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ASYMPTOTIC THEORY FOR REGRESSIONS WITH SMOOTHLY CHANGING
PARAMETERS
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ABSTRACT. We derive asymptotic properties of the quasi maximum ilicd estimator of
smooth transition regressions when time is the transitemiable. The consistency of the es-
timator and its asymptotic distribution are examined. Bhewn that the estimator converges at
the usual/T-rate and has an asymptotically normal distribution. Eismple properties of the
estimator are explored in simulations. We illustrate withagplication to US inflation and output
data.
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1. INTRODUCTION

In this paper, we derive the asymptotic properties of thesguaximum likelihood estimator
(QMLE) of smooth transition regressions (STR) when timehis transition variable and the
regressors are stationary. The consistency of the estiraatbits asymptotic distribution are
examined.

Nonlinear regression models have been widely used in peabdr a variety of time series

applications; see Terasvirta, Tjgstheim, and Granget@Rfr some examples in economics.
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2 E. HILLEBRAND, M. C. MEDEIROS, AND J. XU
In particular, STR models, initially proposed in its uniide form by Chan and Tong (1986), and
further developed in Luukkonen, Saikkonen, and Terasyir988) and Terasvirta (1994,1998),
have been shown to be very useful for representing asynuoratavior. A comprehensive
review of time series STR models is presented in van Dijka3erta, and Franses (2002).

In most applications, stationarity, weak exogeneity, amehbskedasticity have been imposed.
In these cases, the standard method of estimation is nanlieast squares (NLS), which is
equivalent to quasi-maximum likelihood (QML) or, when theoes are Gaussian, to conditional
maximum likelihood. The asymptotic properties of the NL8 discussed in Mira and Escrib-
ano (2000), Suarez-Farinas, Pedreira, and Medeiros 2604 Medeiros and Veiga (2005).
Lundbergh and Terasvirta (1998) and Li, Ling, and McAIl&902) consider STR models with
heteroskedastic errors. Saikkonen and Choi (2004) considecase of STR models with coin-
tegrated variables when the transition variable is intiegraf order one, and Medeiros, Mendes,
and Oxley (2009) analyze a similar model but with statioteagisition variables. The case with
endogenous regressors is considered in Areosa, McAlegiViadeiros (2011).

An important case to consider is time as transition variab&TR models. Lin and Terasvirta
(1994) and Medeiros and Veiga (2003) consider this type etifpation to construct models
with parameters that change smoothly over time. Strikh@@96) use this transition variable to
determine the number of breaks in regression models. Howdeeasymptotic properties of the
QMLE in this case have not been fully understood. If time estifansition variable, asymptotic
theory of the QML estimator cannot be achieved in the stahday, because as the sample size
T goes to infinity, the proportion of finite sub-samples goezst@. Our solution to this problem
is to scale the transition variableo that the location of the transition is a certain fractibthe
total sample rather than a fixed sample point. This modiboagilows asymptotic theory of the
QML estimator. Andrews and McDermott (1995) and Saikkoned @hoi (2004) use similar

transformations. The scaling can be understood as a snraasitton version of the assumption
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of constant break fractions that is common in the changetgiberature (Perron (1989), for
example).

The outline of this paper is as follows. Section 2 describesnhodel and asymptotic prop-
erties of the QMLE. A brief discussion concerning model $jpEation is presented in Section
3. Monte Carlo simulations are presented in Section 4. @e&ipresents an application to US
inflation and Gross Domestic Product. Section 6 concludep#per. All proofs are presented

in the Appendix. Additional simulation results are avaiéain the supplement.

2. MODEL DEFINITION AND ESTIMATION

2.1. TheMode. We consider the following model

M
Y = w:ﬁﬁo + Z :D;,@mf[")/m(t - Cm)] + &, = 17 2a tey Ta (1)
m=1

wheree; is a martingale difference sequence with variamgex; is a vector of pre-determined

regressors. The functiofis the logistic transition function which has the form

1

where~ > 0 controls the smoothness of the transition and {1, 2, ...,7} is a location
parameter.c,, € {1, 2, ..., T} in (1) are change-points. Note that when — oo, m =

1,..., M, model (1) becomes a linear regression withstructural breaks occurring at thg.

