in a pure

fractional model for the spot rate under the risk-neutral Q measure. Inspecting the

general form of the factor loadings in theorem 2 reveals that a negative ξ is required to

reduce the slope of the factor loadings b
(n)
0 . It will further take substantial persistence,
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high φ or high dλ, to flatten the slope of b
(n)
0 enough to match the volatility curve. Most

important though is the implication that we need ξ < 0, since this is exactly opposite

to the implication for the affine model with AR(1) dynamics. With a negative ξ, a bad

shock to returns is followed by a lower risk premium. This is a different implication

regarding the predictability of excess returns.11 To discriminate among the alternative

models we therefore consider two sets of implications: the volatility structure and the

predictability of excess returns.

This example only considered the AR(1) and a pure fractional model. In the empirical

analysis we will use the more general specifications (20) and (21). We can then compare

models that fit the short-term dynamics of the spot rate equally well, but still produce

substantially different implications for long-term bonds. The term structure models

provide a connection between the persistence of the spot rate and the dynamics of the

risk premium. In models where the long-run volatility of the spot rate exceeds the

volatility of long-maturity excess returns, i.e. if

σCn−1 > V (n+1)
rx , (23)

the risk premium on long-maturity bonds must have a negative covariance (ξ < 0) with

the spot rate. In these models the spot rate rt will exhibit non-stationary or nearly non-

stationary behavior. Conversely, with low spot rate persistence the observed volatility

in long-term bond returns cannot be explained by volatility in discount rates alone, thus

requiring time-varying risk premiums that are positively correlated with movements in

the spot rate. The latter case is the classic excess volatility puzzle identified by Shiller

(1979).

3.2 Moment conditions

We adopt a two-stage estimation strategy. First we estimate a time series model for the

actual dynamics of the short term interest rate. This will determine the cj coefficients. In

the second step we estimate the term structure parameters, either (φ, ξ) or (dλ, ξ), using

11 In both models, the average risk premium will be positive as long as the parameter µλ > 0. The

difference is in how the risk premium varies with shocks to the level factor.
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data on long-term bonds. We opt for this two-step method instead of joint estimation

by QML for two reasons. First, semi-parametric time series estimates are preferred for

robust inference on the order of fractional integration. The semi-parametric methods

estimate dr in the frequency domain. Second, since the single factor model is incomplete

due to the omitted transitory factors, we only want to rely on moments that are least

distorted by omitted factors.

We base the selection of our first data moment on the result of Cochrane and Piazzesi

(2008) that the price of risk is a univariate time series that only loads on the level factor

of the term structure. In that case the autocorrelations of excess returns identify the

time series properties of the price of risk. For our model the unconditional variance of

excess returns is

V (n+1)
rx ≡ Var

[

rx
(n+1)
t+1

]

=
(

b
(n)
0

)2

Var
[

−ǫt+1 + σ2λt

]

=
(

b
(n)
0

)2

σ2
(

1 + ξ2ω2
)

, (24)

where σ2ξ2ω2 is the unconditional variance of σ2λt, i.e. either ω2 = Γ(1−2dλ)
(Γ(1−dλ))2

or ω2 =

1
1−φ2 . Similarly, for the first order autocovariance we have

Cov

[

rx
(n+1)
t+1 , rx

(n+1)
t

]

=
(

b
(n)
0

)2

Cov
[(

−ǫt+1 + σ2λt

)

,
(

−ǫt + σ2λt−1

)]

=
(

b
(n)
0

)2

σ2
(

−ξ + ρ1ξ
2ω2
)

, (25)

where ρ1 is the first order autocorrelation of the price of risk, i.e. either ρ1 = dλ/(1−dλ)

or ρ1 = φ. Since both the variance and autocovariance depend on the maturity n only

through b
(n)
0 , the autocorrelation

Mρ =
−ξ + ρ1ξ

2ω2

1 + ξ2ω2
(26)

does not depend on maturity and does not depend on parameters ci of the spot rate

process. This is an implication of the assumption that the price of risk only loads on a

single factor. Maturity independence of Mρ is a testable restriction in the data and a

useful overidentifying restriction to obtain precise estimates of Mρ.

The second moment that identifies the properties of λt is the relative volatility of two

long-term bonds. This relative volatility measures the rate of decay of the volatility term
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structure at the long end. We avoid relating the variance of long-term bonds directly

to the volatility of the spot rate, since the spot rate may also be subject to additional

transitory factors. The spot rate variance σ2 is likely overestimated in a univariate time

series model if expectations are formed on a broader information set than lagged short-

term interest rates alone. To obtain a moment condition that does not depend on σ2 we

divide (24) by the variance of another long-term bond and use

Mσ =

(

V
(m+1)
rx

V
(k+1)
rx

)1/2

=

(

b
(m)
0

b
(k)
0

)

(27)

The relative volatility is a function that exclusively depends on the factor loadings of

the longer versus the shorter maturity. By taking k and m large enough even a multi-

factor term structure model will have factor loadings on the level factor that are almost

completely determined by the low-frequency time series properties of the factors. By

taking k and m far enough apart we obtain information on how fast factor loadings

increase with maturity. We therefore select five year (k = 60) and ten year (m = 120)

bonds for the cross-sectional estimation of the risk parameters (φ, ξ) or (dλ, ξ).

A benchmark case for the factor loadings is when the risk premium is constant (ξ =

0). In that case the factor loadings are the same as under the expectations hypothesis,

and the volatility ratio becomes Mσ = Cm−1/Ck−1 ≡ EH , which only depends on the

parameters of the spot rate process. We will refer to this as the volatility implied by the

expectations hypothesis.

3.3 Predictive regressions

With the estimated risk parameters (ξ, dλ) and (ξ, φ) we can check other implications

of the term structure model. An important set of results are the predictive regressions.

The standard predictive regressions in the term structure literature relate excess returns

to yield spreads s
(n)
t = y

(n)
t − rt as

12

rx
(n+1)
t+1 = αn + βns

(n)
t + e

(n+1)
t+1 , (28)

12 See, e.g., Fama (1984), Campbell and Shiller (1991) and Duffee (2002).
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The typical finding is that βn is significantly positive. Given the risk parameters we can

work out the implied slope coefficient βn and the fit R2
n of the predictive regression (28).

The results, derived in the appendix, are infinite sum expressions,

βn =
b
(n)
0 ξ

∑∞
j=0 fjd

(n)
j

∑∞
j=0

(

d
(n)
j

)2 (29)

R2
n =

ξ2

1 + ξ2ω2

(

∑∞
j=0 fjd

(n)
j

)2

∑∞
j=0

(

d
(n)
j

)2 (30)

where d
(n)
j − cj are the MA coefficients of the spread s

(n)
t . These expressions can be

checked for given parameters, as in Dai and Singleton (2002). In our case they don’t lend

themselves for formal estimation procedures, since the convergence of both expressions

is very slow for the fractional models. We have therefore chosen the somewhat unusual

autocorrelation moment Mρ instead of βn and R2
n to estimate the risk parameters.

