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ASYMPTOTIC THEORY FOR REGRESSIONS WITH SMOOTHLY CHANGING
PARAMETERS
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ABSTRACT. We derive asymptotic properties of the quasi maximum likelihood estimator of

smooth transition regressions when time is the transition variable. The consistency of the es-

timator and its asymptotic distribution are examined. It isshown that the estimator converges at

the usual
√
T -rate and has an asymptotically normal distribution. Finite sample properties of the

estimator are explored in simulations. We illustrate with an application to US inflation and output

data.
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1. INTRODUCTION

In this paper, we derive the asymptotic properties of the quasi maximum likelihood estimator

(QMLE) of smooth transition regressions (STR) when time is the transition variable and the

regressors are stationary. The consistency of the estimator and its asymptotic distribution are

examined.

Nonlinear regression models have been widely used in practice for a variety of time series

applications; see Teräsvirta, Tjøstheim, and Granger (2010) for some examples in economics.

Date: June 12, 2012.
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In particular, STR models, initially proposed in its univariate form by Chan and Tong (1986), and

further developed in Luukkonen, Saikkonen, and Teräsvirta (1988) and Teräsvirta (1994,1998),

have been shown to be very useful for representing asymmetric behavior. A comprehensive

review of time series STR models is presented in van Dijk, Teräsvirta, and Franses (2002).

In most applications, stationarity, weak exogeneity, and homoskedasticity have been imposed.

In these cases, the standard method of estimation is nonlinear least squares (NLS), which is

equivalent to quasi-maximum likelihood (QML) or, when the errors are Gaussian, to conditional

maximum likelihood. The asymptotic properties of the NLS are discussed in Mira and Escrib-

ano (2000), Suarez-Fariñas, Pedreira, and Medeiros (2004), and Medeiros and Veiga (2005).

Lundbergh and Teräsvirta (1998) and Li, Ling, and McAleer (2002) consider STR models with

heteroskedastic errors. Saikkonen and Choi (2004) consider the case of STR models with coin-

tegrated variables when the transition variable is integrated of order one, and Medeiros, Mendes,

and Oxley (2009) analyze a similar model but with stationarytransition variables. The case with

endogenous regressors is considered in Areosa, McAleer, and Medeiros (2011).

An important case to consider is time as transition variablein STR models. Lin and Teräsvirta

(1994) and Medeiros and Veiga (2003) consider this type of specification to construct models

with parameters that change smoothly over time. Strikholm (2006) use this transition variable to

determine the number of breaks in regression models. However, the asymptotic properties of the

QMLE in this case have not been fully understood. If time is the transition variable, asymptotic

theory of the QML estimator cannot be achieved in the standard way, because as the sample size

T goes to infinity, the proportion of finite sub-samples goes tozero. Our solution to this problem

is to scale the transition variablet so that the location of the transition is a certain fraction of the

total sample rather than a fixed sample point. This modification allows asymptotic theory of the

QML estimator. Andrews and McDermott (1995) and Saikkonen and Choi (2004) use similar

transformations. The scaling can be understood as a smooth transition version of the assumption
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of constant break fractions that is common in the change-point literature (Perron (1989), for

example).

The outline of this paper is as follows. Section 2 describes the model and asymptotic prop-

erties of the QMLE. A brief discussion concerning model specification is presented in Section

3. Monte Carlo simulations are presented in Section 4. Section 5 presents an application to US

inflation and Gross Domestic Product. Section 6 concludes the paper. All proofs are presented

in the Appendix. Additional simulation results are available in the supplement.

2. MODEL DEFINITION AND ESTIMATION

2.1. The Model. We consider the following model

yt = x′
tβ0 +

M∑

m=1

x′
tβmf [γm(t− cm)] + εt, t = 1, 2, . . . , T, (1)

whereεt is a martingale difference sequence with varianceσ2
ε ; xt is a vector of pre-determined

regressors. The functionf is the logistic transition function which has the form

f [γ(t− c)] =
1

1 + e−γ(t−c)
, t = 1, 2, . . . , T. (2)

whereγ > 0 controls the smoothness of the transition andc ∈ {1, 2, . . . , T} is a location

parameter.cm ∈ {1, 2, . . . , T} in (1) are change-points. Note that whenγm −→ ∞, m =

1, . . . ,M , model (1) becomes a linear regression withM structural breaks occurring at thecm.

2.2. Embedding the Model in a Triangular Array. Asymptotic theory for the QML estimator

of the model defined above cannot be derived the standard way.Consider model (1) withM = 1.

As T → ∞, the proportion of observations in the first regime goes to zero. Since forT large,

f [γ(t− c)] = f [Tγ(T−1t− T−1c)] ≈ 1{T−1t>0}, the parameter vectorβ0 that governs the

first regime as well as the transition parametersγ and c vanish from the model and become

unidentified. Figure 1 illustrates this forγ = 0.2 andc = 50. In the upper plot of the figure,c is



4 E. HILLEBRAND, M. C. MEDEIROS, AND J. XU

in the middle of the sample; in the lower plot (T = 1000), the second regime dominates. QML

estimation of model (1) will be dominated by the second regime as the sample size increases. As

the sample size goes to infinity, the first regime vanishes andits parameters become unidentified

in the estimation. In order to obtain asymptotic theory for the estimator, the proportion of sub-

samples in two regimes (before and after the transition) should remain constant asT goes to

infinity. In other words, the shape of the plot of the time series should remain qualitatively the

same asT grows. For this purpose, we scale the logistic transition function as

f

[
γ

(
T0

T
t− c

)]
= f

[
T−1γ (T0t− Tc)

]
; t = 1, . . . , T ; c ∈

[
T0

T
, T0

]
. (3)

whereT0 is the actual sample size in any given data situation. Accordingly,

yt = x′
tβ0 +

M∑

m=1

x′
tβmf

[
γm

(
T0

T
t− cm

)]
+ εt. (4)

Note that a given small-sample situation is embedded in thissequence of models atT = T0.