2.2. EmbeddingtheModel inaTriangular Array. Asymptotic theory for the QML estimator
of the model defined above cannot be derived the standardieagsider model (1) witd/ = 1.
As T — oo, the proportion of observations in the first regime goes to.z8ince forT large,
fit—c)] = fITy(T't—T""'c)] =~ Lgp-1~0y, the parameter vectgs, that governs the
first regime as well as the transition parameterand ¢ vanish from the model and become

unidentified. Figure 1 illustrates this fer= 0.2 andc = 50. In the upper plot of the figure,is
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in the middle of the sample; in the lower pldt & 1000), the second regime dominates. QML
estimation of model (1) will be dominated by the second regasmthe sample size increases. As
the sample size goes to infinity, the first regime vanishestamérameters become unidentified
in the estimation. In order to obtain asymptotic theory foe €stimator, the proportion of sub-
samples in two regimes (before and after the transitionylshiemain constant a8 goes to
infinity. In other words, the shape of the plot of the time egghould remain qualitatively the
same ag’ grows. For this purpose, we scale the logistic transitiotfion as

fb <%t—c)] =f[T7'"y (Tt —Tc)]; t=1,...,T;ce€ {%,To}- (3)

whereTj is the actual sample size in any given data situation. Aéoghg

- T;
= x,By + Z x,0,,f {'ym (Tot — cm)} + &4 (4)
m=1

Note that a given small-sample situation is embedded ins#ggience of models &t = 7j.
As can be seen in (3), with this scaling the slope of the lagfsinction is decreasing witii’
while the locus of the transition is increasing with The scaling of the time countéf, remains
constant. Therefore, the proportions of observationsariitat regime, during the transition, and
in the last regime remain the saméelagrows, and the parameters in these groups of observations

remain identified.

2.3. Assumptions. We denote the data-generating parameter vector as

00 = (/86707 /6/170a s 7/62\47(” 71,05 - - -5 VM, 0, €1,05 - - - s CM,0, 0—3,0)/a
where the (second) 0-subscript indicates the data-gemgctaracter.

We writee,(0) such that the notation can be used for both the residuals therastimation

and the data-generating errors:(60) = vy, — g(x; 3,4, ¢), where@ = (B, ...,8y);y =
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(M- 7m)5¢=(e1,...,¢ep) and
M T
9(xi; B,7,¢) = By + >_ ®B,.f |:7m (Tot - cm)} :
m=1

We use the shorthand notatieny, := ¢:(6,), for the data-generating errors and= () for
the residual evaluated at afly

We consider the following assumptions.

ASsSUMPTION 1 (Parameter Space).he parameter vectd, is an interior point of®, a com-

pact real parameter space.

ASSUMPTION 2 (Errors).
(1) &, is a martingale difference sequence with constant variarice ¢ > 0.
(2) Eleso|? < oo for g < 4.

(3) x; ande, are independent.

ASSUMPTION 3 (Stationarity and Moments).

(1) z: = (xay, a:Byt)/, wherex 4 ; consists of stationary and ergodic exogenous variables
andxp, is a set of lagged values gf. The autoregressive polynomial in each regime
associated witlx 5 , has all roots outside the unit circle.

(2) E||xa,||* < oo for g < 4, where||-|| is the Euclidean vector norm.

(3) %ZL (x,x}) converges in probability t62 = E (x,}), which is symmetric positive

definite.

2.4. Quas Maximum Likelihood Estimator. The parameter vector is estimated by QML as

T
~ 1
01 = argmaxLr(6) = argmax— E 0:,(9), (5)

0co oo 1 “—

where(,(0) = —1 (log 2r + log 02 + €70 2).
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THEOREM 1 (Consistency).Under Assumptions 1 through 3, the quasi maximum likelihood

estimator@T is consistentﬁT 2 0,.