Theorem 2 implies that the predictable component of excess returns for all maturities

should be the same σ2λt. Such a specification has obtained empirical support from the

factor regressions of Cochrane and Piazzesi (2005, 2008), who defined the prediction

factor as a linear combination of yields (or forward rates) leading to predictive regressions

of the form

rx
(n+1)
t+1 = αn + βnwt + e

(n+1)
t+1 , (31)

where wt =
∑K

i=1 γis
(ni)
t is the prediction factor and ni are the maturities included in

the definition of the prediction factor. For identification we normalize γ1 = 1.13 For any

given linear combination of spreads we can again work out the implied coefficients βn

and the fit R2
n. The expressions are similar to (29) and (30) before (see appendix).

This form of the predictive regressions is also useful for inference on the moment

condition Mσ. For a single factor model the predictable component has the form (see

(10)):

Et

[

rx
(n+1)
t+1

]

= b
(n)
0 σ2λt − 1

2σ
2
(

b
(n)
0

)2

(32)

13 Cochrane and Piazzesi (2008) specify a linear combination of forward premiums, but with unre-

stricted coefficients this can always be rewritten as a linear combination of yield spreads.
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The time-varying part σ2λt is the same for all maturities except for the scaling with the

maturity-specific factor loadings b
(n)
0 . Running the predictive regression (31) for the two

long-term maturities k = 60 and m = 120 we can estimate Mσ as

Mσ =
βm

βk

(33)

Likewise the ratio of prediction error standard deviations σ
(m+1)
e /σ

(k+1)
e in (31) should

give the same volatility ratio Mσ.

If the prediction factor wt is indeed a good proxy for the theoretical σ2λt, it should

be stationary. Moreover, under the fractional model wt ∼ I(dλ). Time series analysis of

the prediction factor should give the same order of integration dλ that we obtain from

the cross-sectional fit of the λt process through Mρ and Mσ. This is one more testable

implication.

4 SHORT RATE DYNAMICS

We estimate the fractional integration parameter dr with semiparametric techniques.

That is, we estimate the long-memory behavior of the process close to frequency zero,

while allowing for some unparameterized short-run dependence. A commonly used esti-

mator is the local Whittle estimator (LW), originally developed by Künsch (1987). Shi-

motsu and Phillips (2006) show that the LW is consistent and asymptotically normally

distributed if d ∈ (−1
2 ,

1
2). Another well-known estimator is the exact local Whittle

estimator (EW), introduced by Shimotsu and Phillips (2005). The EW estimator is

consistent and asymptotically normal without restrictions on d. The EW hence seems

preferable, as the range of the true fractional integration parameter does not have to be

known. The LW estimator, on the other hand, has the advantage that its distribution

is robust against conditional heteroskedasticity (see Robinson and Henry (1999)). For

robustness, we consider both the EW and the LW estimator. The negative likelihood

functions are defined as

Q
(EW )
J =

1

J

J
∑

j=1

(

ln
(

τω−2d
j

)

+
1

τ
I(1−L)dx (ωj)

)

(34)
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Q
(LW )
J =

1

J

J
∑

j=1

(

ln
(

τω−2d
j

)

+
ω2d
j

τ
Ix (ωj)

)

, (35)

which are minimized with respect to τ and d. Ix (ωj) and I(1−L)dx (ωj) denote the pe-

riodograms of the series xt and (1 − L)dxt, respectively; ωj are the harmonic Fourier

frequencies given by ωj =
2πj
T
; and J is a bandwidth parameter satisfying J

T
+ 1

J
→ 0 as

T → ∞.

Both estimators are distributed as
√
J(d̂ − d) ∼ N(0, 1

4). The choice for the band-

width J is crucial. Setting J too low decreases the rate of convergence of the estimator

and implies the risk of not capturing all the low-frequency dynamics. If J is too large,

however, the estimator will be polluted by the high-frequency noise.14 We have chosen

the conventional value of T 0.5 for J .

Previous work suggests that the short rate is nonstationary, with dr ∈ [0.8, 1]. As

the LW estimator is well behaved only for stationary series, we initially prefilter the

series by differencing it once and add one back to the parameter estimate later. The

consistency and asymptotics of both LW and EW rely on the knowledge of the true

mean of the data generating process. As the series is considered in first differences, this

assumption has no consequences for the LW estimator. For the EW estimator Shimotsu

(2001) finds that the estimator remains consistent and asymptotically normal for d ≥ 1
2 ,

if the series is detrended by its first observation. Hence, to satisfy this requirement, the

EW estimator is applied to the process rt − r1.

Table 2 summarizes our findings. In line with others we find that the nominal T-

Bill is fractionally integrated of the approximate order of 0.9.15 The estimates are not

14 The literature is not unanimous on the choice of the optimal bandwidth. For instance, Henry and

Robinson (1996) develop an optimal bandwidth choice criterion that is based on the asymptotic mean-

square error of the LW estimator. Henry (2001) derives a feasible version of the optimal bandwidth rule

and demonstrates its robustness to conditional error heteroskedasticity. Yet, in small sample Monte

Carlo experiments such automatic selection rules for J are often outperformed by simple rules of thumb

(see, e.g., Schotman, Tschernig and Budek (2008)).
15 Estimates in the literature seem to be independent of the sample period. For example, Shea

(1991) reports bootstrapped estimates in the range (0.77, 0.93) for the sample period 1949-1964. Sun

and Phillips (2004) study a quarterly sample 1934 - 1999 and find fractional integration of the order

(0.75,1.0) for both nominal and real rates. In Gil-Alana and Moreno (2012) the estimate ranges between

0.80 and 0.89 for their sample period 1971-2009.
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significantly different from the unit root dr = 1; yet, parameter estimates are significantly

larger than 1
2 at a 5% level. Thus, the short rate is non-stationary. Estimates for long-

maturity yields in table 2 are very similar. If we would define a level factor as a weighted

average of these yields, we still obtain the same approximate value of d ≈ 0.9.

As a further check on the estimates, and to obtain a parametric model for the spot

rate, we estimate the ARFIMA(p, dr, 0) model in (20) by the approximate maximum

likelihood method of Beran (1995). As higher order short-term dynamics appear in-

significant, table 3 only displays the results for the first order case p = 1. The estimated

dr is equal to 0.892; hence, it is very close to the semiparametric estimates. Again, it is

statistically larger than 1
2 , but indistinguishable from 1. The short-memory parameter

is small and not statistically different from zero.

In testing the term structure implications we will consider alternative values for dr.

Conditional on several values dr ∈ [0, 1] we estimate the short-memory parameters in

(20) by OLS. From the results in table 3 it is almost impossible to draw conclusions

on the relative fit of the models. All of the estimated ARFIMA(1, dr, 0) models result

in the same residual volatility. Only after two digits does it become apparent that the

model for dr = 0.9 has the best fit. For comparison, table 3 also shows estimates for

the stationary AR(1) and AR(2) models. The fit of the AR(2) is as good as the best

ARFIMA(1, dr, 0) models. For short-term prediction the fractional and autoregressive

models are almost identical.

Even though the transitory dynamics are important for short-term forecasts and for

explaining short- to medium-term maturities, they should have a negligible impact on

the long end of the maturity spectrum. We would expect that EH = Cm−1/Ck−1 (k = 60;

m = 120) only depends on the long memory properties. To check this, we compute the

ratio EH for several values of the fractional integration parameter dr and transitory

dynamics ν. The lines in figure 4 depict the EH ratio as a function of ν keeping dr fixed.