As can be seen in (3), with this scaling the slope of the logistic function is decreasing withT

while the locus of the transition is increasing withT . The scaling of the time counter,T0, remains

constant. Therefore, the proportions of observations in the first regime, during the transition, and

in the last regime remain the same asT grows, and the parameters in these groups of observations

remain identified.

2.3. Assumptions. We denote the data-generating parameter vector as

θ0 = (β′
0,0,β

′
1,0, . . . ,β

′
M,0, γ1,0, . . . , γM,0, c1,0, . . . , cM,0, σ

2
ε,0)

′,

where the (second) 0-subscript indicates the data-generating character.

We writeεt(θ) such that the notation can be used for both the residuals fromthe estimation

and the data-generating errors:εt (θ) = yt − g(xt;β,γ, c), whereβ = (β0, . . . ,βM)′;γ =
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(γ1, . . . , γM)′; c = (c1, . . . , cM)′ and

g(xt;β,γ, c) = x′
tβ0 +

M∑

m=1

x′
tβmf

[
γm

(
T0

T
t− cm

)]
.

We use the shorthand notationεt,0 := εt(θ0), for the data-generating errors andεt = εt(θ) for

the residual evaluated at anyθ.

We consider the following assumptions.

ASSUMPTION 1 (Parameter Space).The parameter vectorθ0 is an interior point ofΘ, a com-

pact real parameter space.

ASSUMPTION2 (Errors).

(1) εt,0 is a martingale difference sequence with constant varianceσ2
ε > c > 0.

(2) E|εt,0|q < ∞ for q ≤ 4.

(3) xt andεt,0 are independent.

ASSUMPTION3 (Stationarity and Moments).

(1) xt = (xA,t,xB,t)
′, wherexA,t consists of stationary and ergodic exogenous variables

andxB,t is a set of lagged values ofyt. The autoregressive polynomial in each regime

associated withxB,t has all roots outside the unit circle.

(2) E ‖xA,t‖q < ∞ for q ≤ 4, where‖·‖ is the Euclidean vector norm.

(3) 1
T

∑T

t=1 (xtx
′
t) converges in probability toΩ = E (xtx

′
t), which is symmetric positive

definite.

2.4. Quasi Maximum Likelihood Estimator. The parameter vector is estimated by QML as

θ̂T = argmax
θ∈Θ

LT (θ) = argmax
θ∈Θ

1

T

T∑

t=1

`t(θ), (5)

where`t(θ) = −1
2
(log 2π + log σ2

ε + ε2tσ
−2
ε ).
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THEOREM 1 (Consistency).Under Assumptions 1 through 3, the quasi maximum likelihood

estimator̂θT is consistent:̂θT
p→ θ0.

THEOREM 2 (Asymptotic Normality).Under Assumptions 1 through 3, the quasi maximum

likelihood estimator̂θT is asymptotically normally distributed:

√
T
(
θ̂T − θ0

)
d→ N

[
0, A(θ0)

−1B(θ0)A(θ0)
−1
]
, (6)

where

A(θ0) = −E

(
∂2`t
∂θ∂θ′

∣∣∣∣∣
θ0

)
, andB(θ0) = E

(
∂`t
∂θ

∣∣∣∣∣
θ0

∂`t
∂θ′

∣∣∣∣∣
θ0

)
.

PROPOSITION1 (Covariance Matrix Estimation).Under Assumptions 1 through 3,

AT
p→ A andBT

p→ B,

where

AT (θ) = − 1

T

T∑

t=1

∂2`t
∂θ∂θ′ , andBT (θ) =

1

T

T∑

t=1

∂`t
∂θ

∂`t
∂θ′ ,

andA, B as defined in Theorem 2.

3. NUMBER OF NONLINEAR TERMS

The number of nonlinear terms in equation (4) can be determined by the procedure proposed

in Strikholm (2006). Suppose we want to test the null hypothesis ofM = M∗ terms against

the alternative ofM > M∗ terms. Due to identification problems, the idea is, as in Ter¨asvirta

(1994), to replace the additional nonlinear terms by a thirdorder Taylor expansion around the

null hypothesis:H0 : γM∗+1 = γM∗+1 = · · · = 0. Equation (4) can be approximated as

yt = x′
tβ̃0 +

M∗∑

m=1

x′
tβmf

[
γm

(
T0

T
t− cm

)]

+ x′
t

(
t

T

)
θ1 + x′

t

(
t

T

)2

θ1 + x′
t

(
t

T

)3

θ3 + ε∗t ,

(7)
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whereε∗t = εt + R, whereR is the remainder of the approximation. The null hypothesisH0 to

be tested isθ1 = θ2 = θ3 = 0. As the QMLE of the nonlinear parameters in (4) is consistent

and asymptotically normal, a Lagrange Multiplier test withthe usual asymptotic distribution is

available and can be used to test the null hypothesis.