THEOREM 2 (Asymptotic Normality). Under Assumptions 1 through 3, the quasi maximum

likelihood estimatof is asymptotically normally distributed:

VT (éT - 90) 4 N[0, A(8y)""B(8,)A(8,)!] (6)
where
¢, ol

PrROPOSITION1 (Covariance Matrix Estimation)Under Assumptions 1 through 3,

o
00’
6o

ATﬁ)AandBTﬁ)B,

where

T T
1 0%l 1 oty ol

and A, B as defined in Theorem 2.

3. NUMBER OF NONLINEAR TERMS

The number of nonlinear terms in equation (4) can be detednay the procedure proposed
in Strikholm (2006). Suppose we want to test the null hypsithef M/ = M* terms against
the alternative of\/ > M* terms. Due to identification problems, the idea is, as ira3@rta
(1994), to replace the additional nonlinear terms by a tbnder Taylor expansion around the

null hypothesisH, : ya+11 = Y41 = - - - = 0. Equation (4) can be approximated as
M* T
2 0
Yt = 33;50 + 231 w:&ﬁmf ['7771 <?t - Cm)]

t £\ £\?°
+ <T) 0, +x, <?) 0, + x, <?) 03 + <7,

(7)
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wheree; = ¢; + R, whereR is the remainder of the approximation. The null hypoth&gjdo
be tested i®;, = 6, = 85 = 0. As the QMLE of the nonlinear parameters in (4) is consistent

and asymptotically normal, a Lagrange Multiplier test wittle usual asymptotic distribution is

available and can be used to test the null hypothesis.

4, SMALL SAMPLE SIMULATIONS

We conduct a set of Monte Carlo simulations in order to evelleth the small-sample
properties and the asymptotic behavior of the QMLE. In pafér, we consider the following

models with three limiting regimes:

Model A — Independent and identically distributed (11D) regsors

2
t
yr = x, By + Z z,B,,f {’Ym (f - Cm):| + &,
m=1

yy=1l+x+(—1—-22)f [30 (%—%)} + (14 3x)f {30 (%—%)} + &4,

where{z,} is a sequence of independent and normally distributed ran@wiables with
zero mean and unit variance, ~ NID(0, 1), and{e; } is either a sequence dfiD(0, 1)

or Uniform(—2, 2) random variables.

Model B — Dependent regressors

2
t
v =By + Y B, f |:’7m (— — Cm } + e,
m=1

T
t 1
+ (0.5 — 1.7y1)f |30 L2V,
. AYt—1 T 5 Et,

where{e;} is either a sequence 8iD(0, 1) or Uniform(—2, 2) random variables.
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Different values ofl” are used, ranging fror00 to 5000 observations. For each value'Bf
1000 simulations are repeated. When the errors are normallgiliséd, maximum likelihood
estimators are obtained. On the other hand, when the em®rs#ormly distributed, the error
distribution is misspecified and we have a QML estimatiomgefor sample sizes up 890
observations, the estimation procedure did not converdesis thans% of the replications.
These cases were discarded. The parametare chosen in order to keep the transitions neither
too smooth nor too sharp; see Figure 2.

For brevity, we report only the results concerning the umifalistribution. The results for
Gaussian distribution are available in the supplemenurég3 and 4 show the average bias and
the mean squared error (MSE) as a function of the sampleAjaat from the slope parameter,
the average biases are rather small for all sample sizes addlsa Furthermore, the MSE, as
expected, converges to zero as the sample size increastsrédfiect to the slope parameter,
the MSE is quite high for very small samples (100-300 obsems) but also goes to zero as
the sample size increases. The bias is also large in smatilsanbut becomes negligible for
larger sample sizes. The large biases and MSE are mainlgadoysfew very large estimates
(less thanl % of the cases). This pattern is expected, as it is quite diffiolestimate the slope
parameters in small samples. On the other hand, the loc@tfjand the linear parameter8)
are estimated quite precisely.