All lines in the figure are horizontal, indicating that the ratios are fully determined by

dr and completely independent of ν. Changing dr, however, has substantial effects on

the EH ratio: the ratio increases monotonically with dr. For comparison, the figure

also shows the estimates implied by stationary AR(1) and AR(2) models. The implied
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volatility ratio for these models is much lower than for any of the dr’s. The conclusion

from figure 4 is that transitory dynamics of the short-term interest rate have no effect

on relative volatility of excess returns of bonds with maturities five and ten years. We

have chosen our k and m sufficiently large to concentrate fully on the low frequency

dynamics.

5 EXCESS RETURNS ON LONG-TERM BONDS

We estimate the term structure moments Mσ and Mρ using GMM exploiting the con-

temporaneous covariance matrix of excess returns and the first order autocovariances.

Since yield data are constructed from coupon bonds using splines or other interpolation

methods, there is inevitably some measurement error in long-term yield data. When

yields are measured with error, so are the excess returns. Adding measurement error to

the excess returns we obtain the observed data series r̂x
(n+1)
t

r̂x
(n+1)
t = rx

(n+1)
t + u

(n)
t , (36)

where u
(n)
t are measurement errors with standard deviation σ

(n)
u . Assuming, like Camp-

bell and Viceira (2001), Christensen et al (2011) and Duffee (2011), that the size of the

yield measurement error in y
(n)
t is the same across maturities, the measurement error in

excess returns rx
(n+1)
t ≈ −n∆y

(n)
t +s

(n)
t−1 will be proportional to the maturity n, meaning

σ
(n)
u = nσu. With the classical measurement error assumptions of being uncorrelated

with each other and with the true excess returns, the covariance matrix of the observed

excess returns r̂x = (r̂x(k+1) r̂x(m+1))′ can be written as

V̂ = cov[r̂xt, r̂x
′
t
] = V (k+1)

rx





1 Mσ

Mσ M2
σ



+ σ2
u





k2 0

0 m2



 , (37)

where we have used that V
(m+1)
rx = M2

σV
(k+1)
rx .

To estimate the autocorrelation we make the additional assumption that both mea-

surement errors have the same autocorrelation coefficient θ1,

cov

[

u
(n)
t , u

(n)
t−1

]

= θ1n
2σ2

u n = k,m (38)

21



The measurement error autocorrelation will most likely be negative due to the differ-

encing of yields in the construction of excess returns. We can write the matrix of first

order autocovariances as

Ĉ = cov
[

r̂xt, r̂x
′
t−1

]

= MρV
(k+1)
rx





1 Mσ

Mσ M2
σ



+ θ1σ
2
u





k2 0

0 m2



 , (39)

In total (37) and (39) comprise 7 moment conditions for 5 parameters, leaving two

overidentified moments.

Table 4 contains the GMM estimates. The overidentifying moment conditions are not

rejected by the data. The measurement error is small: the estimates imply that the single

factor model explains 94% of the variance of 5- and 10-year excess returns. The estimated

Mρ is significantly different from zero. The autocorrelation in the measurement error is

substantially negative and this causes the estimate of the autocorrelation moment Mρ

to be above the sample autocorrelation of the excess returns.

The volatility ratio is estimated very precisely. The point estimate of Mσ is five

standard errors below the benchmark value of 2, which would obtain if the level factor

had a unit root with dr = 1. The estimate ofMσ is also about four standard errors above

the value implied by the stationary AR models estimated in table 3. This is consistent

with the usual result that the AR parameter under the actual probability measure is

less than the risk-neutral AR parameter.

An alternative estimate of the volatility ratio is from the Cochrane-Piazzesi predictive

regressions (31) relating excess returns rx
(n+1)
t+1 to a common prediction factor wt. We use

the two spreads s
(k)
t and s

(m)
t as predictor variables, leading to wt = s

(k)
t +γ2s

(m)
t . Table 5

shows the estimation results. Most remarkable is the estimate of Mσ = βm

βk
, which is

almost identical to the estimate obtained from the covariance matrix of excess returns in

table 4 and the ratio of the residual standard deviations σ
(120)
e /σ

(60)
e . The result is even

more remarkable, as the predictive regressions are known to be plagued by econometric

problems. Since the predictor variables are highly autocorrelated, coefficient estimates

are subject to the Stambaugh (1999) bias. This is already a problem with a single

regressor, but in the present case we use two regressors that are strongly multi-collinear.

Finally, measurement errors may add another source of bias, since the measurement
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error in yields affects both the right-hand side spreads as well as the left-hand side

excess returns.

The predictive regressions also imply testable restrictions. In unrestricted form they

can be written as

rx
(n+1)
t+1 = αn +

K
∑

i=1

γnis
(ni)
t + e

(n+1)
t+1 , n = k,m, (40)

with 2K maturity specific parameters γni. The predictive factor model, with the nor-

malization γ1 = 1, has only K + 1 parameters. In our case, with K = 2, this leaves

one overidentified parameter. A Wald test on the restriction in the unrestricted system

gives a χ2(1)-statistic equal to 1.83 (p-value 0.18). The restriction that the expected

excess returns are in a one-dimensional linear space, spanned by the vector (1 Mσ)
′

is not rejected by the data.16 Both this test and the result that the ratio of the re-

gression coefficients βm/βk from the predictable component is the same as the ratio of

standard deviations σ
(m+1)
e /σ

(k+1)
e from the unpredictable shocks, are important testable

implications of the single factor assumption.

The prediction factor has a negative coefficient γ2 on the 10-year spread. This implies

that the prediction factor has tent-shaped weights,

wt = −0.46rt + y
(60)
t − 0.54y

(120)
t , (41)

that are similar to the predictive factor in Cochrane and Piazzesi (2005, 2008). The

factor is plotted in figure 5. Even though we use a different forecasting horizon and

only two different long-term yields, the time series looks very similar to the factor in

Cochrane and Piazzesi (2008).

One of the assumptions in our term structure model is that the price of risk is station-

ary. For the fractional model the prediction factor should have an order of integration

d < 1
2 . Table 6 report estimates of the fractional differencing parameter for the pre-

dictor series. For the 5-year spread and the prediction factor we find d ≈ 0.4. The

point estimate for the 10-year spread is slightly above one half, but not significantly so.

16 We have worked with two additional predictors in the regressions: the spot rate level rt and last

year’s average excess return 1
24

∑

n=60,120

∑12
ℓ=1 rx

(n+1)
t+1−ℓ. Both of them turned out to be insignificant

and therefore made no difference to the estimates ofMσ or on the test of the overidentifying restrictions.
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These estimates indicate the range of values to expect when we estimate dλ from the

cross-section using the moments Mσ and Mρ.

6 THE IMPLIED PRICE OF RISK

6.1 Solving the moment conditions

We determine the parameters dλ and ξ by inverting the moment conditions for Mρ

and Mσ, assuming that the price of risk follows a fractional noise process. In the

robustness section we do the same for the AR specification with parameters (φ, ξ). With

two moment conditions for two parameters, the system is exactly identified. Multiple

solutions may exist, however, since the moment conditions are nonlinear functions of the

risk parameters.