4. SMALL SAMPLE SIMULATIONS

We conduct a set of Monte Carlo simulations in order to evaluate both the small-sample

properties and the asymptotic behavior of the QMLE. In particular, we consider the following

models with three limiting regimes:

Model A – Independent and identically distributed (IID) regressors:

yt = x′
tβ0 +

2∑

m=1

x′
tβmf

[
γm

(
t

T
− cm

)]
+ εt,

yt = 1 + x+ (−1 − 2x)f

[
30

(
t

T
− 1

3

)]
+ (1 + 3x)f

[
30

(
t

T
− 2

3

)]
+ εt,

where{xt} is a sequence of independent and normally distributed random variables with

zero mean and unit variance,xt ∼ NID(0, 1), and{εt} is either a sequence ofNID(0, 1)

orUniform(−2, 2) random variables.

Model B – Dependent regressors:

yt = x′
tβ0 +

2∑

m=1

x′
tβmf

[
γm

(
t

T
− cm

)]
+ εt,

yt = 0.5 + 0.4yt−1 + (−0.5 + 0.5yt−1)f

[
30

(
t

T
− 1

3

)]

+ (0.5− 1.7yt−1)f

[
30

(
t

T
− 2

3

)]
+ εt,

where{εt} is either a sequence ofNID(0, 1) orUniform(−2, 2) random variables.
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Different values ofT are used, ranging from100 to 5000 observations. For each value ofT ,

1000 simulations are repeated. When the errors are normally distributed, maximum likelihood

estimators are obtained. On the other hand, when the errors are uniformly distributed, the error

distribution is misspecified and we have a QML estimation setup. For sample sizes up to300

observations, the estimation procedure did not converge inless than5% of the replications.

These cases were discarded. The parametersγ are chosen in order to keep the transitions neither

too smooth nor too sharp; see Figure 2.

For brevity, we report only the results concerning the uniform distribution. The results for

Gaussian distribution are available in the supplement. Figures 3 and 4 show the average bias and

the mean squared error (MSE) as a function of the sample size.Apart from the slope parameter,

the average biases are rather small for all sample sizes and models. Furthermore, the MSE, as

expected, converges to zero as the sample size increases. With respect to the slope parameter,

the MSE is quite high for very small samples (100–300 observations) but also goes to zero as

the sample size increases. The bias is also large in small samples, but becomes negligible for

larger sample sizes. The large biases and MSE are mainly caused by few very large estimates

(less than1% of the cases). This pattern is expected, as it is quite difficult to estimate the slope

parameters in small samples. On the other hand, the location(c) and the linear parameters (β)

are estimated quite precisely.

Figures 5–6 present the distribution the standardized QMLEof the linear parameters of the

model (β). Some interesting facts emerge from the graphs. First, even in very small samples,

the estimatêβ0 has a distribution close to normal for all models. Second, the distributions of̂β1

andβ̂2 have some outliers in small samples, but, as expected, they are close to normal for very

large samples (T = 5000).
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Turning to the location parameter, Figures 7 and 8 show the distribution of the standardized

QMLE for c. It is quite remarkable that even forT = 100, the empirical distributions are close

to normal.

5. EMPIRICAL EXAMPLE

We study the occurrence of parameter changes in a backward-looking predictive Phillips curve

given as

πt = α0 + α1πt1 + α2xt−1 + ut, (8)

whereπt is the inflation rate,xt−1 is the past real output gap, andut is an error term. We use

quarterly data from the United States from 1960 to 2004, a total of 180 observations. Inflation

is measured by the Gross Domestic Product (GDP) price index.The output gap is computed by

applying the Hodrick-Prescott filter to the real GDP series measured in billions of chained 2000

US dollars.

We start by estimating a linear model and testing linearity against smoothly changing parame-

ters. The test is based on a third-order Taylor approximation as described in Section 3. Linearity

is strongly rejected with ap-value of1.21× 10−4. A Lagrange Multiplier test for residual serial

correlation also indicates the presence of autocorrelatederrors. We continue by applying the

model building procedure described in Section 3 and our finalmodel has two nonlinear terms,

indicating two smooth breaks in the Phillips curve. The sequence of LM tests for remaining

nonlinearity hasp-values 0.004 and 0.301, respectively, clearly indicatingthree distinct regimes.

The results are shown in Table 1 and in Figure 9. Table 1 presents the parameter estimates of

both linear and nonlinear models as well as some diagnostic statistics. Figure 9 shows the plots

of inflation and output gap as well as the two transition functions.
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6. CONCLUSION

In this paper, we propose asymptotic theory for the QML estimator of a logistic smooth tran-

sition regression model with time as transition variable. Although asymptotic theory cannot be

derived in the standard way as the transition variable is notstationary, after proper scaling, we

show that the QML estimator is consistent and asymptotically normal. The estimator is shown

to converge to the true value of the parameter at the speed of
√
T . We explore the small sample

behavior in simulations and illustrate with an applicationto US inflation and output data.