Figures 5-6 present the distribution the standardized QMLte linear parameters of the
model (3). Some interesting facts emerge from the graphs. First) gveery small samples,
the estimaté0 has a distribution close to normal for all models. Seconeldistributions oﬁl
andf-':’2 have some outliers in small samples, but, as expected, thegt@se to normal for very

large samplesi{ = 5000).
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Turning to the location parameter, Figures 7 and 8 show tseilolition of the standardized
QMLE for c. Itis quite remarkable that even fér= 100, the empirical distributions are close

to normal.

5. EMPIRICAL EXAMPLE

We study the occurrence of parameter changes in a backeakdit predictive Phillips curve

given as

T = Qp + 1Ty, + QoTy—1 + U, (8)

wherem, is the inflation rategx;_; is the past real output gap, angdis an error term. We use
guarterly data from the United States from 1960 to 2004, @& tit180 observations. Inflation
is measured by the Gross Domestic Product (GDP) price inbex.output gap is computed by
applying the Hodrick-Prescott filter to the real GDP seriemsured in billions of chained 2000
US dollars.

We start by estimating a linear model and testing lineagiast smoothly changing parame-
ters. The testis based on a third-order Taylor approximatgodescribed in Section 3. Linearity
is strongly rejected with a-value of1.21 x 10~%. A Lagrange Multiplier test for residual serial
correlation also indicates the presence of autocorrelatexts. We continue by applying the
model building procedure described in Section 3 and our fimadel has two nonlinear terms,
indicating two smooth breaks in the Phillips curve. The ssme of LM tests for remaining
nonlinearity hag-values 0.004 and 0.301, respectively, clearly indicatimge distinct regimes.
The results are shown in Table 1 and in Figure 9. Table 1 pteska parameter estimates of
both linear and nonlinear models as well as some diagndatistics. Figure 9 shows the plots

of inflation and output gap as well as the two transition fiong.
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6. CONCLUSION

In this paper, we propose asymptotic theory for the QML estonof a logistic smooth tran-
sition regression model with time as transition variablé&hdugh asymptotic theory cannot be
derived in the standard way as the transition variable isstagtonary, after proper scaling, we
show that the QML estimator is consistent and asymptogicadirmal. The estimator is shown
to converge to the true value of the parameter at the spe¢dofWe explore the small sample

behavior in simulations and illustrate with an applicatiotJS inflation and output data.

APPENDIX A. PROOF OFCONSISTENCY

Proof of Theorem 1We establish the conditions for consistency according tofém 4.1.1 of
Amemiya (1985). We hav@T % 0, if the following conditions hold: (1)® is a compact
parameter set; (21(0, ;) is continuous irf and measurable ig;; (3) L1(0) converges to a
deterministic functionZ(0) in probability uniformly on® asT — oc; and (4)£(0) attains a
unique global maximum &,.

Item (1) is given by Assumption 1. Item (2) holds by definitiointhe QMLE (5) from the
definition of the normal density. For item (3) we refer to Trera 4.2.1 of Amemiya (1985):
This holds for i.i.d. data i [supgcg |¢:(0)|] < oo and/;(8) is continuous ir@ for eache,. The
extension to stationary and ergodic data using the samd assomptions is achieved in Ling
and McAleer (2003, Theorem 3.1). We hdlisupy¢ |(:(0)|] < oo by Jensen’s inequality and
E [sup |¢(er, 0)|] < oo, where¢ denotes the normal density function. The finiteness of tsie la
expression follows from the assumption thdt> ¢ > 0 for some constant. The log density

log ¢(e4, @) is continuous irf for everye;,.
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Consider Item (4). By the Ergodic Theoreii[/;(0)] = L£(6). Rewrite the maximization

problem asnaxgee E [¢; (6) — ¢:(60,)]. Now, for a given number?,

E[(; (8) — £, (8,)] = Elog {M} —E {—%log o _1 <5—3 - 630)} ,

¢(€t7 00) O:0 2 052 0:0
1 Ug 1 2 2
=3 log 22, ~3 [E(c0%) — 1] 9)