We first discuss the autocorrelation moment separately, since the solutions for Mρ

are independent of the spot rate process parameters cj. Given dλ and Mρ the moment

condition (26) implies a quadratic relation in ξ. This will generally provide two solutions

for ξ. In the appendix we show that the moment condition will normally have two real

roots, one negative and the other positive.

Figure 6 plots the relation (26) for the estimate Mρ = 0.115. The bold solid line

represents the solutions for ξ for given dλ. The two dotted lines are the solutions for Mρ

plus and minus two standard errors. The negative solutions for ξ are fairly stable and

increase slowly toward zero when dλ gets close to the non-stationarity boundary of one

half. For the positive solutions, the value of ξ increases rapidly when dλ moves further

away from the dλ = 0.5 boundary. Both solutions converge to zero as dλ approaches the

non-stationarity boundary. For the negative solutions the estimation error in Mρ does

not cause much uncertainty in the solution for ξ. Effects on the positive solutions are

much bigger.

The second moment describing the relation between dλ and ξ is the relative volatility

Mσ. The moment condition (27) does not have a closed-form solution, as the right-hand

side of the equation depends on ξ through the recursive factor loadings b
(i)
0 . In addition,

(27) depends on the dynamics of the short rate.
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Figure 7 plots the relation Mσ(dλ, ξ) = M̂σ for all short-rate models in table 3.

The colored lines represent the combinations (dλ, ξ) that match M̂σ for different models

for rt. The black line is the relation between ξ and dλ that solves the autocorrelation

moment. The intersection points are the complete solutions (ξ, dλ) that match both

data moments (Mρ, Mσ). Numerical values of these solutions plus standard errors are

reported in table 7. Solutions depend strongly on dr. We discuss four cases:

1. For dr ≈ 0.7 the moment condition for Mσ is flat at ξ ≈ 0. In this case EH ≈ Mσ,

i.e. the relative volatility is fully explained by the expectations hypothesis and

there is no scope for time-varying risk premiums to alter the volatility or the

factor loadings. The dr = 0.7 line for Mσ intersects the Mρ condition almost at

the boundary (dλ, ξ) = (12 , 0). A solution with ξ exactly equal to zero is not valid,

since ξ = 0 implies that excess returns are not predictable and therefore it can

not match the observed autocorrelation. Fitting the observed predictability is only

feasible by the knife-edge solution of letting the price of risk become non-stationary.

2. For dr > 0.7 all solutions that match the volatility condition Mσ have negative

values for ξ. As long as 0.7 < dr < 0.9 the lines that fit the volatility condition

intersect the predictability conditions at two points. For example, when dr = 0.8

one solution has dλ close to the nonstationarity boundary, while the other solution

is obtained for a smaller value dλ = 0.32. Only the second solution produces an

estimate ξ̂ that is statistically different from zero. For the maximum likelihood

estimate dr = 0.89 the two solutions are almost identical with an estimate ξ̂ =

−0.09 that is statistically significant. In this case the cross-sectional estimate for

dλ = 0.47 is also consistent with the time series estimates of dλ obtained from

spreads and the prediction factor reported earlier in table 2.

When dr > 0.9, and in particular for dr = 1, the two moment conditions can not be

solved simultaneously. Under the expectations hypothesis, a random walk model

for the short rate overshoots observed bond volatilities as noted by Backus and

Zin (1993). It is not possible to find a pure long-memory price of risk process with

impulse responses that decay sufficiently fast to correct this overshooting, while
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still producing the right amount of predictability in excess bond returns.

3. When dr is less than 0.7, matching the relative volatility condition requires a

positive ξ. For these positive solutions ξ increases quickly as dλ moves away from

a half, just as we saw when fitting the autocorrelation moment. In this case there

is always a unique solution with ξ > 0 and dλ ≈ 1
2 . The risk premium at these

solutions is hard to distinguish from a nonstationary process regardless of the

exact value of dr. The estimates are also hardly influenced by possible estimation

imprecision of the estimated moments and short-term interest rate dynamics.

4. The solution for the AR models closely reflects the solution for the ARFIMA(1,0.6,0).

Implied values for ξ for this I(0) process are even larger than for the non-stationary

d = 0.6 model.

One of the implications of the parameter estimates is the maximum predictability of

excess returns if we would be able to observe the true price risk σ2λt. According to (24)

the population R2 of the hypothetical regression of rx
(n+1)
t+1 on λt is given by

R2 =
ξ2ω2

1 + ξ2ω2
(42)

The last line in table 7 shows the maximum predictability implied by the parameters

that solve the moment conditions. For the AR models predictability can be substantial.

In these models the variation of risk premiums must be large enough to add sufficient

volatility to the volatility of long-term expectations of the spot rate (note: adding volatil-

ity means ξ > 0). In the AR(2) model the risk premium must account for about 15% of

the variance of long-maturity excess returns. A similar value is implied for the fractional

model with low persistence dr = 0.6.

Consistent with the earlier results, the predictability is very limited when dr = 0.7.

With larger persistence the maximum R2 rises again, but remains much smaller than

for the AR models, primarily because ξ < 0 means that the covariance between shocks

to the spot rate and the price of risk contributes negatively to the overall volatility. For

the ML estimate dr = 0.89 the maximum R2 in a predictive regression using the true λt

is not more than 5%. This is not far above the R2 ≈ 4% obtained with the prediction

factor wt.
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6.2 Overidentifying moments and implications

The previous section has presented sets of parameter values (dr, dλ, ξ) that all satisfy

the moment conditions Mρ and Mσ and provide almost equal short-term predictions

for the short-term interest rate. We now check how well the different models match the

results from the predictive regressions. For this we compare the regression estimates in

table 5 with the implied results from equations (28) and (31).

We evaluate βn and R2
n (n = k,m) at all solutions in table 7. For regressions on the

own spread the only solution that produces an R2 that is consistent with table 5 is when

dr = 0.89. For this model we find R2
k = 2.3%, identical to the 2.3% found in the data.

The implied βk is equal to 1.86 and thus substantially lower than the value 3.31 in the

data. Part of the difference could be attributed to the small-sample upward bias in the

predictive regressions. From the formulas in Bekaert, Hodrick and Marshall (1997) the

upward bias in the regression estimate would be around 1.7 and this would reduce the

slope coefficient in the data almost to the value implied by the term structure model.17

The results for m = 120 are very similar.

Most of the other models have zero implied predictability (R2 < 0.1%) and are thus

inconsistent with the regression results. For the models with low persistence, i.e. the

AR models and dr = 0.6, the implied spread has very low volatility and therefore has

low predictive power. For the model dr = 0.7 we have already seen that the maximum

implied predictability is zero. The models with dr = 0.8 move in the right direction:

with a nearly non-stationary risk premium the implied value for ξ is still too small to

generate enough volatility in the spread, however. Similarly, the parameter combination

(dr, dλ, ξ) = (0.8, 0.318,−0.109) results in too little persistence in risk prices to produce

sufficient spread volatililty.

Results for the regression on the prediction factor are very similar. Only the dr = 0.89

model is able to match the observed pattern in the data regressions. Both the implied

R2 as well as the slope coefficients match the results from the predictive regressions.