APPENDIX A. PROOF OFCONSISTENCY

Proof of Theorem 1.We establish the conditions for consistency according to Theorem 4.1.1 of

Amemiya (1985). We havêθT
p→ θ0 if the following conditions hold: (1)Θ is a compact

parameter set; (2)LT (θ, εt) is continuous inθ and measurable inεt; (3) LT (θ) converges to a

deterministic functionL(θ) in probability uniformly onΘ asT → ∞; and (4)L(θ) attains a

unique global maximum atθ0.

Item (1) is given by Assumption 1. Item (2) holds by definitionof the QMLE (5) from the

definition of the normal density. For item (3) we refer to Theorem 4.2.1 of Amemiya (1985):

This holds for i.i.d. data ifE [supθ∈Θ |`t(θ)|] < ∞ and`t(θ) is continuous inθ for eachεt. The

extension to stationary and ergodic data using the same set of assumptions is achieved in Ling

and McAleer (2003, Theorem 3.1). We haveE [supθ∈Θ |`t(θ)|] < ∞ by Jensen’s inequality and

E [sup |φ(εt, θ)|] < ∞, whereφ denotes the normal density function. The finiteness of the last

expression follows from the assumption thatσ2
ε > c > 0 for some constantc. The log density

logφ(εt, θ) is continuous inθ for everyεt.
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Consider Item (4). By the Ergodic Theorem,E [`t(θ)] = L(θ). Rewrite the maximization

problem asmaxθ∈Θ E [`t (θ)− `t(θ0)]. Now, for a given numberσ2
ε ,

E [`t (θ)− `t (θ0)] = E log

[
φ(εt, θ)

φ(εt, θ0)

]
= E

[
−1

2
log

σ2
ε

σ2
ε,0

− 1

2

(
ε2t
σ2
ε

− ε2t,0
σ2
ε,0

)]
,

= −1

2
log

σ2
ε

σ2
ε,0

− 1

2

[
E(ε2tσ

−2
ε )− 1

]
. (9)

We show thatEε2t (θ) ≥ E
(
ε2t,0
)
= σ2

ε,0 and that (9) attains an upper bound atθ = θ0 uniquely.

ConsiderE [ε2t (θ)] = E [yt − g(xt;β,γ, c)]
2. Substituting foryt = g(xt;β0,γ0, c0) + εt,0 we

obtainE [ε2t (θ)] = E [g(xt;β0,γ0, c0) + εt,0 − g(xt;β,γ, c)]
2 ≥ E

[
ε2t,0
]
= σ2

ε,0.

The inequality holds from Assumption 2(3). We have established that for any givenσ2
ε , the

objective function (9) attains its maximum of

−1

2

(
log

σ2
ε

σ2
ε,0

+
σ2
ε,0

σ2
ε

− 1

)

atβ = β0, γ = γ0, c = c0. Definex = σ2
ε/σ

2
ε,0, then

f(x) = −1

2

(
log x+

1

x
− 1

)

attains its maximum of 0 atx = 1, therefore the maximizer isσ2
ε = σ2

ε,0. This shows that

E [`t(θ)− `t(θ0)] is uniquely maximized atθ = θ0. �

APPENDIX B. PROOF OFASYMPTOTIC NORMALITY

In this proof, terms will sometimes involve expectations ofcross-products of the typeE(XY ),

whereX andY are correlated random variables. Note that by the Cauchy-Schwarz inequality,

we haveE(XY ) ≤ (EX2)
1

2 (EY 2)
1

2 , and thus in order to show that the cross-product has finite

expectation, it suffices to show that both random variables have finite second moments. By the
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same token, if bothX andY have finite second moments,

E
[
(X + Y )2

]
≤ E

(
X2
)
+ E

(
Y 2
)
+ 2

[
E
(
X2
)] 1

2

[
E
(
Y 2
)] 1

2 ≤ K
[
E
(
X2
)
+ E

(
Y 2
)]

,

for someK < ∞.

In the outline of the proof we follow Theorem 4.1.3 of Amemiya(1985). Therefore we have

to establish the conditions

(1) ∂2`t
∂θ∂θ′ exists and is continuous in an open neighborhood ofθ0.

(2) AT (θ
∗
T )

p→ A(θ0) for all sequencesθ∗
T

p→ θ0.

(3)

B(θ0)
− 1

2

1√
T

[rT ]∑

t=1

∂`t
∂θ

∣∣∣∣∣∣
θ0

d→ W (s), s ∈ [0, 1],

whereW (·) is standard Brownian motion on the unit interval.

Item (1) is shown in Lemma 3. Item (2) needs consistency ofθ̂T for θ0, which we established

in Theorem 1. It further needssupθ∈Θ |AT (θ)−A(θ)| p→ 0. We use Ling and McAleer (2003,

Theorem 3.1) to establish this. We show the uniform convergence in Lemma 4.

Item (3) uses Billingsley (1999, Theorem 18.3) and needs (a)that{∂`t/∂θ|θ0,Ft} is a sta-

tionary martingale difference sequence and (b) thatB(θ0) exists. Both with be proved in Lemma

3. The first two lemmata show a few technical properties ofg(xt;β,γ, c) that are needed in the

following.

LEMMA 1. The transition function given by Equation(3) is bounded, and so are its first and

second derivatives with respect toγm andcm, ∀m = 1, 2, . . .M .