We showthaEe?(0) > E (¢7,) = o2, and that (9) attains an upper boundat 6, uniquely.
ConsiderE [2(8)] = E [y, — g(xs; 3,7, ¢)]”. Substituting fory, = g(x; By, Yo, Co) + €10 WE
obtainE [7(8)] = E [9(z; By, Yo, €0) + 10 — 9(xi; 8,7, ¢)]* > E [1,] = 02,

The inequality holds from Assumption 2(3). We have esthlisthat for any given?, the
objective function (9) attains its maximum of

1 o2 020
— 11 £ =1
2 (og 03,0+ o2 )

£

at/@ = ﬂO’ Y = Yo: C = Cop. Definez = 0'52/0'52’01 then

f(z) = —% (logx+ % - 1)

attains its maximum of 0 at = 1, therefore the maximizer is> = o2,. This shows that

E [¢,(0) — ¢,(8¢)] is uniquely maximized & = 6,,. O

APPENDIX B. PROOF OFASYMPTOTIC NORMALITY

In this proof, terms will sometimes involve expectationsafss-products of the tyg& XY),
whereX andY are correlated random variables. Note that by the Cauchyw&z inequality,

we haveE(XY) < (EX2)% (EY?)2, and thus in order to show that the cross-product has finite

expectation, it suffices to show that both random variabte® tinite second moments. By the
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same token, if botlX’ andY have finite second moments,

.Q.H
)
g
I
=
)
B
+
=
g

E[(X+Y)’] <E(X?)+E(Y?) +2[E(X?)]

for someK < oc.
In the outline of the proof we follow Theorem 4.1.3 of Amem{§®85). Therefore we have

to establish the conditions
(1) % exists and is continuous in an open neighborhoof,of
(2) Ar(03) 2 A(6,) for all sequence8’ = 6.
3)

[rT]

1 ol
0o) \/—Z L —d>W(3), s € [0,1],
6o

whereWW (-) is standard Brownian motion on the unit interval.

t\.’)\»—‘

Item (1) is shown in Lemma 3. Item (2) needs consistenogqofor 6y, which we established
in Theorem 1. It further needsipy o |A7(0) — A(6)| = 0. We use Ling and McAleer (2003,
Theorem 3.1) to establish this. We show the uniform convergen Lemma 4.

Item (3) uses Billingsley (1999, Theorem 18.3) and needsh@){ o/, /00|0,, F;} is a sta-
tionary martingale difference sequence and (b) Bé&,) exists. Both with be proved in Lemma
3. The first two lemmata show a few technical propertieg(af; 3, v, c) that are needed in the

following.

LEMMA 1. The transition function given by Equatiq8) is bounded, and so are its first and

second derivatives with respectig andc,,, Vm =1,2,... M.

Proof. We will use shorthand notatiofifor f [v,, (¢ — ¢.,)| below unless otherwise stated.
Defining a, (t) :== L2t — ¢, t = 1,2..., T, itis easy to verify that-co < —¢,, < a,(t) <

Ty — ¢ < 00. Since the transition function has the rari@el), it is clearly bounded. For the
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first derivative off with respect toy,,, Vm = 1,2, ... M,

Qo (t) e Vmam (?)

(1 _'_ 6_’7nzanz(t) )2

< Jam(t) f] < oo

or|_
MNm |

The first inequality follows from the fact thdt4 ¢~ men® > e¢=man® ~ (. The second
inequality holds because botf,(¢) and f are bounded. For the second derivativefofvith
respect ta;,,, Vm =1,2,... M,

2f|
Mzl

2am(t)2672'ymam(t) &m(t)Qef'ymam(t)
(1 + ,3—’Ymam(t))3 (1 + ‘g—vmam(t))2

2 ()2 —29mam(t) am(t)Qef'ymam(t)

S 2
(14 emmam®)® | 7 |(1 4 e—rman(®)
2ap(t)* a (1)? 2
S i +'m = [3am(t)*f] < oo.