17 The analytical expressions in Bekaert et al (1997) provide the small-sample bias in βn assuming

that the spot rate is generated by either an AR(1) or first order VAR process. Results may not be fully

comparable, since we assume a different, but also very persistent, process for the spot rate.
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All other models do not come near to matching the predictive regressions. Closest

competitor is the AR(2) model, which does generate a substantial slope coefficient, but

with a tiny R2.

The models also have very different implications for the dynamics of long-term yields.

In figure 8 we compare the implications of the AR(2) model with the fractional model

based on the ML estimate dr = 0.89. The figure shows the impulse responses of the

ten-year rate with respect to a one standard deviation shock in the 10-year rate. The

initial responses are the same, since the volatility is calibrated to fit the volatility of

both 5- and 10-year rates through the moment condition Mσ. The AR(2) model shows

decreasing impulse responses, since by construction it generates stationary long-term

yields. After 5 years (60 months) about one-third of the initial shock is left. The

fractional model implies much stronger persistence. After the initial shock the yield is

expected to go up by another six basispoints and to remain at that level for the next five

years. Both implied processes are more extreme than unrestricted time series estimates

of the 10-year rate, shown as the red lines in figure 8. Both fractional and AR(2) time-

series processes agree with the term structure implied model on the initial increase of

the impulse responses. Both, however, are also downward sloping at longer lags, just as

the AR(2) term structure implied process.18

Solutions that require a positive ξ imply that an increase in the spot rate is associated

with an increase in the price of risk. In this case excess bond returns would exhibit

mean reversion: a positive shock in the spot rate is associated with an instantaneous

loss (b
(n)
0 > 0), but also with higher expected future returns (increase in σ2λt). Yet,

from the first few autocorrelation of excess returns in table 1 we can already infer that

excess bond returns do not exhibit mean reversion. The first order autocorrelation is

positive. Although the second order autocorrelation in negative, this is not enough to

produce long-run mean reversion. For instance, the quarterly variance of the 5-year

18 Of course the two unrestricted time series estimates differ much more at longer lags than shown

in the figure. The AR(2) decreases exponentially, whereas the fractional time series process has the

slower hyperbolical decay. Standard errors on the parameters estimates of both time series models are

large enough that we can not reject an I(1) process, which would be very close to the fractional term

structure.
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excess returns equals 15.94, which is much larger than three times the monthly variance

3V
(61)
rx = 9.312.19 Campbell and Viceira (2005) provide further evidence against mean

reversion in nominal bond returns.

From the results we conclude that fractional model with dr = 0.89 is best in fitting

the long end of the term structure. First, it deals with the near unit-root behavior of

short rates that requires a fractional-integration parameter of dr ≈ 0.9. Second, the

combination of dr = 0.89 with the risk parameters (dλ, ξ) match the predictability and

volatility properties of long-maturity excess returns.

6.3 Robustness

6.3.1 Sensitivity with respect to Mσ

In the previous section we argued that the parameter set (0.89, 0.47,−0.09) is the best

solution that is consistent with time-series as well as cross-sectional implications of the

term structure. We also showed that estimates of the risk parameters depended strongly

on the time-series persistence dr, since dr is the main determinant of the volatility ratio

Mσ. Although GMM yielded precise estimates of Mσ, it is worthwhile to check the

sensitivity of results with respect to small changes in Mσ.

Figure 9 shows the implied relative volatility ratio for different fractional orders dr.

On the horizontal axis are values of the fractional order dλ with the implied value for

ξ that fit the the autocorrelation Mρ. Figure 9(a) considers the solutions ξ < 0. The

figure demonstrates that variations of dλ have a limited effect on the possible values of

Mσ, when the price of risk is required to be stationary. The figure also shows that a

slightly higher estimate of Mσ, moving toward the upper bound of the 95% confidence

interval, would enable solutions for values of dr larger than 0.9. On the other hand, if

Mσ were at the lower end of the confidence interval, we would not have been able to find

a solution (dλ, ξ) for dr = 0.89. Constructing dynamics of the price of risk that generate

the right amount of predictability and volatility requires precise estimation of not only

the time-series properties of the short rate, but also the cross-sectional term-structure

19 The estimate of the quarterly variance has been corrected for measurement error in the same way

as the monthly variance. The same inequality holds for the 10-year excess returns.
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moments.

Figure 9(b) shows the same implied volatility ratios, but now for the solutions ξ > 0.

With positive ξ it is even harder to find parameter pairs that match both data moments

of excess bond returns. For any dλ only slightly below the nonstationary boundary

the parameter ξ becomes fairly large, which leads to explosive behavior of implied Mσ.

Volatility in the price of risk is too big to keep the volatility of excess returns within

bounds. In the figure this shows up in the vertical scale of the implied volatility ratio

Mσ.

6.3.2 An AR(1) risk price process

As an alternative for the fractional process for the price of risk we can also solve both

moment conditions of excess returns for the AR(1) process with parameters (φ, ξ) and

impose dλ = 0. Table 9 contains these solutions for different models for the short rate.

Overall, the results are very similar to the ones previously discussed. For dr ≤ 0.7 we

find one solution with a positive value for ξ and a φ parameter that is almost equal to

a unit root, and for dr > 0.7 there are two possible parameter pairs with ξ < 0, one

close to the nonstationarity boundary and one with φ < 1. For the near non-stationary

solutions it often takes more than four digits to see the difference between φ and a

unit root. The only plausible solutions are the ones in the lower panel of the table 9

with solutions for φ further away from the unit root. One notable difference with the

fractional model is that the AR(1) specification also has a solution for dr = 1. With an

AR(1) process for the price of risk ,the limit as φ → 1 is an I(1) process, which is more

persistent than the I(12) process at the limit dλ → 1
2 for the fractional specification for

λt. The additional limiting persistence enables the extra solution, since it allows the fj

coefficients just enough freedom to adjust the expectations driven component Cn toward

the required volatility for excess returns.

The AR(1) specification for λt also has very similar implications for the predictive

regressions. Table 10 shows results for those solutions where the spot rate is I(dr) but

with φ away from the non-stationarity boundary.20

20 For solutions with φ > 0.9999 the implications for the predictive regressions are numerically
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6.3.3 Average term premium

A well-known argument against non-stationary models of the short-term interest rate

is that they imply negative average yields at very long maturities. Since our model is

non-stationary and deals with long-maturity excess returns, we check how serious the

problem is. From (10) and theorem 2 we have that for a single factor model

E

[

rx
(n+1)
t

]

= b
(n)
0 σ2

(

µλ − 1
2b

(n)
0

)

(43)

Since b
(n)
0 is unbounded for a fractional model with dr > 1

2 , the average of log excess

returns will indeed be negative for large n due to the Jensen inequality term 1
2b

(n)
0 . We

calibrate positive values µλ and σ2 to fit the data averages for the 5- and 10-year excess

returns, and subsequently determine for which n the average excess return will turn

negative. For our model with dr = 0.89 this does not happen before a maturity of 40

years.

7 CONCLUSION

Predictions from term-structure models in the affine modeling class are sensitive to the

persistence in factor dynamics. This paper develops a generalization of the essentially

affine model of Duffee (2002) that allows general linear processes for the factors. This

enables a specification with fractional long memory. While adding modeling flexibility,

the model still retains an affine structure for excess bond returns and produces a closed-

form solution.