Proof. We will use shorthand notationf for f
[
γm
(
T0

T
t− cm

)]
below unless otherwise stated.

Definingam(t) := T0

T
t − cm, t = 1, 2 . . . , T , it is easy to verify that−∞ < −cm < am(t) ≤

T0 − cm < ∞. Since the transition function has the range(0, 1), it is clearly bounded. For the



ASYMPTOTICS FOR SMOOTH TRANSITION REGRESSIONS 13

first derivative off with respect toγm, ∀m = 1, 2, . . .M ,

∣∣∣∣
∂f

∂γm

∣∣∣∣ =
∣∣∣∣
am(t)e

−γmam(t)

(1 + e−γmam(t))2

∣∣∣∣ ≤ |am(t)f | < ∞.

The first inequality follows from the fact that1 + e−γmam(t) > e−γmam(t) > 0. The second

inequality holds because botham(t) andf are bounded. For the second derivative off with

respect tocm, ∀m = 1, 2, . . .M ,

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣ =
∣∣∣∣∣
2am(t)

2e−2γmam(t)

(1 + e−γmam(t))
3 +

am(t)
2e−γmam(t)

(1 + e−γmam(t))
2

∣∣∣∣∣

≤
∣∣∣∣∣
2am(t)

2e−2γmam(t)

(1 + e−γmam(t))
3

∣∣∣∣∣ +
∣∣∣∣∣
am(t)

2e−γmam(t)

(1 + e−γmam(t))
2

∣∣∣∣∣

≤
∣∣∣∣

2am(t)
2

1 + e−γmam(t)

∣∣∣∣+
∣∣∣∣

am(t)
2

1 + e−γmam(t)

∣∣∣∣ =
∣∣3am(t)2f

∣∣ < ∞.

The second inequality follows from the fact that1+e−γmam(t) > e−γmam(t) > 0, the last inequal-

ity holds because botham(t) andf are bounded. The proof of the boundedness of the first and

second derivatives off with respect tocm is almost identical to the one above and is omitted for

brevity. �

LEMMA 2. Letξ := (β,γ, c), then

(1) E

∥∥∥ ∂
∂ξ
g(xt;β,γ, c)

∥∥∥
2

< ∞.

(2) E

∥∥∥ ∂2

∂ξ∂ξ′
g(xt;β,γ, c)

∥∥∥
2

< ∞, where‖·‖ denotes the standard vector and matrix norms.

Proof. We will prove the statements element by element. For statement (1),

E

∥∥∥∥
∂

∂β0

g(xt;β,γ, c)

∥∥∥∥
2

= E ‖xt‖2 < ∞

by Assumption 3 (2). As|f | < 1,

E

∥∥∥∥
∂

∂βm

g (xt;β,γ, c)

∥∥∥∥
2

= E ‖xtf‖2 ≤ E ‖xt‖2 < ∞.
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By Lemma 1, Assumption 1, and Assumption 3(2),

E

∥∥∥∥
∂

∂γm
g(xt;β,γ, c)

∥∥∥∥
2

= E

∥∥∥∥x
′
tβm

∂f

∂γm

∥∥∥∥
2

≤ E ‖xt‖2 ‖βm‖2
∣∣∣∣
∂f

∂γm

∣∣∣∣
2

< ∞.

Similarly,

E

∥∥∥∥
∂

∂cm
g(xt;β,γ, c)

∥∥∥∥
2

= E

∥∥∥∥x
′
tβm

∂f

∂cm

∥∥∥∥
2

≤ E ‖xt‖2 ‖βm‖2
∣∣∣∣
∂f

∂cm

∣∣∣∣
2

< ∞.

For statement (2),

E

∥∥∥∥
∂2

∂β0∂β
′
0

g(xt;β,γ, c)

∥∥∥∥
2

= 0, E

∥∥∥∥
∂2

∂βm∂β
′
m

g(xt;β,γ, c)

∥∥∥∥
2

= 0, and

E

∥∥∥∥
∂2

∂γ2
m

g(xt;β,γ, c)

∥∥∥∥
2

= E

∥∥∥∥x
′
tβm

∂2f

∂2γ2
m

∥∥∥∥
2

≤ E ‖xt‖2 ‖βm‖2
∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣
2

< ∞.

For the second inequality, we use the fact that
∣∣∣ ∂2f

∂γ2
m

∣∣∣ is bounded from Lemma 1.

Similarly,

E

∥∥∥∥
∂2

∂c2m
g(xt;β,γ, c)

∥∥∥∥
2

= E

∥∥∥∥x
′
tβm

∂f

∂2c2m

∥∥∥∥
2

≤ E ‖xt‖2 ‖βm‖2
∣∣∣∣
∂2f

∂c2m

∣∣∣∣
2

< ∞.

�

LEMMA 3.

(1) The sequence
{

∂`t
∂θ

∣∣
θ0

,Ft

}
t=1,...,T

is a stationary martingale difference sequence.Ft is

the sigma-algebra given by all information up to timet.

(2)

sup
θ∈Θ

E

∥∥∥∥
∂`t
∂θ

∥∥∥∥ < ∞,

(3)

sup
θ∈Θ

E

∥∥∥∥
∂`t
∂θ

∂`t
∂θ′

∥∥∥∥ < ∞.
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Proof. For part (1) of the proof, all derivatives are evaluated atθ = θ0. The nought-subscript is

suppressed to reduce notational clutter. Letξ = (β,γ, c), as before.