The second inequality follows from the fact tHat ¢~ m@m(t) > ¢—man(t) > () the last inequal-
ity holds because botty,,(¢) and f are bounded. The proof of the boundedness of the first and
second derivatives of with respect ta:,, is almost identical to the one above and is omitted for

brevity. m

LEMMA 2. Let& := (3,4, c), then

1) E || &o(ai .v.0)

< o0.
2
(2 E Hawﬁ/ x; 3,7, ¢ )H < oo, Where||-|| denotes the standard vector and matrix norms.

Proof. We will prove the statements element by element. For state(tg

2
=K HthQ < 00

0
E Ha—ﬁog(a’?tsﬁ,%c)

by Assumption 3 (2). Asf| < 1,

2

0
EHW (@13 8,7, 0)|| =Ellz.f|* <E|la|* < oo.
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By Lemma 1, Assumption 1, and Assumption 3(2),

0 2 2 5
EH%—mg(wt;B,%C) =E |8, | < | <
Similarly,
2 2
af of
‘ —g wt;/g ’77 ) — E t/6 acm acm < 0.
For statement (2),
2 2
H aﬁoﬁf)" g<wt7ﬁ 7’ ) 0 E H aﬂ aﬁl g(wtvﬁ 77 ) - 0, and
2 2 ((92
EHﬂg(wta/Ba’%c) tﬁmaQJ; <

is bounded from Lemma 1.

For the second inequality, we use the fact 4%}

Similarly,

2 2

of f

/
Bmar s
22,

=E|x

82
EH@Q@&@’%C)

LEMMA 3.

(1) The sequenc% 9, \0 , t} is a stationary martingale difference sequenégis
t=1

e

the sigma-algebra given by all information up to time

(@)

sup £

t
— || < o0
0c® Ha@ 7

3)

sup E
6cO®

oty 0ty
86 06
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Proof. For part (1) of the proof, all derivatives are evaluate@ at 6,. The nought-subscript is

suppressed to reduce notational clutter.§.et (3, ~, ¢), as before.

agt Et 8& Et 0
(aﬁ Fi— 1>:E( 02(95 Fi— 1>:E( 2(95 (wtaﬁ%)]:tl):Q
sinceg(xy; 3,7, ¢) is independent of, and its derivatives are bounded (Lemma 2).
aft 1 1 6
E(@U? ]:t_l) :E(_202 20 i Fi- 1) =0,

sinces; has mean zero and variangg
For part (2) and (3) of the proof, the expressions are evaduat anyd < © if not otherwise

stated. The data-generating parameters will be explidgiyoted by a nought-subscript. The

1
2)2

processy, is dataand thus evaluated éf throughout.

We first consider the gradient vectors&f

&t

o2 g’ : (E o2
2 0

< <%) (E"a—gg(wt;ﬁ,% c)

The finiteness of the second factor follows from Lemma 2 (d).tRe first factor, note that

¢ 0

2\ 2 9
) (E Ha—ggm;mc)

(:L'ta /8 v, C )

#[a] >

[N

M 2
& = {yt — @B — > \B,f[rm(t — Cm)]}

= {332(50,0 — Bo) + Z T, [/Bm,()f (Ym,0(t = €m0)) = B (v (t — Cm))} } :
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Therefore, there exist& € IN such that

2

Y

M
g <K ‘332(50,0 - 50)‘2 + K Z ‘33; (B0 f im0t = cm0)] = B f [1m(t — cm)])

m=1
M
< KL|lz|* + KLY [la|* = KL(M + 1) [la,||*,

m=1
where L is some positive constant. The existence of sliagh guaranteed by the compactness
of the parameter space and the fact thas bounded. Using Assumption 3 (2), it is clear that
E (¢7) is bounded.

2
Foro?,

1 1 2
—E
~ 20?2 + 2

ol

2 ==
0o?