The empirical analysis favors a fractionally integrated specification for the short-

term interest rate, with a long-memory parameter of d ≈ 0.9. It further suggests that

the term spread is strongly persistent, with d ≈ 0.45. Such a specification is not only

consistent with the observed time-series properties of the two series, but also fits cross-

sectional implications of the term structure. With a spot rate that is close to a unit

root process and risk prices that possess stationary long memory, we can capture the

observed volatility and predictability of long-maturity excess bond returns. An impor-

unstable, similar to the fractional model when dλ → 1
2 .
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tant implication of our findings is that the covariance between the risk premium and the

spot rate is negative. This is consistent with the absence of mean reversion in nominal

bond returns.

Whereas our term-structure model allows for an arbitrary number of factors, we

restrict the empirical analysis to a single factor. We focus on the most persistent factor

that is commonly referred to as the ‘level’ factor. This is a limitation, but with respect

to matching the volatility of excess returns at the long end of the maturity spectrum it

is a reasonable assumption to make. We find that a single factor model explains 94%

of the variation in 5-year and 10-year excess returns. Similarly, the results in Duffee

(2002) imply that the ‘level’ factor captures 94% for the very short maturities and 96%

for maturities of two years and longer.

APPENDIX: PROOFS

A1 Proof of theorem 1

To derive equation (7), we need to compute the three conditional moments in the re-

cursive pricing equation (5) guessing that prices are given by (6). Initial conditions for

n = 1 follow trivially from the definition p
(1)
t = −rt. To derive the representation for

maturities n > 1, we evaluate the conditional moments as

Et

[

p
(n)
t+1

]

= −a(n) −
∞
∑

j=0

b
(n)′

j+1ǫt−j , (A1)

Vart

[

p
(n)
t+1

]

= b
(n)′

0 Σb
(n)
0 , (A2)

Covt

[

mt+1, p
(n)
t+1

]

= −λ′
tΣb

(n)
0 , (A3)

and substitute these expression back in (5) leading to

p
(n+1)
t = −rt − a(n) −

∞
∑

j=0

b
(n)′

j+1ǫt−j +
1
2b

(n)′

0 Σb
(n)
0 − λ′

tΣb
(n)
0

= −(µr + a(n) − 1
2b

(n)′

0 Σb
(n)
0 + µ′

λΣb
(n)
0 )−

∞
∑

j=0

(

cj + b
(n)
j+1 + Fjb

(n)
0

)′

ǫt−j , (A4)

where the second line follows from substituting the dynamic specifications for rt and λt.
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A2 Proof of theorem 2

To derive (10) note that the innovation in the price in (9) is

p
(n)
t+1 − Et

[

p
(n)
t+1

]

= −b
(n)
0 ǫt+1 (A5)

The other two terms in (9) are already given in (A2) and (A3). Direct substitution leads

to (10). Starting from (7) we can simplify the expression for the factor loadings b
(n)
0 for

n > 1, to derive equation (11). The lines below use the definition Cn =
∑n

i=0 ci.

b
(n)
0 = c0 + b

(n−1)
1 + F0b

(n−1)
0

= c0 +
(

c1 + b
(n−2)
2 + F1b

(n−2)
0

)

+ F0b
(n−1)
0

= C1 +
(

c2 + b
(n−3)
3 + F2b

(n−3)
0

)

+ F1b
(n−2)
0 + F0b

(n−1)
0

...

= Cn−2 + b
(n−(n−1))
n−1 +

n−2
∑

i=0

Fib
(n−1−i)
0

= Cn−1 +
n−2
∑

i=0

Fib
(n−1−i)
0 (A6)

A3 Roots of (26)

Note that the quantities ω2 and ρ1 in the moment condition (26) for Mρ only depend on

either dλ or φ. To characterize the solution for ξ given dλ or φ we consider the quadratic

function

q(ξ) = (ρ1 −Mρ)ω
2ξ2 − ξ −Mρ, (A7)

which has the same roots as (26) in the text. If Mρ = ρ1, the function is linear and the

only solution is ξ = −Mρ. Otherwise, the normal case is ρ1 > Mρ, meaning that we

consider values for dλ or φ which imply a positive autocorrelation in the price of risk,

but a much lower positive autocorrelation in excess returns. This is the normal case,

since excess returns are the sum of the risk price plus uncorrelated noise and therefore

will generally have lower autocorrelations. The solutions for ξ can be written

ξ1,2 =
1± (1 + 4ω2Mρ(ρ1 −Mρ))

1/2

2ω2(ρ1 −Mρ)
(A8)
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If ρ1 > Mρ, the discriminant is positive, so that both roots are real. Moreover, since

4ω2Mρ(ρ1 − Mρ) > 0, and the denominator in (A8) is also positive, one root will be

positive and the other negative.

A4 Predictive regressions

We derive the slope coefficient and the coefficient of determination of a regression of

excess bond returns on spreads, lagged by one period, as in (28). From theorem 1 and

the relation y
(n)
t = −(1/n)p

(n)
t the model-implied spread follows as

y
(n)
t − rt =

a(n)

n
− µr +

∞
∑

j=0

(

b
(n)
j

n
− cj

)′

ǫt−j . (A9)

Denote the MA coefficients of the spread by d
(n)
j =

b
(n)
j

n
− cj. The slope coefficient in

(29) can be derived as

βn =
Cov

[

rx
(n+1)
t+1 , y

(n)
t − rt

]

Var

[

y
(n)
t − rt

]

=
b
(n)′

0 E

[

(−ǫt+1 + Σ(λt − µλ))
(

∑∞
j=0 d

(n)′

j ǫt−j

)]

E

[

∑∞
i=0

∑ infty
j=0 d

(n)′

i ǫt−iǫ
′
t−jd

(n)
j

]

=
b
(n)′

0

∑∞
j=0 F

′
jΣd

(n)
j

∑∞
j=0 d

(n)′

j Σd
(n)
j

. (A10)

In the case of a univariate factor, K = 1, we can further simplify (A10). In this case

Σ = σ2, which is a scalar and therefore cancels in numerator and denominator. With

K = 1, we also have Fj = ξfj and b
(n)
0 as scalars, leading to (29) in the text.