E

(
∂`t
∂ξ

∣∣∣∣Ft−1

)
= E

(
− εt
σ2
ε

∂εt
∂ξ

∣∣∣∣Ft−1

)
= E

(
εt
σ2
ε

∂

∂ξ
g(xt;β,γ, c)

∣∣∣∣Ft−1

)
= 0,

sinceg(xt;β,γ, c) is independent ofεt and its derivatives are bounded (Lemma 2).

E

(
∂`t
∂σ2

ε

∣∣∣∣Ft−1

)
= E

(
− 1

2σ2
ε

+
1

2

ε2t
σ4
ε

∣∣∣∣Ft−1

)
= 0,

sinceεt has mean zero and varianceσ2
ε .

For part (2) and (3) of the proof, the expressions are evaluated at anyθ ∈ Θ if not otherwise

stated. The data-generating parameters will be explicitlydenoted by a nought-subscript. The

processyt is dataand thus evaluated atθ0 throughout.

We first consider the gradient vectors ofξ,

E

∥∥∥∥
∂`t
∂ξ

∥∥∥∥ = E

∥∥∥∥
εt
σ2
ε

∂

∂ξ
g(xt;β,γ, c)

∥∥∥∥ ≤
(
E

∣∣∣∣
εt
σ2
ε

∣∣∣∣
2
) 1

2

(
E

∥∥∥∥
∂

∂ξ
g(xt;β,γ, c)

∥∥∥∥
2
) 1

2

≤
(
Eε2t
c

) 1

2

(
E

∥∥∥∥
∂

∂ξ
g(xt;β,γ, c)

∥∥∥∥
2
) 1

2

< ∞.

The finiteness of the second factor follows from Lemma 2 (1). For the first factor, note that

ε2t =

{
yt − x′

tβ0 −
M∑

m=1

x′
tβmf [γm(t− cm)]

}2

=

{
x′
t(β0,0 − β0) +

M∑

m=1

x′
t

[
βm,0f (γm,0(t− cm,0))− βmf (γm(t− cm))

]
}2

.
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Therefore, there existsK ∈ N such that

ε2t ≤ K
∣∣x′

t(β0,0 − β0)
∣∣2 +K

M∑

m=1

∣∣x′
t

(
βm,0f [γm,0(t− cm,0)]− βmf [γm(t− cm)]

)∣∣2 ,

≤ KL ‖xt‖2 +KL

M∑

m=1

‖xt‖2 = KL(M + 1) ‖xt‖2 ,

whereL is some positive constant. The existence of suchL is guaranteed by the compactness

of the parameter space and the fact thatf is bounded. Using Assumption 3 (2), it is clear that

E (ε2t ) is bounded.

Forσ2
ε ,

E

∣∣∣∣
∂`t
∂σ2

ε

∣∣∣∣ = E

∣∣∣∣
1

2σ2
ε

− 1

2

ε2t
σ4
ε

∣∣∣∣ ≤
1

2σ2
ε

+
1

2
E

∣∣∣∣
ε2t
σ4
ε

∣∣∣∣ =
1

σ2
ε

< ∞.

This shows statement (2) of Lemma 3. Statement (3) use similar techniques in the proof. We

will only show the case ofγm, which requires most work. The rest of the proof will be omitted

for brevity.

E

∣∣∣∣
∂`t
∂γm

∂`t
∂γ′

m

∣∣∣∣ = E

∣∣∣∣∣
ε2t
σ4
ε

(
∂f

∂γm

)2

x′
tβmβ

′
mxt

∣∣∣∣∣ ≤
(
E

∣∣∣∣
ε2t
σ4
ε

∣∣∣∣
2
) 1

2 (
E |x′

tβmβ
′
mxt|2

) 1

2

∣∣∣∣
∂f

∂γm

∣∣∣∣
2

≤
(
Eε4t
c3

) 1

2 (
E ‖xt‖4 ‖βm‖4

) 1

2

∣∣∣∣
∂f

∂γm

∣∣∣∣
2

< ∞.

The finiteness ofE ‖xt‖4 follows from Assumption 3 (2).‖βm‖4 is finite due to Assumption

1. Lemma 1 ensures that the last factor is bounded. To see the finiteness of the first factor, recall

in part (2) we have shown thatε2t ≤ KL(M + 1) ‖xt‖2. It follows that ε4t ≤ (KL)2(M +

1)2 ‖xt‖4. Therefore,Eε4t ≤ (KL)2(M + 1)2E ‖xt‖4 < ∞ by Assumption 3 �

LEMMA 4. The function

gt(θ) := − ∂2`t
∂θ∂θ′ −A(θ)
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where

A(θ) = −E
∂2`t
∂θ∂θ′

is such thatE [supθ∈Θ ‖gt(θ)‖] < ∞, it is continuous inθ and has zero mean:E [gt(θ)] = 0.

Proof. From the triangular inequality,

E

[
sup
θ∈Θ

‖gt(θ)‖
]
≤ E

[
sup
θ∈Θ

∥∥∥∥
∂2`t
∂θ∂θ′

∥∥∥∥
]
+ E

[
sup
θ∈Θ

‖A(θ)‖
]
.