This shows statement (2) of Lemma 3. Statement (3) use sitedaniques in the proof. We

1 1é&?

2 4
202 20

E

£

will only show the case of,,,, which requires most work. The rest of the proof will be oeit

for brevity.
O O] _plet (05N g g ] Ee_?”(m Bual’) L]
a,ym a,%/ﬂ = 0_21 a,ym L2, P = O'él LI, P Tt afym
Eel\ 2 1 nt | 0f [
< (%) @118} FE| <

The finiteness oF ||x,||* follows from Assumption 3 (2)||3,,||* is finite due to Assumption
1. Lemma 1 ensures that the last factor is bounded. To seattenéss of the first factor, recall
in part (2) we have shown thaf < KL(M + 1) ||lz|°. It follows thate! < (KL)*(M +
1)? ||, ||*. ThereforeEe? < (K L)2(M + 1)E ||2||* < oo by Assumption 3 O

LEMMA 4. The function
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where
B 0%,
0006’

is such thaf [supgcg ||9:(0)]]] < oo, it is continuous irf and has zero meark [¢,(0)] = 0.

A(6) =

Proof. From the triangular inequality,

D?¢,
9606’

E {sup ||gt(0)]|] <E {sup
0c® 0cO®

|+ [sw a0

If E [supgee ||0%4:/0000'||] < oo, A(0) exists and by the Ergodic Theorem, there is pointwise
convergence. Thus showing absolute uniform integrab#itiuces to showing that

2£t

0606’

E sup < 00

6coO

Proving finiteness of the expected value of the supremumistsnsf repeated application of
the Lebesgue Dominated Convergence Theorem (Shiryae¥ (109187), Ling and McAleer
(2003), Lemmas 5.3 and 5.4). We will show the statement foorse derivatives element by

element, starting witlB,,
aQEt l‘twé

0By0B, o
According to Assumption 2 (1) there exists a constasiich thav? > ¢ > 0, therefore

32& l‘twé
su .
vee || 08,08, = || ¢
By Assumption 3 (3),
(92615 ) ( a:ta:’ )
E [ su <E ¢ < 00.
<Ge(g aﬂ0856 o c
Forg3,,,m=1,2,..., M,
sup 782&/ = sup wtwé]& < su a:ta:;fQ < a:tacg .
0cO aﬁmaﬁm 0cO (o 6ce c (&
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The last inequality follows from the fact thgf| < 1. Therefore,
/
. (bup ) CE(lzail) _
0cO

C
We next examine the second derivatives of the log likelihatt respect tar?,

20,
08,08,

0?0, 1 & 1 N £? and 0?4, 1 L1 1
= - — su su 6 .
02| ~ 1207~ 0] = [208| T [ot] M08 ot | = 2 T ol
In order to showE supy¢ ‘%gt)? < oo, it is sufficient to show thaE [supgce(cf)] < .

Recall we have already proved in Lemma 3 (2) tifat< K L(M + 1) ||z|°. It follows that
E [supgeo(c7)] < KL(M + 1E [la[|” < co.

To show thait [sup(,e@ ’%%

< oo, consider

0%¢
\ ¢ - o] 12,8,

2
(2B, 2 i (2, 24 1
2| c

2 —
£

L{df\*, .o 1]0f
< = =L — =L
¢ (éwm) lll” + c ‘8%2,1

whereL is some positive constant. The second term on the right sidde written as

of 1| 02f
(M)\tau \

el @B,

g

L) 2 Pf|. - :
o |gor | @B = < |5 wtwo,o—ﬁo>+2wt<ﬁm,ofm,o—ﬁmfm> 1B
L2, S :
= 2 |50 | [%i(Boo = B 1Byl + | > @B o fmo = Bnfn)| 1218l
m m=1
1|o°
<1 |5or | Kl
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whereK is some positive constant. Again, the compactness of tteneter space, boundedness

of f, and stationarity of; ensures the existence Af and L. It follows that

L/of\* 1
< (—( f) + = K) [
¢ \ 07 c

The finiteness of the derivatives ffwas shown in Lemma 1. Thus,

L(of\* 1
<<Z(a%> e

0
o}

2f
o}

020,
o;

92 f
o?