The coefficient of determination, R2
n, in (30) is given by

R2
n =

Var

[

βn(y
(n)
t − rt)

]

Var

[

rx
(n+1)
t+1

] =

(

b
(n)′

0

∑∞
j=0 F

′
jΣd

(n)
j

)2

(

∑∞
j=0 d

(n)′

j Σd
(n)
j

)(

b
(n)′

0

(

Σ +
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j=0 F
′
jΣFj

)

b
(n)
0

) . (A11)

Again, if K = 1, the equation simplifies. In that case the scalars σ2 and b
(n)
0 cancel

in numerator and denominator, while the term
∑∞

j=0 F
′
jFj = ξ2ω2. Direct substitution

then leads to (30).
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Expressions for the regression of excess returns on the prediction factor wt = s
(k)
t +

γs
(m)
t are very similar. Just replace d

(n)
j by dj = d

(k)
j + γd

(m)
j , which is independent of

n. For the single factor case we find

βn =
Cov

[

rx
(n+1)
t+1 , wt

]

Var [wt]
= b

(n)
0 ξ ×

∑∞
j=0 fjdj
∑∞

j=0 d
2
j

(A12)

R2 =
Var [βnwt]

Var

[

rx
(n+1)
t+1

] =
ξ2

1 + ξ2ω2
×

(

∑∞
j=0 fjdj

)2

∑∞
j=0 d

2
j

, (A13)

where we have omitted the subscript n for the R2, since it does not depend on n. In

a single factor model excess returns of all maturities should have the same R2 when

regressed on a common prediction factor wt.
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TABLES AND FIGURES

Table 1: Summary statistics

The monthly T-Bill rate is constructed from the daily series DTB3 from the FRED database

by taking the last observation of each month and transforming from discount basis to

continuously compounded yields. Sample period is January 1954 to February 2012, a total of

698 observations. Monthly five-year and ten-year zero-coupon yields of US Treasury bonds

originate from two sources. The largest part of the sample (January 1954 - September 1996)

is from Campbell and Viceira (2001). From October 1996 onwards data are from Gürkaynak

et al (2007).

Autocorrelations

Average Std. Dev. 1 2 3

Yields (% p.a.)

3-months TBill rt 4.85 2.977 0.984 0.965 0.946

5-year bond y
(60)
t 5.97 2.797 0.988 0.974 0.962

10-year bond y
(120)
t 6.33 2.608 0.990 0.979 0.969

Excess returns (% p.m.)

5-year bond rx
(61)
t 0.10 1.809 0.099 -0.071 -0.027

10-year bond rx
(121)
t 0.13 3.036 0.071 -0.068 -0.016
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Table 2: Time-series Estimates of d

The table reports the EW and the LW estimates (on data in first differences) for the fractional

differencing parameter d of the nominal T-Bill, the 5-year bond yield, and the 10-year bond

yield. The size of the spectral window is J = T 0.5 = 26. The asymptotic standard error in all

cases equals σ̂(d̂) = 0.0981.

Variable d̂EW d̂LW

Spot rate rt 0.9260 0.8999

5-Year yield y
(60)
t 0.9467 0.9166

10-Year yield y
(120)
t 0.9426 0.9204

Table 3: ARFIMA estimates

The table reports estimates of alternative models for the short term interest rate of the form

(

1− ν1L− ν2L
2
)

(1− L)dr(rt − µr) = ǫt

Joint estimates of (dr, ν1) are ML estimates based on Beran (1995). All other estimates are

OLS and conditional on dr. All standard errors are robust to heteroskedasticity; for OLS they

are conditional on dr. σǫ is the standard deviation of the residuals in percent per month.

ARFIMA(1,dr,0) AR(p)

ML conditional OLS OLS

dr 0.892 0.6 0.7 0.8 0.9 1.0 0 0

(0.100)

ν1 0.226 0.583 0.454 0.330 0.217 0.117 0.988 1.120

(0.125) (0.058) (0.067) (0.076) (0.084) (0.089) (0.012) (0.094)

ν2 -0.134

(0.097)

σǫ 0.0395 0.0400 0.0398 0.0396 0.0395 0.0396 0.0398 0.0395
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Table 4: Term structure moments

The table reports GMM parameter estimates of the autocorrelation (Mρ) and relative

volatility (Mσ) of excess returns. Auxiliary parameters are the variance 5 year excess returns

(Var[rx
(61)
t ]), the measurement error variance ((60σu)

2) and measurement error autocorrelation

(θ1). Standard errors are heteroskedasticity and autocorrelation robust. The test statistic

J(2) evaluates the overidentified moments.

Mσ Mρ Var[rx
(61)
t ] (60σu)

2 θ1 J(2)

Estimate 1.636 0.115 3.104 0.209 -0.199 0.551

se (0.053) (0.043) (0.466) (0.030) (0.046)

Table 5: Predictive regressions

The first two columns report SUR estimates of the system

rx
(61)
t+1 = α60 + β60,60s

(60)
t + β60,120s

(120)
t + e

(60)
t+1

rx
(121)
t+1 = α120 + β120,60s

(60)
t + β120,120s

(120)
t + e

(120)
t+1

under the restriction β120,n = Mσβ60,n. The next two columns report the unconstrained

OLS estimates. The final two columns report OLS estimates of the predictive regression with

the own spread as single predictor (β60,120 = β120,60 = 0). Asymptotic t-statistics are in

parentheses. Standard errors for both OLS and SUR regressions are heteroskedasticity and

autocorrelation robust.

rx
(61)
t+1 rx

(121)
t+1 rx

(61)
t+1 rx

(121)
t+1 rx

(61)
t+1 rx

(121)
t+1

constant -0.24 -0.47 -0.18 -0.46 -0.21 -0.42

(1.8) (2.3) (1.3) (2.3) (1.5) (2.4)

s
(60)
t 11.69 19.31 10.09 10.65 3.31

(3.2) (5.8) (2.8) (1.7) (2.8)

s
(120)
t -6.32 -10.44 -5.37 -3.24 4.47

(2.5) (2.5) (2.5) (4.7) (3.3)

Mσ 1.652

(12.4)

R2 0.032 0.027 0.033 0.034 0.023 0.026

σe 1.783 2.999 1.781 2.989 1.789 2.998

σ
(120)
e /σ

(60)
e 1.682 1.678 1.676
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Table 6: Estimates of d for spreads and predictive factor

The table reports the EW and the LW estimates (on data in levels) of the fractional

differencing order for the 5-year spread, the 10-year spread, and the prediction factor from

(41). The asymptotic standard error in all cases equals σ̂(d̂) = 0.0981.

Variable d̂EW d̂LW

5-year spread s
(60)
t 0.4219 0.4313

10-year spread s
(120)
t 0.5422 0.5640

Prediction Factor wt 0.4002 0.3819

Table 7: GMM estimates for dλ and ξ

The table reports the solutions for a fractional noise risk-price process (dλ, ξ) that fit the

moment conditions (26) and (27) using the estimated data moments in table 4. Figure 7

contains a graphical representation of the same solutions. Standard errors in parentheses are

derived from the standard errors of the GMM data moments in table 4. −.− means that the

moment conditions have no real-valued solution. Entries > 0.499 indicate that the estimate is

larger than 0.499, but still smaller than 0.5.

AR(p) ARFIMA(1,dr,0)

dλ → 1
2 dλ < 1

2

Par 1 2 0.6 0.7 0.8 0.8 0.89 1

dλ 0.499 0.498 >0.499 >0.499 0.499 0.318 0.471 -.-

(0.001) (0.001) (0.000) (0.001) (0.003) (0.054) (0.039) -.-

ξ 0.028 0.042 0.022 0.001 -0.030 -0.109 -0.089 -.-

(0.007) (0.007) (0.008) (0.010) (0.024) (0.041) (0.024) -.-

R2 0.139 0.152 0.134 0.003 0.088 0.016 0.045 -.-
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Table 8: Implied predictive regressions

The table shows the implied regression results from predicting excess returns with maturity

n (n = k,m) by the lagged own spread s
(n)
t or the prediction factor wt = s

(k)
t + γs

(m)
t . The

entries report both the regression slope βn and the fit R2. Results are reported for different

sets of parameters values (dr, dλ, ξ) that match the data moments. Column headings refer to

the assumed value of dr or the AR(p) model for the spot rate. (dλ → 1
2) refers to solutions in

table 7 with dλ close to non-stationarity boundary; (dλ < 1
2 ) refers to solutions with dλ further

away from the boundary. The final column repeats the values from the actual regressions in

table 5.