If E [supθ∈Θ ‖∂2`t/∂θ∂θ
′‖] < ∞, A(θ) exists and by the Ergodic Theorem, there is pointwise

convergence. Thus showing absolute uniform integrabilityreduces to showing that

E sup
θ∈Θ

∥∥∥∥
∂2`t
∂θ∂θ′

∥∥∥∥ < ∞.

Proving finiteness of the expected value of the supremum consists of repeated application of

the Lebesgue Dominated Convergence Theorem (Shiryaev (1996, p. 187), Ling and McAleer

(2003), Lemmas 5.3 and 5.4). We will show the statement for second derivatives element by

element, starting withβ0,
∂2`t

∂β0∂β
′
0

= −xtx
′
t

σ2
ε

.

According to Assumption 2 (1) there exists a constantc such thatσ2
ε > c > 0, therefore

sup
θ∈Θ

∥∥∥∥
∂2`t

∂β0∂β
′
0

∥∥∥∥ ≤
∥∥∥∥
xtx

′
t

c

∥∥∥∥ .

By Assumption 3 (3),

E

(
sup
θ∈Θ

∥∥∥∥
∂2`t

∂β0∂β
′
0

∥∥∥∥
)

≤ E

(∥∥∥∥
xtx

′
t

c

∥∥∥∥
)

< ∞.

Forβm, m = 1, 2, . . . ,M ,

sup
θ∈Θ

∥∥∥∥
∂2`t

∂βm∂β
′
m

∥∥∥∥ = sup
θ∈Θ

∥∥∥∥
xtx

′
tf

2

σ2
ε

∥∥∥∥ ≤ sup
θ∈Θ

∥∥∥∥
xtx

′
tf

2

c

∥∥∥∥ ≤
∥∥∥∥
xtx

′
t

c

∥∥∥∥ .
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The last inequality follows from the fact that|f | ≤ 1. Therefore,

E

(
sup
θ∈Θ

∥∥∥∥
∂2`t

∂βm∂β
′
m

∥∥∥∥
)

≤ E (‖xtx
′
t‖)

c
< ∞.

We next examine the second derivatives of the log likelihoodwith respect toσ2
ε ,

∣∣∣∣
∂2`t

∂(σ2
ε )

2

∣∣∣∣ =
∣∣∣∣
1

2σ4
ε

− ε2t
σ6
ε

∣∣∣∣ ≤
∣∣∣∣
1

2σ4
ε

∣∣∣∣ +
∣∣∣∣
ε2t
σ6
ε

∣∣∣∣ and sup
θ∈Θ

∣∣∣∣
∂2`t

∂(σ2
ε )

2

∣∣∣∣ ≤
1

2c2
+

1

c3
sup
θ∈Θ

ε2t .

In order to showE supθ∈Θ

∣∣∣ ∂2`t
∂(σ2

ε )
2

∣∣∣ < ∞, it is sufficient to show thatE [supθ∈Θ(ε
2
t )] < ∞.

Recall we have already proved in Lemma 3 (2) thatε2t ≤ KL(M + 1) ‖xt‖2. It follows that

E [supθ∈Θ(ε
2
t )] ≤ KL(M + 1)E ‖xt‖2 < ∞.

To show thatE
[
supθ∈Θ

∣∣∣∂2`t
∂γ2

i

∣∣∣
〈
∞, consider

∣∣∣∣
∂2`t
∂γ2

m

∣∣∣∣ =

∣∣∣∣∣∣∣

−
(
x′
tβm

∂f

∂γm

)2
+ εt

(
x′
tβm

∂2f

∂γ2
m

)

σ2
ε

∣∣∣∣∣∣∣
≤ 1

c

(
∂f

∂γm

)2

|x′
tβm|2 +

1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣ |εt| |x′
tβm|

≤ L

c

(
∂f

∂γm

)2

‖xt‖2 +
1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣ |εt| |x′
tβm| ,

whereL is some positive constant. The second term on the right side can be written as

1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣ |εt| |(x′
tβm)| =

1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣

∣∣∣∣∣x
′
t(β0,0 − β0) +

M∑

m=1

x′
t(βm,0fm,0 − βmfm)

∣∣∣∣∣ |x
′
tβm| ,

=
1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣
∣∣x′

t(β0,0 − β0)
∣∣ |x′

tβm|+
∣∣∣∣∣

M∑

m=1

x′
t(βm,0fm,0 − βmfm)

∣∣∣∣∣ |x
′
tβm| ,

≤ 1

c

∣∣∣∣
∂2f

∂γ2
m

∣∣∣∣K ‖xt‖2 ,
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whereK is some positive constant. Again, the compactness of the parameter space, boundedness

of f , and stationarity ofxt ensures the existence ofK andL. It follows that

∣∣∣∣
∂2`t
∂γ2

i

∣∣∣∣ ≤
(
L

c

(
∂f

∂γi

)2

+
1

c

∣∣∣∣
∂2f

∂γ2
i

∣∣∣∣K
)
‖xt‖2 .

The finiteness of the derivatives off was shown in Lemma 1. Thus,

E sup
θ∈Θ

∣∣∣∣
∂2`t
∂γ2

i

∣∣∣∣ ≤
(
L

c

(
∂f

∂γi

)2

+
1

c

∣∣∣∣
∂2f

∂γ2
i

∣∣∣∣K
)
E ‖xt‖2 < ∞.