(2

E sup
6c®

K) E ||z |” < oc.

The proof thaf supy.e ‘%

Proof of Theorem 2The proof establishes the conditions of Theorem 4.1.3 of iy (1985)
with a generalization due to Ling and McAleer (2003, Theofd). We need consistency of

aT for 8,, which was shown in Theorem 1. Then we show

[rT]

6,) \}Za@ L W(s), s €[0,1],

MI»—\

8o
wherelV (r) is N-dimensional standard Brownian motion on the unit inter¥ailis is condition
(C) in Theorem 4.1.3 of Amemiya (1985). The convergenceotadl from Theorem 18.3 in
Billingsley (1999) if (a){ AP ]—“t} is a stationary martingale difference, and B6,) exists.
Both conditions were shown in Lemma 3.

To satisfy condition (B) of Theorem 4.1.3 of Amemiya (198b§ have to establish

Az (07) = A(8o)
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for any sequencé;, % 6,,

0%¢,

1<~ 0%
Ar(07) = =% ) 5pagr| aNdA(6) = —E - -
6o

is non-singular. Conditions for the double stochastic eogence can be found in Theorem 21.6

of Davidson (1994). We need to show

(1) consistency 0b for 6, (Theorem 1), and

(2) uniform convergence ol to A in probability, i.e.supg g |A7(0) — A(8)] 2 0.

We prove uniform convergence of; using Theorem 3.1 of Ling and McAleer (2003), who
generalize Theorem 4.2.1 of Amemiya (1985) from i.i.d. datatationary and ergodic data.
This allows the immediate invocation of the Ergodic Theowathout having to check finiteness
of third derivatives of’; as in Andrews (1992, Theorem 2). To apply Theorem 3.1 of Limg) a

McAleer (2003) we need that

B 0?4,
0006’

is continuous irg (this also establishes condition (A) of Theorem 4.1.3. ofehmya (1985)

gt(e) = - A(O)

along the way), has expected valllg,(8) = 0 andE [supgcg |9:(€)|] < oo. This was shown
in Lemma 4. Thus, we have established all conditions for gégtic normality according to

Theorem 4.1.3 of Amemiya (1985). O

Proof of Proposition 1.The proof of uniform convergence in probability df- to A is given
in Lemma 4 and Theorem 2. We need to show uniform convergehéz-do B. We employ
Theorem 3.1 of Ling and McAleer (2003) again and show that

Ot Oty
is absolutely uniformly integrable, continuous@nand has expected vall&h,(0) = 0. The

detailed proof is in complete analogy to Lemma 4 and is oxhiibe brevity. O
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TABLE 1. ESTIMATION RESULTS

The table reports the parameter estimates for both linehnanlinear specifications. The value between parenthesis
are the standard errors. The table also repsstalues of the sequence of LM tests for remaining nonlingas
well as the AIC for both linear an nonlinear models.

Nonlinear Model

Parameter Linear Model First regime Second Regime ThirdriReg
Intercept 0.0011 0.0036 0.0018 -0.0024
(0.0003) (0.0014) (0.0018) (0.0013)
Te—1 0.8833 0.1519 0.5223 -0.1920
(0.0331) (0.3684) (0.3733) (0.1351)
Ti—1 0.0361 0.0919 -0.0362 0.0030
(0.0132) (0.0454) (0.0485) (0.0329)
y 20 60
(13.9086) (83.9221)
c 0.5977 1.8778
(00543) (0.0284)
p-value 1.2121 x 10~* 0.0045 0.3010
AIC —11.8023 —11.8975
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FIGURE 1. Same unscaled logistic transition functions with défer sample
sizesT = 100 & 1000. v = 0.2; ¢ = 50.
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FIGURE 2. Transition function for Models A and B with 1000 obsereas.
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