AR(p) ARFIMA(1,dr,0) data

dr (dλ → 1
2) dr (dλ < 1

2 )

n Pred. 1 2 0.6 0.7 0.8 0.8 0.89

100×R2
n k s

(k)
t 0.0 0.1 0.0 0.0 0.3 0.8 2.3 2.3

m s
(m)
t 0.0 0.1 0.0 0.0 0.4 0.8 2.2 2.6

k wt 0.0 0.1 0.0 0.0 0.2 0.9 2.2 3.2

m wt 0.0 0.1 0.0 0.0 0.2 0.9 2.2 2.7

βn k s
(k)
t 0.14 0.80 -0.28 -0.03 1.14 1.60 1.86 3.31

m s
(m)
t 0.13 0.77 -0.24 -0.05 1.30 1.82 1.90 4.47

k wt 2.85 6.76 -1.35 -0.09 3.91 5.86 9.75 11.69

m wt 4.69 11.08 -2.21 -0.16 6.40 9.59 15.93 19.31

Table 9: GMM estimates for φ and ξ

The table reports the solutions (φ, ξ) that fit the moment conditions (26) and (27) using

the estimated data moments in table 4, for a stationary AR(1) risk-price process. Standard

errors in parentheses are derived from the standard errors of the GMM data moments in ta-

ble 4. Entries > 0.999 indicate that the estimate is larger than 0.999, but still smaller than 1.0.

AR(2) ARFIMA(1,dr,0)

0.8 0.8 0.89 0.89 1 1

φ >0.999 >0.999 0.945 >0.999 0.968 >0.999 0.980

(0.001) (0.001) (0.369) (0.001) (0.010) (0.001) (0.012)

ξ 0.004 -0.002 -0.073 -0.004 -0.062 -0.008 -0.054

(0.001) (0.001) (0.185) (0.001) (0.044) (0.001) (0.058)

R2 0.111 0.012 0.048 0.011 0.058 0.108 0.066
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Table 10: Implied predictive regressions: AR(1) price of risk

The table shows the implied regression results from predicting excess returns with maturity

n (n = k,m) by the lagged own spread s
(n)
t or the prediction factor wt = s

(k)
t + γs

(m)
t . The

entries report both the regression slope βn and the fit R2. Results are reported for different

sets of parameters values (dr, φ, ξ) that match the data moments. The final column repeats

the values from the actual regressions in table 5.

n pred. AR(2) ARFIMA(1,dr,0) data

ν1 1.120 dr 0.8 0.89 1

ν2 -0.134 ν1 0.330 0.226 0.117

φ >0.999 φ 0.945 0.968 0.980

ξ 0.002 ξ -0.073 -0.062 -0.054

100×R2
n k s

(k)
t 4.7 4.7 5.8 6.6 2.3

m s
(m)
t 4.8 4.5 5.7 6.6 2.6

k wt 2.8 4.7 5.8 6.6 3.2

m wt 2.8 4.7 5.8 6.6 2.7

βn k s
(k)
t 1.75 2.03 2.16 2.52 3.31

m s
(m)
t 1.70 2.87 3.12 3.61 4.47

k wt 18.00 5.20 5.49 6.62 11.69

m wt 29.67 8.50 8.97 10.83 19.31
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Figure 1: Autocorrelations of the nominal 3-month T-Bill rate
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Figure 2: Spot rate impulse responses

The figure shows the spot rate impulse responses cj for four different specifications. Two

models are AR(1) with parameters ν1 = 0.988 and ν̃1 = 0.993, respectively, while the other

two are pure fractional models with dr = 0.89 and d̃r = 0.71, respectively.
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Figure 3: Volatility term structure

The figure shows the implied volatility σb
(n)
0 as a function of n for four different specifications.

For two models (AR(1) with ν1 = 0.988 and fractional with dr = 0.89) the parameter σ has

been calibrated to fit the volatility of 5-year excess returns. For the other two models (AR(1)

with ν̃1 = 0.993 and fractional with d̃r = 0.71) parameters (σ, ν̃1) and (σ, d̃r) have been

calibrated to fit both the 5-year and 10-years excess returns.
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Figure 4: Relative volatility of excess bond returns

The figure shows the ratio EH = C119/C59 of the cumulative impulse responses of the short

term interest rate implied by an ARFIMA(1, dr, 0) model with AR parameter ν. The lines

show the ratio for fixed dr as ν varies along the x-axis. Also shown are the EH ratios implied

by stationary AR(1) and AR(2) models with the parameter estimates in table 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

ν

C
1
1
9
/C

5
9

 

 

AR(1)
AR(2)
dr = .6
dr = .7
dr = .8
dr = .9
dr = 1
dr = .89 (ML)

47



Figure 5: Prediction factor

The figure shows the prediction factor wt = −0.46rt + y
(60)
t − 0.54y

(120)
t .
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Figure 6: Matching the first order autocorrelation of excess returns

The figure shows the relation between dλ and ξ that is consistent with the autocorrelation in

excess returns. The solid line corresponds to the point estimate for Mρ. The two dotted lines

are for Mρ plus or minus two standard errors.
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Figure 7: Matching both moments of excess bond returns

The figure shows the relation between dλ and ξ implied by the relative variance of the

5 and 10-year excess returns for different values of the long-run persistence parameter dr
of the short-term interest rate. The vertical axis denote ξ and the horizontal axis dλ.

We match the dynamic version of the estimate for Mσ, i.e. Mσ=1.636. Also shown in

the graph, is the relation between dλ and ξ consistent with the respective autocorrelation, Mρ.
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Figure 8: Impulse responses of 10-year rate

The figure shows model-implied impulse responses of the 10-year discount rate for two different models.
The fractional model uses the parameters in the column dr=0.892 in table 7. The AR(2) model uses
the parameters of the AR(2) process in the same table. By construction the initial one standard
deviation shock is equal for both models. The two red lines are the impulse responses of unrestricted
time series estimates. The fractional model (TS fractional) is ARFIMA(1,0.93,0) with AR-parameter
equal to 0.118; the AR(2) model (TS AR) has an estimated maximum root of 0.99. Units on the
vertical axis are percent per annum.
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Figure 9: Model-implied relative volatility at solutions consistent with observed auto-

correlations

The figure shows model-implied Mσ at values ξ and dλ consistent with the autocorrelation, M̂ρ, in

the data. The thick black line is the dynamic data moment, M̂σ = 1.636. The shaded area is the
95% confidence interval of the GMM estimate for Mσ. The colored lines correspond to model-implied
Mσ for different values of dr. The horizontal axis shows the values of the pair (dλ, ξ) that match the
autocorrelation of excess returns. Panel (a) shows the negative ξ1 root from (26); panel (b) the ξ2
root. The vertical axis in the right panel (b) has a log-scale.
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