The proof thatE supθ∈Θ

∣∣∣∂2`t
∂c2

i

∣∣∣ < ∞ closely resembles the proof above and is omitted for brevity.

�

Proof of Theorem 2.The proof establishes the conditions of Theorem 4.1.3 of Amemiya (1985)

with a generalization due to Ling and McAleer (2003, Theorem3.1). We need consistency of

θ̂T for θ0, which was shown in Theorem 1. Then we show

B(θ0)
− 1

2

1√
T

[rT ]∑

t=1

∂`t
∂θ

∣∣∣∣∣∣
θ0

d→ W (s), s ∈ [0, 1],

whereW (r) isN-dimensional standard Brownian motion on the unit interval. This is condition

(C) in Theorem 4.1.3 of Amemiya (1985). The convergence follows from Theorem 18.3 in

Billingsley (1999) if (a)
{

∂`t
∂θ

∣∣
θ0

,Ft

}
is a stationary martingale difference, and (b)B(θ0) exists.

Both conditions were shown in Lemma 3.

To satisfy condition (B) of Theorem 4.1.3 of Amemiya (1985),we have to establish

AT (θ
∗
T )

p→ A(θ0)
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for any sequenceθ∗
T

p→ θ0,

AT (θ
∗
T ) = − 1

T

T∑

t=1

∂2`t
∂θ∂θ′

∣∣∣∣∣
θ∗

T

andA(θ0) = −E
∂2`t
∂θ∂θ′

∣∣∣∣
θ0

is non-singular. Conditions for the double stochastic convergence can be found in Theorem 21.6

of Davidson (1994). We need to show

(1) consistency of̂θT for θ0 (Theorem 1), and

(2) uniform convergence ofAT to A in probability, i.e.supθ∈Θ |AT (θ)−A(θ)| p→ 0.

We prove uniform convergence ofAT using Theorem 3.1 of Ling and McAleer (2003), who

generalize Theorem 4.2.1 of Amemiya (1985) from i.i.d. datato stationary and ergodic data.

This allows the immediate invocation of the Ergodic Theoremwithout having to check finiteness

of third derivatives of̀ t as in Andrews (1992, Theorem 2). To apply Theorem 3.1 of Ling and

McAleer (2003) we need that

gt(θ) = − ∂2`t
∂θ∂θ′ −A(θ)

is continuous inθ (this also establishes condition (A) of Theorem 4.1.3. of Amemiya (1985)

along the way), has expected valueEgt(θ) = 0 andE [supθ∈Θ |gt(θ)|] < ∞. This was shown

in Lemma 4. Thus, we have established all conditions for asymptotic normality according to

Theorem 4.1.3 of Amemiya (1985). �

Proof of Proposition 1.The proof of uniform convergence in probability ofAT to A is given

in Lemma 4 and Theorem 2. We need to show uniform convergence of BT to B. We employ

Theorem 3.1 of Ling and McAleer (2003) again and show that

ht(θ) :=
∂`t
∂θ

∂`t
∂θ′ −B(θ),

is absolutely uniformly integrable, continuous inθ, and has expected valueEht(θ) = 0. The

detailed proof is in complete analogy to Lemma 4 and is omitted for brevity. �
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SUAREZ-FARIÑAS, M., C. E. PEDREIRA, AND M. C. MEDEIROS(2004): “Local Global Neu-

ral Networks: A New Approach for Nonlinear Time Series Modeling,” Journal of the Ameri-

can Statistical Association, 99, 1092–1107.
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TABLE 1. ESTIMATION RESULTS.

The table reports the parameter estimates for both linear and nonlinear specifications. The value between parenthesis
are the standard errors. The table also reportsp-values of the sequence of LM tests for remaining nonlinearity as
well as the AIC for both linear an nonlinear models.

Nonlinear Model
Parameter Linear Model First regime Second Regime Third Regime
Intercept 0.0011

(0.0003)
0.0036
(0.0014)

0.0018
(0.0018)

- 0.0024
(0.0013)

πt−1 0.8833
(0.0331)

0.1519
(0.3684)

0.5223
(0.3733)

- 0.1920
(0.1351)

xt−1 0.0361
(0.0132)

0.0919
(0.0454)

- 0.0362
(0.0485)

0.0030
(0.0329)

γ 20
(13.9086)

60
(83.9221)

c 0.5977
(00543)

1.8778
(0.0284)

p-value 1.2121 × 10
−4

0.0045 0.3010

AIC −11.8023 −11.8975
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FIGURE 1. Same unscaled logistic transition functions with different sample
sizesT = 100 & 1000. γ = 0.2; c = 50.
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FIGURE 2. Transition function for Models A and B with 1000 observations.
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FIGURE 3. Bias and mean squared error (MSE) of the quasi-maximum likeli-
hood estimator of the parameters of Model A with uniform errors.
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hood estimator of the parameters of Model B with uniform errors.
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FIGURE 5. Distribution of the standardized QMLE of the linear parameters of
Model A with uniform errors.
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FIGURE 6. Distribution of the standardized QMLE of the linear parameters of
Model B with uniform errors.
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FIGURE 7. Distribution of the standardized QMLE of the location parameters
for Model A with uniform errors.
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for Model B with uniform errors.
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FIGURE 9. Top panel: inflation. Bottom panel: output gap.
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